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Abstract001

Recent advancements in visual generative mod-002
els have substantially broadened the capabili-003
ties of scene synthesis across modalities such004
as video, 3D, and 4D environments which have005
significantly enhanced the application in vari-006
ous domains. Despite this progress, most ex-007
isting systems treat scenes in isolation, lack-008
ing long-range spatial-temporal coherence and009
interactive control mechanisms. These short-010
comings lead to the lack of interactivity and011
composability, limiting their potential in sce-012
narios such as immersive entertainment and ed-013
ucation. To address this, we introduce Dream-014
Gen, a novel unified framework designed to015
transform a single panoramic image into a016
fully interactive, panoramic 4D world. Dream-017
Gen operates through an integrated three-stage018
pipeline: First, it achieves view-consistent 3D019
reconstruction via Gaussian Splatting, employ-020
ing monocular depth estimation and diffusion-021
based inpainting to enrich and complete the022
scene; next, it simulates continuous camera023
trajectories to ensure geometric and temporal024
consistency; finally, it combines these outputs025
within a real-time, event-driven Supersplat ren-026
derer to facilitate dynamic editing and immer-027
sive exploration. Extensive experiments on the028
comprehensive WorldScore benchmark demon-029
strate DreamGen’s superior performance, out-030
performing existing state-of-the-art methods in031
controllability, visual fidelity, and motion dy-032
namics. Our approach not only establishes new033
standards in interactive and coherent 4D world034
generation but also opens promising avenues035
for applications in immersive entertainment,036
embodied AI, and advanced simulation scenar-037
ios.038

1 Introduction039

Recent advances in visual generative models have040

significantly expanded the frontier of scene synthe-041

sis, enabling high-quality generation across modal-042

ities such as video, 3D, and 4D scenes (Wang et al.,043

2024; Xiao et al., 2025; Fremont et al., 2019; Li 044

et al., 2024b; Yang et al., 2024a). These devel- 045

opments have laid the groundwork for the broader 046

task of world generation—the construction of large- 047

scale, coherent, and interactive environments com- 048

posed of multiple, diverse scenes (Partarakis and 049

Zabulis, 2024; Bruce et al., 2024; Park et al., 2023). 050

World generation holds immense potential for ap- 051

plications in simulation, embodied AI, education, 052

and immersive entertainment. However, current 053

generative systems largely focus on isolated scene 054

synthesis and fall short of producing temporally 055

and spatially consistent multi-scene worlds with in- 056

teractive capabilities. Bridging this gap requires not 057

only new algorithmic frameworks, but also a deeper 058

understanding of the unique challenges that world 059

generation entails (Ha and Schmidhuber, 2018; Wu 060

et al., 2023; Wang et al., 2025; Zhang et al., 2024). 061

A central challenge in world generation lies in 062

synthesizing temporally coherent, spatially control- 063

lable, and visually diverse sequences that reflect a 064

structured progression of scenes. Unlike traditional 065

video or 3D scene generation, world generation re- 066

quires models to reason over inter-scene dependen- 067

cies, adhere to explicit spatial layouts, and preserve 068

dynamic consistency across time (Meixner, 2017; 069

Yu et al., 2024a) Existing approaches often lack 070

fine-grained layout control and fail to support inter- 071

active manipulation or realistic temporal transitions. 072

(Duan et al., 2025; Huang et al., 2024; Chen et al., 073

2024b; Hong et al., 2022). Furthermore, most prior 074

benchmarks focus on single-scene fidelity under 075

fixed modalities—such as text-to-video or single- 076

view 3D reconstruction—and do not capture the 077

sequential, compositional, and multimodal nature 078

of world generation (Duan et al., 2025). 079

To address these limitations, we propose Dream- 080

Gen, a unified framework for generating interac- 081

tive panoramic 4D worlds from a single input im- 082

age. The framework bridges the gap between static 083

scene reconstruction and dynamic world modeling 084
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A cozy living room featuring 
a Shiba Inu relaxing on a 
beige couch, surrounded by 
soft cushions and warm 
lighting. The panoramic scene 
should include subtle time 
progression, capturing the 
dog’s changing expressions 
and lighting shifts 
throughout the day.

Figure 1: Illustrative input–prompt pair and evaluation axes. upper left: the single panoramic photograph fed to
DreamGen. lower left: its accompanying natural-language prompt requesting. This pair serves as a running example
for visualization results, where the generated 4D scene is assessed on the three WorldScore axes—Controllability,
Quality, and Dynamics.

through a tightly coupled three-stage pipeline. First,085

the input image is lifted into a view-consistent 3D086

representation using Gaussian Splatting, guided by087

monocular depth estimation and diffusion-based088

inpainting to complete occluded or unseen regions.089

Building upon this static reconstruction, a contin-090

uous camera trajectory is simulated to generate091

temporally evolving views, where spatial-temporal092

reprojection ensures geometric and appearance con-093

sistency across frames. Finally, the resulting dy-094

namic scene is rendered through an interactive,095

event-driven Supersplat renderer, enabling real-096

time playback and user-guided editing via timeline097

control. This holistic design facilitates coherent098

4D world synthesis while supporting immersive099

and controllable scene exploration, as shown in100

figure 1.101

We evaluate DreamGen on the WorldScore102

benchmark (Duan et al., 2025), which assesses103

4D generation systems across dimensions of con-104

trollability, visual fidelity, and motion dynamics.105

DreamGen consistently outperforms competitive106

baselines, including LucidDreamer (Chung et al.,107

2023), CogVideoX (Yang et al., 2024b), and 4D-108

fy (Bahmani et al., 2024a), establishing new state-109

of-the-art results. These findings highlight Dream-110

Gen’s capability to generate photorealistic, tempo-111

rally coherent worlds while supporting fine-grained112

user interaction for immersive scene exploration.113

In summary, our contributions are three-fold:114

• We propose DreamGen, a unified framework115

that synthesizes interactive panoramic 4D worlds 116

from a single image, effectively bridging static 117

reconstruction and dynamic scene modeling. 118

• We design a novel three-stage pipeline that com- 119

bines monocular depth estimation and diffusion- 120

based inpainting for 3D Gaussian Splatting, 121

spatial-temporal reprojection for consistent se- 122

quence generation, and a real-time Supersplat 123

renderer for user-controllable 4D visualization. 124

• We conduct extensive experiments on the World- 125

Score benchmark, where DreamGen achieves 126

state-of-the-art performance across controlla- 127

bility, visual quality, and motion consistency, 128

outperforming strong baselines such as Lucid- 129

Dreamer, CogVideoX, and 4D-fy. 130

2 Related Work 131

Single-View 3D Reconstruction. Single-view 3D 132

reconstruction, positioned at the forefront of com- 133

puter vision and graphics research, has been exten- 134

sively explored and applied across various studies 135

(Tatarchenko et al., 2019; Xue et al., 2022; Tono 136

et al., 2024; Zheng et al., 2024). However, The 137

task remains inherently ill-posed, as reconstruct- 138

ing a complete 3D structure from a single view- 139

point necessitates reasoning about unseen regions 140

(Liu et al., 2024b). Learning-based methods have 141

become dominant due to their robustness and us- 142

ability (Yang et al., 2023a). For example, Zhang 143

et al. (Zhang et al., 2017) pioneered generalized 144

single-view voxel reconstruction. Represent the 145
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3D space as a grid of voxels, where each voxel146

indicates whether it’s occupied or empty. Alter-147

natively, 3D shapes can be represented as a set of148

points in space (Leberl et al., 2010; Chen et al.,149

2024a; Guo et al., 2020; Liang et al., 2024; Zhu150

et al., 2024). While both representations are sim-151

ple and effective, they may lack detailed surface152

information. Pixel2Mesh(Yang et al., 2023a) gen-153

erates 3D mesh models from single RGB images.154

This method represents 3D shapes as a collection of155

vertices, edges, and faces, providing a more struc-156

tured and surface-aware representation. Moreover,157

implicit representations, such as Signed Distance158

Functions (Lin et al., 2020) and Neural Radiance159

Fields (Yu et al., 2023), facilitate the reconstruction160

of high-fidelity 3D geometries; the former excels in161

capturing intricate surface details, while the latter162

enables accurate novel view synthesis, including163

applications in facial avatar modeling. But implicit164

fields like SDFs or NeRFs give static, heavy mod-165

els. DreamGen remedies these limits by combining166

monocular depth with diffusion inpainting to re-167

cover occluded regions, then converting the result168

into a lightweight 3D-Gaussian scene.169

4D Scene Reconstruction. Moving beyond static170

reconstruction, 4D scene reconstruction focuses171

on capturing both spatial and temporal variations172

in dynamic scene (Li et al., 2024c; Weng et al.,173

2022; Yang et al., 2023a; Wu et al., 2024; Yu et al.,174

2023; Xu et al., 2024). Several recent concur-175

rent studies (Li et al., 2024c; Luiten et al., 2024;176

Xie et al., 2024; Yang et al., 2024c, 2023b) have177

also demonstrated real-time rendering performance178

by integrating temporal coherence or time depen-179

dency into 3DGS. These methods either fail to180

produce significant and rapid action representa-181

tions within the dataset (Li et al., 2024c) or are182

limited to generating only moderate-resolution out-183

puts (Yang et al., 2023b). In contrast, 4K4DGen (Li184

et al., 2024a) demonstrates the ability to generate185

360◦ panoramic omnidirectional dynamic scenes186

at 4K (4096 × 2048) resolution. DynamicScaler187

(Liu et al., 2024a) overcomes the limitations of188

4K4DGen’s range of motion for scalable panoramic189

dynamic scene synthesis with seamless motion ca-190

pabilities.191

Physics-based Interaction. While 4D scene re-192

construction captures spatiotemporal variations, in-193

teractive modeling remains largely constrained to194

3D due to the lack of explicit physical constraints195

in dynamic scenes (Weng et al., 2022; Sanchez-196

Gonzalez et al., 2020; Jiang et al., 2024). Phys-197

Gaussian (Xie et al., 2024), integrate physics-aware 198

constraints into 3D Gaussian Splatting, enabling 199

more structured and plausible scene dynamics. Lu- 200

cidDreamer (Chung et al., 2023) renders faster and 201

in real-time with Gaussian Splatting, allowing users 202

to interactively adjust the scene’s perspective, light- 203

ing, and even local structure. Unlike the Lucid- 204

Dreamer, WonderWorld (Yu et al., 2024a) focuses 205

on making 3D scene generation more interactive, 206

accelerating scenario generation through FLAGS 207

and reducing the time cost of extended scenarios. 208

Existing methods either focus on 4D reconstruc- 209

tion without interactivity or constrain interaction 210

to static 3D scenes. Our work integrates spatiotem- 211

poral modeling with physics-aware constraints, en- 212

abling real-time, interactive 4D scene manipulation 213

while maintaining temporal coherence. 214

3 Preliminary 215

In this section, we describe the underlying prin- 216

ciples of constructing a multi-view consistent 3D 217

scene from a single panoramic image, following 218

the LucidDreamer (Chung et al., 2023) pipeline. It 219

reconstructs a navigable 3D scene from a single 220

panoramic image by iteratively alternating Dream- 221

ing and Alignment. A monocular estimator first 222

predicts a depth map D0 for the input panorama 223

I0, and the image–depth pair is lifted into an initial 224

point cloud 225

P0 = ϕ2→3

(
[I0, D0],K,Ω

)
, (1) 226

where K denotes camera intrinsics and Ω the pixel 227

domain. 228

At iteration t, the current cloud Pt is rendered 229

from a novel pose Tt+1 to yield a colour–depth hint 230

Ît+1 = ϕ3→2

(
Pt,K, Tt+1

)
. (2) 231

A diffusion network hallucinates the missing re- 232

gions, 233

It+1 = S(Ît+1), (3) 234

and a depth estimator provides 235

D̂t+1 = D(It+1). (4) 236

A global scale dt+1, obtained via an ℓ1 fit on over- 237

lapping rays, aligns the depth as 238

Dt+1 = dt+1 D̂t+1. (5) 239

The inpainted view is lifted into 3D 240

P̂t+1 = ϕ2→3

(
[It+1, Dt+1],K, Tt+1

)
, (6) 241
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Figure 2: DreamGen pipeline overview. (1) Scene construction: a single panoramic image is lifted into a view-
consistent 3D Gaussian scene via LucidDreamer, leveraging monocular depth estimation and diffusion-based
inpainting for completeness. (2) Temporal sequence generation: an image-to-video model synthesizes a dynamic
panorama, which is then decomposed into RGB–depth frames to form a temporally coherent sequence. (3)
Interactive 4D rendering: the frame sequence is streamed to a real-time renderer, allowing users to explore and edit
the evolving scene along the time axis.

then snapped to nearby rays of Pt to form242

W (P̂t+1). The scene is updated by243

Pt+1 = Pt ∪W (P̂t+1). (7)244

Repeating this Dreaming–Alignment cycle progres-245

sively densifies and stabilises the geometry, after246

which anisotropic Gaussians are optimised for pho-247

torealistic rendering.248

4 Method249

250 Taking a single panoramic image as input, the goal251

of DreamGen is to generate a panoramic 4D envi-252

ronment capable of interacting with humans. The253

pipeline of DreamGen is broadly divided into three254

stages: scene construction, temporal sequence gen-255

eration, and interactive 4D rendering. In the first256

stage, a view-consistent 3D Gaussian splatting257

scene is constructed by leveraging monocular depth258

estimation and diffusion-based inpainting to ex- 259

pand the initial point cloud and enhance scene 260

completeness. In the second stage, a temporal se- 261

quence is synthesized by projecting the 3D scene 262

into a panoramic representation, from which indi- 263

vidual frames are dynamically reconstructed into 264

geometry-aware 3D structures to maintain spatial- 265

temporal consistency. Finally, in the third stage, 266

the reconstructed 4D scene undergoes Gaussian 267

splat optimization and is integrated into an event- 268

driven, immersive web-based rendering framework, 269

enabling real-time exploration and manipulation, 270

as shown in 2. 271

4.1 Scene Construction 272

Starting from P0 (defined in Preliminary), we it- 273

erate Dreaming and Alignment as above to obtain 274

a dense, view-consistent point cloud. After con- 275

vergence we optimise 3-D Gaussians to obtain the 276
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renderable scene used by subsequent stages.277

4.2 Temporal Sequence Generation278

Temporal sequence generation is systematically279

partitioned into two primary stages: View Render-280

ing and Frame Reprojection and Playback Control.281

In the View Rendering stage, the 3D scene is pro-282

jected onto the image plane along a continuously283

varying camera trajectory, thereby synthesizing a284

sequence of images that capture the scene from285

diverse perspectives. In the subsequent Frame Re-286

projection and Playback Control stage, each ren-287

dered frame is re-lifted into 3D space to recover its288

underlying geometric structure, while the tempo-289

ral interval between successive frames serves as a290

critical parameter that governs the playback speed291

and ensures both temporal resolution and visual292

continuity in the resulting video.293

View Rendering. Once the densified 3D scene294

is obtained as the point cloud PN , we generate a295

temporal sequence by rendering the scene from296

a continuously varying set of camera poses. Let297

{P (t)}t∈T denote a smoothly parameterized cam-298

era trajectory over the temporal domain T . For299

each time instance t ∈ T , the projection of a 3D300

point p ∈ PN onto the image plane is defined by a301

perspective projection function:302

q := K P (t) [p⊤, 1]⊤,303

π(p,K, P (t)) =
(
q1/q3, q2/q3

)
.304

where K is the fixed camera intrinsic matrix and305

P (t) encapsulates the camera extrinsics at time t.306

The rendered image I(t) is then synthesized by307

aggregating the contributions of all points in PN .308

Formally, for each pixel coordinate (u, v) in the309

image, we define:310

I(t)(u, v) =
∑
p∈PN

w(p, u, v;P (t))C(p),311

where C(p) represents the color of point p, and312

w(p, u, v;P (t)) is a weighting function—often de-313

rived from a Gaussian kernel or splatting func-314

tion—that quantifies the contribution of p to315

the pixel (u, v) based on the distance between316

π(p,K, P (t)) and (u, v).317

To form a panoramic video, the continuous tra-318

jectory P (t) is discretely sampled at time instances319

ti = t0 + i∆t, i = 0, 1, 2, . . . ,320

where ∆t determines the temporal resolution (i.e., 321

frame rate) of the video. The resulting sequence of 322

frames {I(ti)}∞i=0 captures the scene as viewed 323

from gradually changing perspectives, ensuring 324

both spatial fidelity and temporal coherence across 325

the panoramic video, as shown in 3. 326

3D Point Cloud
Camera �(��) 

Camera �(��) 

�(��)

�(��)

Figure 3: A smooth camera trajectory projects the re-
constructed 3D point cloud PN onto the image plane,
rendering successive frames I(t0) and I(t1) from tem-
porally varying viewpoints.

Frame Reprojection and Playback Control. Sub- 327

sequent to view rendering, each generated frame 328

I(t) is reprojected back into 3D space to recover 329

the underlying scene structure. Specifically, for ev- 330

ery frame, a corresponding depth map D(t) is esti- 331

mated using a monocular depth estimation method. 332

The lifting function ϕ2→3(·) is then applied over 333

the entire pixel domain Ω to reconstruct the set of 334

3D points: 335

P ′(t) = ϕ2→3

(
[I(t), D(t)], K, Ω

)
. 336

This reprojection effectively retrieves the 3D geom- 337

etry corresponding to each rendered view, ensuring 338

that the synthesized imagery is consistent with the 339

original spatial structure. 340

Furthermore, the temporal interval ∆t between 341

consecutive frames plays a crucial role in control- 342

ling the playback speed of the panoramic video. A 343

smaller ∆t results in a higher frame rate, leading 344

to brisk transitions, whereas a larger ∆t produces 345

a slower, more gradual animation. By carefully 346

selecting ∆t, we can balance the need for smooth 347

visual transitions with the fidelity of 3D reconstruc- 348

tion across the temporal sequence. 349

This two-stage process—comprising view ren- 350

dering followed by frame reprojection—ensures 351

that the dynamic panorama maintains both spatial 352

accuracy and temporal coherence, thereby facilitat- 353

ing reliable interactive exploration of the synthe- 354

sized 3D environment. 355
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Table 1: Quantitative Evaluation of Generation Models

Models Avg Controllability Quality Dynamics

Camera
Ctrl

Object
Ctrl

Content
Align

3D
Consist

Photo
Consist

Style
Consist

Subjective
Qual

Motion
Acc

Motion
Mag

Motion
Smooth

3D Generation
Allegro 51.97 24.84 57.47 51.48 70.50 69.89 65.60 47.41 54.39 40.28 37.81

Vchitect-2.0 38.47 26.55 49.54 65.75 41.53 42.30 25.69 44.58 33.59 33.81 21.31
SceneScape 35.51 84.99 47.44 28.64 76.54 62.88 21.85 32.75 - - -
Text2Room 43.47 94.01 38.93 50.79 88.71 88.36 37.23 36.69 - - -

LucidDreamer 49.28 88.93 41.18 75.00 90.37 90.20 48.10 58.99 - - -

WonderJourney 44.63 84.60 37.10 35.54 80.60 79.03 62.82 66.56 - - -

InvisibleStitch 42.78 93.20 36.51 29.53 88.51 89.19 32.37 58.50 - - -

WonderWorld 50.88 92.98 51.76 71.25 86.87 85.56 70.57 49.81 - - -

4D Generation
4D-fy 32.10 69.92 55.09 0.85 35.47 1.59 32.04 0.89 22.22 22.88 80.06

DreamGen (Ours) (SVD) 63.00 72.57 42.70 58.90 70.64 94.94 55.89 46.97 60.85 61.25 65.29

DreamGen (Ours) (Hunyuan Video) 66.49 80.21 68.15 65.33 75.18 90.42 80.25 55.16 50.07 45.11 55.03

DreamGen (Ours) (Wan 2.1) 68.14 93.12 55.04 76.15 91.01 94.95 70.13 65.23 45.17 40.26 50.38

4.3 interactive 4D rendering356

The interactive 4D rendering module is built upon357

a robust, event-driven framework that integrates358

real-time editing with smooth temporal anima-359

tion. In our system, this is achieved by coupling360

a Supersplat-based renderer with a timeline mod-361

ule that governs frame progression and playback362

control.363

Real-Time Editing. The real-time editing module364

constitutes the interactive core of our 4D render-365

ing system, enabling dynamic manipulation of 3D366

scenes through an event-driven architecture that367

facilitates seamless communication among system368

components. At the foundation of this module is a369

centralized event bus, which serves as the primary370

mechanism for real-time interaction management.371

Within this framework (Contributors, 2025), multi-372

ple event-handling modules are systematically inte-373

grated, including register Camera PosesEvents, reg-374

iste r Editor Events, register Selection Events, and375

register Transform Handler Events. These mod-376

ules collectively enable real-time adjustments to377

the virtual camera, selection of scene objects us-378

ing various tools (e.g., rectangle, brush, polygon,379

lasso, and sphere), and transformations such as380

translation, rotation, and scaling. By leveraging381

this event-driven infrastructure, modifications are382

instantaneously propagated through the rendering383

pipeline, ensuring a highly responsive and interac-384

tive editing experience.385

Timeline control. The timeline control component386

orchestrates the temporal evolution of the 4D scene387

by ensuring smooth, cyclic animation and precise 388

playback control. A dedicated timeline module 389

continuously updates the current time and frame 390

index based on the elapsed time and a predefined 391

frame rate. Specifically, let ∆t denote the elapsed 392

time between update ticks and fr the frame rate. 393

At each update, the current time is updated as: 394

t← (t+∆t× fr) mod F, 395

where F is the total number of frames. The discrete 396

frame index is then determined by: 397

i = mod
(
⌊t⌋, F

)
, 398

which ensures that the frame index wraps around 399

cyclically for continuous looping. Furthermore, the 400

timeline module provides interfaces to adjust the 401

total frame count, frame rate, and keyframe set- 402

tings, thereby offering fine-grained temporal con- 403

trol that synchronizes with user-driven real-time 404

editing. These features maintain high temporal 405

resolution and visual continuity throughout the in- 406

teractive 4D rendering environment. 407

5 Experiment 408

In Section 4, we have elaborated on the design 409

principles and detailed methodology of our pro- 410

posed DreamGen framework, encompassing scene 411

construction, temporal sequence generation, and 412

interactive 4D rendering. To validate the effective- 413

ness of our approach, we conduct comprehensive 414

experiments and analyses in this section. 415
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A vibrant, colorful 
floating community 
city, clouds above a 
beautiful, enchanted 
landscape filled with 
whimsical flora, 
enchanted forest 
landscape, ….
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t=3t=4t=5

dark messy room, 
noir style, indoors, 
bottle, shoe soles, 
jacket, cup, window, 
blurry, black 
footwear, depth of 
fie ld, box, couch, 
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Figure 4: Visualization of DreamGen model outputs. Left panels show the input images and prompts. Center
panels depict the generated 4D scenes, capturing detailed environments based on the inputs. Green markers indicate
specific details that are dynamically animated, as shown in the sequences on the right panels.

5.1 Implementation Detail416

Our method is implemented using the PyTorch417

framework, and all experiments are conducted418

on a server equipped with an NVIDIA TESLA419

A100 40G SXM4 GPU. Specifically, we utilize420

MiDaS (Ranftl et al., 2020) for monocular depth421

estimation, Stable Diffusion (Rombach et al., 2022)422

for diffusion-based image inpainting and scene ex-423

pansion, and adopt the open-source implementation424

of LucidDreamer (Chung et al., 2023) for 3D Gaus-425

sian splatting. The interactive rendering module426

is built upon the SuperSplat (Contributors, 2025)427

framework, with the frontend interface developed428

using React and Three.js.429

5.2 Quantitative Results430

The results in Table 1 presents a comprehensive431

quantitative evaluation of our proposed Dream-432

Gen models compared to existing state-of-the-art433

(SOTA) 3D and 4D generation methods. Our434

DreamGen models consistently outperform pre-435

vious methods across multiple evaluation met-436

rics, demonstrating superior overall performance.437

Specifically, our best-performing variant, Dream-438

Gen (Wan 2.1), achieves the highest average score439

of 68.14, surpassing all other models by a signif-440

icant margin. It notably excels in controllability441

metrics, achieving top scores in Camera Control442

(93.12), Content Alignment (76.15), and 3D Con-443

sistency (91.01). Additionally, DreamGen (Wan 444

2.1) demonstrates outstanding quality, obtaining 445

the highest Photo Consistency score (94.95) and 446

the second-highest Style Consistency (70.13) and 447

Subjective Quality (65.23) scores. Our DreamGen 448

(Hunyuan Video) variant also shows strong per- 449

formance, particularly excelling in Object Control 450

(68.15) and Style Consistency (80.25), indicating 451

its capability to precisely control object placement 452

and maintain stylistic coherence. In terms of dy- 453

namics, DreamGen (SVD) achieves the best per- 454

formance, leading in Motion Accuracy (60.85) and 455

Motion Magnitude (61.25), and ranking second in 456

Motion Smoothness (65.29). This highlights its 457

strength in generating accurate and smooth mo- 458

tion dynamics. Compared to existing 3D genera- 459

tion methods such as Allegro, LucidDreamer, and 460

WonderWorld, our DreamGen models significantly 461

improve upon both controllability and quality met- 462

rics. Furthermore, when compared to the existing 463

4D generation method (4D-fy), our models demon- 464

strate substantial improvements across all metrics, 465

particularly in Content Alignment, 3D Consistency, 466

and Photo Consistency. 467

5.3 Visualization Results 468

Figure 4 illustrates the advanced capabilities of 469

our DreamGen models in generating and animating 470

complex scenes from textual descriptions. This fig- 471
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ure showcases two distinct examples that highlight472

the versatility and effectiveness of our approach473

in handling diverse narrative contexts and visual474

styles.475

In the first example, the input prompt describes476

a vibrant, colorful floating community. The cen-477

tral frame vividly depicts this imaginative setting,478

showing detailed structures suspended above an479

enchanted landscape. The sequence of animation480

frames on the right (t = 0 to t = 5) demonstrates481

the model’s ability to generate consistent charac-482

ter motion while preserving the visual style and483

intricate details—an essential feature for animated484

storytelling and dynamic content creation.485

In contrast, the second example is based on486

a noir-themed indoor scene described as a dark,487

messy room. The central image captures the somber488

atmosphere using dramatic lighting and shadowing489

techniques, accurately reflecting key elements such490

as the bottle, shoe soles, and jacket. The accompa-491

nying frame sequence (t = 0 to t = 2) highlights492

the model’s capacity to simulate subtle scene dy-493

namics, underscoring its strength in realistic 4D494

scene generation and nuanced visual storytelling.495

Table 2: Ablation study highlighting the contributions
of key components in DreamGen. Removing ZoeDepth
significantly degrades all metrics, especially 3D consis-
tency and subjective quality, demonstrating its critical
role in depth-aware reconstruction. Omitting Spherical
Projection leads to a notable drop in style and 3D con-
sistency. Excluding Video Rendering severely harms
3D consistency despite maintaining photorealism.

Method 3D
Consist.

Photo
Consist.

Style
Consist.

Subjective
Qual.

DreamGen (Ours) (Wan 2.1) 76.15 91.01 94.95 70.13
w/o ZoeDepth 47.21 81.56 61.24 22.56
w/o Spherical Projection 66.21 90.66 85.26 70.01
w/o Video Rendering 27.53 90.81 92.10 70.34

5.4 Ablation Studies496

The ablation results in Table 2, underscore the crit-497

ical roles of specific components in our DreamGen.498

Removing ZoeDepth led to a significant drop in499

3D consistency (from 76.15 to 47.21) and subjec-500

tive quality (from 70.13 to 22.56), highlighting its501

importance in depth perception and overall aes-502

thetic appeal. The absence of Spherical Projection503

slightly decreased photo consistency (from 91.01 to504

90.66), suggesting its contribution to photorealistic505

rendering, albeit less critical than ZoeDepth. Sim-506

ilarly, omitting Video Rendering slightly affected507

subjective quality (from 70.13 to 70.34), indicating508

w/o ZoeDepth

DreamGen

w/ow/ w/o w/

Figure 5: Visual comparison of 4D scene reconstruction
quality with and without the integration of ZoeDepth
in DreamGen. The panoramic volcanic scene recon-
structed by DreamGen is shown at the top, with close-
up regions highlighting structural fidelity and texture
consistency. Red boxes mark significant artifacts or dis-
tortions when ZoeDepth is removed. The left and right
columns display detailed patches for models w/ and w/o
ZoeDepth, demonstrating improvements in geometry
and texture realism when depth estimation is applied.

its role in enhancing dynamic visual content. These 509

results demonstrate that each component is vital 510

for maintaining the high quality and consistency 511

of the generated images, confirming their collec- 512

tive contribution to the model’s state-of-the-art per- 513

formance. The removal of ZoeDepth introduces 514

substantial degradation in both geometric integrity 515

and texture consistency. As visualized in Figure 5, 516

its absence leads to collapsed geometry, distorted 517

surfaces, and fragmented regions, particularly in 518

areas requiring fine depth reasoning such as lava 519

contours and mountainous boundaries. Without 520

ZoeDepth, the model fails to infer accurate depth 521

from monocular cues, resulting in flattened struc- 522

tures and ambiguity. 523

6 Conclusion 524

We present DreamGen, a unified framework for 525

generating interactive panoramic 4D worlds from 526

a single image. Through a three-stage pipeline, 527

including scene construction, temporal sequence 528

generation, and interactive rendering, DreamGen 529

achieves state-of-the-art performance across con- 530

trollability, quality, and dynamics on the World- 531

Score benchmark. Extensive experiments and visu- 532

alizations demonstrate its ability to generate coher- 533

ent, editable, and immersive 4D scenes, opening 534

new directions for world modeling and embodied 535

AI applications. 536
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Limitation537

Computational Overhead. Although DreamGen538

delivers state-of-the-art controllability and scene539

quality, its pipeline is still highly time-consuming.540

The iterative monocular–to–multi-view depth re-541

finement and diffusion-based inpainting require542

multiple forward passes for every novel viewpoint,543

and the subsequent Gaussian-splat optimisation544

further extends the overall runtime. Such heavy545

computation limits the method’s applicability in546

latency-sensitive scenarios such as AR/VR stream-547

ing or on-device content creation.548

Real-Time Responsiveness. DreamGen’s Super-549

splat renderer sustains interactive frame rates for550

moderately complex worlds, but performance de-551

grades sharply as the point budget or shader com-552

plexity increases. In densely occluded outdoor553

scenes we observe noticeable input–display lag that554

impedes fine-grained camera control and object555

manipulation. While aggressive LOD pruning and556

foveated rendering can mitigate slowdowns, they557

risk introducing popping artefacts and degrading558

peripheral fidelity.559

Perceptual Artefacts. Despite the LucidDreamer-560

based depth initialisation, failure modes persist561

in regions with transparent, specular, or texture-562

less surfaces. These areas yield noisy depth es-563

timates that propagate to the multi-view optimi-564

sation stage, manifesting as floating fragments or565

stretched splats in the final 4D reconstruction. Post-566

hoc bilateral filtering reduces noise but cannot fully567

recover fine geometry or eliminate dis-occlusion568

ghosts.569

Directions for Future Work. Efficient single-570

pass depth hallucination, tensor-core-aware splat571

optimisation, and adaptive streaming strategies572

could substantially lower the computational burden573

and boost runtime FPS. Incorporating uncertainty-574

aware depth networks and geometry-consistent dif-575

fusion priors offers a promising path to mitigate576

artefacts in challenging photometric conditions. Fi-577

nally, expanding evaluation to open-world, multi-578

agent settings would provide a more comprehen-579

sive picture of DreamGen’s strengths and limita-580

tions.581
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A Appendix863

A.1 Baseline864

Text2Room Text2Room (Höllein et al., 2023),865

noted around March 2023, is an innovative method866

designed to generate room-scale, textured 3D867

meshes directly from a given text prompt, func-868

tioning effectively as an Image-to-Video (or rather,869

image-sequence-to-3D) system for 3D scene con-870

struction at resolutions like 512x512. It achieves871

this by utilizing pre-trained 2D text-to-image mod-872

els to synthesize a sequence of images from var-873

ious viewpoints, which are then cohesively lifted874

into a consistent 3D scene representation through a875

combination of monocular depth estimation and a876

text-conditioned inpainting model.877

LucidDreamer LucidDreamer (Chung et al.,878

2023) is a sophisticated framework, with research879

published around November 2023, for the domain-880

free generation of high-fidelity 3D Gaussian Splat-881

ting scenes from either a single text prompt or an882

image, often operating with 512x512 image in-883

puts/outputs for its 2D components. It uniquely884

employs a recursive "Dreaming and Alignment"885

methodology, leveraging large-scale diffusion mod-886

els for creating multi-view consistent images that887

are subsequently elevated to 3D. A key innovation888

is its use of Interval Score Matching (ISM) to pro-889

duce detailed and realistic 3D models, effectively890

mitigating the over-smoothing issues prevalent in891

earlier Score Distillation Sampling (SDS) based892

methods.893

WonderJourney WonderJourney (Yu et al.,894

2024b) is an Image-to-3D Scenes model, high-895

lighted in research around December 2023, and896

was notably evaluated as part of the comprehen-897

sive WorldScore benchmark for world generation.898

The model is particularly recognized for its strong899

emphasis on creating extensive and comprehensive900

virtual worlds from image inputs, positioning it as901

a significant contributor to advancements in large-902

scale, dynamic scene generation.903

InvisibleStitch InvisibleStitch (Engstler et al.,904

2024) is an Image-to-3D Scenes model, with devel-905

opments noted around April 2024, specifically men-906

tioned for its application in the realm of 3D content907

generation, working with image inputs at resolu-908

tions like 512x512. While detailed public docu-909

mentation on a uniquely named "InvisibleStitch"910

model can be limited, its context within 3D I2V911

evaluations suggests a focus on seamlessly creating912

or integrating elements within 3D scenes or videos913

derived from initial static images. 914

WonderWorld WonderWorld (Yu et al., 2024a), 915

with research contributions noted around June 916

2024, is an Image-to-Video 3D scene generation 917

model that was also a subject of evaluation in the 918

WorldScore benchmark, handling inputs/outputs 919

around 512x512. It is particularly distinguished by 920

its interactive capabilities and its specialized focus 921

on generating immersive 3D environments origi- 922

nating from single input images, thereby playing 923

a key role in assessing diverse aspects of world 924

generation technologies. 925

4D-fy 4D-fy (Bahmani et al., 2024b) is a cutting- 926

edge Text-to-4D generation technique that synthe- 927

sizes dynamic 3D scenes (4D content) from tex- 928

tual prompts. It introduces an innovative "Hy- 929

brid Score Distillation Sampling" (Hybrid SDS) 930

method, which strategically blends supervisory 931

signals from multiple pre-trained diffusion mod- 932

els—including Text-to-Image (T2I), 3D-aware T2I, 933

and Text-to-Video (T2V) models—through an al- 934

ternating optimization process. This approach is 935

designed to achieve state-of-the-art 4D scenes char- 936

acterized by compelling visual appearance, robust 937

3D structure, and naturalistic motion. 938

A.2 Experimental Details 939

All experiments were executed on a single NVIDIA 940

TESLA A100 40GB GPU (Ubuntu 22.04, PyTorch 941

2.0.1 compiled for CUDA 11.6). We fixed the ran- 942

dom seed to 42 for torch, numpy, and Python’s 943

random module, and enabled deterministic cuDNN 944

kernels to ensure bit-wise reproducibility. Through- 945

out the pipeline we used a DDIM sampler with 946

50 diffusion steps. Scene construction employs 947

a “look-around” camera sweep, while temporal 948

synthesis follows a “back_and_forth” dolly; both 949

trajectories are sampled at 30 fps. 950

A.3 WorldScore Evaluation Metrics 951

We adopt the WorldScore benchmark (Duan et al., 952

2025) to evaluate world generation performance 953

across 3D, 4D, image-to-video (I2V), and text-to- 954

video (T2V) paradigms. The benchmark assesses 955

models along three main dimensions: controllabil- 956

ity, quality, and dynamics, via ten specific metrics. 957

A.3.1 Controllability Metrics 958

Camera Controllability: Measures the deviation 959

of the generated camera trajectory from the refer- 960

ence: 961

ecamera =
√
eθ · et (8) 962
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where eθ and et are the scale-invariant rotational963

and translational errors.964

Object Controllability: Computes the success rate965

of open-set object detection using entities extracted966

from the next-scene prompt N . The model is re-967

warded if the mentioned objects appear in the gen-968

erated scene.969

Content Alignment: Evaluated by computing the970

CLIP score (Hessel et al., 2021) between the full971

prompt N and the generated video frames.972

A.3.2 Quality Metrics973

3D Consistency: Uses DROID-SLAM to calculate974

reprojection error between co-visible pixels across975

frames:976

ereproj =
1

|V |
∑

(i,j)∈V

∥∥p∗ij −Π(Pij)
∥∥2
2

(9)977

where p∗ij is the observed 2D projection, and Π(·)978

is the camera projection function.979

Photometric Consistency: Detects texture flick-980

ering using optical flow-based Average End-Point981

Error (AEPE):982

ephoto =
1

N

N∑
i=1

∥∥pA,i − p′A,i

∥∥2
2

(10)983

where p′A,i is the position tracked via backward984

optical flow from frame B.985

Style Consistency: Computes visual style differ-986

ence between the first and last frame using Gram987

matrix difference:988

estyle = ∥G1 −GT ∥F (11)989

Subjective Quality: An ensemble metric combin-990

ing CLIP-IQA+ and CLIP-Aesthetic scores (Wang991

et al., 2023), selected to best align with human992

preference via a 200-participant study.993

A.3.3 Dynamics Metrics994

Motion Accuracy: Evaluates whether motion oc-995

curs in the intended dynamic region:996

smotion-acc = max(F ⊙M)−max(F ⊙M) (12)997

where F is the optical flow magnitude and M is998

the mask for the target dynamic region.999

Motion Magnitude: Captures the strength of mo-1000

tion by computing median flow magnitude across1001

frames:1002

smotion-mag = median(F ) (13)1003

Motion Smoothness: Assessed by interpolating 1004

dropped frames and comparing to ground truth 1005

using a combination of MSE, SSIM, and LPIPS 1006

scores. 1007

A.3.4 Score Normalization 1008

Each raw metric score s is normalized to the range 1009

[0, 1] using: 1010

snorm =

〈
α · s− bmin

bmax − bmin
+ (1− α)

〉
(14) 1011

where α = 1 for metrics where higher is better, and 1012

α = −1 otherwise. ⟨·⟩ denotes clipping to [0, 1]. 1013

A.4 More Results 1014

In this section, we present additional results show- 1015

casing the capabilities of our proposed method in 1016

generating 4D scenes from a single-view image 1017

prompt. As illustrated in Figure 6, the top sequence 1018

captures the temporal dynamics at a fixed spatial 1019

viewpoint, while the bottom sequence displays spa- 1020

tial variations across different viewpoints. These 1021

frames are jointly fused to reconstruct a temporally 1022

evolving 3D scene, forming a unified 4D represen- 1023

tation. The central visualization demonstrates the 1024

resulting spatio-temporal scene, enabling immer- 1025

sive exploration along both time and space axes. 1026

As illustrate in Figure 7, We two distinct applica- 1027

tions of our 4D scene generation method, demon- 1028

strating its versatility and effectiveness across dif- 1029

ferent environments and themes. In the top exam- 1030

ple, our method has generated a 4D interactive hol- 1031

iday living room scene from a single input image. 1032

The panoramic image was transformed to include 1033

a cozy scene that features a decorated Christmas 1034

tree, chairs, and ambient lighting. The user in- 1035

teraction pathway allows for navigation through 1036

the scene over time, showcasing how the environ- 1037

ment evolves and reacts to simulated changes in 1038

viewpoint and lighting, enhancing the immersive 1039

experience. The bottom example showcases a dra- 1040

matically different scenario—a highly detailed 4D 1041

rendered scene of a volcanic eruption. Starting 1042

from an input image of a mountain, our method 1043

dynamically models lava flowing down the slopes, 1044

with realistic smoke, ash, and backlighting effects 1045

that reflect the sunset illumination. This example 1046

highlights the method’s capability to handle com- 1047

plex natural phenomena and render them with cine- 1048

matic quality. The temporal dimension is particu- 1049

larly emphasized here, with the sequence of frames 1050

showing the progression of the eruption, offering 1051

13
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Figure 6: Generated 4D scene from a single-view image prompt. The top sequence illustrates temporal dynamics
captured at a fixed spatial viewpoint, while the bottom sequence shows spatial variations across different viewpoints.
These frames are jointly fused to reconstruct a temporally evolving 3D scene, forming a unified 4D representation.
The center visualization demonstrates the resulting spatio-temporal scene, enabling immersive exploration along
both time and space axes.

a compelling visualization of dynamic geological1052

events.1053

B Reproducibility Statement1054

We used AI assistants (e.g., ChatGPT) for grammar1055

correction and language refinement only. No con-1056

tent generation or experimental decision-making1057

was done by AI tools.1058
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Time

User Interaction

Input Image

Input Prompt

A cozy living room featuring 
a Shiba Inu relaxing on a 
beige couch, surrounded by 
soft cushions and warm 
lighting. The panoramic scene 
should include subtle time 
progression, capturing the 
dog’s changing expressions 
and lighting shifts 
throughout the day.

Generate a 4D interactive 
holiday living room scene 
from the given panoramic 
image and prompt. The 
scene should include a cozy 
fireplace, decorated 
Christmas trees, and 
warm ambient lighting. 
Enable user interaction to 
navigate through …

Time

User Interaction

Input Image

Input Prompt

A cozy living room featuring 
a Shiba Inu relaxing on a 
beige couch, surrounded by 
soft cushions and warm 
lighting. The panoramic scene 
should include subtle time 
progression, capturing the 
dog’s changing expressions 
and lighting shifts 
throughout the day.

A highly detailed 4D-
rendered erupting volcano, 
molten lava flowing down the 
mountain, thick black 
smoke rising, realistic 
lighting with sunset 
reflections on the 
lava,dramatic and cinematic 
composition, ultra-HD 
textures,and …

Figure 7: Demonstrating the versatility of our 4D scene generation method with two contrasting scenarios. Top: An
interactive 4D holiday living room scene generated from a panoramic image, featuring a cozy fireplace, decorated
Christmas trees, and dynamic ambient lighting, with user interaction paths allowing navigation through time.
Bottom: A dynamic 4D rendering of a volcanic eruption, originating from a single image of a mountain, showcasing
molten lava flows, realistic smoke and ash effects, and dramatic backlighting simulating sunset, with a timeline
illustrating the progression of the eruption.
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