
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AN EMPIRICAL STUDY OF DEEP REINFORCEMENT
LEARNING IN CONTINUING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In reinforcement learning (RL), continuing tasks refer to tasks where the agent-
environment interaction is ongoing and can not be broken down into episodes.
These tasks are suitable when environment resets are unavailable, agent-controlled,
or predefined but where all rewards—including those beyond resets—are critical.
These scenarios frequently occur in real-world applications and can not be modeled
by episodic tasks. While modern deep RL algorithms have been extensively studied
and well understood in episodic tasks, their behavior in continuing tasks remains
underexplored. To address this gap, we provide an empirical study of several
well-known deep RL algorithms using a suite of continuing task testbeds based
on Mujoco and Atari environments, highlighting several key insights concerning
continuing tasks. Using these testbeds, we also investigate the effectiveness of
a method for improving temporal-difference-based reinforcement learning (RL)
algorithms in continuing tasks by centering rewards, as introduced by Naik et al.
(2024). While their work primarily focused on this method in conjunction with
Q-learning, our results extend their findings by demonstrating that this method is ef-
fective across a broader range of algorithms, scales to larger tasks, and outperforms
two other reward-centering approaches.

1 INTRODUCTION

Reinforcement learning (RL) tasks can generally be divided into two categories: episodic tasks and
continuing tasks. In episodic tasks, the interaction between the agent and environment naturally
breaks down into distinct episodes, with the environment resetting to an initial state at the end of each
episode. The goal of these tasks is to maximize the expected cumulative reward within each episode.
Episodic tasks are suitable when the environment can be reset, the reset conditions are predefined,
and rewards beyond the reset point do not matter—such as in video games.

In contrast, continuing tasks involve ongoing agent-environment interactions where all rewards
matter. Continuing tasks are well-suited for situations where the environment cannot be reset. In
many real-world problems, such as inventory management, content recommendation, and portfolio
management, the environment’s dynamics are beyond the control of the solution designer, making
environment resets impossible. Continuing tasks can also be useful when resets are possible. First,
when designing reset conditions is challenging, it can be beneficial for the agent to determine when to
reset. For instance, a house-cleaning robot might decide to reset its environment by requesting to be
placed back on the charging dock if trapped by cables. The second scenario involves predefined reset
conditions, just as in episodic tasks, but where post-reset rewards still matter. For example, when
training a robot to walk, allowing the robot to learn when to fall and reset can lead to better overall
performance, as it could pursue higher rewards after resetting rather than merely avoiding falling at
all costs. In both scenarios, continuing tasks provide an opportunity to balance the frequency of resets
and the rewards earned by choosing the cost of reset, which is a flexibility not present in episodic
tasks.

Continuing tasks can also be useful in cases where the ultimate goal is to solve an episodic task.
This is best exemplified by the works on the autonomous RL setting, where the goal is to address
an episodic task, and the agent learns a policy to reset the environment. In this setting, the agent is
trained on a special continuing task, where the main task, which is the episodic task of interest, and
an auxiliary task, such as moving to the initial state, are presented in an interleaved sequence. The

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

learned main task’s policy is deployed after training. This setting can be most useful when resets are
expensive, and it is possible to reach the initial state from all other states, such as in many robotic
tasks. Representative works in this direction include Eysenbach et al. (2017); Sharma et al. (2021);
Zhu et al. (2020) and Sharma et al. (2022).

Despite the broad applications of continuing tasks, empirical studies on deep RL algorithms in these
tasks remain limited, and their unique challenges remain under-explored. Most existing empirical
studies focus on demonstrating better performance of new algorithms. For instance, Zhang and Ross
(2021), Ma et al. (2021), Saxena et al. (2023), and Hisaki and Ono (2024) introduced average-reward
variations of popular deep RL algorithms and empirically evaluated them alongside their discounted
return counterparts on continuing tasks based on the Mujoco environment (Todorov et al., 2012),
highlighting improvements in performance. In addition to the Mujoco testbeds used in the above
works, Platanios et al. (2020) and Zhao et al. (2022) provided new testbeds for continuing tasks.
However, Platanios et al.’s (2020) testbed also presents significant partial observability, making it not
suitable for isolating the challenges of continuing tasks. The testbeds presented by Zhao et al. (2022)
have small discrete state and action spaces, making them primarily suitable for studying tabular
algorithms. To our knowledge, only two empirical studies have explored the unique challenges that
continuing tasks present to deep RL algorithms. In particular, Sharma et al. (2022) found that several
RL algorithms designed for the autonomous RL setting perform significantly worse when resets are
unavailable. This indicates that resets limit the range of visited states, focusing the agents around
initial and goal states. Naik et al. (2024) demonstrated that in two small-scale continuing tasks
(namely, Pendulum and Catch), the DQN algorithm performs poorly when using a large discount
factor or when rewards share a common offset. While a large discount factor also poses challenges
in episodic tasks, its effects can be masked by the finite length of episodes. Shifting rewards by a
common offset can only be applied to continuing tasks, as in episodic tasks, it changes the underlying
problem.

Our first contribution is an empirical study of several well-known deep RL algorithms on a suite of
continuing task testbeds. The objectives of this study include understanding the challenges present in
continuing tasks with different reset scenarios and the extent to which the existing deep RL algorithms
address these challenges. The tested algorithms include DDPG (Lillicrap, 2015), TD3 (Fujimoto
et al., 2018), SAC (Haarnoja et al., 2018), PPO (Schulman et al., 2017), and DQN (Mnih et al.,
2015). The testbeds are obtained by applying simple modifications to existing episodic testbeds from
Gymnasium (Towers et al., 2024) based on Mujoco and Atari environments (Bellemare et al., 2013),
such as removing time-based resets and treating resets as standard transitions in the environment
with some extra cost. We considered the following reset scenarios: no resets, predefined resets, and
agent-controlled resets. The proposed testbeds include 15 continuous action tasks covering all these
reset scenarios and six discrete action tasks with predefined resets. We did not create Atari-based
testbeds without resets or with agent-controlled resets because it is not trivial to remove the predefined
resets there. While some of our Mujoco testbeds are identical to those used in prior works studying
average-reward algorithms (e.g., Zhang and Ross 2021), the majority differ from theirs. The code
used in this study is based on the Pearl library (Zhu et al., 2023) and will be available upon the
publication of this paper.

The empirical study reveals several key insights. First, the tested algorithms perform significantly
worse in tasks without resets compared to those with predefined resets. We found that predefined
resets help in at least two ways. One is that they limit the effective state space the agent needs to deal
with. This point echoes Sharma et al.’s (2022) finding in the autonomous RL setting. The other way
is that they move the agent back to an initial state when the agent fails to escape from suboptimal
states due to the weak exploration ability. Second, tested algorithms in continuing testbeds with
predefined resets learn policies outperforming the same algorithms in the episodic testbed variants
when both policies are evaluated in the continuing testbeds. We found that better performance is
achieved by choosing actions that yield higher rewards at the cost of more frequent resets. Further,
increasing the reset cost reduces the number of resets and, interestingly, can even improve overall
rewards, indicating that reset costs are not only problem parameters but also solution parameters.
Third, when agents are given control over resets, in some cases, it can barely surpass or even be
worse than random policies in tasks with predefined resets, which suggests that these tasks are quite
challenging for the tested algorithms. Lastly, all algorithms perform poorly in continuing tasks with
large discount factors or shared reward offsets, which is in line with Naik et al.’s (2024) findings
about deep Q-learning in small-scale tasks. These findings highlight the need for careful selection

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

of discount factors and the avoidance of reward offsets when applying these deep RL algorithms to
continuing tasks.

Our second contribution is empirically showing the effectiveness of temporal-difference (TD)–based
reward centering on a wide range of deep RL algorithms. Originally proposed by Naik et al. (2024),
reward centering is an idea to address challenges posed by a large discount factor and a large common
reward offset by subtracting an estimate of the average-reward rate from all rewards. TD-based
reward centering is one approach to estimating the reward rate and is particularly beneficial for
off-policy algorithms; the reward rate can be estimated using a moving average of past rewards in the
on-policy setting but not in the off-policy setting. Naik et al. (2024) demonstrated its effectiveness
primarily in the tabular and linear function approximation settings, with deep RL results limited to
DQN on two small-scale tasks (Pendulum and Catch) and PPO, which is an on-policy algorithm,
on six Mujoco tasks. We show that TD-based reward centering improves all tested algorithms on a
larger scale and more diverse testbeds. Additionally, we compare TD-based reward centering with
the moving average approach, despite its theoretical issues in the off-policy setting, and an approach
using a set of selected reference states (Devraj and Meyn, 2021).

Empirical results demonstrate that TD-based reward centering significantly improves performance
across a wide range of continuing tasks and maintains performance in others. Furthermore, algorithms
incorporating TD-based reward centering are not sensitive to reward offsets. The findings related
to large discount factors present a more nuanced picture compared to Naik et al.’s (2024) results on
smaller tasks. While their experiments show that, with reward centering, the discount factor primarily
affects the speed of learning without degrading long-term performance even as the discount factor
approaches one, our results on larger scale tasks show that long-term performance still declines,
albeit much less sharply than when reward centering is not employed. This suggests that even with
TD-based reward centering, tuning the discount factor remains valuable, particularly in more complex
tasks. Finally, while the moving-average approach is less effective than TD-based reward centering,
surprisingly, it is helpful for the tested off-policy algorithms despite its theoretical limitations. The
reference-state-based approach improves the tested algorithms in some tasks but hurts in others.

2 EVALUATING DEEP RL ALGORITHMS ON CONTINUING TASKS

This section evaluates several of the most well-known RL algorithms in a suite of continuing testbeds.

2.1 TESTBEDS WITHOUT RESETS

This section evaluates four continuous control algorithms (DDPG, TD3, SAC, PPO) in five continuing
testbeds without resets and shows how the absence of resets poses a significant challenge to the tested
algorithms.

The testbeds are based on five Mujoco environments: Swimmer, HumanoidStandup, Reacher, Pusher,
and Ant. The goal of the Swimmer and Ant testbeds is to move a controlled robot forward as fast as
possible. For Reacher and Pusher, the goal is to control a robot to either reach a target position or
push an object to a target position. In HumanoidStandup, the goal is to make a lying Humanoid robot
stand up. The episodic versions of these testbeds have been standard in RL (Towers et al., 2024).
The continuing testbeds are the same as the episodic ones except for the following differences. First,
the continuing testbeds do not involve time-based or state-based resets. For Reacher, we resample
the target position every 50 steps while leaving the robot’s arm untouched, so that the robot needs
to learn to reach a new position every 50 steps. Similarly, for Pusher, everything remains the same
except that the object’s position is randomly sampled every 100 step. As for Ant, we increase the
range of the angles at which its legs can move, so that the ant robot can recover when it flips over.

Note that we created these continuing testbeds based on environments where, except for a set of
transient states, it is possible to transition from any state to any other state. This is known as the
weakly communicating property in MDPs (Puterman, 2014). Without this property, no algorithm
can guarantee the quality of the learned policy because the agent might enter suboptimal states, from
which there is no way to escape. An example environment without this property is Mujoco’s Hopper,
where if the agent falls, it is unable to stand back up.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
x 10000 steps

40

60

80

100

120

140

HumanoidStandup

0 50 100 150 200 250 300
x 10000 steps

2.0

1.5

1.0

0.5

Pusher

0 50 100 150 200 250 300
x 10000 steps

1.2

1.0

0.8

0.6

0.4

0.2

Reacher

0 50 100 150 200 250 300
x 10000 steps

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Swimmer

0 50 100 150 200 250 300
x 10000 steps

1

0

1

2

3

DDPG
TD3
SAC
PPO

SpecialAnt

0 50 100 150 200 250 300
x 10000 steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

HalfCheetah

0 50 100 150 200 250 300
x 10000 steps

0

2

4

6

8

Ant

0 50 100 150 200 250 300
x 10000 steps

1

2

3

4

Hopper

0 50 100 150 200 250 300
x 10000 steps

5

6

7

8

Humanoid

0 50 100 150 200 250 300
x 10000 steps

0

1

2

3

4

5

6

DDPG
TD3
SAC
PPO

Walker2d

0 50 100 150 200 250 300
x 10000 steps

5

0

5

10

HalfCheetah

0 50 100 150 200 250 300
x 10000 steps

6

4

2

0

2

4

6

8

Ant

0 50 100 150 200 250 300
x 10000 steps

2

0

2

4

Hopper

0 50 100 150 200 250 300
x 10000 steps

2

0

2

4

6

Humanoid

0 50 100 150 200 250 300
x 10000 steps

4

2

0

2

4

DDPG
TD3
SAC
PPO

Walker2d

Figure 1: Learning curves in continuing testbeds without resets (upper row), with predefined resets
(middle row), and with agent-controlled resets (lower row) based on the Mujoco environment. Each
point in a curve shows the reward rate averaged over the past 10, 000 steps. The shading area shows
one standard error.

Task DDPG TD3 SAC PPO

Swimmer 343.45 469.54 2428.54 29.19
HumanoidStandup 63.76 30.66 39.04 0.44
Reacher 394.67 0.02 10.48 3.42
Pusher -4.10 1.65 -3.30 0.67
SpecialAnt 35.30 88.08 120.98 23.82

Table 1: The percentage of the final reward rate
improvement when resets are applied with a small
probability. The gray color indicates that the per-
formance difference is not statistically significant.
This table shows that in some tasks, the lack of
resets poses a significant challenge to the tested
algorithms.

For each task, we ran all tested algorithms for
ten independent runs, with each run lasting 3
million steps. The tested parameter settings are
provided in Section A.2. We report learning
curves corresponding to the parameter setting
that results in the highest average-reward rate
across the last 10, 000 steps in the upper five
plots in Figure 1. We also manually checked
the learned policies by rendering videos to see
if they performed reasonably well in the tested
problems.

For Reacher, we found that TD3 and SAC both
learned descent policies in most of the runs,
DDPG failed catastrophically after converging
to a descent policy in half of the test runs, and
PPO’s learned policies did not reach the target positions across most of the runs. For Pusher, all
algorithms learned policies that perform reasonably well in most of runs. For Swimmer, Humanoid-
Standup, and SpecialAnt, none of the algorithms were able to learn a policy that performed reasonably
well in most of the runs.

To understand if the poor performance of the tested algorithms’ performance is mainly due to
the unavailability of resets, we created three variants of these testbeds where resets occur with
probabilities of 0.01, 0.001, and 0.0001 per time step, respectively. Upon resetting, regardless of the
current state and the chosen action, the resulting next state would be sampled from the task’s initial
state distribution. The reward setting and the rest of the task dynamics remain unchanged. For each
resetting variant, we ran each algorithm for ten runs, each of which consists of 3 million steps. We
report the percentage of improvement, defined as r̄no resets−r̄random

r̄random resets−r̄random − 1, where rno resets is the reward
rate of the final policy learned in the task without reset, rrandom resets is the best final reward rate across
all three variants with resets, and r̄random is the reward rate of a uniformly random policy in the testbed
without resets. All reward rates are averaged over ten runs. We use gray shading to indicate that the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

1.0
0.5

0.0
0.5

1.0

z-coordinate of the torso
1.0

0.5
0.0

0.5
1.0

x-o
rie

nta
tio

n o
f th

e t
ors

o

1.0

0.5

0.0

0.5

1.0

y-
or

ie
nt

at
io

n
of

 th
e

to
rs

o

no resets
random resets

Steps 0 - 250K

1.0
0.5

0.0
0.5

1.0

z-coordinate of the torso
1.0

0.5
0.0

0.5
1.0

x-o
rie

nta
tio

n o
f th

e t
ors

o

1.0

0.5

0.0

0.5

1.0

y-
or

ie
nt

at
io

n
of

 th
e

to
rs

o

no resets
random resets

Steps 250K - 500K

1.0
0.5

0.0
0.5

1.0

z-coordinate of the torso
1.0

0.5
0.0

0.5
1.0

x-o
rie

nta
tio

n o
f th

e t
ors

o

1.0

0.5

0.0

0.5

1.0

y-
or

ie
nt

at
io

n
of

 th
e

to
rs

o

no resets
random resets

Steps 500K - 750K

1.0
0.5

0.0
0.5

1.0

z-coordinate of the torso
1.0

0.5
0.0

0.5
1.0

x-o
rie

nta
tio

n o
f th

e t
ors

o

1.0

0.5

0.0

0.5

1.0

y-
or

ie
nt

at
io

n
of

 th
e

to
rs

o

no resets
random resets

Steps 750 - 1M

50 40 30 20 10 0 10

angle of the front tip 2
1

0
1

2

an
gle

 of
 th

e f
irs

t ro
tor

2

1

0

1

2

an
gl

e
of

 th
e

se
co

nd
 ro

to
r

no resets
random resets

Steps 0 - 250K

50 40 30 20 10 0 10

angle of the front tip 2
1

0
1

2

an
gle

 of
 th

e f
irs

t ro
tor

2

1

0

1

2

an
gl

e
of

 th
e

se
co

nd
 ro

to
r

no resets
random resets

Steps 250K - 500K

50 40 30 20 10 0 10

angle of the front tip 2
1

0
1

2

an
gle

 of
 th

e f
irs

t ro
tor

2

1

0

1

2

an
gl

e
of

 th
e

se
co

nd
 ro

to
r

no resets
random resets

Steps 500K - 750K

50 40 30 20 10 0 10

angle of the front tip 2
1

0
1

2

an
gle

 of
 th

e f
irs

t ro
tor

2

1

0

1

2

an
gl

e
of

 th
e

se
co

nd
 ro

to
r

no resets
random resets

Steps 750 - 1M

Figure 2: Evolution of DDPG’s visited states in two HumanoidStandup testbeds (upper row) and
TD3’s visited states in two Swimmer testbeds (lower row). In both cases, one testbed does not involve
resets, while the other one resets with a probability of 0.001 per time step. We visualize three key
elements of the visited states in the first 1M steps of one run. For HumanoidStandup, all blue dots
concentrate on a small suboptimal region, indicating that the agent fails to perform a sufficient amount
of exploration without resets. For the Swimmer, the orange circle indicates the swimmer undulates
like a snake to move forward, suggesting that the agent finds a decent policy. Without resetting, the
agent explores a larger region of the state space but fails to learn a good policy.

reward rate difference with and without resets is not statistically significant, as determined by Welch’s
t-test with a p-value less than 0.05. The results (Table 1) show that, overall, the learned policies in the
testbeds with random resets are significantly better than those learned in the testbeds without resets.

Visualizing the evolution of some key state elements reveals two reasons why algorithms performed
much better in the reset variants of the testbeds. To illustrate these two reasons, we show in a
representative run, for every 1000 steps, the evolution of the height and orientation of the Humanoid
robot’s torso with DDPG and the evolution of the angular component of the Swimmer robot with
TD3. In both testbeds with random resets, the reset probability is 0.001. The evolution plots are
shown in Figure 2. For HumanoidStandup, the agent’s selected state elements concentrate on a point
for a long period, suggesting that the agent is trapped in some small region in the state space. Note
that the MDP is weakly communicating, therefore it is possible to move from every state to every
other state. In addition, note that the z-coordinate is the main factor contributing to the task’s reward.
Hence, a low z-value, in general, corresponds to a low reward. Therefore, the evolution plots show
that the agent did not perform sufficient exploration to escape from suboptimal states. With random
resets, the exploration challenge is significantly simplified because external resets move the agent out
of these suboptimal states.

Swimmer’s evolution plots show that, as training progresses, the agent eventually discovers a decent
policy in the reset variant of the testbed (shown by orange dots). In the original testbed, the algorithm
explores a wider range of the state space but fails to converge to an effective policy (shown by blue
dots). A closer look at the blue dots reveals that the front tip’s angle gradually shifts from 0 to −50
rads within the first 1M steps. Notably, there is no inherent limit on how large or small this angle
can be, leading the agent to continuously observe novel front tip angles that extrapolate beyond the
previously encountered ones and explore ever-larger front tip angles, searching for potentially higher
rewards. The testbed variant with resets avoids this challenge by constraining exploration to the
vicinity of the initial state, effectively reducing the region the agent could possibly visit in the vast
state space.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To verify if the limited size of the state space is indeed the main reason that explains the performance
gap in Swimmer, we tested the four algorithms on a variant of the Swimmer testbed with constrained
state space. This variant is only different from the original Swimmer in that the angular elements
observed by the agent are converted to be within [−π, π) (i.e., angle x in the original testbed is
converted to x mod 2π − π). Note that this conversion does not change the environment dynamics,
and the new state space is equivalent to the original one. We observed that DDPG, TD3, and SAC
in this new testbed achieved statistically significantly higher performance compared to the original
Swimmer, with the percentage of improvement being 1233.26%, 333.22% and 2287.43 %. For PPO,
the performance improvement is not statistically significant. The results show that constraining the
state space by resets is indeed a major factor in achieving a higher performance in swimmers with
resets and limiting the size of the state space can achieve similar performance gains as resets.

2.2 TESTBEDS WITH PREDEFINED RESETS

This section evaluates both continuous and discrete control algorithms on continuing task testbeds
with predefined resets. In addition, it shows how the learned policies differ from policies learned in
episodic variants of the testbeds.

The test suite includes both continuous and discrete control testbeds. The continuous control testbeds
are built upon five Mujoco environments: HalfCheetah, Ant, Hopper, Humanoid, and Walker2d. In
these testbeds, the objective is to control a simulated robot to move forward as quickly as possible.
The corresponding existing episodic testbeds involve time-based truncation of the agent’s experience
followed by an environment reset. In the continuing testbeds, we remove this time-based truncation
and reset. However, we retain state-based resets, such as when the robot is about to fall (in Hopper,
Humanoid, and Walker2d) or when it flips its body (in Ant). In addition, we add a reset condition for
HalfCheetah when it flips, which is not available in the existing episodic testbeds. Each reset incurs a
penalty of −10 to the reward, punishing the agent for falling or flipping.

The discrete control testbeds are adapted from six Atari environments: Breakout, Pong, Space In-
vaders, BeamRider, Seaquest, and Ms. PacMan. Like the Mujoco environments, the episodic versions
include time-based resets, which we omit in the continuing testbeds. In these Atari environments, the
agent has multiple lives, and the environment is reset when all lives are lost. Upon losing a life, a
reward of −1 is issued as a penalty. Furthermore, in existing algorithmic solutions to episodic Atari
testbeds, the rewards are transformed into −1, 0, or 1 by taking their sign for stable learning, though
performance is evaluated based on the original rewards. We treat the transformed rewards as the
actual rewards in our continuing testbeds, removing such inconsistency.

For each testbed-algorithm pair, we performed ten runs, and each run consisted of 3M steps for
Mujoco testbeds and 5M steps for Atari testbeds. The learning curves corresponding to the best
parameter setting for Mujoco and Atari testbeds are shown in Figure 1 (middle row) and Figure 3,
respectively. The results show that SAC and DQN consistently perform the best in Mujoco testbeds
and Atari testbeds, respectively.

Task DDPG TD3 SAC PPO
episodic continuing episodic continuing episodic continuing episodic continuing

Reward
rate

HalfCheetah 13.48 ± 0.15 12.19 ± 1.41 9.72 ± 0.57 10.48 ± 1.69 11.64 ± 1.67 14.23 ± 0.77 3.57 ± 0.57 3.04 ± 0.74
Ant -0.85 ± 0.30 6.79 ± 0.37 4.74 ± 0.26 6.78 ± 0.09 5.13 ± 0.82 7.58 ± 0.20 4.48 ± 0.29 3.61 ± 0.47
Hopper 3.60 ± 0.05 4.05 ± 0.06 3.77 ± 0.05 4.07 ± 0.04 3.93 ± 0.05 4.19 ± 0.07 3.83 ± 0.07 4.02 ± 0.07
Humanoid 5.55 ± 0.19 6.50 ± 0.60 5.83 ± 0.11 7.75 ± 0.44 6.34 ± 0.07 8.09 ± 0.09 5.25 ± 0.03 7.65 ± 0.08
Walker2d 3.72 ± 0.17 4.88 ± 0.19 4.82 ± 0.20 4.37 ± 0.50 3.05 ± 0.88 4.06 ± 0.83 5.23 ± 0.22 4.87 ± 0.29

Number
of resets

HalfCheetah 0.50 ± 0.31 1.80 ± 0.96 0.30 ± 0.30 7.50 ± 5.67 1.20 ± 0.44 0.70 ± 0.30 0.20 ± 0.13 0.40 ± 0.31
Ant 18.90 ± 8.49 23.00 ± 2.67 2.50 ± 0.87 1.20 ± 0.29 2.60 ± 0.99 5.70 ± 2.95 5.80 ± 1.16 4.50 ± 1.52
Hopper 27.20 ± 1.68 45.50 ± 1.92 3.40 ± 1.90 45.90 ± 1.60 11.10 ± 2.25 46.90 ± 2.42 16.90 ± 2.52 52.90 ± 1.88
Humanoid 80.70 ± 59.83 228.10 ± 75.23 0.10 ± 0.10 55.30 ± 20.32 1.00 ± 0.42 5.50 ± 1.93 61.70 ± 3.94 107.40 ± 3.96
Walker2d 30.80 ± 2.44 42.50 ± 11.94 3.30 ± 1.04 35.30 ± 15.76 89.30 ± 32.12 103.70 ± 69.34 5.20 ± 0.70 28.70 ± 6.15

Table 2: A comparison of the policy learned in the continuing task vs the policy learned in the
corresponding episodic task. The upper group shows the mean and the standard error of the reward
rates when deploying the learned policies obtained in these two settings for 10, 000 steps. The higher
reward rate is marked in boldface, and the number obtained in other settings is also marked in bold if
the difference is statistically insignificant. The lower group shows the number of resets within the
evaluation steps. The reset number for the fewer is marked in boldface. This table shows that policies
learned in continuing tasks make more frequent resets and achieve a higher reward rate.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

As mentioned earlier, when resets are predefined, the agent may choose to solve a continuing or
episodic task. We now illustrate the difference between these two choices by showing the difference
between policies learned in these two tasks. The episodic tasks are the same as the above continuing
tasks, except that the agent optimizes cumulative rewards only up to resetting. Table 2 shows the
final reward rate and the number of resets when running in the continuing tasks for 10, 000 steps, the
policies learned in the continuing and episodic Mujoco tasks. The results for Atari tasks demonstrate
a similar trend as in Mujoco tasks and are shown in Table 13 (Appendix B).

Table 2 demonstrates that in most cases, learned policies in continuing tasks result in higher reward
rates and more resets. This likely occurs because the reset cost is relatively small compared to the
additional rewards gained through aggressive actions, which have a higher likelihood of causing
resets. A follow-up experiment revealed that when a large reset cost is used, fewer resets are observed
in most cases, and the reward rate, surprisingly, remains comparable in most instances and even
higher in some, as shown in Table 3. This suggests that reset cost functions not only as a problem
parameter but also as a solution parameter that requires tuning when applying current algorithms.
Future research is needed to understand how to select this solution parameter.

Task DDPG TD3 SAC PPO
Reset cost 1 100 1 100 1 100 1 100

Reward rate
(excluding reset cost)

HalfCheetah 11.30 ± 1.35 10.46 ± 0.27 8.04 ± 1.79 6.15 ± 1.22 15.26 ± 0.30 13.28 ± 1.47 3.95 ± 0.39 3.83 ± 0.44
Ant 4.26 ± 0.07 3.34 ± 0.16 2.02 ± 0.23 2.39 ± 0.23 7.26 ± 0.14 6.30 ± 0.60 2.82 ± 0.44 4.94 ± 0.15
Hopper 2.85 ± 0.03 2.86 ± 0.04 2.75 ± 0.05 2.88 ± 0.04 3.93 ± 0.13 4.30 ± 0.04 3.96 ± 0.08 4.06 ± 0.08
Humanoid 6.88 ± 0.31 8.02 ± 0.37 6.96 ± 0.45 8.02 ± 0.19 7.91 ± 0.19 7.51 ± 0.27 7.63 ± 0.08 6.12 ± 0.06
Walker2d 3.79 ± 0.14 3.95 ± 0.11 2.64 ± 0.38 2.80 ± 0.46 4.70 ± 0.87 5.79 ± 0.19 5.10 ± 0.22 5.23 ± 0.18

Number of resets

HalfCheetah 2.20 ± 1.48 1.00 ± 0.33 8.10 ± 5.10 2.80 ± 1.91 0.20 ± 0.13 0.40 ± 0.16 36.30 ± 29.99 1.30 ± 0.47
Ant 94.20 ± 5.98 65.20 ± 4.76 89.80 ± 10.27 58.40 ± 9.65 2.80 ± 1.17 4.80 ± 4.37 80.50 ± 28.45 4.80 ± 1.10
Hopper 84.30 ± 1.83 69.70 ± 1.74 100.20 ± 4.98 86.60 ± 3.82 57.30 ± 5.58 35.80 ± 1.14 53.40 ± 1.54 44.00 ± 2.01
Humanoid 161.90 ± 52.15 76.40 ± 46.33 138.00 ± 38.23 3.40 ± 1.82 44.00 ± 15.10 2.67 ± 1.50 118.30 ± 4.72 83.10 ± 3.52
Walker2d 104.50 ± 17.33 39.70 ± 3.98 108.90 ± 24.23 55.40 ± 11.98 99.20 ± 71.06 3.00 ± 1.14 27.70 ± 7.31 10.70 ± 1.24

Table 3: The table presents the reward rate and number of resets of the learned policies over 10,000
evaluation steps with varying reset costs. To ensure a fair comparison, the reset cost is excluded
from the reward rate computation. The lower section of the table shows the number of resets during
evaluation. The boldface represents the same meaning as in Table 2. These results demonstrate that
policies learned in tasks with higher reset costs generally lead to fewer resets. In several cases (e.g.,
DDPG in Humanoid), higher reset costs are also associated with higher reward rates.

2.3 TESTBEDS WHERE THE AGENT CONTROLS RESETS

This section studies the behavior of current algorithms in continuing tasks where predefined resets
are not available, and the agent decides when to reset. Intuitively, allowing the agent to choose when
to reset can lead to higher reward rates compared to predefined resets, as the agent can optimize
its behavior by avoiding unnecessary resets. However, predefined resets reduce the state and action
spaces, making the testbeds easier. For instance, in environments like Humanoid, Walker, and Hopper,
the agent needs to carefully control its actions to avoid falling, and recovering from these fallen states
is difficult or impossible. In such cases, the agent must learn to recognize when it cannot recover and
needs to reset the environment to continue. Predefined resets simplify the problem by eliminating
these bad, unrecoverable states, allowing the agent to focus on learning in good states.

The testbeds are the five Mujoco testbeds used in Section 2.2 without predefined resets. In these
new testbeds, the agent can choose to reset the environment at any time step. This is achieved by
augmenting the environment’s action space in these testbeds by adding one more dimension. This
additional dimension has a range of [0, 1], representing the probability of reset. The tested continuous
control algorithms can then be readily applied, except that the exploration noise for this additional
dimension needs to be set differently from other action dimensions because the performance of the
policy is more sensitive to this dimension than the rest. We leave the details of the tested noises in
Section A.3. The number of runs and number of steps in each run are chosen in the same way as in
the above two subsections. The tested hyperparameters are provided in Section A.2. The learning
curves, which are chosen the same way as the previous two subsections, are reported in Figure 1
(lower row) (Appendix B). We also show in Table 14 (Appendix B) the reward rate and the number
of resets achieved by the final learned policy deployed for 10, 000 steps and compare it to the reward
rates when the policies are learned in the testbeds with predefined resets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Comparing the performance of the tested algorithms in testbeds with predefined resets and those with
agent-controlled resets reveals some nuanced results. In many cases, algorithms trained in testbeds
with agent-controlled resets achieved a similar final reward rate to those with predefined resets. In a
few instances, algorithms in testbeds with agent-controlled resets performed better, achieving both
higher final reward rates and more stable learning (e.g., PPO in HalfCheetah and Ant). Conversely, in
other cases, the learned policies performed worse. Notably, some learning curves show a significant
upward trend toward the end of training, suggesting that the performance differences may be due,
at least in part, to the larger state and action spaces in the testbeds with agent-controlled resets,
which could require more training time to fully optimize. Nevertheless, longer training time does
not always suffice. For instance, in the Humanoid task, all algorithms performed considerably worse
when resets were learned. The learning curves for most algorithms, except PPO, demonstrate slow
improvement over time. DDPG faced such challenges that its final learned policy was even worse
than the performance of a random policy in the Humanoid task with predefined resets (approximately
4.6). The failure in Humanoid likely stems from the fact that it has a significantly larger state space
compared to other testbeds.

2.4 FAILURE TO ADDRESS LARGE DISCOUNT FACTORS OR OFFSETS IN REWARDS

Discount factor 0.99→ 0.999 All rewards +100

Algorithm DDPG TD3 SAC PPO DDPG TD3 SAC PPO

No
resets

Swimmer -85.95 -45.19 -99.23 46.84 -104.86 -103.20 -108.30 -101.52
HumanoidStandup -9.09 14.16 -60.13 -13.45 -29.16 5.70 -24.10 -11.97
Reacher -707.42 -6.01 -10.13 1.60 -429.94 -160.87 -117.87 -8.67
Pusher -13.80 -10.82 -7.23 -4.54 -183.44 -162.26 -25.07 -19.53
SpecialAnt -38.39 -67.71 -152.16 -11.86 -100.50 -44.65 -12.73 -42.30

Predefined
resets

HalfCheetah -20.62 49.84 4.26 -41.32 -59.69 -85.34 -44.86 -62.95
Ant -7.48 -22.46 -14.66 -15.50 -118.93 -97.01 -75.70 -31.90
Hopper -12.81 -8.45 -11.72 -21.73 -62.35 -53.05 -17.77 -36.00
Humanoid -34.28 -64.27 -74.81 -58.51 -83.17 -113.79 -109.34 -50.57
Walker2d -5.07 -15.12 -3.38 -29.89 -63.41 -53.33 -40.23 -52.50

Agent-controlled
resets

HalfCheetah -27.19 -29.79 -33.93 -26.41 -73.96 -26.31 -59.21 -78.05
Ant -5.32 10.74 -22.89 -19.04 -127.31 -85.00 -82.81 -69.68
Hopper -29.62 -11.62 -5.92 -12.87 -106.48 -65.56 -11.30 -36.35
Humanoid -155.59 2.13 -14.77 -23.05 -106.27 -108.54 -35.26 -21.05
Walker2d -30.49 6.14 -37.61 -22.96 -59.64 -46.72 -35.39 -77.86

Table 4: A large discount factor or reward offset hurt all tested algo-
rithms’ performance.

Using the Mujoco testbeds
presented above, we show
in this section that the
performance of all of the
tested continuous control al-
gorithms deteriorates signif-
icantly when a large dis-
count factor is used or when
all rewards are shifted by
the large constant.

We report the percentage
of improvement for each
testbed-algorithm pair, de-
fined as r̄0.999−r̄random

r̄0.99−r̄random − 1,
where r̄0.999 is the final aver-
age reward rate over the last
10,000 steps with a discount factor of 0.999, and r̄0.99 is the reward rate with a discount factor of
0.99. The term r̄random refers to the reward rate of a uniformly random policy. As in the previous
subsections, all reward rates are averaged over ten runs, each of which has 3 million steps, and
gray shading indicates that the difference between r̄0.99 and r̄0.999 is not statistically significant, as
determined by Welch’s t-test with a p-value less than 0.05. Additionally, we tested these pairs when
all environment rewards were shifted by +/-100, with other experiment details the same as above. We
report the percentage of improvement computed in a similar way as for discount factors when all
environment rewards are shifted by +100 but with the common offset subtracted for a fair comparison.
Formally, this percentage of improvement is r̄100−100−r̄random

r̄−r̄random −1, where r̄100 is the final average reward
rate over the last 10,000 steps when all rewards are shifted by +100, and r̄ is the reward rate without
reward shifting. The results when all rewards are subtracted by -100 are similar and are thus omitted.
The results (Table 4) show that, overall, algorithms with a discount factor of 0.999 perform much
worse than those with 0.99. Moreover, a large reward offset leads to catastrophic failure across almost
all task-algorithm pairs.

3 EVALUATING ALGORITHMS WITH REWARD CENTERING

This section empirically shows that the temporal-difference-based reward centering method, originally
introduced by Naik et al. (2024), improves or maintains the performance of all tested algorithms in
the testbeds introduced in the previous section. Further, this method mitigates the negative effect
when using a large discount factor and completely removes the detrimental effect caused by a large
common reward offset.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The idea of reward centering stems from the following observation. By Laurent series expansion
(Puterman, 2014), if a policy π results in a Markov chain with a single recurrent class, its discounted
value function vπ can be decomposed into two parts, a state-independent offset d⊤π vπ = r(π)/(1−γ),
where dπ is the stationary distribution under π, r(π) is the average reward rate under policy π, and
a state-dependent part keeping the relative differences among states. Here, the reward rate does
not depend on the initial state due to the assumption of a single recurrent class. Note that only the
state-dependent part is useful for improving the policy π. However, when the state-independent part
has a large magnitude, possibly due to large offsets in rewards or a discount factor that is close to 1,
approximating the state-independent part separately for each state can result in approximation errors
that mask the useful state-dependent part.

Task DDPG TD3 SAC PPO

No
resets

Swimmer 109.11 90.71 1149.26 71.14
HumanoidStandup 41.67 19.79 35.83 19.39
Reacher -0.03 0.07 -0.11 1.17
Pusher 10.87 1.24 0.39 3.72
SpecialAnt 12.67 2.05 5.59 10.55

Predefined
resets

HalfCheetah 3.15 13.13 5.05 4.66
Ant 22.22 18.25 6.75 13.36
Hopper 2.53 14.83 4.44 4.56
Humanoid 210.54 89.68 77.54 11.29
Walker2d 16.28 10.37 7.72 7.37

Agent-controlled
resets

HalfCheetah 2.21 17.45 -2.05 4.06
Ant 12.73 94.13 34.57 8.07
Hopper 42.28 15.72 4.60 5.57
Humanoid 246.73 20.71 5.46 2.36
Walker2d 10.23 12.92 0.89 4.61

Average improvement 49.54 28.07 89.06 11.46

Table 5: Percentage of reward rate improvement when ap-
plying reward centering to the tested algorithms in Mujoco
testbeds.

Reward centering approximates the
state-independent part using a shared
scalar. Specifically, reward centering
approximates a new discounted value
function, obtained by subtracting all
rewards by an approximation of r(π),
and this new discounted value func-
tion has a zero state-independent off-
set if the approximation of r(π) is
accurate. Even if the approximation
of r(π) is not accurate, removing a
portion of the state-independent offset
still helps.

A straightforward way to perform re-
ward centering is to estimate r(π) us-
ing an exponential moving average of
all observed rewards. For on-policy
algorithms, this moving average ap-
proach can guarantee convergence to
r(π). However, for off-policy algo-
rithms, this approach does not converge to r(π) (e.g., the behavior policy is uniformly random while
the target policy is deterministic).

We now briefly describe the TD-based reward-centering approach, which can be applied to both on-
and off-policy algorithms. This approach extends an approach to solve the average-reward criterion
(Wan et al., 2021) to the discounted setting. Here, we illustrate this approach using use TD(0) (Sutton,
2018, p. 120), the simplest TD algorithm, as an example. More details on how tested algorithms
employ this approach are provided in Section A.4.

Task DQN SAC PPO

Breakout -7.48 1.67 11.51
Pong 0.50 51.94 79.18
SpaceInvader 20.97 0.29 19.72
BeamRider 7.01 35.00 75.67
Seaquest 26.79 22.75 5.77
MsPacman 9.96 1.76 2.67

Average improvement 9.63 18.90 32.42

Table 6: Percentage of reward rate im-
provement when applying reward cen-
tering to the tested algorithms in Atari
tasks. Statistically significant improve-
ment percentage numbers are marked in
boldface.

Given transitions (S,R, S′) generated by following some
policy π, TD(0) estimates vπ by maintaining a table
of value estimates V : R|S| and updating them using
V (S)← V (S) + αδ, where δ

def
=R + γV (S′)− V (S) is

a TD error, α is a step-size parameter, and γ is a discount
factor. The TD-based reward-centering approach simply
replaces the above TD error in TD(0) with the following
new TD error:

δRC def
=R− R̄+ γV (S′)− V (S),

where R̄, a biased estimate of the reward rate, is also
updated by the TD error δRC, as follows:

R̄← R̄+ ηαδRC,

where η > 0 is a constant. It is straightforward to show
that, under certain asynchronous stochastic approximation assumptions on α, V (s) converges to
vπ(s)− η

1−γ+η|S|
∑

s∈S vπ(s), following the same steps as in the proof of Theorem 1 by Naik et al.
(2024). This result implies that although TD-based reward centering does not fully remove the
state-independent offset d⊤π vπ , it can remove a significant portion of it. Empirically, we also observed
this effect.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We evaluated algorithms with TD-based reward centering across all testbeds, comparing them to
base algorithms that do not use reward centering. Each experiment was repeated ten times with
different seeds, lasting 1 million steps for Mujoco testbeds and 5 million steps for Atari testbeds.
We report the percentage improvement when using reward centering. Specifically, the reported
number is r̄RC−r̄random

r̄−r̄random − 1, where r̄RC is the average of all received rewards, averaged across ten runs,
with TD-based reward centering, r̄ is defined similarly but without reward centering, and r̄random

is average-reward rate of a uniformly random policy. The reported value is the best result across
all tested hyperparameter settings for both reward-centered and baseline algorithms. Shaded values
indicate that performance differences are not statistically significant, according to Welch’s t-test with
p < 0.05. The reported results for Mujoco and Atari testbeds are shown in Table 5 and Table 6,
respectively. The corresponding learning curves are provided in Appendix C. These results show that
reward centering improves or maintains the performance of all of the tested algorithms in all testbeds.
How much the performance improvement seems to depend on both the algorithm and the task.

In Tables 15 and 16, we show, using the Mujoco testbeds, that TD-based reward centering is most
effective when using a large discount factor or when there is a large offset in rewards, echoing the
findings by Naik et al. (2024) about DQN in smaller scale testbeds. However, unlike Naik et al.’s
(2024) results, our results show that while the negative effect of large discount factors is much smaller
with reward centering, it can still lead to notably worse performance in many cases. This suggests
that when applying tested algorithms to solve complex continuing tasks, tuning the discount factor
may still be valuable, even with reward centering.

We also evaluated the exponential moving average approach to perform reward centering. In addition,
we evaluated another reward-centering approach inspired by Devraj and Meyn’s (2021) relative
Q-learning algorithms. The details of these two approaches are provided in Section A.4. The results
in Tables 17 and 18 show that the moving-average-based approach works surprisingly well despite its
theoretical unsoundness in off-policy algorithms, the reference-state-based approach helps in some
cases while hurts the performance in some others, and the TD-based approach is the more effective
than the other two.

4 CONCLUSIONS AND LIMITATIONS

This paper empirically examines the challenges that continuing tasks with various reset scenarios
pose to several well-known deep RL algorithms, using a suite of testbeds based on Mujoco and Atari
environments. Our findings highlight key issues that future algorithmic advancements for continuing
tasks may focus on. For instance, we demonstrate that the performance of tested algorithms can
heavily depend on the availability of predefined resets, as these resets help agents escape traps and
reduce the state space complexity. When predefined resets are available, all algorithms perform
reasonably well, learning policies that exploit frequent resetting to achieve higher rewards. The reset
cost balances this trade-off and also functions as a tuning parameter. In contrast, agent-controlled
reset tasks are generally more challenging, and in some testbeds, allowing the agent to control resets
significantly worsens performance. Additionally, we show that both a large discount factor and a large
common offset in rewards can negatively impact the performance of all tested algorithms. Our results
also validate the effectiveness of an existing approach to address these issues, demonstrating through
extensive experiments that the negative impact of reward offset can be completely eliminated, while
the harm from a large discount factor can be largely mitigated with a TD-based reward-centering
approach. Even in scenarios with a smaller discount factor and no reward offset, this approach shows
benefits across many testbeds for all tested algorithms.

This paper has several limitations. First, this paper focuses exclusively on the performance of online
RL algorithms, leaving research on offline RL algorithms in continuing tasks unexplored. Second,
although we concentrate on well-known discounted algorithms, it is worth investigating whether
average-reward algorithms, such as those mentioned in Section 1, face similar challenges. Third,
while most of the hyperparameters used in the experiments are standard choices and have been
effective in episodic testbeds, they may not be ideal for continuing tasks. Identifying hyperparameter
choices that are more suitable for continuing tasks remains unexplored. Despite these limitations, we
believe that our findings provide valuable insights into the challenges of continuing tasks in deep RL,
and they serve as a basis for future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abounadi, J., Bertsekas, D., and Borkar, V. S. (2001). Learning algorithms for Markov decision
processes with average cost. SIAM Journal on Control and Optimization, 40(3):681–698.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279.

Devraj, A. M. and Meyn, S. P. (2021). Q-learning with uniformly bounded variance. IEEE Transac-
tions on Automatic Control, 67(11):5948–5963.

Eysenbach, B., Gu, S., Ibarz, J., and Levine, S. (2017). Leave no trace: Learning to reset for safe and
autonomous reinforcement learning. arXiv preprint arXiv:1711.06782.

Fujimoto, S., Hoof, H., and Meger, D. (2018). Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587–1596. PMLR.

Grand-Clément, J. and Petrik, M. (2024). Reducing blackwell and average optimality to discounted
mdps via the blackwell discount factor. Advances in Neural Information Processing Systems, 36.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta,
A., Abbeel, P., et al. (2018). Soft actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905.

Hisaki, Y. and Ono, I. (2024). Rvi-sac: Average reward off-policy deep reinforcement learning. arXiv
preprint arXiv:2408.01972.

Lillicrap, T. (2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Ma, X., Tang, X., Xia, L., Yang, J., and Zhao, Q. (2021). Average-reward reinforcement learning
with trust region methods. arXiv preprint arXiv:2106.03442.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. nature, 518(7540):529–533.

Naik, A., Wan, Y., Tomar, M., and Sutton, R. S. (2024). Reward centering. arXiv preprint
arXiv:2405.09999.

Platanios, E. A., Saparov, A., and Mitchell, T. (2020). Jelly bean world: A testbed for never-ending
learning. arXiv preprint arXiv:2002.06306.

Puterman, M. L. (2014). Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons.

Saxena, N., Khastagir, S., Kolathaya, S., and Bhatnagar, S. (2023). Off-policy average reward
actor-critic with deterministic policy search. In International Conference on Machine Learning,
pages 30130–30203. PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Sharma, A., Xu, K., Sardana, N., Gupta, A., Hausman, K., Levine, S., and Finn, C. (2021). Au-
tonomous reinforcement learning: Formalism and benchmarking. In International Conference on
Learning Representations.

Sharma, A., Xu, K., Sardana, N., Gupta, A., Hausman, K., Levine, S., and Finn, C. (2022). Au-
tonomous reinforcement learning: Formalism and benchmarking. In International Conference on
Learning Representations.

Sutton, R. S. (2018). Reinforcement learning: An introduction. A Bradford Book.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola, G., Deleu, T., Goulão, M., Kallinteris,
A., Krimmel, M., KG, A., et al. (2024). Gymnasium: A standard interface for reinforcement
learning environments. arXiv preprint arXiv:2407.17032.

Wan, Y., Naik, A., and Sutton, R. S. (2021). Learning and planning in average-reward Markov
decision processes. In Proceedings of the 38th International Conference on Machine Learning,
volume 139, pages 10653–10662.

Zhang, Y. and Ross, K. W. (2021). On-policy deep reinforcement learning for the average-reward
criterion. In International Conference on Machine Learning, pages 12535–12545. PMLR.

Zhao, R., Abbas, Z., Szepesvári, D., Naik, A., Holland, Z., Tanner, B., and White, A. (2022). Csuite:
Continuing environments for reinforcement learning. Github: google-deepmind/csuite.

Zhu, H., Yu, J., Gupta, A., Shah, D., Hartikainen, K., Singh, A., Kumar, V., and Levine, S. (2020).
The ingredients of real-world robotic reinforcement learning. arXiv preprint arXiv:2004.12570.

Zhu, Z., Braz, R. d. S., Bhandari, J., Jiang, D., Wan, Y., Efroni, Y., Wang, L., Xu, R., Guo, H.,
Nikulkov, A., et al. (2023). Pearl: A production-ready reinforcement learning agent. arXiv preprint
arXiv:2312.03814.

12

