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Abstract

We study the regret minimization problem in the novel setting of generalized
kernelized bandits (GKBs), where we optimize an unknown function f∗ belonging
to a reproducing kernel Hilbert space (RKHS) having access to samples generated
by an exponential family (EF) noise model whose mean is a non-linear function
µ(f∗). This model extends both kernelized bandits (KBs) and generalized linear
bandits (GLBs). We propose an optimistic algorithm, GKB-UCB, and we explain
why existing self-normalized concentration inequalities do not allow to provide
tight regret guarantees. For this reason, we devise a novel self-normalized Bernstein-
like dimension-free inequality resorting to Freedman’s inequality and a stitching
argument, which represents a contribution of independent interest. Based on
it, we conduct a regret analysis of GKB-UCB, deriving a regret bound of order
Õ(γT

√
T/κ∗), being T the learning horizon, γT the maximal information gain,

and κ∗ a term characterizing the magnitude the reward nonlinearity. Our result
matches, up to multiplicative constants and logarithmic terms, the state-of-the-art
bounds for both KBs and GLBs and provides a unified view of both settings.

1 Introduction

Multi-Armed Bandits [MABs, 15] have been extensively studied and extended over the years. One
key research direction involves expanding the MAB framework to continuous action spaces. Doing
this requires introducing some notion of similarity or structure in the expected rewards relative to the
distance between arms. Without such a structure, information gathered from explored actions/arms
cannot be transferred to unexplored ones, making learning infeasible [4]. The most known and studied
structure over the arms is the linear one, and led to the design of linear bandits [LBs, 1, 6]. In LBs,
the expected reward is modeled as the inner product between the action and an unknown parameter
vector (i.e., E[yt|xt;θ

∗] = ⟨xt,θ
∗⟩). This setting strictly generalizes the finite-arms MABs [15, 23]

that can be retrieved considering arms as in an Rd canonical basis.

LBs, in turn, have been extended in parallel in two directions: generalized linear bandits [GLBs,
10] and kernelized bandits [KBs, 5, 29]. On the one hand, GLBs employ a generalized linear
model [GLM, 19] to allow for the representation of different noise models (including Gaussian and
Bernoulli). This is achieved with the use of a real-valued non-linear inverse link function µ(·), such
that the expected payoff is defined as E[yt|xt;θ

∗] = µ(⟨xt,θ
∗⟩). On the other hand, KBs focus on

the optimization of an unknown expected reward function belonging to a reproducing kernel Hilbert
space (RKHS) induced by a known kernel function k(x,x′), often resorting to Gaussian processes
for designing algorithms [22]. We observe that GLBs fall back to LBs when the identity link function
µ = I is considered, and KBs fall back to LBs when a linear kernel k(x,x′) = ⟨x,x′⟩ is considered.

In this work, we propose the novel generalized kernelized bandit (GKB) setting, which unifies GLBs
and KBs (Figure 1). This setting enables learning in the scenarios in which the unknown function
18th European Workshop on Reinforcement Learning (EWRL 2025).



f∗ comes from an RKHS and the samples come from an exponential family model whose mean is
obtained by applying an inverse link function µ to function f∗. This allows accounting for a variety
of noise models, including Gaussian and Bernoulli [3].

LBGLB KB

GKB µ(f∗(xt))

⟨xt,θ
∗⟩µ(⟨xt,θ

∗⟩) f∗(xt)

d <∞
µ̇ ∈ R≥0

d <∞
µ̇ = 1

d =∞
µ̇ = 1

d =∞ µ̇ ∈ R≥0

Figure 1: Inclusion of the settings (f(·)
is assumed to belong to a RKHS).

As established by the literature [1, 9, 17], when designing
optimistic regret minimization algorithms for either GLBs
and KBs, a fundamental technical tool are self-normalized
concentration inequalities [7]. When targeting regret min-
imization in the novel setting of GKBs, it is necessary
to employ a concentration inequality that combines the
requirements of GLBs and KBs, i.e., it should avoid de-
pendencies on the minimum slope µ̇ of the inverse link
function (as in GLBs) and on the dimensionality of the
feature representation (as in KBs). The seminal work [1]
provides a self-normalized concentration inequality for
least square estimators under subgaussian noise, exploit-
ing theoretical advancements in self-normalized processes and pseudo-maximization of [7, 8]. How-
ever, this inequality does not conveniently manage the case in which the samples come from an
exponential family model where the variances depend on inverse link function µ, ultimately leading
to a dependence on its minimum slope. To cope with this issue, [9] derive a concentration inequality
via a pseudo-maximization technique that results in a tight regret bound for GLBs, accounting for the
heteroscedastic characteristics of the noise (i.e., Bernstein-like). However, their concentration inequal-
ity presents a dependency on the dimensionality of the feature vector (i.e., dimension-dependent).
While not being problematic for GLBs, this hinders a direct application to GKBs, where the feature
representation (induced by the kernel function) can be infinite-dimensional. Additionally, [5] design
a self-normalized bound for martingales which provides tight concentration results for the KB setting,
directly operating with kernels. However, this result can be considered the counterpart of [1] in the
dual (kernel) space and, for this reason, it shares the same limitation when using an inverse link
function, generating a dependence on the minimum value of µ̇ when applied to GKBs.1 It appears
now necessary to derive a novel concentration result that is both dimension-free and Bernstein-like to
properly address the GKB setting.

Outline and Contributions. We start by introducing the setting of the GKBs, the assumptions,
and the learning problem (Section 3). Then, we design GKB-UCB, an optimistic regret minimization
algorithm (Section 4) and we introduced some preliminary results (Section 5). The key contributions
of this work are contained in Sections 6 and 7. In Section 6, we discuss more formally the limitations
of the existing inequalities and derive a novel self-normalized Bernstein-like dimension-free inequality
via the application of Freedman’s inequality together with a stitching argument. In Section 7, we
analyze the GKB-UCB with a confidence set defined in terms of the previously derived inequality
and show that it achieves regret of order Õ(γT

√
T/κ∗), being T the learning horizon, γT the

maximal information gain, and κ∗ a term characterizing the slope of the inverse link function in the
optimal decision (an efficient implementation is reported in Appendix A). This result matches the
state-of-the-art of both GLBs and KBs up to multiplicative constants and logarithmic terms.

2 Preliminaries

Notation. Let a, b ∈ N with a ≤ b, we denote with Ja, bK := {a, a+1, . . . , b} and with JbK := J1, bK.
Let d ∈ N, Id denotes the identity matrix of order d and 0d the column vector of all zeros of size d
(d is omitted when clear from the context). N (µ,Σ) denotes the multi-variate Gaussian distribution.

Reproducing Kernel Hilbert Space. Let X ⊆ Rd be a decision set and H be a Hilbert space
endowed with the inner product ⟨·, ·⟩ (and induced norm ∥ · ∥). H is a reproducing kernel Hilbert
space [28] if there exists a function k : X×X → R, called kernel, such that it satisfies the reproducing
property, i.e., for every function f ∈ H it holds that f(x) = ⟨f, k(x, ·)⟩ for every x ∈ X . It follows
that the kernel k is symmetric and satisfies the conditions for positive semi-definiteness. We denote
with I the identity operator onH. From Mercer’s theorem [20, 14], there exists a (possibly infinite-
dimensional) feature mapping ϕ : X → RN such that for every function f ∈ H there exists a
(possibly infinite-dimensional) vector of coefficients α ∈ RN such that for every x ∈ X , we have

1We refer to Table 1 for an overview of the properties of concentration inequalities present in the literature.
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Self-normalized
Concentrations

Properties
Condition Dim-free Empirical Heterosc. Technique

Dani et al., 2008 [6] Hoeffding ✗ ✗ ✗ Freedman
Abbasi-Yadkori et al., 2011 [1] Hoeffding ✓ ✓ ✗ Pseudo-Max
Chowdhury and Gopalan, 2017 [5] Hoeffding ✓ ✓ ✗ Pseudo-Max
Faury et al., 2020 [9] Bernstein ✗ ✓ ✓ Pseudo-Max
Zhou et al., 2021 [36] Bernstein ✗ ✗ ✗ Freedman
Ziemann, 2024 [37] Bernstein ✗ ✓ ✗ PAC-Bayes

Our work Bernstein ✓ ✓ ✓ Freedman

Table 1: Summary of the properties of self-normalized concentrations.

f(x) =
∑

i∈N αiϕi(x) = ⟨α, ϕ(x)⟩, where α depends on f but not on x and for every i ∈ N, we
have that ϕi : X → R depends on x but not on f and the series converges absolutely and uniformly
for almost all x. Moreover, for every i, j ∈ N with i ̸= j, we have ∥ϕi∥ = ⟨ϕi, ϕi⟩ = 1 and
⟨ϕi, ϕj⟩ = 0, i.e., (ϕi)i∈N forms an orthonormal basis. Thus, if f = ⟨α, ϕ(x)⟩, we have ∥f∥ = ∥α∥.
Furthermore, for every x ∈ X , we have that |f(x)| ≤ ∥f∥∥k(·,x)∥ = ∥f∥

√
k(x,x).

Information Gain. Let k be a kernel, let t ∈ N, and let x1, . . . ,xt ∈ X be a sequence of decisions,
the information gain Γt and the maximal information gain γt are defined, respectively as [29]:
Γt :=

1
2 log det(I + λ−1Kt) and γt := maxx1,...,xt∈X Γt, where λ > 0 and Kt ∈ R(t−1)×(t−1) is

the Kernel matrix (Kt)i,j = k(xi,xj) for i, j ∈ Jt− 1K. Γt is the mutual information between the
random vectors ft ∼ N (0, ν2Kt) and yt = ft + ϵt where ϵt ∼ N (0t, v

2λIt), for arbitrary v > 0.
We use the abbreviation Kt(λ) := λI+Kt, so that, Γt :=

1
2 log det(λ

−1Kt(λ)).2

Covariance Operators. Let H be a RKHS with kernel k inducing the feature mapping ϕ, let
t ∈ N and x1, . . . ,xt ∈ X be a sequence of decisions, the covariance operator is defined as:
Vt(λ) := Vt + λI =

∑t−1
s=1 ϕ(xs)ϕ(xs)

⊤ + λI . The following identity was shown in [32]:

det(λ−1Vt(λ)) = det(λ−1Kt(λ)). (1)

Canonical Exponential Family Models. Let f : X → R, a real-valued random variable y belongs
to the canonical exponential family [EF, 3] if it has density:

p(y|x; f) = exp

(
yf(x)−m(f(x))

g(τ)
+ h(y, τ)

)
, (2)

where τ > 0 is a temperature parameter and g,m : R → R and h : R2 → R are suitably defined
functions [17]. This EF model allows representing a variety of distributions, including Gaussian,
Bernoulli, exponentials, and Poisson. Function m is called log-partition function and fulfills the
following assumptions. As customary [17, 25], m is assumed to be three times differentiable and
convex. We define the inverse link function µ = m′, that, since m is convex, is monotonically
non-decreasing. Thus, the following hold [17]: E[y|x; f ] = m′(f(x)) = µ(f(x)) and Var[y|x; f ] =
g(τ)−1µ̇(f(x)). When f is a linear function, the model in Equation (2) is also called generalized
linear model [GLM, 19]. We also define the maximum slope of µ, i.e., Rµ̇ := supf∈H,x∈X µ̇(f(x)).

3 Problem Formulation

We define the novel generalized kernelized bandit (GKB) setting and the learning problem.

Setting. Let f∗ ∈ H be an unknown function belonging to the RKHSH. At every round t ∈ JT K,
being T ∈ N the learning horizon, the learner chooses a decision xt ∈ X by means of a policy
πt : Ft−1 → X , being Ft−1 = σ(x1, y1, . . . ,xt−1, yt−1) the filtration of all random variables
realized so far, and observes a reward yt ∼ p(·|xt; f

∗). The goal of the agent is to find a decision
x∗ ∈ X maximizing the expected reward: x∗ ∈ argmaxx∈X µ(f∗(x)). Since µ is monotonically
non-decreasing, maximizing µ(f∗(·)) is equivalent to maximizing f∗(·). It is worth noting that the
GKB generalizes two well-known settings: (i) generalized linear bandits [GLBs, 18] when the kernel
is linear k(x,x′) = ⟨x,x′⟩ and (ii) kernelized bandits [KBs, 5] when the inverse link function is the
identity function, i.e., µ = I .

2Known bounds of γt for commonly used kernels are available in [29, 31].
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Learning Problem. We evaluate the performance of a learner, i.e., a π = (πt)t∈JT K, with cumulative
regret: R(π, T ) :=

∑
t∈JT K (µ(f

∗(x∗))− µ(f∗(xt))), where xt = πt(Ft−1) for all t ∈ JT K.

Assumptions. We make the following assumptions about function f∗ and the RKHSH.

Assumption 3.1 (Bounded Norm). It exists a known constant B < +∞ such that ∥f∗∥ ≤ B.

Assumption 3.2 (Bounded Kernel). It exists a known constant K<+∞ such that sup
x∈X

k(x,x)≤K2.

Assumptions 3.1 and 3.2 are widely employed in the KB literature [5], where, in particular, Assump-
tion 3.2 is enforced with K = 1 and it is fulfilled by commonly used kernels (e.g., Gaussian and
Matérn kernels). Assumptions 3.1 and 3.2 are the analogous in GLBs of requiring the boundedness
of the parameter vector (since if f = ⟨α, ϕ⟩, then, ∥f∥ = ∥α∥) and requiring the boundedness of
the norm of the decisions (since when k(x,x′) = ⟨x,x′⟩ we have that k(x,x) = ∥x∥2), respec-
tively [2, 17]. The combination of the two allows bounding the L∞-norm of f∗ as ∥f∗∥∞ ≤ BK.

Concerning the EF noise model, we make the following assumptions.

Assumption 3.3 (Bounded noise). Let x ∈ X , y ∼ p(·|x; f∗), let ϵ = y − µ(f∗(x)). There exists a
known constant R < +∞ such that |ϵ| ≤ R almost surely.

This assumption is widely used in the GLB literature [2, 25]. If we deal with ν2-subgaussian noise
(instead of bounded), we can take R = ν

√
2 log(2T/δ) to ensure that |ϵt| ≤ R uniformly for t ∈ JT K

w.p. 1− δ.3 Finally, we introduce the generalized self-concordance property [24].

Assumption 3.4 ((Generalized) Self-concordance). There exists a known constant Rs < +∞ such
that for every function f ∈ H and decision x ∈ X , it holds that |µ̈(f(x))| ≤ Rsµ̇(f(x)).

In [25], the authors show (Lemma 2.1) that if the EF model generates random variables that are
bounded by |y| ≤ Y a.s., Assumption 3.4 hold with Rs = Y . Moreover, it holds for Bernoulli noise
with Rs = 1 and Gaussian with Rs = 0 [17].

Problem Characterization. We define the following characterizing the difficulty of the problem:
κ∗ = 1

µ̇(f∗(x∗)) and κX = supx∈X
1

µ̇(f∗(x)) . We have that κ∗ ≤ κX . Our goal is to devise algorithms
for which the dominating term in the regret bound depends on κ∗ only.

4 Algorithm

Input: Decision set X , confidence sets Ct(δ)
for t ∈ JT K do

//Maximum Likelihood Estimate
f̂t ∈ argmin

f∈H
Lt(f) (Equation 3)

//Optimistic Decision Selection
(f̃t,xt) ∈ argmax

f∈Ct(δ),x∈X
µ(f(x)) (Equation 6)

Play xt and observe yt
end

Algorithm 1: GKB-UCB.

In this section, we introduce Generalized
Kernelized Bandits-Upper Confidence
Bounds (GKB-UCB), a regret minimization
optimistic algorithm for the GKB setting
(Algorithm 1). GKB-UCB is composed of two
steps: maximum likelihood (ML) estimation
and optimistic decision selection. We pro-
vide a computationally tractable version in
Appendix A.

Maximum Likelihood Estimate. At each
round t ∈ JT K, we employ the samples collected
so far {(xs, ys)}s∈Jt−1K, to obtain an estimate f̂t of f∗. Starting from the EF model, we minimize
the Ridge-regularized log-likelihood:

Lt(f) :=

t−1∑
s=1

−ysf(xs) +m(f(xs))

g(τ)
+

λ

2
∥f∥2, ∀f ∈ H, t ∈ JT K, (3)

where λ ≥ 0 is the Ridge regularization parameter. The ML estimate is denoted as f̂t ∈
argminf∈H Lt(f). Since, for Mercer’s theorem, when f ∈ H, we can write f = ⟨α, ϕ⟩ with
a fixed feature function ϕ, with little abuse of notation, we can look at Lt as a function of the
parameters α, i.e., Lt(α) ≡ Lt(f). With this in mind, we introduce the operator gt(f) ∈ RN related

3This will result in an additional logarithmic term in the final regret bound only.
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to the gradient of the loss Lt(f) w.r.t. the parameters α and the weighted covariance operator
Ṽt(λ; f) ∈ RN×N corresponding to the Hessian of the loss Lt(f) w.r.t. parameters α:

gt(f) :=

t−1∑
s=1

µ(f(xs))

g(τ)
ϕ(xs) + λα, ∇Lt(f) = −

t−1∑
s=1

ysϕ(xs)

g(τ)
+ gt(f), (4)

Ṽt(λ; f) := ∇2Lt(f) = Ṽt(f) + λI =

t−1∑
s=1

µ̇(f(xs))

g(τ)
ϕ(xs)ϕ(xs)

⊤ + λI. (5)

The loss function Lt and the operators gt and Ṽt defined above reduce to the ones employed for
GLBs under the assumption that the kernel k is the linear one [2, 9, 17]. Furthermore, if µ = I , we
have that Ṽt(λ; f) = Vt(λ), i.e., the covariance operator.

Optimistic Decision Selection. Once the ML function f̂t is computed, the algorithm chooses an
optimistic function f̃t ∈ H in a suitable confidence set Ct(δ), together with the optimistic choice xt:

(f̃t,xt) ∈ argmax
f∈Ct(δ),x∈X

µ(f(x)). (6)

It is worth noting that since µ is non-decreasing, we can ignore µ in the maximization. We will
consider a confidence set, defined for every round t ∈ JT K and confidence δ ∈ (0, 1) as follows:4

Ct(δ) =
{
f ∈ H :

∥∥∥gt(f)− gt(f̂t)
∥∥∥
Ṽ −1
t (λ;f)

≤ Bt(δ; f)

}
, (7)

where the confidence ratio Bt(δ; f) will be specified later with the goal of guaranteeing optimism,
i.e., that the true unknown function f∗ belongs to Ct(δ) in high probability, and limiting the regret.

5 Weighted Kernel

We discuss how the combination between a function f ∈ H with an inverse link function µ induced an-
other RKHS space that can be characterized by its weighted kernel. Let f ∈ H, we define the weighted
feature mapping (now dependent on f ) for every x ∈ X as ϕ̃(x; f) =

√
µ̇(f(x))g(τ)−1ϕ(x). In the

primal (feature) space, this allows looking at the weighted covariance operator Ṽt(λ; f) as the covari-
ance operator induced by the feature mapping ϕ̃(·; f), i.e., Ṽt(λ; f) =

∑t−1
s=1 ϕ̃(xs; f)ϕ̃(xs; f)

⊤+λI .
Passing to the dual (kernel) space, we define the weighted kernel as:

k̃(x,x′; f) := ⟨ϕ̃(x; f), ϕ̃(x′; f)⟩ = g(τ)−1
√

µ̇(f(x))k(x,x′)
√

µ̇(f(x′)), ∀x,x′ ∈ X . (8)
This is, in all regards, a valid kernel since it is obtained starting from a valid kernel and performing
a legal transformation [28]. This way, we can define the weighted kernel matrix as K̃t(λ; f) =

λI + K̃t(f), where K̃t(f) = (k̃(xi,xj ; f))i,j∈Jt−1K. Using the identity in Equation (1), we can
also deduce that det(λ−1Ṽt(λ; f)) = det(λ−1K̃t(λ; f)). We also define the weighted information
gain Γ̃t(f) and the weighted maximal information gain γ̃t(f) as Γ̃t(f) :=

1
2 log det(λ

−1K̃t(λ; f))

and γ̃t(f) := maxx1,...,xt∈X Γ̃t(f). Finally, we consider the maximum value of the (maximal)
information gain by varying the function f in H, i.e., Γ̃t(H) = supf∈H Γ̃t(f) and γ̃t(H) =
supf∈H γ̃t(f). The following result relates weighted and unweighted information gains.

Lemma 5.1. LetH be a RKHS induced by kernel k. Let t ∈ N and let x1, . . . ,xt ∈ X be a sequence
of decisions. It holds that Γ̃t(H) ≤ max{1, Rµ̇g(τ)

−1}Γt.

Notice that the bound introduces just a dependence on the maximum slope of the inverse link function
Rµ̇ and no dependence on the minimum slope κX . This result will play a significant role in the
derivation of the efficient implementation for GKB-UCB (Appendix A).

4Assessing whether a function f ∈ H belongs to the confidence set Ct(δ) is clearly intractable since it
requires computing norms of operators. In Appendix A, we provide an efficient alternative confidence set that
will lead to analogous regret guarantees.
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6 Challenges and New Technical Tools

In this section, we discuss the main challenges for achieving sensible regret guarantees for GKBs.
We start discussing the limitations of existing self-normalized concentration bounds (see Table 1) to
control the error in the ML estimate (Section 6.1). This motivates the need for a novel self-normalized
inequality that represents a key contribution of this work (Section 6.2).

6.1 Limitations of Existing Self-Normalized Concentration Inequalities

To understand the need for a novel concentration bound, we need to anticipate some key passages of
the regret analysis. We recall that the confidence radius Bt(δ; f) should be designed to guarantee
that: (i) the true unknown function f∗ = ⟨α∗, ϕ⟩ belongs to Ct(δ) (Equation 7) and (ii) the regret is
as small as possible. For point (i), we can conveniently express the difference between the operators
gt evaluated in the true function f∗ and in the ML estimate f̂t (see Lemma 7.1):

gt(f
∗)− gt(f̂t) = g(τ)−1

t−1∑
s=1

ϵsϕ(xs) + λα∗, (9)

where ϵs = ys − µ(f∗(xs)) is the noise. Thus, since since α∗ is bounded in norm under Assump-
tion 3.1, to suitably design Bt(δ; f), we need to control the martingale St =

∑t−1
s=1 ϵsϕ(xs). For

point (ii), in the regret analysis, we need to bound the difference between optimistic function f̃t and
true unknown function f∗, both evaluated in the played decision xt, i.e., f̃t(xt)− f∗(xt) with the
martingale St. Similarly to [2, 9], this is done by decomposing both functions as an inner product
(Mercer’s theorem) and then applying a Cauchy-Schwarz inequality by making a specific choice of
operator Wt(f

∗), possibly depending on the unknown function f∗:

f̃t(xt)− f∗(xt) = ⟨α̃t − α∗, ϕ(xt)⟩ ≤ ∥α̃t − α∗∥Wt(f∗)︸ ︷︷ ︸
(A)

∥ϕ(xt)∥Wt(f∗)−1︸ ︷︷ ︸
(B)

. (10)

The choice of operator Wt(f
∗) has two effects: (i) by relating term (A) with the confidence set

Ct(δ) definition, it determines the multiplicative coefficient and the norm under which martingale
St has to be controlled and (ii) it allows bounding (B) by means of an elliptic potential lemma [16,
Lemma 19.4]. We now discuss two choices of operators Wt(f

∗) leading to different concentration
bounds and, consequently, confidence sets, and discuss their advantages and disadvantages.

Covariance Operator (Wt(f
∗) = Vt(λ)). We start considering the case in which Wt(f

∗) = Vt(λ),
where Vt is the usual covariance operator. In this case, we can link the term (A) with the confidence
set as follows (see Lemma C.4):

(A) = ∥α̃t − α∗∥Vt(λ) ≤ (1 + 2RsBK)max{1, g(τ)κX }
∥∥∥gt(f̃t)− gt(f

∗)
∥∥∥
V −1
t (λ)

, (11)

introducing an inconvenient multiplicative dependence on max{1, g(τ)κX }, i.e., on the minimum
slope κX of the inverse link function. At this point, we have to control the martingale St under
the norm weighted by V −1

t (λ), as
∥∥∥gt(f∗)− gt(f̂t)

∥∥∥
V −1
t (λ)

≤ ∥St∥V −1
t (λ) +

B√
λ

. The quantity

∥St∥V −1
t (λ) can be conveniently bounded by using a self-normalized concentration bound for sub-

gaussian5 martingales (i.e., Hoeffding-like), as in the seminal work [1]:

∥St∥V −1
t
≤ R

√
2 log(δ−1) + log det(λ−1Vt(λ)) = R

√
2 log(δ−1) + log det(λ−1Kt(λ)), (12)

where the equality is obtained by Equation (1). We recall that the second bound is also obtained in
Theorem 1 of [5] where the quantity ∥St∥V −1

t
is controlled in the dual (kernel) space. The advantage

of these bounds is that they do not exhibit a dependence on the dimensionality d of the feature space
ϕ, which in GKBs is infinite. Nevertheless, in this way, the dependence on the minimum slope of the
inverse link function κX (as in Equation 11) becomes unavoidable in the regret. This suggests that
we should prefer a different choice of operator Wt(f

∗).

Weighted Covariance Operator (Wt(f
∗) = Ṽt(λ; f

∗)). The presence of the multiplicative factor
κX depends on the covariance operator and emerges also in the GLB setting when making the choice
Wt(f

∗) = Vt(λ) [2, 9]. The solution, in the GLB case, consists of choosing the weighted covariance

5We recall that since |ϵs| ≤ R a.s., it is also R2-subgaussian.
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operator Wt(f
∗) = Ṽt(λ; f

∗), where each outer product ϕ(xs)ϕ(xs)
⊤ is weighted by the variance

µ̇(f(xs))
g(τ) of the noise random variable ϵs. This allows relating the distance of the parameters with the

confidence set Ct(δ), avoiding the inconvenient dependence on κX (see Lemma C.4 with f ′′ = f ):

(A) = ∥α̃t − α∗∥Ṽt(λ;f∗) ≤ (1 + 2RsBK)
∥∥∥gt(f̃t)− gt(f

∗)
∥∥∥
Ṽ −1
t (λ;f∗)

. (13)

Proceeding analogously as above, we should now control the quantity ∥St∥Ṽ −1
t (λ;f∗). Since the

weighted covariance operator Ṽt(λ; f
∗) contains the variance of each sample, we need to resort to a

Bernstein-like self-normalized concentration bound in order to make effective use of such information.
The fundamental result in the GLB literature is the bound of [9, Theorem 1]:

∥St∥Ṽ −1
t (λ;f∗) ≤

√
λ

2
+

2√
λ
d log 2 +

2√
λ
log

1

δ
+

1√
λ
log det(λ−1Ṽt(λ; f

∗)), (14)

where d is the dimensionality of the feature map ϕ, which is infinite-dimensional in our GKB setting,
making the bound vacuous.6

6.2 A Novel Bernstein-like Dimension-Free Self-Normalized Inequality

From the above discussion, it should now appear clear why we need a novel self-normalized concen-
tration bound that combines two desired properties:

• Bernstein-like: it should account for a weighted covariance operator Ṽt(λ; f
∗) where the weights

correspond to the variance of the samples to avoid the inconvenient multiplicative factor κX ;
• Dimension-free: it should avoid any dependence on the dimensionality of the feature space ϕ, in

order to make it applicable to our GKB setting, where ϕ can be infinite-dimensional.
With this goal, we deviate from the two traditional approaches to derive self-normalized concentra-
tions, i.e., pseudomaximization via method of mixtures [1, 7, 9] and PAC Bayes [17, 37]. Instead, we
follow the path of [36] that, in turn, extends [6], by directly decomposing the norm ∥St∥Ṽ −1

t (λ;f∗)

and bounding individual terms by means of Freedman’s inequality [11]. In addition to the require-
ments above, we aim to obtain a data-driven bound in which, just like in Equations (12) and (14),
the bound depends on the sequence of the actual decisions, i.e., on the weighted information gain
Γ̃t(f

∗) = 1
2 log det(λ

−1Ṽt(λ; f
∗)) instead of the maximal information gain γ̃t(f

∗). This is clearly
desirable since Γ̃t(f

∗) ≤ γ̃t(f
∗).7 However, this is not straightforward when following the technique

of [6, 36], that necessitates deterministic bounds to the cumulative variance for the application of
Freedman’s inequality. For this reason, we provide a first result that extends Freedman’s inequality
allowing for bounds of the cumulative variance that are not deterministic but, instead, predictable
processes. This will represent the core for deriving our self-normalized concentration bound.
Theorem 6.1 (A data-driven Freedman’s inequality). Let (zt)t≥1 be a real-valued martingale
difference sequence adapted to the filtration Ft such that zt ≤ R a.s. for all t ≥ 1. Let (vt)t≥1 be a
process predictable by the filtrationFt such that for every t ≥ 1, we have that

∑t
s=1 E[z2s |Fs−1] ≤ vt

a.s.. Then, for every η > 1 and v0 > 0, with probability at least 1− δ, it holds that:

∀t ≥ 1 :

t∑
s=1

zs ≤

√
2max {v0, ηvt} log

π2(ℓ̂+ 1)2

6δ
+

R

3
log

π2(ℓ̂+ 1)2

6δ
, (15)

where ℓ̂ = max
{
0,
⌈
logη(vt/v0)

⌉}
.

The inequality of Theorem 6.1, compared to the standard Freedman’s inequality (see Lemma B.1),
allows obtaining a bound that depends on the predictable process vt that we can think to as a proxy
(upper bound) of the variance that, however, does not need to be deterministic. This allows us to obtain
bounds that depend on the actual sequence of decisions x1, . . . ,xt and their weighted information
gain Γ̃t(f

∗) rather than on the maximal weighted information gain γ̃t(f
∗), with an improvement

over previous inequalities like [36]. From a technical perspective, Theorem 6.1 is obtained using
6One could attempt to operate as in [9, Theorem 1] for deriving but directly in the dual (kernel) space.

Although this is possible, it would make appear a dependence on the order of the weighted kernel matrix
K̃t(λ; f), i.e., t in replacement of d. This is not of any help since it will make the regret degenerate to linear.

7Indeed, in [36], the bound depends on an upper bound of γt obtained by bounding the maximum value of
log det(λ−1Vt) considering the worst-case sequence of decisions [see Lemma B.2 of 36].
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a stitching argument [13] that brings two beneficial effects. First, it allows to accurately perform
union bounds considering the values that the predictable process can take over a geometric grid
{ηℓv0 : ℓ ∈ N} enabling the use of the data-driven quantity vt, where the parameters η > 1 and
v0 > 0 can be selected to tighten the bound. Second, it allows replacing a log t term in the bound with
a log log t at the price of a larger multiplicative constant η > 1. A similar data-driven result has been
provided in [12, Theorem 12]. However, our result allows tuning the parameters η and v0 to tighten
the bound, ultimately leading to an improvement of the constants. We can now use Theorem 6.1 to
derive our novel self-normalized Bernstein-like dimension-free concentration inequality.

Theorem 6.2 (Bernstein-Like Dimension-Free Self-Normalized Concentration). Let (xt)t≥1 be a
discrete-time stochastic process predictable by the filtration Ft and let (ϵt)t≥1 be a real-valued
stochastic process adapted to the Ft such that E[ϵt|Ft−1] = 0, Var[ϵt|Ft−1] = σ2

t = σ2(xt), and
|ϵt| ≤ R a.s. for every t ≥ 1. Let ϕ : X → RN be the feature mapping induced by kernel k such that
∥ϕ(x)∥2 ≤ K for every x ∈ X . Let:

St :=

t−1∑
s=1

ϵsϕ(xs), Ṽt(λ) :=

t−1∑
s=1

σ2
sϕ(xs)ϕ(xs)

⊤ + λI. (16)

Then, for every δ ∈ (0, 1) and t ≥ 1, with probability at least 1− δ it holds that:

∥St∥Ṽ −1
t (λ) ≤

(√
73 log det(λ−1Ṽt(λ)) +

√
3

)√
log

π2(ρ+ 1)2

3δ
+

3RK√
λ

log
π2(ρ+ 1)2

3δ
,

(17)

where ρ = max
{
0,
⌈
log
(

8R2K2(t−1)3

λ log
(
1 + K2R2

λ

))⌉}
.

The concentration bound, as desired, displays no dependence on the dimensionality d of the feature
map ϕ and no explicit dependence on t (apart from sub-logarithmic ones). We succeeded to remove
the dependence from d by replacing it with the norm of the feature map, which is bounded by K
under Assumption 3.1. It is worth noting that, thanks to the data-driven bound of Theorem 6.1, we
have a dependence on the term log det(λ−1Ṽt(λ)) that, thanks to the identity in Equation (1), can be
expressed in the dual (kernel) space by means of the information gain 2Γ̃t = log det(λ−1K̃t(λ)),
where the weighted kernel matrix K̃t(λ) is obtained by means of the weighted kernel k̃(x,x′) =

σ(x)k(x,x′)σ(x′) that induces the modified feature map ϕ̃(x) = σ(x)ϕ(x). By denoting with
γ̃t = maxx1,...,xt∈X Γ̃t, we can write the non-data-driven bound, holding with probability 1− δ:

∀t ≥ 1 : ∥St∥Ṽ −1
t
≤
(√

146γ̃t +
√
3
)√

log
π2(ρ+ 1)2

3δ
+

3RK√
λ

log
π2(ρ+ 1)2

3δ
. (18)

7 Regret Analysis

In this section, we provide the regret analysis of GKB-UCB (Algorithm 1). We start with a lemma to
show that f∗ belongs to the confidence set Ct(δ) (in high probability) with a proper choice of the
confidence radius Bt(δ; f) (Lemma 7.1). Then, we move to the regret analysis (Theorem 7.2).

Lemma 7.1 (Good Event). Let t ∈ N, f ∈ H, and δ ∈ (0, 1), define the confidence radius as:

Bt(δ; f) :=
√
λB +

1

g(τ)

(√
73 log det(λ−1Ṽt(λ; f)) +

√
3

)√
log

π2(ρ+ 1)2

3δ
+

3RK

g(τ)
√
λ
log

π2(ρ+ 1)2

3δ
,

where ρ = max
{
0,
⌈
log
(

8R2K2(t−1)3

λ log
(
1 + K2R2

λ

))⌉}
. Let Eδ := {∀t ≥ 1 : f∗ ∈ Ct(δ)}.

Under Assumptions 3.1, 3.2, and 3.3, it holds that Pr(Eδ) ≥ 1− δ.

Lemma 7.1 resorts to our novel self-normalized bound (Theorem 6.2), together with Assumption 3.1,
to provide a form to the confidence radius Bt(δ; f). It is worth noting that, differently from the
majority of existing works [1, 2, 17], Bt(δ; f) explicitly depends on function f since the operator
Ṽt(λ; f) necessitates f to compute the weights g(τ)−1µ̇(f(xs)). By exploiting the identity in
Equation (1), we can move to the dual (kernel) space in order to operate with finite-dimensional
objects: log det(λ−1Ṽt(λ; f)) = log det(K̃t(λ; f)) = 2Γ̃t(f). Let us also define its worst-case
version w.r.t. the choice of function f ∈ H, i.e., Bt(δ;H) = supf∈H Bt(δ; f). Although GKB-UCB
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makes use of the confidence radius Bt(δ; f), for analysis purposes, we also define a non-data-driven
confidence radius, where the information gain Γ̃t(f) is replaced by its maximal version:

βt(δ; f) :=
√
λB + g(τ)−1

(√
146γ̃t(f) +

√
3
)√

log
π2(ρ+ 1)2

3δ
+

3g(τ)−1RK√
λ

log
π2(ρ+ 1)2

3δ
,

and, finally, we introduce its worst-case version w.r.t. the choice of function f ∈ H, i.e., βt(δ;H) =
supf∈H βt(δ; f), i.e., obtained from βt(δ; f) by replacing γ̃t(f) with γ̃t(H).
We are now ready to present the regret bound of GKB-UCB.

Theorem 7.2 (Regret Bound of GKB-UCB). Under Assumptions 3.1, 3.2, 3.3, and 3.4, GKB-UCB
with the confidence radius Bt(δ; f) as defined in Lemma 7.1 and λ > 0, for every δ ∈ (0, 1), with
probability at least 1− δ, suffers regret bounded as R(GKB-UCB, T ) = Rperm(T ) +Rtrans(T ), where:

Rperm(T ) ≤ 8(1 + 2RsBK)βT (δ;H)
√
max {g(τ), λ−1Rµ̇K2} γ̃T (f∗)

√
T

κ∗
, (19)

Rtrans(T ) ≤ 32Rs(1 +Rµ̇κX )(1 + 2RsBK)2βT (δ;H)2 max
{
g(τ), λ−1Rµ̇K

2
}
γ̃T (f

∗). (20)

The proof schema of Theorem 7.2 follows similar steps to [2] and the result, indeed, displays an
analogous regret decomposition into a permanent term Rperm(T ) and a transient term Rtrans(T ).
Regarding the dependence on explicit T and κ∗, Rperm(T ) is the dominating term that displays the
desired dependence on

√
T/κ∗, whereas Rtrans(T ) exhibits a dependence on the minimum slope of

the inverse link function κX , but has only logarithmic dependence on T and, for this reason, it is
negligible. To highlight the dependence on the information gain, we explicit the form of the individual
terms in the case λ ≥ Ω(K2):8 βT (δ;H) = Õ(

√
λB +

√
γ̃T (H) log(δ−1) +RK log(δ−1)). Thus,

we obtain a regret bound of order:

R(GKB-UCB, T ) ≤ Õ

(
(1 +RsBK)

(√
λB +

√
γ̃T (H) log(δ−1) +RK log(δ−1)

)√
γ̃T (f∗)

√
T

κ∗

)
.

We have two terms related to the weighted information gain, i.e., γ̃T (H) and γ̃T (f
∗). This is due to

the fact that our weighted kernel k̃(·, ·; f) explicitly depends on the evaluated function f . It is worth
noting that, thanks to Lemma 5.1, we can bound both with the (unweighted) information gain as
γ̃T (f

∗) ≤ γ̃T (H) ≤ max{1, Rµ̇g(τ)
−1}γT at the mild price of a multiplicative term.

Let us now comment on the tightness of the bound in the particular cases of KBs and GLBs.
For KBs, we are in the presence of ν2-subgaussian noise and, thus, we need to set R =

O(ν
√

log(T/δ)). Furthermore, we have that Rs = 0 and µ = I (consequently, µ̇ =
1, κ∗ = 1, and γ̃T (f

∗) = γ̃T (H) = γT ). This allows recovering the bound of order
Õ
((√

λB +
√
γT log(δ−1) +Kν log(δ−1)3/2

)√
γTT

)
, matching the regret order of [5] up to

logarithmic terms. For GLBs, we can bound the information gain as (see Lemma 11 of [2]):

γ̃T (H) ≤ max{1, Rµ̇g(τ)
−1}γT ≤ max{1, Rµ̇g(τ)

−1}d log
(
λ+

TK2

d

)
. (21)

This leads to bound of order Õ((1 + RsBK)(
√
λB +

√
d log(δ−1) + RK log(δ−1))

√
dT/κ∗),

matching the result of [2] up to logarithmic terms.

8 Conclusions

In this paper, we have introduced the novel setting of GKBs, unifying KBs and GLBs. We have
provided a novel Bernstein-like dimension-free self-normalized concentration of independent interest.
We employed it to analyze the regret of GKB-UCB showing tight regret bounds. Future works include
investigating the use of the techniques from [17] in order to remove the multiplicative dependence on
the norm and kernel bounds (1 + RsBK) in the regret bound as well as the study of the inherent
complexity of regret minimization in the GLB setting by conceiving regret lower bounds [26].

8With the O(·) notation, we suppress multiplicative constants and dependencies on g(τ) and Rµ̇. With the
Õ(·) notation, we also suppress logarithmic dependencies on all variables, except for δ.
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A Efficient Implementation

In this section, we show how to make Algorithm 1 computationally tractable with negligible effects
in the final regret bound. Indeed, Algorithm 1 is based on a confidence set Ct(δ) (Equation 7)
that requires evaluating the norm of a difference of operators gt, which is clearly computationally
infeasible. In the following, we discuss how to make both steps of the algorithm computationally
tractable. The resulting algorithm, Eff-GKB-UCB, is provided in Algorithm 2.

Input: Decision set X , confidence level δ, confidence sets Dt(δ)
for t ∈ JT K do

/* Step 1: Efficient Maximum Likelihood Estimate */
α̂t = argmin

α∈Rt−1

Lt (⟨α,kt(·)⟩) (Equation 3)

/* Step 2: Efficient Optimistic Decision Selection */
xt ∈ argmax

x∈X
max

α∈Rt−1
⟨α,kt(x)⟩

s.t. Lt(⟨α,kt(·)⟩) ≤ Lt(⟨α̂t,kt(·)⟩) +Dt(δ;H) (Equation 23)
Play xt and observe yt

end
Algorithm 2: Eff-GKB-UCB.

Efficient Maximum Likelihood Estimation. Since function m is convex, loss function Lt(f)
is convex in f = ⟨α, ϕ⟩ ∈ H and, consequently, also in the parameter vector α ∈ RN . However,
optimizing over either f or α is infeasible, being both infinite-dimensional. Nevertheless, thanks
to the generalized representer theorem [27, Theorem 1], we can restrict the optimization to the
functions of the form f(·) =

∑t−1
s=1 αsk(·,xs) = ⟨α,kt(·)⟩, where α = (αs)

⊤
s∈Jt−1K and kt(·) =

(k(·,xs))
⊤
s∈Jt−1K. This allows limiting the problem to the minimization of a convex function on a

vector of t− 1 real variables α ∈ Rt−1.

Efficient Optimistic Decision Selection. To make the choice of the optimistic function, we propose
a different (looser) confidence set based on the evaluation of the loss function only [2], defined for
every round t ∈ JT K and confidence δ ∈ (0, 1):9

Dt(δ) :=
{
f ∈ H : Lt(f)− Lt(f̂t) ≤ Dt(δ;H) := (1 + 2RsBK)Bt(δ;H)

}
, (22)

We prove in Lemma B.2 that the choice of the confidence radius ensures the inclusion property
between the confidence sets Ct(δ) ⊆ Dt(δ). Having fixed a decision x̂ ∈ X ,10 the optimistic decision
selection can be formulated, thanks to the generalized representer theorem [27] as the following
constrained convex program:11

min
α∈Rt−1

− ⟨α,kt(x̂)⟩

subject to Lt(⟨α,kt(·)⟩) ≤ Lt(⟨α̂t,kt(·)⟩) + (1 + 2RsBK)Bt(δ;H),
(23)

where α̂t are the parameters of the ML function computed in the previous step. Thus, the program
has a linear objective function and a convex constraint, being Lt(⟨α,kt(·)⟩) convex in α.

9Computing Bt(δ;H) can be not straightforward for specific choices of kernel k and inverse link function
µ. In such a case, we can upper bound it using Lemma 5.1 by replacing supf∈H log det(λ−1Ṽt(λ; f))

with max{1, Rµ̇g(τ)
−1} log det(λ−1Vt(λ)). This has the effect of replacing the terms γ̃T (H) with

max{1, Rµ̇g(τ)
−1}γT in the final regret bound.

10As customary in this literature [29, 5], we do not address the issue of optimizing over the decision space
efficiently. This can surely be done efficiently when X is finite. When X is continuous, we can resort to a
discretization based on the regularity properties of the kernel function, with a controllable effect on the final
regret performances [21].

11Even if the representer theorem is formulated for unconstrained minimization, it admits costs functions that
take +∞ as value [27]. Thus, we can convert a constrained minimization into an unconstrained one by bringing
the constraint into the objective function and making it take value +∞ when the constraint is violated.
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We now show that the choice of the new confidence set Dt(δ) does not degrade the dependence on
the relevant quantities compared to using Ct(δ).
Theorem A.1 (Regret Bound of Eff-GKB-UCB). Under Assumptions 3.1, 3.2, 3.3, and 3.4, GKB-UCB
with confidence radius (1 + 2RsBK)Bt(δ;H) and λ > 0, for every δ ∈ (0, 1), with probability at
least 1− δ, suffers regret bounded as: R(Eff-GKB-UCB, T ) = Rperm(T ) +Rtrans(T ), where:

Rperm(T )≤4
√
max {g(τ), λ−1Rµ̇K2}(2 + 2RsBK)

√
βT (δ;H)

(√
βT (δ;H)+2

)√
γ̃T (f∗)

√
T

κ∗
,

Rtrans(T )≤8Rs(1+Rµ̇κX )max
{
g(τ), λ−1Rµ̇K

2
}
(2+2RsBK)2βT (δ;H)

(√
βT (δ;H)+2

)2
γ̃T (f

∗).

The bounds of Theorem 7.2 and Theorem A.1 exhibit the same order dependence on the relevant
quantities, but Theorem A.1 has a larger constant, approximately 3 times larger than Theorem 7.2 for
Rperm(T ) and 9 times larger for Rtrans(T ).

B Proofs

B.1 Proofs of Section 5

Lemma 5.1. LetH be a RKHS induced by kernel k. Let t ∈ N and let x1, . . . ,xt ∈ X be a sequence
of decisions. It holds that Γ̃t(H) ≤ max{1, Rµ̇g(τ)

−1}Γt.

Proof. A direct application of Lemma C.5.

B.2 Proofs of Section 6

Lemma B.1 (Freedman’s Inequality). Let (zt)t≥1 be a real-valued martingale difference sequence
adapted to the filtration Ft such that zt ≤ R a.s. for all t ≥ 1. Then, for every λ ∈ (0, 3/R) it holds
that with probability at least 1− δ:

∀t ≥ 1 :

t∑
s=1

zs ≤
λ

2(1− λR/3)

t∑
s=1

E[z2s |Fs−1] +
log δ−1

λ
. (24)

This implies that for every ν > 0, with probability at least 1− δ:

∀t ≥ 1 :

t∑
s=1

zs ≤ ν
√
2 log δ−1 +

R log δ−1

3
or

t∑
s=1

E[z2s |Fs−1] > ν2. (25)

Proof. Refer to Theorem 13.6 of [35].

Theorem 6.1 (A data-driven Freedman’s inequality). Let (zt)t≥1 be a real-valued martingale
difference sequence adapted to the filtration Ft such that zt ≤ R a.s. for all t ≥ 1. Let (vt)t≥1 be a
process predictable by the filtrationFt such that for every t ≥ 1, we have that

∑t
s=1 E[z2s |Fs−1] ≤ vt

a.s.. Then, for every η > 1 and v0 > 0, with probability at least 1− δ, it holds that:

∀t ≥ 1 :

t∑
s=1

zs ≤

√
2max {v0, ηvt} log

π2(ℓ̂+ 1)2

6δ
+

R

3
log

π2(ℓ̂+ 1)2

6δ
, (15)

where ℓ̂ = max
{
0,
⌈
logη(vt/v0)

⌉}
.

Proof. The proof makes use of classical Freedman’s inequality [11] combined with a stitching
argument [13]. We start from the version of Freedman’s inequality of Lemma B.1 taken from [35]:

Pr

(
∃t ≥ 1 :

t∑
s=1

zs > ν
√
2 log δ−1 +

R log δ−1

3
,

t∑
s=1

E[z2s |Fs−1] ≤ ν2

)
≤ δ. (26)

Since vt ≥
∑t

s=1 E[z2s |Fs−1] a.s. for every t ≥ 1, it immediately follows that:

Pr

(
∃t ≥ 1 :

t∑
s=1

zs > ν
√

2 log δ−1 +
R log δ−1

3
, vt ≤ ν2

)
≤ δ. (27)

13



We now proceed by performing a stitching argument with a geometric grid over the values of ν ≥ 0
defined as {ηℓv0 : ℓ ∈ N} for any choice of η > 1 and v0 > 0. Thus, we have:

Pr

(
∃ℓ ∈ N, ∃t ≥ 1 :

t∑
s=1

zs >

√
2ηℓv0 log

π2(ℓ+ 1)2

6δ
+

R

3
log

π2(ℓ+ 1)2

6δ
, vt ≤ ηℓv0

)
(28)

≤
∑
ℓ∈N

Pr

(
∃t ≥ 1 :

t∑
s=1

zs >

√
2ηℓv0 log

π2(ℓ+ 1)2

6δ
+

R

3
log

π2(ℓ+ 1)2

6δ
, vt ≤ ηℓv0

)
(29)

≤
∑
ℓ∈N

6δ

π2(ℓ+ 1)2
≤ δ, (30)

where line (29) follows from a union bound, line (30) is an application of Equation (27) with ν = ηℓv0
and by observing that

∑
ℓ∈N

1
(ℓ+1)2 = π2

6 . Let us now consider the smallest value of ℓ̂ ∈ N such that
vt ≤ ηℓv0:

ℓ̂ = min
{
ℓ ∈ N : vt ≤ ηℓv0

}
= max

{
0,

⌈
logη

vt
v0

⌉}
. (31)

For this value of ℓ̂, we have:

ηℓ̂v0 ≤ η
max

{
0,
⌈
logη

vt
v0

⌉}
v0 ≤ η

max
{
0,logη

vt
v0

+1
}
v0 ≤ max {v0, ηvt} . (32)

Finally, we prove the inequality:

Pr

∃t ≥ 1 :

t∑
s=1

zs >

√
2max {v0, ηvt} log

π2(ℓ̂+ 1)2

6δ
+

R

3
log

π2(ℓ̂+ 1)2

6δ

 (33)

≤ Pr

∃t ≥ 1 :

t∑
s=1

zs >

√
2ηℓ̂v0 log

π2(ℓ̂+ 1)2

6δ
+

R

3
log

π2(ℓ̂+ 1)2

6δ
, vt ≤ ηℓ̂v0

 (34)

≤ Pr

(
∃ℓ ∈ N, ∃t ≥ 1 :

t∑
s=1

zs >

√
2ηℓv0 log

π2(l + 1)2

6δ
+

R

3
log

π2(l + 1)2

6δ
, vt ≤ ηℓv0

)
(35)

≤ δ,

where line (34) follows from Equation (32) and line (35) from line (30).

Theorem 6.2 (Bernstein-Like Dimension-Free Self-Normalized Concentration). Let (xt)t≥1 be a
discrete-time stochastic process predictable by the filtration Ft and let (ϵt)t≥1 be a real-valued
stochastic process adapted to the Ft such that E[ϵt|Ft−1] = 0, Var[ϵt|Ft−1] = σ2

t = σ2(xt), and
|ϵt| ≤ R a.s. for every t ≥ 1. Let ϕ : X → RN be the feature mapping induced by kernel k such that
∥ϕ(x)∥2 ≤ K for every x ∈ X . Let:

St :=

t−1∑
s=1

ϵsϕ(xs), Ṽt(λ) :=

t−1∑
s=1

σ2
sϕ(xs)ϕ(xs)

⊤ + λI. (16)

Then, for every δ ∈ (0, 1) and t ≥ 1, with probability at least 1− δ it holds that:

∥St∥Ṽ −1
t (λ) ≤

(√
73 log det(λ−1Ṽt(λ)) +

√
3

)√
log

π2(ρ+ 1)2

3δ
+

3RK√
λ

log
π2(ρ+ 1)2

3δ
,

(17)

where ρ = max
{
0,
⌈
log
(

8R2K2(t−1)3

λ log
(
1 + K2R2

λ

))⌉}
.
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Proof. The proof follows similar steps as [6, 36], using Theorem 6.1 as base inequality. For the
sake of this derivation, we will suppress the dependence on λ, simply writing Ṽt(λ) = Ṽt.12 Let us
introduce the notation Zt := ∥St∥Ṽ −1

t
, wt := ∥ϕ(xt)∥Ṽ −1

t
, and w̃t := σt∥ϕ(xt)∥Ṽ −1

t
. We denote

with K = supx∈X ∥ϕ(x)∥2. From the matrix inversion lemma [33], we have:

Ṽ −1
t = Ṽ −1

t−1 −
Ṽ −1
t−1ϕ(xt−1)ϕ(xt−1)

⊤Ṽ −1
t−1σ

2
t−1

1 + ∥ϕ(xt−1)∥2Ṽ −1
t−1

σ2
t−1

(36)

= Ṽ −1
t−1 −

Ṽ −1
t−1ϕ(xt−1)ϕ(xt−1)

⊤Ṽ −1
t−1σ

2
t−1

1 + w̃2
t−1

. (37)

Let us decompose Zt:

Z2
t := ∥St∥2Ṽ −1

t
= S⊤

t Ṽ −1
t St (38)

= (St−1 + ϵt−1ϕ(xt−1))
⊤Ṽ −1

t (St−1 + ϵt−1ϕ(xt−1)) (39)

= St−1Ṽ
−1
t St−1 + 2ϵt−1ϕ(xt−1)

⊤Ṽ −1
t St−1 + ϵ2t−1ϕ(xt−1)

⊤Ṽ −1
t ϕ(xt−1) (40)

≤ St−1Ṽ
−1
t−1St−1 + 2ϵt−1ϕ(xt−1)

⊤Ṽ −1
t St−1︸ ︷︷ ︸

(A)

+ ϵ2t−1ϕ(xt−1)
⊤Ṽ −1

t ϕ(xt−1)︸ ︷︷ ︸
(B)

, (41)

having exploited the fact that Ṽt ⪰ Ṽt−1. We analyze terms (A) and (B) separately.

Analysis of Term (A). From the matrix inversion lemma, we have:

2ϵt−1ϕ(xt−1)
⊤Ṽ −1

t St−1 = 2ϵt−1

(
ϕ(xt−1)

⊤Ṽ −1
t−1St−1 (42)

−
ϕ(xt−1)

⊤Ṽ −1
t−1ϕ(xt−1)ϕ(xt−1)

⊤Ṽ −1
t−1St−1σ

2
t−1

1 + w̃2
t−1

)
(43)

= 2ϵt−1

(
ϕ(xt−1)

⊤Ṽ −1
t−1St−1 −

w̃2
t−1

1 + w̃2
t−1

ϕ(xt−1)
⊤Ṽ −1

t−1St−1

)
(44)

= 2ϵt−1

ϕ(xt−1)
⊤Ṽ −1

t−1St−1

1 + w̃2
t−1

=: ℓt. (45)

Consider now the event Et = 1{0 ≤ s ≤ t : Zs ≤ βt}, being βt a non-negative non-
decreasing predictable process, whose expression will be defined later. Furthermore, let us define
β̃t = min

{
βt,

(t−1)RK√
λ

}
which is non-decreasing as well. Under event Et, we know that Zs ≤ β̃t

thanks to Lemma C.7. Under Et, we bound the maximum value and the variance of ℓt. Let us start
with the maximum value:

ℓtEt ≤ |ℓtEt| ≤

∣∣∣∣∣2ϵt−1

ϕ(xt−1)
⊤Ṽ −1

t−1St−1

1 + w̃2
t−1

Et

∣∣∣∣∣ (46)

≤ 2R

1 + w̃2
t−1

∥ϕ(xt−1)∥Ṽ −1
t−1
∥St−1∥Ṽ −1

t−1
Et (47)

≤ 2R∥ϕ(xt−1)∥λ−1Iβt−1

1 + w̃2
t−1

(48)

≤ 2RK√
λ

βt, (49)

where line (47) follows from the application of Cauchy-Schwarz inequality and recalling that |ϵt−1| ≤
R a.s., line (48) is obtained by observing that Ṽt−1 ⪰ λI and by exploiting event Et, and line (49)
comes from the bound on ∥ϕ(xt−1)∥ ≤ K and the monotonicity of βt. Let us move to the variance,

12With little abuse, we will ignore the fact that ϕ is an infinite-dimensional feature mapping to avoid excessive
technicalities. We refer the interested reader to [32] that shows that all passages we do are indeed legal when ϕ
is the feature mapping induced by an RKHS.

15



recalling that ℓt is zero mean, i.e., E[ℓt|Ft−1] = 0:

E
[
ℓ2t |Ft−1

]
= E

(2ϵt−1

ϕ(xt−1)
⊤Ṽ −1

t−1St−1

1 + w̃2
t−1

)2

Et|Ft−1

 (50)

≤
4σ2

t−1∥ϕ(xt−1)∥2Ṽ −1
t−1

∥St−1∥2Ṽ −1
t−1

(1 + w̃2
t−1)

2
Et (51)

≤
(

2w̃t−1

1 + w̃2
t−1

)2

β̃2
t−1 (52)

≤ min{1, 2w̃t−1}2β̃2
t−1, (53)

where line (51) follows from Cauchy-Schwarz inequality and recalling that E[ϵt−1|Ft−1] = σ2
t−1,

line (53) follows from the inequality 2x
1+x2 ≤ min{1, 2x} for x ≥ 0. Summing, we obtain:

t∑
s=1

E
[
ℓ2s|Fs−1

]
≤

t∑
s=1

min{1, 2w̃s−1}2β̃2
t−1 (54)

≤ 4β̃2
t

t∑
s=1

min{1, w̃s−1}2, (55)

where we bounded β̃t−1 ≤ β̃t and min{1, 2w̃s−1}2 ≤ 4min{1, w̃s−1}2. From a standard elliptical
potential lemma (Lemma C.6 with M = 1), we obtain:

t∑
s=1

min{1, w̃s−1}2 ≤ 2 log
det(Ṽt)

det(Ṽ0)
= 2 log det(λ−1Ṽt), (56)

where Ṽ0 = λI . By Theorem 6.1, setting η = e, v0 = 1, vt = 8β2
t log det(λ

−1Ṽt), we have that
with probability at least 1− δ:

∀t ≥ 1 :

t∑
s=1

ℓs ≤
√
2max

{
1, 8eβ2

t log det(λ
−1Ṽt)

}
log

π2(ρ̂+ 1)2

6δ
+

2RK

3
√
λ
βt log

π2(ρ̂+ 1)2

6δ
,

(57)

with ρ̂ = max
{
0,
⌈
log
(
8 (t−1)2R2K2

λ log det(λ−1Ṽt)
)⌉}

, having bounded β̃t ≤ βt in the inequal-

ity and β̃t ≤ (t−1)RK√
λ

in the expression of ρ̂.

Analysis of Term (B). We proceed again by using the matrix inversion lemma:

ϵ2t−1ϕ(xt−1)
⊤Ṽ −1

t ϕ(xt−1) = ϵ2t−1

(
ϕ(xt−1)

⊤Ṽ −1
t−1ϕ(xt−1) (58)

−
ϕ(xt−1)

⊤Ṽ −1
t−1ϕ(xt−1)ϕ(xt−1)

⊤Ṽ −1
t−1ϕ(xt−1)σ

2
t−1

1 + w̃2
t−1

)
(59)

=
ϵ2t−1∥ϕ(xt−1)∥2Ṽ −1

t−1

1 + w̃2
t−1

. (60)

Let us define:

ℓt :=
ϵ2t−1∥ϕ(xt−1)∥2Ṽ −1

t−1

1 + w̃2
t−1

− E

ϵ2t−1∥ϕ(xt−1)∥2Ṽ −1
t−1

1 + w̃2
t−1

|Ft−1

 .

Let us start bounding the maximum value:

ℓt ≤
ϵ2t−1∥ϕ(xt−1)∥2Ṽ −1

t−1

1 + w̃2
t−1

≤ R2K2

λ
, (61)

where we bounded ∥ϕ(xt−1)∥2Ṽ −1
t−1

≤ ∥ϕ(xt−1)∥2λ−1I ≤
K2

λ .
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Concerning the variance, we have:

Var[ℓt|Ft−1] = Var

ϵ2t−1∥ϕ(xt−1)∥2Ṽ −1
t−1

1 + w̃2
t−1

|Ft−1

 (62)

≤ E


ϵ2t−1∥ϕ(xt−1)∥2Ṽ −1

t−1

1 + w̃2
t−1

2

|Ft−1

 (63)

≤ R2K2

λ
E

ϵ2t−1∥ϕ(xt−1)∥2Ṽ −1
t−1

1 + w̃2
t−1

|Ft−1

 (64)

=
R2K2

λ

σ2
t−1∥ϕ(xt−1)∥2Ṽ −1

t−1

1 + w̃2
t−1

(65)

=
R2K2

λ

w̃2
t−1

1 + w̃2
t−1

(66)

≤ R2K2

λ
min{1, w̃t−1}2, (67)

where line (64) derives from applying Equation (61), line (67) follows from the inequality x
1+x ≤

min{1, x}. Summing and applying the elliptic potential lemma (Lemma C.6 with M = 1), we have:
t∑

s=1

Var[ℓs|Fs−1] ≤
R2K2

λ

t∑
s=1

min{1, w̃s−1}2 ≤
2R2K2

λ
log det(λ−1Ṽt). (68)

Furthermore, following the same steps from Equation (64), we obtain:
t∑

s=1

E[ℓs|Fs−1] =

t∑
s=1

E

ϵ2t−1∥ϕ(xt−1)∥2Ṽ −1
t−1

1 + w̃2
t−1

|Ft−1

 ≤ 2 log det(λ−1Ṽt). (69)

We now apply Theorem 6.1, setting η = e, v0 = 1, vt = 2R2K2

λ log det(λ−1Ṽt), we have that with
probability at least 1− δ:

∀t ≥ 1 :

t∑
s=1

ϵ2t−1∥ϕ(xt−1)∥2Ṽ −1
t−1

1 + w̃2
t−1

≤ 2 log det(λ−1Ṽt) (70)

+

√
2max

{
1,

2eR2K2

λ
log det(λ−1Ṽt)

}
log

π2(ρ̃+ 1)2

6δ
+

R2K2

3λ
log

π2(ρ̃+ 1)2

6δ
,

(71)

with ρ̃ = max
{
0,
⌈
log
(

2R2K2

λ log det(λ−1Ṽt)
)⌉}

.

Putting All Together. We observe that ρ̂ ≥ ρ̃, and that log det(λ−1Ṽt) ≤ (t− 1) log
(
1 + R2K2

λ

)
from Lemma C.7, we define ρ := max

{
0,
⌈
log
(

8R2K2(t−1)3

λ log
(
1 + K2R2

λ

))⌉}
. Putting to-

gether the two bounds, we have to find βt in order to satisfy the following condition:

(A) + (B) ≤
√
2max

{
1, 8eβ2

t log det(λ
−1Ṽt)

}
log

π2(ρ+ 1)2

6δ
+

2RK

3
√
λ
βt log

π2(ρ+ 1)2

6δ
(72)

+ 2 log det(λ−1Ṽt) +

√
2max

{
1,

2eR2K2

λ
log det(λ−1Ṽt)

}
log

π2(ρ+ 1)2

6δ
(73)

+
R2K2

3λ
log

π2(ρ+ 1)2

6δ
≤ β2

t . (74)
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We proceed by bounding the maxima in the left-hand-side as max{a, b} ≤ a + b for a, b ≥ 0 and
using the subadditivity of the square root to get a stricter condition:√

2 log
π2(ρ+ 1)2

6δ
+

√
16eβ2

t log det(λ
−1Ṽt) log

π2(ρ+ 1)2

6δ
+

2RK

3
√
λ
βt log

π2(ρ+ 1)2

6δ
(75)

+ 2 log det(λ−1Ṽt) +

√
2 log

π2(ρ+ 1)2

6δ
+

√
4eR2K2

λ
log det(λ−1Ṽt) log

π2(ρ+ 1)2

6δ
(76)

+
R2K2

3λ
log

π2(ρ+ 1)2

6δ
≤ β2

t . (77)

This is a second-degree inequality in the variable βt and, thus, we have to find the minimum value
of βt fulfilling such an inequality. Using the polynomial inequality of Proposition 7 of [2] (i.e.,
x2 ≤ bx+ c = 0 =⇒ x ≤ b+

√
c when b, c ≥ 0), we have:

βt ≤
√
16e log det(λ−1Ṽt) log

π2(ρ+ 1)2

6δ
+

2RK

3
√
λ

log
π2(ρ+ 1)2

6δ
(78)

+

(
2

√
2 log

π2(ρ+ 1)2

6δ
+ 2 log det(λ−1Ṽt) (79)

+

√
4eR2K2

λ
log det(λ−1Ṽt) log

π2(ρ+ 1)2

6δ
+

R2K2

3λ
log

π2(ρ+ 1)2

6δ

) 1
2

(80)

≤
(
(
√
16e+

√
2)

√
log det(λ−1Ṽt) +

√
2
√
2

)√
log

π2(ρ+ 1)2

6δ
(81)

+

(
2

3
+

1√
3

)
RK√
λ

log
π2(ρ+ 1)2

6δ
(82)

+

(
4eR2K2

λ
log det(λ−1Ṽt) log

π2(ρ+ 1)2

6δ

) 1
4

(83)

≤
((√

16e+
√
2 +

1

2

)√
log det(λ−1Ṽt) +

√
2
√
2

)√
log

π2(ρ+ 1)2

6δ
(84)

+

(
2

3
+

1√
3
+
√
e

)
RK√
λ

log
π2(ρ+ 1)2

6δ
, (85)

where line (82) follows from the subadditivity of the square root and recalling that log 6(ρ+1)2

π2δ ≥ 1

for t ≥ 1, to get line (85), we apply Young’s inequality for products as ab ≤ a2/2+ b2/2 for a, b ≥ 0
to get:(
4eR2K2

λ
log det(λ−1Ṽt) log

π2(ρ+ 1)2

6δ

) 1
4

≤
√
e
RK√
λ

√
log

π2(ρ+ 1)2

6δ
+

1

2

√
log det(λ−1Ṽt).

(86)
To obtain more manageable constant, we write:

βt ≤
(√

73 log det(λ−1Ṽt) +
√
3

)√
log

π2(ρ+ 1)2

6δ
+

3RK√
λ

log
π2(ρ+ 1)2

6δ
. (87)

A simple inductive argument allows to conclude that, with probability at least 1− 2δ:

Z2
t ≤

(√
73 log det(λ−1Ṽt) +

√
3

)√
log

π2(ρ+ 1)2

6δ
+

3RK√
λ

log
π2(ρ+ 1)2

6δ
. (88)

Notice that, as requested, βt is a non-decreasing sequence of t, since ρ is non-decreasing with t

and det(λ−1Ṽt) is non-decreasing as well. Indeed, since Ṽt = Ṽt−1 + σt−1ϕ(xt−1)ϕ(xt−1)
⊤, we

have that thanks to Weyl’s inequality for eigenvalues λi(Ṽt) ≥ λi(Ṽt−1) for all i ∈ N, being λi the
i-th eigenvalue [30]. It follows that det(λ−1Ṽt) ≥ det(λ−1Ṽt−1). Rescaling δ ← δ/2, we get the
result.
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B.3 Proofs of Section 7

Lemma 7.1 (Good Event). Let t ∈ N, f ∈ H, and δ ∈ (0, 1), define the confidence radius as:

Bt(δ; f) :=
√
λB +

1

g(τ)

(√
73 log det(λ−1Ṽt(λ; f)) +

√
3

)√
log

π2(ρ+ 1)2

3δ
+

3RK

g(τ)
√
λ
log

π2(ρ+ 1)2

3δ
,

where ρ = max
{
0,
⌈
log
(

8R2K2(t−1)3

λ log
(
1 + K2R2

λ

))⌉}
. Let Eδ := {∀t ≥ 1 : f∗ ∈ Ct(δ)}.

Under Assumptions 3.1, 3.2, and 3.3, it holds that Pr(Eδ) ≥ 1− δ.

Proof. First of all, we observe that Eδ =

{
∀t ≥ 1 :

∥∥∥gt(f∗)− gt(f̂t)
∥∥∥
Ṽ −1
t (λ;f)

≤ Bt(δ; f)

}
. Let

t ∈ N and let us define ϵt := −yt + µ(f∗(xt)). We have:

gt(f
∗)− gt(f̂t) (89)

=

t−1∑
s=1

g(τ)−1µ(f∗(xs))ϕ(xs) + λα∗ −
t−1∑
s=1

g(τ)−1µ(f̂r(xs))ϕ(xs)− λα̂t (90)

=

t−1∑
s=1

g(τ)−1(−ys + µ(f∗(xs))ϕ(xs)) + λα∗ (91)

−


t−1∑
s=1

g(τ)−1(−ys + µ(f̂t(xs)))ϕ(xs) + λα̂t︸ ︷︷ ︸
∇Lt(f̂t)=0

 (92)

= −g(τ)−1
t−1∑
s=1

ϵsϕ(xs) + λα∗, (93)

having exploited the first-order optimality condition for the loss evaluated in the maximum-likelihood
estimate, i.e.,∇Lt(f̂t) = 0 and the definition of ϵs = ys− µ(f∗(xs)). Now, by computing the norm,
we have:∥∥∥gt(f∗)− gt(f̂t)

∥∥∥
Ṽ −1
t (λ;f∗)

≤ g(τ)−1

∥∥∥∥∥
t−1∑
s=1

ϵsϕ(xs)

∥∥∥∥∥
Ṽ −1
t (λ;f∗)

+ λ ∥α∗∥Ṽ −1
t (λ;f∗) . (94)

We can immediately bound the second term under Assumption 3.1:

∥α∗∥2Ṽ −1
t (λ;f∗) = (α∗)⊤Ṽ −1

t (λ; f∗)α∗ ≤ λ−1∥α∗∥2 ≤ λ−1B2, (95)

since Ṽ −1
t (λ; f∗) ⪰ λI . For the first term, we resort to the self-normalized concentration inequality

of Theorem 6.2, recalling that the variance of the noise is Var[ϵs|Fs−1] = µ̇(f∗(xs))g(τ)
−1.

Theorem 7.2 (Regret Bound of GKB-UCB). Under Assumptions 3.1, 3.2, 3.3, and 3.4, GKB-UCB
with the confidence radius Bt(δ; f) as defined in Lemma 7.1 and λ > 0, for every δ ∈ (0, 1), with
probability at least 1− δ, suffers regret bounded as R(GKB-UCB, T ) = Rperm(T ) +Rtrans(T ), where:

Rperm(T ) ≤ 8(1 + 2RsBK)βT (δ;H)
√
max {g(τ), λ−1Rµ̇K2} γ̃T (f∗)

√
T

κ∗
, (19)

Rtrans(T ) ≤ 32Rs(1 +Rµ̇κX )(1 + 2RsBK)2βT (δ;H)2 max
{
g(τ), λ−1Rµ̇K

2
}
γ̃T (f

∗). (20)

Proof. We start by performing a second-order Taylor’s expansion of the regret:
T∑

t=1

(µ(f∗(x∗))− µ(f∗(xt))) =

T∑
t=1

µ̇(f∗(xt)) (f
∗(x∗)− f∗(xt))︸ ︷︷ ︸

=:R1(T )

(96)
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+

T∑
t=1

(∫ 1

v=0

(1− v)µ̈((1− v)f∗(xt) + vf∗(x∗))dv

)
(f∗(x∗)− f∗(xt))

2

︸ ︷︷ ︸
=:R2(T )

. (97)

We know that f̃t ∈ Ct(δ) and if the good event Eδ holds, we also have f∗ ∈ Ct(δ). Using the optimism,
we know that f̃t(xt) ≥ f∗(x∗). We start by analyzing R1(T ), recalling that µ̇(f∗(xt)) ≥ 0:

R1(T ) =

T∑
t=1

µ̇(f∗(xt)) (f
∗(x∗)− f∗(xt)) (98)

=

T∑
t=1

µ̇(f∗(xt))
(
f∗(x∗)− f∗(xt)± f̃t(xt)

)
(99)

≤
T∑

t=1

µ̇(f∗(xt))(f̃t(xt)− f∗(xt)) (100)

=

T∑
t=1

µ̇(f∗(xt))⟨α̃t − α∗, ϕ(xt)⟩ (101)

≤
T∑

t=1

µ̇(f∗(xt)) ∥α̃t − α∗∥Ṽt(λ;f∗)︸ ︷︷ ︸
(a)

∥ϕ(xt)∥Ṽ −1
t (λ;f∗)︸ ︷︷ ︸

(b)

, (102)

where we decompose the functions as inner products and the Cauchy-Schwarz’s inequality. For term
(a), we apply Lemma C.4 with f ← f̃t, f

′ ← f∗, f ′′ ← f̂t and exploit the good event:
∥α̃t − α∗∥Ṽt(λ;f∗) ≤ (1 + 2RsBK) (103)

·
(∥∥∥gt(f̃t)− gt(f̂t)

∥∥∥
Ṽ −1
t (λ;f̃t)

+
∥∥∥gt(f∗)− gt(f̂t)

∥∥∥
Ṽ −1
t (λ;f∗)

)
(104)

≤ (1 + 2RsBK)(Bt(δ; f̃t) +Bt(δ; f
∗)) (105)

≤ 2(1 + 2RsBK)βT (δ;H), (106)

having observed that βT (δ;H) ≥ βt(δ;H) ≥ max{Bt(δ; f̃t), Bt(δ; f
∗)}. For term (b), we apply

Cauchy-Schwarz’s inequality:
T∑

t=1

µ̇(f∗(xt))∥ϕ(xt)∥Ṽ −1
t (λ;f∗) (107)

≤
√
g(τ)

√√√√ T∑
t=1

µ̇(f∗(xt))

√√√√ T∑
t=1

g(τ)−1µ̇(f∗(xt))∥ϕ(xt)∥2Ṽ −1
t (λ;f∗)

. (108)

Recalling that g(τ)−1µ̇(f∗(xt))∥ϕ(xt)∥2Ṽ −1
t (λ;f∗)

= ∥ϕ̃(xt; f
∗)∥2

Ṽ −1
t (λ;f∗)

, we can apply an elliptic

potential lemma (Lemma C.6 with M = max
{
1, λ−1g(τ)−1Rµ̇K

2
}

), where λ−1g(τ)−1Rµ̇K
2 is

a bound to the maximum value ∥ϕ̃(xt; f
∗)∥2

Ṽ −1
t (λ;f∗)

can take as:

∥ϕ̃(xt; f
∗)∥2

Ṽ −1
t (λ;f∗)

= g(τ)−1µ̇(f∗(xt))∥ϕ(xt)∥2Ṽ −1
t (λ;f∗)

≤ g(τ)−1Rµ̇K
2λ−1, (109)

as Ṽ −1
t (λ; f∗) ⪰ λI . Thus, we have:

T∑
t=1

∥ϕ̃(xt; f
∗)∥2

Ṽ −1
t (f∗)

≤ 2max
{
1, λ−1g(τ)−1Rµ̇K

2
}
log det(λ−1Ṽt(f

∗)) (110)

≤ 4max
{
1, λ−1g(τ)−1Rµ̇K

2
}
γ̃T (f

∗). (111)
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The remaining term can be treated as follows, by means of a Taylor expansion:
T∑

t=1

µ̇(f∗(xt)) =

T∑
t=1

µ̇(f∗(x∗)) +

T∑
t=1

(∫ 1

v=0

µ̈((1− v)f∗(x∗) + vf∗(xt))

)
(f∗(xt)− f∗(x∗))

(112)

≤ T µ̇(f∗(x∗)) +Rs

T∑
t=1

(∫ 1

v=0

µ̇((1− v)f∗(x∗) + vf∗(xt))

)
(f∗(x∗)− f∗(xt))

(113)

=
T

κ∗
+Rs

T∑
t=1

(µ(f∗(x∗))− µ(f∗(xt))) (114)

=
T

µ̇(f∗(x∗))
+RsR(GKB-UCB, T ) (115)

=
T

κ∗
+RsR(GKB-UCB, T ). (116)

where we exploited f∗(x∗) ≥ f∗(xt), the self-concordance property (Assumption 3.4) and mean-
value theorem. Putting all together, we get:

R1(T ) ≤ 4
√
g(τ)(1 + 2RsBK)βT (δ;H)

√
T

κ∗
+RsR(GKB-UCB, T ) (117)

·
√
max {1, λ−1g(τ)−1Rµ̇K2} γ̃T (f∗) (118)

Let us move to the second term, using optimism and proceeding with the same rationale as before:

R2(T ) ≤ Rµ̇Rs

T∑
t=1

(f∗(x∗)− f∗(xt))
2 (119)

≤ Rµ̇Rs

T∑
t=1

(f̃t(xt)− f∗(xt))
2 (120)

≤ Rµ̇

T∑
t=1

∥α̃t − α∗∥2
Ṽt(λ;f∗)

∥ϕ(xt)∥2Ṽ −1
t (λ;f∗)

(121)

≤ 4Rµ̇Rs(1 + 2RsBK)2βT (δ;H)2
T∑

t=1

∥ϕ(xt)∥2Ṽ −1
t (λ;f∗)

(122)

≤ 4g(τ)Rµ̇RsκX (1 + 2RsBK)2βT (δ;H)2
T∑

t=1

g(τ)−1µ̇(f∗(xt))∥ϕ(xt)∥2Ṽ −1
t (λ;f∗)

(123)

≤ 4g(τ)Rµ̇RsκX (1 + 2RsBK)2βT (δ;H)2
T∑

t=1

∥ϕ̃(xt; f
∗)∥2

Ṽ −1
t (λ;f∗)

(124)

≤ 16g(τ)Rµ̇RsκX (1 + 2RsBK)2βT (δ;H)2 max
{
1, λ−1g(τ)−1Rµ̇K

2
}
γ̃T (f

∗), (125)

having, in addition, exploited the fact that κX ≥ µ̇(f∗(xt))
−1. Putting all together, we have:

R(GKB-UCB, T ) = R1(T ) +R2(T ) (126)

≤ 4
√

g(τ)(1 + 2RsBK)βT (δ;H)
√
max {1, λ−1g(τ)−1Rµ̇K2} γ̃T (f∗) (127)

·

(√
T

κ∗
+
√
RsR(GKB-UCB, T )

)
+R2(T ). (128)
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Using the polynomial inequality of Proposition 7 of [2] (i.e., x2 ≤ bx + c = 0 =⇒ x ≤ b +
√
c

when b, c ≥ 0), we have:√
R(GKB-UCB, T ) ≤ 4

√
g(τ)(1 + 2RsBK)βT (δ;H)

√
max {1, λ−1g(τ)−1Rµ̇K2} γ̃T (f∗)

√
Rs

(129)

+

√
4
√
g(τ)(1 + 2RsBK)βT (δ;H)

√
max {1, λ−1g(τ)−1Rµ̇K2} γ̃T (f∗)

√
T

κ∗
+R2(T ).

(130)

Squaring both sides and bounding the square as (a+ b)2 ≤ 2a2 + 2b2, we obtain:
R(GKB-UCB, T ) (131)

≤ 2

(
4
√

g(τ)(1 + 2RsBK)βT (δ;H)
√

max {1, λ−1g(τ)−1Rµ̇K2} γ̃T (f∗)
√
Rs

)2

(132)

+ 2

(
4
√
g(τ)(1 + 2RsBK)βT (δ;H)

√
max {1, λ−1g(τ)−1Rµ̇K2} γ̃T (f∗)

√
T

κ∗
+R2(T )

)
(133)

≤ 8
√
g(τ)(1 + 2RsBK)βT (δ;H)

√
max {1, λ−1g(τ)−1Rµ̇K2} γ̃T (f∗)

√
T

κ∗
(134)

+ 32Rs(1 +Rµ̇κX )g(τ)(1 + 2RsBK)2βT (δ;H)2 max
{
1, λ−1g(τ)−1Rµ̇K

2
}
γ̃T (f

∗).
(135)

We get the result by defining Rperm(T ) and Rtrans(T ) as in the statement.

B.4 Proofs of Appendix A

Lemma B.2 (Confidence Set). Let t ∈ N, f ∈ H, and δ ∈ (0, 1). Then, it holds that Ct(δ) ⊆ Dt(δ).
Furthermore, under the good event Eδ , for every f = ⟨α, ϕ⟩ ∈ Dt(δ), we have:

∥α− α∗∥Ṽt(λ;f∗) ≤ (2 + 2RsBK)
√

βt(δ;H)
(√

βt(δ;H) +
√
2
)
. (136)

Proof. Following the same derivation of Lemma 2 of [2], based on Taylor’s expansion and using the
definitions of Gt and G̃t in Appendix C. We have:

Lt(f)− Lt(f̂t) (137)

= (α− α̂t)
⊤∇Lt(f̂t)︸ ︷︷ ︸

=0

+(α− α̂t)
⊤
(∫ 1

v=0

(1− v)Ṽt(λ; f̂t + v(f − f̂t))dv

)
(α− α̂t)

(138)

= ∥α− α̂t∥2G̃t(f̂t,f)
(139)

≤ ∥α− α̂t∥2Gt(f̂t,f)
(140)

=
∥∥∥gt(f)− gt(f̂t)

∥∥∥2
G̃−1

t (f̂t,f)
(141)

≤ (1 + 2RsBK)
∥∥∥gt(f)− gt(f̂t)

∥∥∥
Ṽ −1
t (λ;f)

, (142)

where we used Equation (162) and (167). Thus, let f ∈ Ct(δ), we have that∥∥∥gt(f)− gt(f̂t)
∥∥∥
Ṽ −1
t (λ;f)

≤ Bt(δ; f) ≤ Bt(δ;H) and, consequently, f ∈ Dt(δ).

For the second part, suppose the good event Eδ holds and consider f ∈ Dt(δ), we have via Taylor’s
expansion:
Lt(f)− Lt(f

∗) (143)
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= (α− α∗)⊤∇Lt(f
∗) + (α− α∗)⊤

(∫ 1

v=0

(1− v)Ṽt(f
∗ + v(f − f∗);λ)dv

)
(α− α∗)

(144)

= (α− α∗)⊤∇Lt(f
∗) + ∥α− α∗∥2

G̃t(f∗,f)
(145)

≥ (α− α∗)⊤∇Lt(f
∗) + (2 + 2RsBK)−1∥α− α∗∥2

Ṽt(λ;f∗)
, (146)

where we used Equation (168). Thus, we have:
∥α−α∗∥2

Ṽt(f∗;λ)
(147)

≤ (2 + 2RsBK)(Lt(f)− Lt(f
∗)) + (2 + 2RsBK)(α− α∗)⊤∇Lt(f

∗) (148)

≤ (2 + 2RsBK)(Lt(f)− Lt(f̂t)) + (2 + 2RsBK)(Lt(f
∗)− Lt(f̂t)) (149)

+ (2 + 2RsBK)∥α− α∗∥Ṽt(λ;f∗)∥∇Lt(f
∗)∥Ṽ −1

t (λ;f∗) (150)

≤ 2(2 + 2RsBK)(1 + 2RsBK)Bt(δ;H) + (2 + 2RsBK)∥α− α∗∥Ṽt(λ;f∗)Bt(δ; f
∗).

(151)

where we used the fact that Lt(f) ≥ Lt(f̂t) ∧ Lt(f
∗) ≥ Lt(f̂t), that f∗ ∈ Ct(δ) ⊆ Dt(δ) under the

good event and f ∈ Dt(δ), and that:

∥∇Lt(f
∗)∥Ṽ −1

t (λ;f∗) = ∥gt(f
∗)− gt(f̂t)∥Ṽ −1

t (λ;f∗) ≤ Bt(δ; f
∗). (152)

holding under the good event. By the choice of confidence radius and bounding Bt(δ; f
∗) ≤

Bt(δ;H) ≤ βt(δ;H), we have the second-degree inequality:

∥α− α∗∥2
Ṽt(λ;f∗)

≤ 2(2 + 2RsBK)(1 + 2RsBK)βt(δ;H) (153)

+ (2 + 2RsBK)∥α− α∗∥Ṽt(λ;f∗)βt(δ;H). (154)

Using the polynomial inequality of Proposition 7 of [2] (i.e., x2 ≤ bx + c = 0 =⇒ x ≤ b +
√
c

when b, c ≥ 0), we have:

∥α− α∗∥Ṽt(λ;f∗) ≤
√
2(2 + 2RsBK)(1 + 2RsBK)βt(δ;H) + (2 + 2RsBK)βt(δ;H) (155)

≤ (2 + 2RsBK)
√
βt(δ;H)

(√
βt(δ;H) +

√
2
)
. (156)

having bounded 1 + 2RsBK ≤ 2 + 2RsBK.

Theorem A.1 (Regret Bound of Eff-GKB-UCB). Under Assumptions 3.1, 3.2, 3.3, and 3.4, GKB-UCB
with confidence radius (1 + 2RsBK)Bt(δ;H) and λ > 0, for every δ ∈ (0, 1), with probability at
least 1− δ, suffers regret bounded as: R(Eff-GKB-UCB, T ) = Rperm(T ) +Rtrans(T ), where:

Rperm(T )≤4
√
max {g(τ), λ−1Rµ̇K2}(2 + 2RsBK)

√
βT (δ;H)

(√
βT (δ;H)+2

)√
γ̃T (f∗)

√
T

κ∗
,

Rtrans(T )≤8Rs(1+Rµ̇κX )max
{
g(τ), λ−1Rµ̇K

2
}
(2+2RsBK)2βT (δ;H)

(√
βT (δ;H)+2

)2
γ̃T (f

∗).

Proof. The proof follows the same steps as Theorem 7.2, with the only difference that we exploit the
bound of Lemma B.2:

∥α− α∗∥Ṽt(λ;f∗) ≤ (2 + 2RsBK)
√

βt(δ;H)
(√

βt(δ;H) +
√
2
)
. (157)

C Technical Lemmas

In this section, we introduce some technical concepts and lemmas to be used in the analysis. We
consider x ∈ X and f = ⟨α, ϕ⟩, f ′ = ⟨α, ϕ′⟩ ∈ H, we define the following quantities, analogous to
those of [2]:

ξ(x, f, f ′) :=

∫ 1

v=0

µ̇((1− v)f(x) + vf ′(x))dv, (158)

ξ̃(x, f, f ′) :=

∫ 1

v=0

(1− v)µ̇((1− v)f(x) + vf ′(x))dv, (159)
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Gt(f, f
′) :=

t−1∑
s=1

ξ(x, f, f ′)

g(τ)
ϕ(xs)ϕ(xs)

⊤ + λI, (160)

G̃t(f, f
′) :=

t−1∑
s=1

ξ̃(x, f, f ′)

g(τ)
ϕ(xs)ϕ(xs)

⊤ + λI. (161)

We have that ξ(x, f, f ′) ≥ ξ̃(x, f, f ′) and, consequently, we have that Gt(f, f
′) ⪰ G̃t(f, f

′).
Thanks to the mean-value theorem and the definition of function gt(f), we have that:

gt(f)− gt(f
′) = Gt(f, f

′)(α− α′). (162)
Using Assumption 3.4, we can easily extend Lemmas 7 and 8 of [2].

Lemma C.1 (Extension of Lemma 7 of [2]). Let Z ⊂ R be any bounded interval of R and let
f : Z → R be a monothonically non-decreasing function such that |f̈ | ≤ Rsḟ . Then, for every
z1, z2 ∈ Z: ∫ 1

v=0

ḟ(z1 + v(z2 − z1))dv ≥
ḟ(z)

1 +Rs|z1 − z2|
, ∀z ∈ {z1, z2}. (163)

Proof. Immediately follows from the same steps of [2, Lemma 7].

Lemma C.2 (Extension of Lemma 8 of [2]). Let Z ⊂ R be any bounded interval of R and let
f : Z → R be a monothonically non-decreasing function such that |f̈ | ≤ Rsḟ . Then, for every
z1, z2 ∈ Z: ∫ 1

v=0

(1− v)ḟ(z1 + v(z2 − z1))dv ≥
ḟ(z1)

2 +Rs|z1 − z2|
. (164)

Proof. See [17, Lemma D.1].

From Lemma C.1 and Lemma C.2, we immediatly have:

ξ(x, f, f ′) :=

∫ 1

v=0

µ̇((1− v)f(x) + vf ′(x))dv ≥ µ̇(f)

1 +Rs|f(x)− f ′(x)|
, for f ∈ {f(x), f ′(x)}.

(165)

ξ̃(x, f, f ′) :=

∫ 1

v=0

(1− v)µ̇((1− v)f(x) + vf ′(x))dv ≥ µ̇(f(x))

2 +Rs|f(x)− f ′(x)|
. (166)

Moreover, under Assumptions 3.2 and 3.1, we have that |f(x) − f ′(x)| ≤ 2∥f∥∞ ≤ 2BK. This
allows us to write:

Gt(f, f
′) ⪰ (1 + 2RsBK)−1Ṽt(λ; f), for f ∈ {f, f ′}, (167)

G̃t(f, f
′) ⪰ (2 + 2RsBK)−1Ṽt(λ; f). (168)

Lemma C.3. Let f ∈ H, Ṽt(λ; f) and Vt(λ) defined as in the main paper. The following semidefinite
inequalities holds:

min{1, g(τ)R−1
µ̇ }Ṽt(λ; f) ⪯ Vt(λ) ⪯ max{1, g(τ)κX (f)}Ṽt(λ; f), (169)

where κX (f) = supx∈X
1

µ̇(f(x))

Proof. For one inequality, we have:

Ṽt(λ; f) =

t−1∑
s=1

µ̇(f(xs))

g(τ)
ϕ(x)ϕ(x)⊤ + λI (170)

⪰ g(τ)−1κX (f)−1
t−1∑
s=1

ϕ(x)ϕ(x)⊤ + λI (171)

⪰ min
{
1, g(τ)−1κX (f)−1

}(t−1∑
s=1

ϕ(x)ϕ(x)⊤ + λI

)
(172)
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= min
{
1, g(τ)−1κX (f)−1

}
Vt(λ). (173)

For the other inequality, we have:

Ṽt(λ; f) =

t−1∑
s=1

µ̇(f(xs))

g(τ)
ϕ(x)ϕ(x)⊤ + λI (174)

⪯ g(τ)−1Rµ̇

t−1∑
s=1

ϕ(x)ϕ(x)⊤ + λI (175)

⪯ max
{
1, g(τ)−1Rµ̇

}(t−1∑
s=1

ϕ(x)ϕ(x)⊤ + λI

)
(176)

= max
{
1, g(τ)−1Rµ̇

}
Vt(λ). (177)

Lemma C.4. Let f = ⟨α, ϕ⟩, f ′ = ⟨α′, ϕ⟩ ∈ H, then for every f ′′ = ⟨α′′, ϕ⟩ ∈ H, it holds that:

• ∥α− α′∥Ṽt(λ;f ′) ≤ (1 + 2RsBK)
(
∥gt(f)− gt(f

′′)∥Ṽ −1
t (λ;f) + ∥gt(f

′)− gt(f
′′)∥Ṽ −1

t (λ;f ′)

)
;

• ∥α− α′∥Vt(λ) ≤ (1 + 2RsBK)max{1, g(τ)κX (f ′)}·
·
(
∥gt(f)− gt(f

′′)∥V −1
t (λ) + ∥gt(f ′)− gt(f

′′)∥V −1
t (λ)

)
.

Proof. From the mean-value theorem (Equation 162), we have:
gt(f)− gt(f

′) = Gt(f, f
′)(α− α′). (178)

The first statement follows the same derivation of Proposition 4 of [2], with the only care of applying
Equation (167). The second statement starts from the following intermediate passage of the proof of
Proposition 4 of [2]:

∥α− α′∥Ṽt(λ;f ′) ≤
√
1 + 2RsBK

(
∥gt(f)− gt(f

′′)∥G−1
t (f,f ′) + ∥gt(f

′)− gt(f
′′)∥G−1

t (f,f ′)

)
(179)

≤ (1 + 2RsBK)
(
∥gt(f)− gt(f

′′)∥Ṽ −1
t (λ;f ′) + ∥gt(f

′)− gt(f
′′)∥Ṽ −1

t (λ;f ′)

)
.

(180)

Then, we use the semidefinite inequality Ṽt(λ; f
′) ⪰ max{1, g(τ)κX (f ′)}−1Vt(λ) (Lemma C.3):

∥α− α′∥Ṽt(λ;f ′) ≥ max{1, g(τ)κX (f ′)}−1/2Vt∥α− α′∥Vt(λ) (181)

∥gt(f)− gt(f
′′)∥Ṽ −1

t (λ;f ′) ≤ max{1, g(τ)κX (f ′)}1/2 ∥gt(f)− gt(f
′′)∥V −1

t (λ) . (182)

Lemma C.5. Let t ∈ N, f ∈ H, Kt and K̃t(f) defined as in the main paper. It holds that:

log det(It + λ−1K̃t(f)) ≤ log det(It + λ−1Rµ̇g(τ)
−1Kt) (183)

≤ max{1, Rµ̇g(τ)
−1} log det(It + λ−1Kt). (184)

Proof. We can look at matrix K̃t(f) as follows:

K̃t(f) = g(τ)−1M(f)1/2KtM(f)1/2, (185)
where M(f) = diag((µ̇(f(xs))s∈Jt−1K) is a diagonal matrix. Using Horn’s inequality for eigenval-
ues [34], we have that for every i ∈ Jt− 1K:

λi(K̃t(f)) ≤ λi(Kt) max
s∈Jt−1K

µ̇(f(xs))g(τ)
−1 ≤ λi(Kt)Rµ̇g(τ)

−1. (186)

Furthermore, using Weyl’s inequality for eigenvalues, we have for i ∈ Jt− 1K:

λi(It + λ−1K̃t(f)) ≤ 1 + λ−1λi(K̃t(f)) (187)

≤ 1 + λ−1Rµ̇g(τ)
−1λi(Kt) (188)
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≤ 1 + λ−1 max{1, Rµ̇g(τ)
−1}λi(Kt) (189)

≤
(
1 + λ−1λi(Kt)

)max{1,Rµ̇g(τ)
−1}

(190)

≤ λi(1 + λ−1Kt)
max{1,Rµ̇g(τ)

−1}, (191)
where we exploited the inequality 1 + ab ≤ (1 + b)a for b ≥ 0 and a ≥ 1. The statement is obtained
passing to the determinant and to its logarithm.

Lemma C.6 (Elliptic Potential Lemma (slightly extended)). Let (yt)t≥1 be a sequence, let M ≥ 1,
and Vt(λ) =

∑t−1
s=1 ysy

⊤
s + λI . For every T ≥ 1, it holds that:
T∑

t=1

min{M, ∥yt∥V −1
t (λ)}

2 ≤ 2M log det(λ−1Vt(λ)). (192)

Proof. We follow the steps of Lemma 12 of [2]. Using the inequality min{1, u} ≤ 2 log(1 + u) for
every u ≥ 0, we have:

T∑
t=1

min{M, ∥yt∥2V −1
t (λ)

} = M

T∑
t=1

min{1,M−1∥yt∥2V −1
t (λ)

} (193)

≤ 2M

T∑
t=1

log
(
1 +M−1∥yt∥2V −1

t (λ)

)
(194)

≤ 2M

T∑
t=1

log
(
1 + ∥yt∥2V −1

t (λ)

)
, (195)

having exploited that M ≥ 1. Now the last equation can be bounded following the usual steps of [2],
to obtain:

T∑
t=1

log
(
1 + ∥yt∥2V −1

t (λ)

)
≤ log det(λ−1Vt(λ)). (196)

Lemma C.7. Let St and Ṽt(λ) defined as in Theorem 6.2. The following inequalities hold:

∥St∥2Ṽ −1
t (λ)

≤ (t− 1)2K2R2

λ
, log det(λ−1Ṽt(λ)) ≤ (t− 1) log

(
1 +

K2R2

λ

)
. (197)

Proof. For the first inequality, we proceed as follows:

∥St∥2Ṽ −1
t (λ)

≤ ∥St∥2λ−1I ≤ λ−1

(
t−1∑
s=1

|ϵs|∥ϕ(xs)∥

)2

≤ (t− 1)2K2R2

λ
. (198)

For the second inequality, we proceed as follows:

det(λ−1Ṽt(λ)) = λ−(t−1) det(K̃t(λ)) (199)

≤ λ−(t−1)

(
1

t− 1
tr(K̃t(λ))

)t−1

(200)

≤ λ−(t−1)(λ+K2R2)(t−1) (201)

=

(
1 +

K2R2

λ

)(t−1)

. (202)

having applied the identity of Equation (1), the determinant-trace inequality and bounded
tr(K̃t(λ)) ≤ (t − 1)(λ + K2R2), since the diagonal elements of K̃t(λ) are of the form
λ+ σ(x)k(x,x′)σ(x′) ≤ λ+R2K2, being the variance bounded by the square of the range.
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