

000 ASSEMBLY-R1: 3D ASSEMBLY REASONING VIA RL- 001 BASED VISION LANGUAGE MODELS 002 003 004

005 **Anonymous authors**
006 Paper under double-blind review
007
008
009

029 **Figure 1: Bridging the gap in Part Assembly Planning.** We propose Assembly-R1, a model trained
030 to reason about spatial relationships via Reinforcement Learning. The diagram illustrates how our
031 GRPO-based training pipeline (middle) transforms a failing base model (top) into an agent capable
032 of precise state analysis and correct next-step planning (bottom), using a representative example from
033 our FurniQA. This model shows great potential for home-use and industrial intelligent robots.

034 ABSTRACT

035
036 Part assembly requires agents to possess precise spatial interpretation and multi-step
037 structural reasoning. While large Vision-Language Models (VLMs) have shown
038 promising capabilities in general Visual Question Answering (VQA), existing
039 benchmarks inadequately reflect the complexities inherent in assembly reason-
040 ing. To bridge this gap, we introduce FurniBench, an assembly-specific VQA
041 benchmark, coupled with FurniQA, a large-scale dataset targeting part recognition,
042 connectivity reasoning, step planning, etc. Using Qwen2-VL-2B-Instruct as a
043 base model, with 39.1% accuracy on FurniBench, we first establish a supervised
044 fine-tuning (SFT) baseline, which highlights both the benefits and the limitations
045 of SFT in this domain. Building on this, we propose Assembly-R1, a model trained
046 via Group Relative Policy Optimization (GRPO). With enhanced reasoning capabili-
047 ties, Assembly-R1 achieves an accuracy of 73.6%, outperforming other baselines
048 on FurniBench by a large margin. Furthermore, the consistent gain on zero-shot
049 performance on Out-of-Domain (OOD) spatial understanding and Embodied AI
050 benchmarks indicates that Assembly-R1 acquires transferable spatial skills appli-
051 cable to broader Embodied AI scenarios. This work establishes FurniBench as a
052 critical resource for both diagnosing deficits in current VLMs and teaching the
053 fundamental structural reasoning required for down-stream applications. We will
release the dataset and code upon acceptance of this paper.

054
055
056
057

1 INTRODUCTION

058
059
060
061
062
063
064
065
Imagine a scenario where a user attempts to assemble a piece of furniture. Following a plain printed
installation guide can be confusing, especially when instructions are incomplete or ambiguous.
Similarly, in industrial automatic assembly, operators often face the challenge of interpreting complex
3D assembly environments under tight constraints. In both cases, intelligent robotic systems capable
of understanding visual scenes and responding to natural language queries in a linguistic manner
would significantly assist humans in completing the task. This capability falls within the scope of
Visual Question Answering (VQA), a popular research area at the intersection of Computer Vision
(CV) and Natural Language Processing (NLP) that was introduced by Agrawal et al. Antol et al.
(2015).066
067
068
069
070
071
072
073
074
075
Over the past years, VQA has evolved from answering simple, closed-form questions to addressing
more complex reasoning and abstract challenges Pandey et al. (2025). Researchers have extended
VQA to various application domains, such as medical imaging Bazi et al. (2023); He et al. (2020);
Al-Hadhrami et al. (2023), robotics Firooz et al. (2023); Jiang et al. (2023); Shirai et al. (2024),
Embodied AI Li et al. (2023b); Ma et al. (2023); Lee et al. (2022), education and training Huynh et al.
(2025); Pandey et al. (2025), etc. The applications of large vision-language models (VLMs) have
further enhanced the capabilities of VQA systems by enabling deeper visual-textual alignment and
contextual understanding. Brown et al. describe language models as “few-shot learners” Brown et al.
(2020), indicating their potential for generalization across diverse tasks with minimal supervision. In
this context, VLMs have demonstrated their promising performance on a range of VQA benchmarks
Alayrac et al. (2022); Li et al. (2022); Qi et al. (2024); Li et al. (2023a).076
077
078
079
080
081
082
083
084
085
Despite these advances, there remains a gap in applying VQA and VLM to the specific domain of 3D
part assembly tasks. These tasks are challenging because they involve a mixture of closed vocabulary
problems (e.g. part recognition) and open vocabulary questions (e.g. spatial understanding), where
answer spaces may vary by context Eichstaedt et al. (2021); Wu et al. (2024); Ko et al. (2023).
Keeping the alignment between different modalities is a prerequisite for accomplishing these tasks.
In addition, these tasks require the model’s deeper understanding of the scenario, such as spatial
relationships, reasoning about physical constraints among components and the environment, and
interpreting ambiguous human instructions in context-dependent scenarios Yan et al. (2020); Suárez-
Ruiz & Pham (2015); Jia et al. (2025); Zhan et al. (2020); Cheng et al. (2023); Zhang et al. (2022).
These demands go beyond what general-purpose VLMs are typically designed to handle.086
087
088
089
090
091
092
093
094
095
096
097
098
099
To fill this gap, we introduce FurniBench, a benchmark specifically tailored for part-assembly tasks.
It comprises 3 main categories of assembly-related queries and 15 subcategories, designed to capture
the diverse challenges of visual question answering in this domain. Alongside the benchmark, we
present FurniQA, a dataset constructed for FurniBench, containing around 1.6 million high-quality
QA pairs derived from the IKEA ASM Dataset Ben-Shabat et al. (2021), providing a new platform for
researchers to investigate assembly-related VQAs under real-world scenarios. Given the limitations
of existing VLMs in handling such domain-specific tasks, we adopt Qwen2-VL-2B-Instruct as the
base model Wang et al. (2024) and first establish a supervised fine-tuning (SFT) baseline using
15k randomly sampled QA pairs from FurniQA. While SFT provides initial performance gains, it
also exposes issues such as task-specific overfitting and reduced generalization. To address these
challenges, and inspired by the reasoning-enhancement framework of DeepSeek-R1 Guo et al. (2025),
we employ Group Relative Policy Optimization (GRPO) Shao et al. (2024) with multi-granular
rewards to foster self-reflective reasoning capabilities. This Reinforcement Learning (RL) approach
equips the model with stronger Chain-of-Thought (CoT) reasoning, leading to more accurate and
generalizable performance.100
101
102
103
104
105
106
107
We utilize answer accuracy as the primary metric to evaluate model performance. Our SFT baseline,
Assembly-V1, achieves 69.6% on FurniBench, while our reasoning model, Assembly-R1, further
improves performance to 73.6%. Both models significantly outperform the base model, Qwen2-
VL-2B-Instruct, which attains only 39.1%, and even large-scale closed-source VLMs, like GPT-
4o OpenAI (2024a) and Gemini-2.5-Pro Google DeepMind (2025) on FurniBench. These results
underscore the value of task-specific fine-tuning while demonstrating that RL-based optimization
yields substantial additional gains without requiring extra annotated data. Furthermore, we evaluate
zero-shot generalizability across multiple Out-of-Domain (OOD) benchmarks Lee et al. (2022); Tong
et al. (2024); Hudson & Manning (2019); Ma et al. (2023); Li et al. (2023b). While Assembly-

108 V1 suffers from catastrophic forgetting, Assembly-R1 demonstrates consistent gains, empirically
 109 reinforcing the "SFT Memorizes, RL Generalizes" hypothesis proposed by Chu et al. (2025).
 110

111 **Contributions:**

112 • We propose a new benchmark called FurniBench, designed for Visual Question Answering
 113 (VQA) in part assembly scenarios, aiming to evaluate models' 3D spatial reasoning and step
 114 planning abilities.

115 • We introduce FurniQA, a large-scale dataset comprising 1.6M diverse assembly-related
 116 visual QA pairs, spanning 3 major question categories and 15 specific task types. Derived
 117 from the IKEA ASM Dataset, FurniQA is tailored for assembly-focused VQA and, with
 118 embedded frame IDs, can be readily extended to assembly-related VideoQA tasks.

119 • We establish a supervised fine-tuning (SFT) baseline, Assembly-V1, based on Qwen2-VL-
 120 2B-Instruct, which demonstrates notable improvements over the base model (69.6% vs.
 121 39.1%), while also highlighting the limitations of SFT in robustness and generalization.

122 • We are the first to apply Group Relative Policy Optimization (GRPO) for reasoning enhance-
 123 ment in VLMs targeting 3D structural understanding. The reasoning model, Assembly-R1,
 124 achieves 73.6% accuracy, outperforming both the base model and the SFT baseline, while
 125 requiring no additional annotated supervision. It also achieves promising OOD performance,
 126 indicating its generalizability to more downstream tasks.

127

128 **2 RELATED WORKS**

129

130 **2.1 VISION LANGUAGE MODEL AND VISUAL QUESTION ANSWERING**

131

132 Recent advancements in Vision-Language Models (VLMs) have significantly improved multimodal
 133 understanding. Models such as Flamingo, BLIP, and BLIP-2 Alayrac et al. (2022); Li et al. (2022;
 134 2023a) have demonstrated impressive performance by effectively aligning visual and textual modality.
 135 OpenAI GPT-4o OpenAI (2024a) marks a major milestone in multimodal integration, achieving state-
 136 of-the-art in various benchmarks. Meanwhile, the emergence of open-source VLMs, like QwenVL,
 137 InternVL, LLaVA, etc. Bai et al. (2023); Wang et al. (2024); Bai et al. (2025); Chen et al. (2024b);
 138 Zhu et al. (2025); Liu et al. (2023) has largely boosted the research in Visual Question Answering
 139 (VQA). At the same time, researchers have developed a variety of benchmarks to evaluate models
 140 and explore their full potential in multiple aspects Singh et al. (2019); Schwenk et al. (2022); Tong
 141 et al. (2024); Ma et al. (2023). The co-evolution of VQA benchmarks and VLMs continuously pushes
 142 forward the development of more robust and capable models.

143

144 **2.2 MODEL REASONING WITH REINFORCEMENT LEARNING**

145 Following the success of large language models (LLMs) in general knowledge tasks Touvron et al.
 146 (2023); Radford et al. (2018); Brown et al. (2020), researchers have increasingly turned their attention
 147 to enhancing models' reasoning abilities, particularly for more complex domains such as science,
 148 mathematics, and logic OpenAI (2024b); Guo et al. (2025). OpenAI o1 model demonstrates that
 149 incorporating Reinforcement Learning (RL) allows models to learn from feedback on their gener-
 150 ated responses, leading to Chain-of-Thought (CoT) reasoning patterns and more accurate answers.
 151 DeepSeek introduces R1-Zero Guo et al. (2025), a GRPO model Shao et al. (2024) to improve
 152 reasoning ability without relying on additional supervised data. With a simple rule-based reward
 153 design, it achieves competitive performance on reasoning benchmarks at only a fraction of the training
 154 cost compared to its counterparts, largely reducing the training requirement for hardware.

155 In the vision-language domain, SpatialVLM addresses the limitations of existing vision-language
 156 models in spatial reasoning by training on an Internet-scale multimodal dataset rich in spatial
 157 relationships Chen et al. (2024a). Inspired by DeepSeek-R1, VLM-R1 and VisualThinker-R1-Zero
 158 reproduce the 'aha' moment with non-SFT GRPO method on various VQA benchmarks Shen et al.
 159 (2025); Zhou et al. (2025).

160 Overall, these works demonstrate the growing impact and potential of using reinforcement learning-
 161 based methods to enhance the existing base model's reasoning capabilities with reduced reliance on
 annotated data and training resources.

162 2.3 IKEA ASM DATASET
163

164 The IKEA ASM dataset is a richly annotated, multimodal, and multiview video dataset of furniture
165 assembly tasks Ben-Shabat et al. (2021). Originally designed for benchmarking tasks such as video
166 action recognition, object segmentation, part tracking, and human pose estimation, it comprises 371
167 video samples, including 48 unique assemblers constructing four different types of IKEA furniture in
168 five distinct environments. Every video includes recordings from three camera views, and the primary
169 view (denoted as 'top') contains an RGB-D stream, atomic action labels, human pose estimation,
170 object and part tracking, etc.

171 3 METHOD
172173 3.1 PROBLEM FORMULATION - FURNIBENCH
174

175 FurniBench is a VQA benchmark designed for assessing models' performance on assembly-related
176 tasks. Given a visual input v and a textual question q , the task is to predict an answer o that matches
177 the reference answer o_{ref} . Formally, the model learns a function: $f_\theta : (v, q) \rightarrow o$, where θ denotes
178 the trainable parameters, optimized to minimize the discrepancy between o and o_{ref} .

181 3.2 DATASETS - FURNIQA
182

205 Figure 2: A demonstration of example QA pairs from FurniQA. Visual inputs are shown at the
206 center, surrounded by corresponding textual questions and reference answers. Different QA task
207 categories are highlighted in distinct colors, reflecting the diversity of research challenges covered in
208 FurniBench.
209

210 To build our dataset, FurniQA, in the context of 3D assembly understanding, we utilize the RGB
211 stream from the main camera view of the IKEA ASM video streams and combine each visual frame
212 with its corresponding annotations. All QA pairs in FurniQA are programmatically generated using
213 predefined rules grounded in the dataset's annotations. Importantly, the questions are manually
214 calibrated by humans to ensure they are reasonable and aligned with real-world assembly scenarios.
215 No generative models were used in answer generation, ensuring the validity and reliability of each
QA pair.

216 Based on the stage of the assembly process, each scene is categorized into one of three phases:
 217 Beginning, In Progress, or Completed. QA pairs are tailored according to these phases to ensure that
 218 the questions are contextually relevant and reflective of real-world scenarios. FurniQA comprises
 219 approximately 1.6 million QA pairs and is organized into three main task categories: Part Recognition,
 220 Part Connectivity, and General Assembly Understanding. The specific task types and corresponding
 221 quantities are detailed in the Appendix. The objectives of each main category are as follows:
 222

223 **Part Recognition** challenges the model’s capability in identifying individual furniture parts, like
 224 drawer side panels or the table shelf, understanding the part set completeness by assessing whether
 225 all required parts are present in the scene, and inferring the identity of the final object (e.g. a table or
 226 a bench) based on dispersed parts.
 227

228 **Part Connectivity** requires the model to understand the topological and physical relationships
 229 among parts. For example, it should determine which parts can be assembled, and in what sequence.
 230 Some tasks even include reverse reasoning, such as identifying which part can be disassembled
 231 first, pushing the model to demonstrate a deeper understanding of the structural dependencies and
 232 assembly logic.
 233

234 **General Assembly Understanding** is designed around the atomic actions of the assembly process.
 235 The model is expected to recognize the current or infer the next assembly steps, e.g., picking up a
 236 specific part or aligning two components. These questions are specifically challenging as they require
 237 the model to: (1) comprehend the current state of the scene, including parts already assembled and
 238 those remaining; (2) reason about correct assembly sequence, like which steps should be performed
 239 first ahead of a specific step; (3) differentiate between preparatory (e.g. pick up or align parts) and
 240 active assembly actions (e.g. insert or attach parts).
 241

3.2.1 REDUCING BIAS AND SUBJECTIVITY

- **Increasing Diversity** Questions are rephrased with GPT-4o to increase the diversity of expressions. The question expression variations are listed in the Appendix.
- **Avoiding Enforced Single Answer** IKEA-ASM includes multiple assembly demonstrations per item by different users, naturally capturing diverse valid assembly orders. We carefully consider all potential assembly steps by manually inspecting the installation videos. In preparation, we labeled the sets of all possible correction options as answers. In the training stage, models are encouraged to generate all potential options, and, during evaluation, a prediction is marked as correct if it is a subset of the ground truth answer set.
- **Dynamic Part Tagging** Letter part tags ['A'-'Z'] are randomly assigned for the parts in each frame, i.e., the same part will have a different letter label in various questions, preventing the model from memorizing static associations between tags and parts, forcing it to focus on 3D structural features in the assembly context.
- **Shuffled Options** Option order is randomized to ensure the model relies on reasoning rather than positional bias

3.3 ASSEMBLY-V1: A BASELINE MODEL TRAINING WITH SUPERVISED FINE-TUNING

260 Treating Assembly-V1 as a baseline, we fine-tuned the Qwen2-VL-2B-Instruct Wang et al. (2024)
 261 model using Supervised Fine-Tuning (SFT). The fine-tuning was performed with the help of Lla-
 262 maFactory Zheng et al. (2024). In the training procedure, we use the collected question/vision-answer
 263 pairs to form the chat template, and we apply the SFT function provided by the LlamaFactory to
 264 finish the training. More training parameters and details are discussed in the Appendix.
 265

3.4 ASSEMBLY-R1: VISUAL REASONING USING REINFORCEMENT LEARNING

266 As stated before, our proposed FurniBench task is challenging. This task requires the model not
 267 only to recognize object categories, but also to understand deeper information, such as geometric
 268 structures and the 3D relationships among objects in the image.
 269

270 To achieve this goal, we apply the powerful RL tool, Group Relative Policy Optimization (GRPO)
 271 Guo et al. (2025); Shao et al. (2024), to train our model. The objective function of GRPO can be
 272 described as follows:

$$275 \quad \mathcal{J}_{GRPO}(\theta) = \mathbb{E}[q_v \sim P(Q_V), \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(O|q_v)] \\ 276 \\ 277 \quad \frac{1}{G} \sum_{i=1}^G \left(\min \left(\frac{\pi_\theta(o_i|q_v)}{\pi_{\theta_{old}}(o_i|q_v)} A_i, \text{clip} \left(\frac{\pi_\theta(o_i|q_v)}{\pi_{\theta_{old}}(o_i|q_v)}, 1 - \varepsilon, 1 + \varepsilon \right) A_i \right) - \beta \mathbb{D}_{KL}(\pi_\theta || \pi_{ref}) \right), \quad (1)$$

$$280 \\ 281 \quad \mathbb{D}_{KL}(\pi_\theta || \pi_{ref}) = \frac{\pi_{ref}(o_i|q_v)}{\pi_\theta(o_i|q_v)} - \log \frac{\pi_{ref}(o_i|q_v)}{\pi_\theta(o_i|q_v)} - 1, \quad (2) \\ 282$$

283 where q_v represents the sampled question and image set; $\{o_1, o_2, \dots, o_i\}$ are the outputs sampled
 284 from the policy model π_θ or the old policy model π_{old} ; ε and β are hyper-parameters; A_i calculated
 285 from the rewards $\{r_1, r_2, \dots, r_G\}$ through the following formula:

$$287 \quad A_i = \frac{r_i - \text{mean}(\{r_1, r_2, \dots, r_G\})}{\text{std}(\{r_1, r_2, \dots, r_G\})}. \quad (3) \\ 288 \\ 289$$

290 3.4.1 REWARD DESIGN

291 The reward design is the key to the success of GRPO training. Our goal is to provide a straightforward
 292 and effective reward signal that motivates the model’s reasoning chain while solving challenging
 293 problems with precise answers.

294 **Format Reward** The model must produce a reasoning chain followed by a final answer using the
 295 required tags:

$$298 \quad r_{fmt} = \mathbb{1}[o \equiv \text{<think>} o_{\text{reason}} \text{</think>} \text{<answer>} o_{\text{ans}} \text{</answer>}]$$

300 **Accuracy Reward** If the predicted answer matches the reference, the model receives +1:

$$301 \quad r_{acc} = \mathbb{1}[\text{canon}(o_{\text{ans}}) = o_{\text{ref}}]$$

303 Here, $\text{canon}(\cdot)$ denotes canonicalization of the answer (e.g., normalization of case/whitespace and
 304 parsing to a valid option or set for multi-select).

305 **Pure-Coverage Reward (PCR)** The reward above doesn’t favor those partially correct answers
 306 over wrong answers. As a result, the ‘spark’ is not captured. To solve this, we provide graded credit
 307 for strictly correct subsets (and zero for any wrong options) for multi-select MCQ, defined as:

$$309 \quad r_{pcr} = \begin{cases} \frac{|O_{\text{pred}}|}{|O_{\text{gt}}|}, & \text{if } O_{\text{pred}} \subseteq O_{\text{gt}} \text{ and } O_{\text{pred}} \neq \emptyset, \\ 310 \\ 311 \quad 0, & \text{otherwise.} \end{cases}$$

312 where O_{gt} is the ground-truth option set; O_{pred} is the deduplicated model’s answer set.

314 With the objectives and rewards discussed above, we train a reasoning model that can provide both a
 315 reasoning procedure and a correct answer. We discuss the training parameters in our Appendix.

317 4 EXPERIMENTS

319 4.1 DATASET AND EVALUATION

321 We randomly select 15,000 QA pairs from the FurniQA training set to fine-tune both Assembly-V1
 322 and Assembly-R1. For general evaluation, we use 1,500 QA pairs from FurniQA testing branch.
 323 To enable deeper analysis of the models’ intrinsic abilities, we additionally classify tasks into two
 groups: those solvable through pure recognition and those that require spatiotemporal reasoning.

Furthermore, to assess the generalizability, we further evaluate both models on multiple OOD benchmarks, including GRiD-3D Lee et al. (2022), GQA Hudson & Manning (2019), CV-Bench Tong et al. (2024), SQA3D Ma et al. (2023), Super-CLEVR Li et al. (2023b). The performance of the candidate models is measured based on the accuracy of the answer responses.

4.2 HARDWARE AND IMPLEMENTATION DETAILS

In our experiments, we use $2 \times$ NVIDIA A100 80GB GPUs to train the models, including Assembly-V1 and Assembly-R1. For both training procedures, we set the per-device batch size to 1 and the gradient accumulation steps to 4. The training step is set to 1800. We tune all the parameters of the models at both the SFT and GRPO stages. Due to the page limit, we demonstrate more training details in our Appendix.

Table 1: Accuracy comparison across models and task categories on FurniBench (%).

Models	PR [†]	PC [‡]	GAU [*]	Total
Gemini-2.5-Pro	48.8	49.3	61.4	55.8
GPT-4o	33.4	24.0	56.6	45.7
Qwen2-VL-7B-Instruct	62.5	9.3	40.0	47.5
LLaVA-1.5-7B-HF	57.0	16.0	39.7	45.4
Qwen2.5-VL-3B-Instruct	41.6	13.3	38.2	38.3
InternVL3-2B-Instruct	32.4	16.0	35.4	33.3
Qwen2-VL-2B-Instruct	37.8	28.0	41.0	39.1
Assembly-V1	68.9	44.0	72.4	69.6
Assembly-R1	71.9	74.7	74.7	73.6

[†] PR: Part Recognition. [‡] PC: Part Connectivity. ^{*} GAU: General Assembly Understanding.
All values are accuracy in %.

4.3 QUANTITATIVE RESULTS

Table 1 reports accuracy across three task categories, Part Recognition (PR), Part Connectivity (PC), and General Assembly Understanding (GAU), alongside the overall performance Total. Table 2 summarizes accuracy for two capability-oriented groupings: Semantic Understanding, emphasizing recognition and global assembly semantics, and Spatial Reasoning, which are least solvable by pure 2D clues, requiring models' spatial-temporal understandings. The comparisons include seven open-source and closed-source commercial VLMs of similar or larger scales: GPT-4o OpenAI (2024a), Gemini-2.5-Pro Google DeepMind (2025), Qwen2-VL-7B-Instruct Wang et al. (2024),

Table 2: Benchmark Analysis: Semantic Understanding vs. Spatial Reasoning (%).

Models	Semantic Understanding	Spatial Reasoning
Gemini-2.5-Pro	59.2	47.6
GPT-4o	47.2	32.3
Qwen2-VL-7B-Instruct	44.9	20.1
LLaVA-1.5-7B-HF	41.1	21.9
Qwen2.5-VL-3B-Instruct	38.9	22.9
InternVL3-2B-Instruct	28.8	20.1
Qwen2-VL-2B-Instruct	34.5	27.1
Assembly-V1	69.2	49.0
Assembly-R1	72.2	59.7

All values are accuracy in %.

378 LLaVA-1.5-7B-Instruct Liu et al. (2023), Qwen2.5-VL-3B-Instruct Bai et al. (2025), InternVL3-2B-
 379 Instruct Zhu et al. (2025), and Qwen2-VL-2B-Instruct Wang et al. (2024), and our two in-domain
 380 models: Assembly-V1 and Assembly-R1.

382 **4.3.1 BENCHMARKING FOR VLM BASELINES**

384 As shown in Table 1, models with larger scale lead overall: Gemini-2.5-Pro attain a total accuracy
 385 of 55.8%, ahead of GPT-4o at 45.7%, while the strongest open-source 7B models, Qwen2-VL-7B-
 386 Instruct and LLaVA-1.5-7B-HF, reach 47.5% and 45.4%, respectively, outperforming other candidates
 387 with 2B/3B scale.

388 Category-wise analysis reveals distinct performance profiles. In Part Recognition, larger open-source
 389 models perform well, e.g., Qwen2-VL-7B-Instruct at 62.5%, indicating recognition tasks are tractable.
 390 For General Assembly Understanding, commercial models lead: Gemini-2.5-Pro at 61.4% and GPT-
 391 4o at 56.6%, reflecting superior semantic planning. However, Part Connectivity exposes a critical gap:
 392 requiring genuine geometric interpretation, most models fail significantly. While Gemini-2.5-Pro
 393 achieves 49.3%, others, like Qwen2-VL-7B-Instruct at 9.3%, struggle, highlighting that off-the-shelf
 394 VLMs lack the relational reasoning needed to transcend 2D perception.

395 A similar pattern is shown in Table 2. All models, especially for smaller-scale open-sourced VLMs,
 396 exhibit a substantial drop from Semantic Understanding to Spatial Reasoning, indicating that tasks
 397 that are least solvable by pure 2D cues remain challenging. For example, Qwen2-VL-7B-Instruct
 398 falls from 44.9% to 20.1%, LLaVA-1.5-7B-HF from 41.1% to 21.9%. Even the strongest commercial
 399 model achieves only 47.6% and 32.3% accuracy in tasks requiring complex spatial reasoning. These
 400 trends confirm that spatial-temporal reasoning, like interpreting geometric structure, relational
 401 constraints, and physical plausibility, is the principal bottleneck for general-purpose VLMs on
 402 FurniBench.

404 **4.3.2 COMPARISONS WITH BASELINES**

406 Although our in-domain models decisively outperform baselines across Tables 1 and 2, with the
 407 largest gains appearing in spatially demanding settings, important contrasts emerge between SFT
 408 and RL-based models. Overall, Assembly-R1 attains the best Total accuracy at 73.6%, surpassing
 409 Assembly-V1 at 69.6% and the strongest baseline, Gemini-2.5-Pro at 55.8%.

410 Category-wise, Assembly-R1 improves upon Assembly-V1 in all three categories, and delivers
 411 substantial margins over Gemini-2.5-Pro (PR: +23.1, PC: +25.4, GAU: +13.3). Although the SFT
 412 model Assembly-V1 improves overall over Gemini, its PC performance (44.0%) is weaker than
 413 Gemini's (49.3%), indicating that SFT primarily memorizes dataset-specific recognition and semantic
 414 patterns rather than learning intrinsic spatial reasoning.

415 By contrast, the RL-based Assembly-R1 closes the spatial gap: it not only lifts PC to 74.7% but also
 416 delivers strong gains on the capability-oriented spatial groups, with 10.7% gain for Assembly-V1 and
 417 12.1% lead for Gemini-2.5-Pro, while maintaining improvements in semantic understanding. Taken
 418 together, these results suggest that reinforcement learning encourages the acquisition of geometric
 419 and relational constraints and yields superior generalization on tasks least solvable by pure 2D cues,
 420 whereas supervised fine-tuning alone is insufficient to overcome the spatial reasoning bottleneck.

422 **4.4 QUALITATIVE RESULTS**

424 We also present some qualitative results in Fig. 3 to showcase our trained models. Overall, the figure
 425 shows that Assembly-R1 achieves the best performance, while both the base model and Assembly-V1
 426 struggle to provide the correct answers. Assembly-R1 can not only give the correct answers, but
 427 also outputs the detailed reasoning processes. Taking the Fig. 3 (a) as an example, Assembly-R1 can
 428 output both the reasons for selecting the correct answer and analysis for the incorrect answer. This
 429 indicates the deep analysis ability of the Assembly-R1. The SFT model Assembly-V1 cannot provide
 430 the analysis as the SFT tends to "remember" the correct answers. This phenomenon also demonstrates
 431 the superiority of the RL-based model. We can summarize that the RL training algorithm GRPO
 indeed can improve both the reasoning ability and the accuracy of the answer.

Figure 3: Qualitative results: Three example cases illustrated in (a), (b), and (c). Each example includes User Input (image + text, highlighted in blue), Base Model response (light gray), Assembly-V1 response (green), and Assembly-R1 response (purple). A tick or cross next to each model’s response indicates correctness.

Table 3: Consecutive Assembly Step Planning Success Rate (%).

Models	step@1	step@2	step@3	step@4	step@5
Gemini-2.5-Pro	49.0	25.5	13.1	6.9	2.9
GPT-4o	45.7	23.8	10.5	4.9	1.0
Base Model	26.3	4.4	0.7	0.0	0.0
Assembly-V1	51.0	26.5	12.8	7.8	2.9
Assembly-R1	58.4	36.5	23.9	15.2	9.8

All values are success rate in %. Success at step@ k requires correctly planning the next k consecutive assembly steps.

4.5 APPLICATIONS TO EMBODIED AI

To assess adaptability to Embodied AI, we construct a subset task, namely Consecutive Assembly Step Planning, where success at depth k requires correctly planning the next k consecutive assembly steps. As shown in Table 3, Assembly-R1 achieves the highest success rate across all depths, while Assembly-V1 matches or slightly exceeds commercial baselines at shallow depths but decays more rapidly with increasing step count. In contrast, general-purpose VLMs fail in multi-step assembly planning: Gemini-2.5-Pro falls from 49.0% to 2.9% by step@5, and GPT-4o from 45.7% to 1.0%, reflecting compounding planning errors when reasoning over multi-step geometric dependencies.

These results confirm that our method scales reliably to multi-step spatial-temporal reasoning, preserving plan consistency over longer horizons where baselines falter. Assembly-R1 thus establishes a viable pathway for high-level robotic planning under spatial constraints.

4.6 ABLATIONS

We conduct ablation studies on reward design and training strategies to validate our design, as shown in Table 4. The first design is Assembly-V1 + RL post-training, and the second only uses format reward and accuracy rewards. Results show our design has the best overall performance.

486

487

Table 4: Ablation: RL reward variants on FurniBench (%).

488

489

490

491

492

493

494

495

496

497

498

4.7 OUT-OF-DOMAIN RESULTS

499

500

501

502

503

504

505

506

507

508

509

510

We present zero-shot Out-Of-Domain (OOD) evaluations on GRiD-3D Lee et al. (2022), GQA Hudson & Manning (2019), CV-Bench Tong et al. (2024), SQA3D Ma et al. (2023), and Super-CLEVR Li et al. (2023b), as shown in Table 5. Assembly-R1 demonstrates consistent gains over the Base Model across all benchmarks (e.g., GRiD-3D +6.3%, GQA +4.5%), whereas the SFT model Assembly-V1 underperforms the Base Model on all five datasets, highlighting the catastrophic forgetting of pure SFT under distribution shift. In contrast, Assembly-R1 achieves substantial margins over SFT on spatially demanding tasks like GRiD-3D (+7.2%) and SQA3D (+13.5%), indicating that reinforcement learning fosters robust spatial-temporal inference rather than surface-level pattern matching. Notably, despite being trained primarily on multiple-choice questions (MCQ), Assembly-R1 generalizes effectively to open-vocabulary (free-text) tasks such as GRiD-3D and SQA3D. These findings support the “SFT Memorizes, RL Generalizes” hypothesis Chu et al. (2025): while SFT aligns models to specific training distributions, RL equips them with transferable decision rules for broader applicability.

511

512

Table 5: Evaluation on OOD Benchmarks, including Embodied AI-specific Benchmarks (%).

513

514

515

516

517

518

Models	GRiD-3D	GQA	CV-Bench	SQA3D	Super-CLEVR
Base Model	34.4	61.9	62.4	32.2	42.7
Assembly-V1	33.5	55.3	49.6	21.8	41.2
Assembly-R1	40.7	66.4	64.5	35.3	45.9

519

Task formats: GRiD-3D (Free Text), GQA (Free Text), CV-Bench (MCQ), SQA3D (Free Text), Super-CLEVR (Free Text). All values are accuracy in %.

520

521

4.8 LIMITATIONS

522

523

Despite the richness and large scale of our FurniQA, there is still room for improvement in terms of diversity. Specifically, the dataset could benefit from incorporating a broader range of QA task types and assembly objects, more diverse camera shooting angles, input modalities, like depth information, and indoor/outdoor assembly scenes. Enhancing the dataset in these aspects could assist the model to generalize better to real-world applications and unseen configurations.

524

525

526

527

528

529

530

531

In conclusion, we propose a new benchmark, FurniBench, along with a new dataset, FurniQA, to assess the 3D structural and spatial understanding of large models. We also trained new large models, Assembly-V1 and Assembly-R1, based on our dataset. We successfully established our new benchmark by testing our trained models and other open-source VLMs. In addition, we use out-of-domain experiments to demonstrate the phenomenon of “SFT Memorizes, RL Generalizes.” In the future, we plan to test our models in real industrial environments, such as industrial robotic assembly scenarios, Embodied AI, etc.

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Suheer Al-Hadhrami, Mohamed El Bachir Menai, Saad Al-Ahmadi, and Ahmad Alnafessah. An
543 effective med-vqa method using a transformer with weights fusion of multiple fine-tuned models.
544 *Applied Sciences*, 13(17), 2023. ISSN 2076-3417. doi: 10.3390/app13179735. URL <https://www.mdpi.com/2076-3417/13/17/9735>.

545 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
546 Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
547 Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
548 Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo
549 Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language
550 model for few-shot learning, 2022. URL <https://arxiv.org/abs/2204.14198>.

551 Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence
552 Zitnick, and Devi Parikh. VQA: visual question answering. *CoRR*, abs/1505.00468, 2015. URL
553 [http://arxiv.org/abs/1505.00468](https://arxiv.org/abs/1505.00468).

554 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
555 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
556 text reading, and beyond, 2023. URL <https://arxiv.org/abs/2308.12966>.

557 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
558 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
559 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
560 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
561 <https://arxiv.org/abs/2502.13923>.

562 Yakoub Bazi, Mohamad Mahmoud Al Rahhal, Laila Bashmal, and Mansour Zuaire. Vision–language
563 model for visual question answering in medical imagery. *Bioengineering*, 10(3), 2023. ISSN 2306-
564 5354. doi: 10.3390/bioengineering10030380. URL <https://www.mdpi.com/2306-5354/10/3/380>.

565 Yizhak Ben-Shabat, Xin Yu, Fatemeh Saleh, Dylan Campbell, Cristian Rodriguez-Opazo, Hongdong
566 Li, and Stephen Gould. The ikea asm dataset: Understanding people assembling furniture through
567 actions, objects and pose. In *Proceedings of the IEEE/CVF Winter Conference on Applications of
568 Computer Vision*, pp. 847–859, 2021.

569 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
570 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
571 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
572 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
573 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
574 Sutskever, and Dario Amodei. Language models are few-shot learners. *CoRR*, abs/2005.14165,
575 2020. URL <https://arxiv.org/abs/2005.14165>.

576 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Danny Driess, Pete Florence, Dorsa Sadigh,
577 Leonidas Guibas, and Fei Xia. Spatialvlm: Endowing vision-language models with spatial
578 reasoning capabilities, 2024a. URL <https://arxiv.org/abs/2401.12168>.

579 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
580 Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
581 Scaling up vision foundation models and aligning for generic visual-linguistic tasks, 2024b. URL
582 <https://arxiv.org/abs/2312.14238>.

583 Junfeng Cheng, Mingdong Wu, Ruiyuan Zhang, Guanqi Zhan, Chao Wu, and Hao Dong. Score-pa:
584 Score-based 3d part assembly. *British Machine Vision Conference (BMVC)*, 2023.

585 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
586 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
587 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.

594 Johannes C. Eichstaedt, Margaret L. Kern, David B. Yaden, and et al. Closed- and open-vocabulary ap-
 595 proaches to text analysis: A review, quantitative comparison, and recommendations. *Psychological*
 596 *Methods*, 26(4):398–427, 2021. doi: 10.1037/met0000349.

597

598 Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke
 599 Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, Brian Ichter, Danny Driess, Jiajun Wu, Cewu
 600 Lu, and Mac Schwager. Foundation models in robotics: Applications, challenges, and the future,
 601 2023. URL <https://arxiv.org/abs/2312.07843>.

602 Google DeepMind. Gemini 2.5: Our most intelligent ai model.
 603 [https://blog.google/technology/google-deepmind/](https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025)
 604 gemini-model-thinking-updates-march-2025, 2025. Accessed: 2025-12-03.

605 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 606 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 607 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

608

609 Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions for
 610 medical visual question answering, 2020. URL <https://arxiv.org/abs/2003.10286>.

611 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 612 and compositional question answering. *arXiv preprint arXiv:1902.09506*, 2019.

613

614 Ngoc Dung Huynh, Mohamed Reda Bouadjenek, Sunil Aryal, Imran Razzak, and Hakim Hacid.
 615 Visual question answering: from early developments to recent advances – a survey, 2025. URL
 616 <https://arxiv.org/abs/2501.03939>.

617

618 Qingxuan Jia, Guoqin Tang, Zeyuan Huang, Zixuan Hao, Ning Ji, Shihang, Yin, and Gang Chen.
 619 Perceiving, reasoning, adapting: A dual-layer framework for vlm-guided precision robotic manipu-
 620 lation, 2025. URL <https://arxiv.org/abs/2503.05064>.

621

622 Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
 623 Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal
 624 prompts, 2023. URL <https://arxiv.org/abs/2210.03094>.

625

626 Dohwan Ko, Ji Soo Lee, Miso Choi, Jaewon Chu, Jihwan Park, and Hyunwoo J. Kim. Open-
 627 vocabulary video question answering: A new benchmark for evaluating the generalizability of
 628 video question answering models, 2023. URL <https://arxiv.org/abs/2308.09363>.

629

630 Jae Hee Lee, Matthias Kerzel, Kyra Ahrens, Cornelius Weber, and Stefan Wermter. What is right for
 631 me is not yet right for you: A dataset for grounding relative directions via multi-task learning. In
 632 *Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI)*, 2022.

633

634 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image
 635 pre-training for unified vision-language understanding and generation, 2022. URL <https://arxiv.org/abs/2201.12086>.

636

637 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 638 pre-training with frozen image encoders and large language models, 2023a. URL <https://arxiv.org/abs/2301.12597>.

639

640 Zhuowan Li, Xingrui Wang, Elias Stengel-Eskin, Adam Kortylewski, Wufei Ma, Benjamin
 641 Van Durme, and Alan L Yuille. Super-clevr: A virtual benchmark to diagnose domain robustness
 642 in visual reasoning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 643 *Recognition (CVPR)*, 2023b.

644

645 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. URL
 646 <https://arxiv.org/abs/2304.08485>.

647

648 Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yixin Liang, Song-Chun Zhu, and Siyuan Huang.
 649 Sqa3d: Situated question answering in 3d scenes. In *International Conference on Learning*
 650 *Representations (ICLR)*, 2023.

651

652 OpenAI. Gpt-4o system card, 2024a. URL <https://arxiv.org/abs/2410.21276>.

648 OpenAI. Openai o1 system card, 2024b. URL <https://arxiv.org/abs/2412.16720>.
649

650 Anupam Pandey, Deepjyoti Bodo, Arpan Phukan, and Asif Ekbal. The quest for visual understanding:
651 A journey through the evolution of visual question answering, 2025. URL <https://arxiv.org/abs/2501.07109>.
652

653 Zekun Qi, Runpei Dong, Shaochen Zhang, Haoran Geng, Chunrui Han, Zheng Ge, Li Yi, and
654 Kaisheng Ma. Shapellm: Universal 3d object understanding for embodied interaction, 2024. URL
655 <https://arxiv.org/abs/2402.17766>.
656

657 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
658 understanding by generative pre-training. 2018.

659 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System op-
660 timizations enable training deep learning models with over 100 billion parameters. In *Pro-
661 ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
662 Data Mining*, KDD '20, pp. 3505–3506, New York, NY, USA, 2020. Association for Com-
663 puting Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3406703. URL <https://doi.org/10.1145/3394486.3406703>.
664

665 Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
666 A-okvqa: A benchmark for visual question answering using world knowledge, 2022. URL
667 <https://arxiv.org/abs/2206.01718>.
668

669 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
670 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
671 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

672 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
673 Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. Vlm-r1: A stable and
674 generalizable r1-style large vision-language model, 2025. URL <https://arxiv.org/abs/2504.07615>.
675

676 Keisuke Shirai, Cristian C. Beltran-Hernandez, Masashi Hamaya, Atsushi Hashimoto, Shohei Tanaka,
677 Kento Kawaharazuka, Kazutoshi Tanaka, Yoshitaka Ushiku, and Shinsuke Mori. Vision-language
678 interpreter for robot task planning, 2024. URL <https://arxiv.org/abs/2311.00967>.
679

680 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
681 and Marcus Rohrbach. Towards vqa models that can read, 2019. URL <https://arxiv.org/abs/1904.08920>.
682

683 Francisco Suárez-Ruiz and Quang-Cuong Pham. A framework for fine robotic assembly, 2015. URL
684 <https://arxiv.org/abs/1509.04806>.
685

686 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
687 Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model.
688 *Stanford Center for Research on Foundation Models. https://crfm.stanford.edu/2023/03/13/alpaca.html*, 3(6):7, 2023.
689

690 Shengbang Tong, Ellis Brown, Peiyuan Wu, Sanghyun Woo, Manksh Middepogu, Sai Charitha Akula,
691 et al. Cambrian-1: A fully open, vision-centric exploration of multimodal llms. *arXiv preprint
692 arXiv:2406.16860*, 2024.
693

694 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
695 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
696 Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
697 models, 2023. URL <https://arxiv.org/abs/2302.13971>.
698

699 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
700 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
701 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
702 perception of the world at any resolution, 2024. URL <https://arxiv.org/abs/2409.12191>.
703

702 Jianzong Wu, Xiangtai Li, Shilin Xu, Haobo Yuan, Henghui Ding, Yibo Yang, Xia Li, Jiangning
 703 Zhang, Yunhai Tong, Xudong Jiang, Bernard Ghanem, and Dacheng Tao. Towards open vocabulary
 704 learning: A survey, 2024. URL <https://arxiv.org/abs/2306.15880>.

705 Fujian Yan, Dali Wang, and Hongsheng He. Robotic understanding of spatial relationships using
 706 neural-logic learning. In *2020 IEEE/RSJ International Conference on Intelligent Robots and*
 707 *Systems (IROS)*, pp. 8358–8365, 2020. doi: 10.1109/IROS45743.2020.9340917.

708 Guanqi Zhan, Qingnan Fan, Kaichun Mo, Lin Shao, Baoquan Chen, Leonidas J Guibas, Hao Dong,
 709 et al. Generative 3d part assembly via dynamic graph learning. *Advances in Neural Information*
 710 *Processing Systems*, 33:6315–6326, 2020.

711 Rufeng Zhang, Tao Kong, Weihao Wang, Xuan Han, and Mingyu You. 3d part assembly generation
 712 with instance encoded transformer. *IEEE Robotics and Automation Letters*, 7(4):9051–9058, 2022.

713 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 714 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv*
 715 preprint [arXiv:2403.13372](https://arxiv.org/abs/2403.13372), 2024.

716 Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-
 717 zero's "aha moment" in visual reasoning on a 2b non-sft model, 2025. URL <https://arxiv.org/abs/2503.05132>.

718 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 719 Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
 720 Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen Deng,
 721 Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi, Xingcheng
 722 Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong Jiao, Han
 723 Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min Dou,
 724 Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. Internvl3:
 725 Exploring advanced training and test-time recipes for open-source multimodal models, 2025. URL
 726 <https://arxiv.org/abs/2504.10479>.

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 SUPERVISED FINE-TUNING (SFT) CONFIGURATIONS**
759760 The SFT training configurations are listed in Table 6. The fine-tuning was performed with the help of
761 LlamaFactory Zheng et al. (2024). The dataset is structured in Alpaca format Taori et al. (2023) for
762 training the model.

764 Parameter	765 Value
766 model_name_or_path	767 Qwen/Qwen2-VL-2B-Instruct
768 trust_remote_code	769 true
770 stage	771 sft
772 do_train	773 true
774 finetuning_type	775 full
776 freeze_vision_tower	777 false
778 freeze_multi_modal_projector	779 false
780 freeze_language_model	781 false
782 deepspeed	783 LLaMA-Factory/examples/deepspeed/ds_z3_config.json
784 dataset	785 FurniBench_train_shuffled_selected_15000
786 template	787 qwen2_vl
788 cutoff_len	789 20480
790 preprocessing_num_workers	791 16
792 dataloader_num_workers	793 4
794 output_dir	795 outputs/qwen2_vl-2b_512_15000/sft
796 logging_steps	797 25
798 save_steps	799 300
800 report_to	801 wandb
802 batch_size	803 8
804 learning_rate	805 5.0e-5
806 num_train_epochs	807 3
808 lr_scheduler_type	809 cosine
810 warmup_ratio	811 0.1
812 bf16	813 true
814 ddp_timeout	815 180000000
816 resume_from_checkpoint	817 null

790
791 Table 6: Supervised Fine-Tuning (SFT) & DeepSpeed training configurations.
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 A.2 GROUP RELATIVE POLICY OPTIMIZATION (GRPO) CONFIGURATIONS
811812 The GRPO model fine-tuning configurations are listed in Table 7. The multi-GPU training benefits
813 from DeepSpeed Rasley et al. (2020).

Parameter	Value
config_file	configs/zero2.yaml
model_name_or_path	Qwen/Qwen2-VL-2B-Instruct
dataset_name	FurniBench_train_shuffled_selected_15000
max_prompt_length	1024
max_completion_length	700
learning_rate	1.0e-6
batch_size	8
logging_steps	1
bf16	true
gradient_checkpointing	true
num_train_epochs	3
save_steps	300
save_only_model	true
report_to	wandb
compute_environment	LOCAL_MACHINE
distributed_type	DEEPSPEED
deepspeed_multinode_launcher	standard
zero_stage	2
zero3_init_flag	false
offload_optimizer_device	none
offload_param_device	none
mixed_precision	bf16
downcast_bf16	no
num_processes	8
num_machines	1
machine_rank	0
main_training_function	main
main_process_port	44326
rdzv_backend	static
same_network	true
use_cpu	false
tpu_use_cluster	false
tpu_use_sudo	false
tpu_env	[]

846
847 Table 7: GRPO & DeepSpeed training configuration.
848
849850 A.3 DATASET - QUESTION REPRESENTATIVE EXPRESSIONS
851852 FurniQA includes 15 distinct QA task types. To make the dataset more diverse, each task is associated
853 with three representative question expressions, as illustrated in Table 8. When generating QA pairs
854 for each assembly video frame, one of the three expressions for the corresponding question type is
855 randomly selected.856
857
858
859
860
861
862
863

864	
865	
866	Question Type
867	Single Part Recognition (MCQ)
868	What is the part labeled in <code>{id}</code> ? Please identify the part labeled as <code>{id}</code> . Which part does the label <code>{id}</code> correspond to?
869	
870	Part Set Completeness (YN)
871	Are the currently labeled parts sufficient to complete the assembly? Do the labeled parts cover everything needed for assembly? Are all necessary parts labeled for assembly?
872	
873	Missing Part Recognition (MCQ)
874	What other parts are required to complete the assembly? Are there any parts not labeled that are needed? Which parts are still required to finish the assembly?
875	
876	First Assemble Pair (MCQ)
877	Which two parts can be assembled first? Out of the listed pairs, which can be assembled at the beginning? Select the pair of parts that should be assembled first.
878	
879	First Assemble Pair (YN)
880	Can I directly attach Part A to Part B? Are Part A and Part B ready to be connected now? Is it possible to assemble them together now?
881	
882	Connection After Installation (MCQ)
883	What parts does Part A connect to after installation? After assembly, which parts will be connected to Part A? Select the parts that will be attached to Part A.
884	
885	Disassemble First (MCQ)
886	Which parts can be disassembled first? Out of the listed parts, which can be removed first? Select the part(s) that should be taken apart first.
887	
888	Object Recognition (MCQ)
889	What could be the type of furniture? What is the most likely furniture type? Which furniture category do these parts belong to?
890	
891	Installation Completed (YN)
892	Is the installation completed? Has the assembly process finished? Are all parts fully assembled now?
893	
894	Action Recognition (MCQ)
895	What is the user doing in this frame? Describe the action performed by the user. Which activity is the user engaged in now?
896	
897	Action Recognition (YN)
898	Is the user manipulating a <code>{part}</code> ? Is the user interacting with a <code>{part}</code> ? Do you see the user handling a <code>{part}</code> ?
899	
900	Next Step Inference (MCQ)
901	What should the user do next to complete the installation? What is the next action required? Which step should be performed next?
902	
903	Installation Preparation (MCQ)
904	What should the user do next to prepare? Which preparation is needed before continuing? What action should be taken before the next step?
905	
906	Installation Assembly (MCQ)
907	What should the user do next to complete the assembly? Which assembly action comes next? What is the next step in the assembly process?
908	
909	Ready for Installation (YN)
910	Are the <code>{part}</code> ready to be installed? Can the <code>{part}</code> be installed now? Is any step required before installing the <code>{part}</code> ?
911	
912	

Table 8: Overview of all 15 question types in FurniQA with representative expressions. Each type has 3 variations to encourage language diversity. For easier evaluation, each question in the dataset comes with a list of options, either a list of different choices or Yes/No. To maintain clarity, the answer options are not shown in this table.

918 A.4 DATASET - STATISTICS OF FURNIQA
919
920921 Table 9: Statistics of FurniQA, including the main category, sub-category, task type, and quantities of
922 corresponding QA pairs.

Main Category	Sub Category	Type	Quantity
Part Recognition	Single Part Recognition	MCQ	176,903
	Part Set Completeness	YN	176,903
	Missing Part Recognition	MCQ	154,105
	Object Recognition	MCQ	154,105
Part Connectivity	First Assemble Pair	MCQ	3,050
	First Assemble Pair	YN	10,654
	Connection After Installation	MCQ	45,786
	First Disassemble Part	MCQ	22,798
General Assembly Understanding	Installation Completion	YN	176,903
	Action Recognition	MCQ	150,286
	Action Recognition	YN	176,903
	Next Step Inference	MCQ	176,903
	Installation Preparation	MCQ	107,972
	Installation Assembly	MCQ	45,655
	Ready For Installation	YN	35,969

972 A.5 MODEL PERFORMANCE COMPARISONS
973
974

997
998 Figure 4: Performance comparison of various models on FurniBench. The green and red lines
999 depict the progression of Assembly-V1 and Assembly-R1 performance throughout the training steps.
1000 Horizontal dashed lines indicate the benchmark performance of popular open-source vision-language
1001 models (VLMs).

1003 A.6 ADDITIONAL ABLATION STUDIES
1004

1005 **Reward Design Analysis.** To validate our reward structure, we explored alternative designs in-
1006 tended to explicitly encourage reasoning via chain length and logical structure. We tested two
1007 configurations: (1) a *Length-Incentivized Reward* ($r_{len} \propto N_{tokens}$), and (2) a *Logic-Keyword Reward*
1008 combining clipped length incentives with bonuses for transition words (e.g., “therefore”, “next”).
1009 Both approaches led to severe reward hacking and training instability. The length-based reward
1010 caused a “verbosity explosion,” where completion lengths surged to over 400 tokens as the model
1011 learned to filibuster rather than reason. Similarly, the keyword incentive encouraged repetitive,
1012 long-winded generation to maximize keyword frequency, significantly increasing compute costs
1013 without improving accuracy. These findings confirm that heuristic-based rewards induce superficial
1014 verbosity. Consequently, we retained our final design—a simple format constraint combined with a
1015 strong outcome-based accuracy reward—which allows the model to self-discover optimal reasoning
1016 patterns without bias.

1017 A.7 ADDITIONAL ANALYSIS - REWARD HACKING
1018

1019 The experiment is conducted on the classic Assembly-R1 design, where there was no Pure Coverage
1020 Reward (PCR).

1021 Reward hacking occurs when an agent exploits flaws in the reward design to gain rewards through
1022 unintended behaviors Shen et al. (2025). Zhou et al. (2025) show that rewarding reasoning length can
1023 lead models to generate longer outputs without improving reasoning quality.

1025 Although we don’t explicitly reward reasoning length, we still observe signs of reward hacking during
1026 training. We define the length reward hacking as a response that repeats with meaningless reasoning

Figure 5: Visualization of model performance (blue line) and the number of reward hacking instances (red line) across training steps.

until reaching the output limit (1024) without a closing `</think>` tag. These incomplete responses suggest the model tries to exploit perceived reward signals without understanding the task.

As shown in Fig. 5, accuracy initially rises from 39.1% to 66.0% at 300 steps, with 13 reward hacking instances out of 1500 testing samples. This initial improvement in accuracy likely results from introducing the reasoning pattern, which the base model lacks. However, from 300 to 600 steps, hacking behavior increases while accuracy stagnates. In other words, the agent is optimizing for quantity over quality, generating longer but ineffective reasoning sequences. After 600 steps, rewards hacking diminishes and accuracy improves, reaching 71.7%. This is expected since our reward design does not explicitly favor long reasoning but rather meaningful thinking and accuracy. Eventually, the model shifts towards generating useful reasoning to gain more **Accuracy Reward**.

This observation highlights the importance of careful reward design in the RL-based fine-tuning framework for enhancing LLM/VLM reasoning capability.

A.8 ADDITIONAL ANALYSIS - AVERAGE RESPONSE LENGTH

The experiment is conducted on the classic Assembly-R1 design, where there was no Pure Coverage Reward (PCR).

Fig. 6 shows the relationship between the model’s performance and its average reasoning length over training steps. Importantly, we exclude samples flagged as reward hacking behavior when calculating the average reasoning length per response, so the statistics reflect only valid reasoning sequences.

Since our reward function does not explicitly encourage longer reasoning, the average length does not increase monotonically during training. Instead, it fluctuates between 17 and 35 words from step 300 onward. Notably, we can observe that the improvement in accuracy is usually accompanied by longer reasoning, while the periods of stable accuracy often show a decrease in reasoning response length.

In the early training phase, from the start to step 300, accuracy improves from 39.1% to 66.0%, with the average reasoning length reaching 39.1 tokens. Between steps 300 and 600, accuracy remains steady while the average reasoning length drops to 17.2 tokens. Then, from step 600 to step 1200, the accuracy climbs further to 71.1%, accompanied by an increment in average reasoning length to 35.1 tokens. Afterward, while the model keeps the accuracy around 71%, the average length decreases by over 10 tokens per response.

In summary, while the model is not directly rewarded for longer reasoning, it learns to use a more elaborate self-reflective reasoning chain to gain reward by improving answer accuracy. At the same time, it continues to refine its reasoning pattern to avoid unnecessary verbosity.

