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Abstract

Recent advancements in visual generative mod-
els have substantially broadened the capabili-
ties of scene synthesis across modalities such
as video, 3D, and 4D environments which have
significantly enhanced the application in vari-
ous domains. Despite this progress, most ex-
isting systems treat scenes in isolation, lack-
ing long-range spatial-temporal coherence and
interactive control mechanisms. These short-
comings lead to the lack of interactivity and
composability, limiting their potential in sce-
narios such as immersive entertainment and ed-
ucation. To address this, we introduce Dream-
Gen, a novel unified framework designed to
transform a single panoramic image into a
fully interactive, panoramic 4D world. Dream-
Gen operates through an integrated three-stage
pipeline: First, it achieves view-consistent 3D
reconstruction via Gaussian Splatting, employ-
ing monocular depth estimation and diffusion-
based inpainting to enrich and complete the
scene; next, it simulates continuous camera
trajectories to ensure geometric and temporal
consistency; finally, it combines these outputs
within a real-time, event-driven Supersplat ren-
derer to facilitate dynamic editing and immer-
sive exploration. Extensive experiments on the
comprehensive WorldScore benchmark demon-
strate DreamGen’s superior performance, out-
performing existing state-of-the-art methods in
controllability, visual fidelity, and motion dy-
namics. Our approach not only establishes new
standards in interactive and coherent 4D world
generation but also opens promising avenues
for applications in immersive entertainment,
embodied Al, and advanced simulation scenar-
ios.

1 Introduction

Recent advances in visual generative models have
significantly expanded the frontier of scene synthe-
sis, enabling high-quality generation across modal-
ities such as video, 3D, and 4D scenes (Wang et al.,

2024; Xiao et al., 2025; Fremont et al., 2019; Li
et al., 2024b; Yang et al., 2024a). These devel-
opments have laid the groundwork for the broader
task of world generation—the construction of large-
scale, coherent, and interactive environments com-
posed of multiple, diverse scenes (Partarakis and
Zabulis, 2024; Bruce et al., 2024; Park et al., 2023).
World generation holds immense potential for ap-
plications in simulation, embodied Al, education,
and immersive entertainment. However, current
generative systems largely focus on isolated scene
synthesis and fall short of producing temporally
and spatially consistent multi-scene worlds with in-
teractive capabilities. Bridging this gap requires not
only new algorithmic frameworks, but also a deeper
understanding of the unique challenges that world
generation entails (Ha and Schmidhuber, 2018; Wu
et al., 2023; Wang et al., 2025; Zhang et al., 2024).

A central challenge in world generation lies in
synthesizing temporally coherent, spatially control-
lable, and visually diverse sequences that reflect a
structured progression of scenes. Unlike traditional
video or 3D scene generation, world generation re-
quires models to reason over inter-scene dependen-
cies, adhere to explicit spatial layouts, and preserve
dynamic consistency across time (Meixner, 2017;
Yu et al., 2024a) Existing approaches often lack
fine-grained layout control and fail to support inter-
active manipulation or realistic temporal transitions.
(Duan et al., 2025; Huang et al., 2024; Chen et al.,
2024b; Hong et al., 2022). Furthermore, most prior
benchmarks focus on single-scene fidelity under
fixed modalities—such as text-to-video or single-
view 3D reconstruction—and do not capture the
sequential, compositional, and multimodal nature
of world generation (Duan et al., 2025).

To address these limitations, we propose Dream-
Gen, a unified framework for generating interac-
tive panoramic 4D worlds from a single input im-
age. The framework bridges the gap between static
scene reconstruction and dynamic world modeling
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Figure 1: Illustrative input—prompt pair and evaluation axes. upper left: the single panoramic photograph fed to
DreamGen. lower left: its accompanying natural-language prompt requesting. This pair serves as a running example
for visualization results, where the generated 4D scene is assessed on the three WorldScore axes—Controllability,

Quality, and Dynamics.

through a tightly coupled three-stage pipeline. First,
the input image is lifted into a view-consistent 3D
representation using Gaussian Splatting, guided by
monocular depth estimation and diffusion-based
inpainting to complete occluded or unseen regions.
Building upon this static reconstruction, a contin-
uous camera trajectory is simulated to generate
temporally evolving views, where spatial-temporal
reprojection ensures geometric and appearance con-
sistency across frames. Finally, the resulting dy-
namic scene is rendered through an interactive,
event-driven Supersplat renderer, enabling real-
time playback and user-guided editing via timeline
control. This holistic design facilitates coherent
4D world synthesis while supporting immersive
and controllable scene exploration, as shown in
figure 1.

We evaluate DreamGen on the WorldScore
benchmark (Duan et al., 2025), which assesses
4D generation systems across dimensions of con-
trollability, visual fidelity, and motion dynamics.
DreamGen consistently outperforms competitive
baselines, including LucidDreamer (Chung et al.,
2023), CogVideoX (Yang et al., 2024b), and 4D-
fy (Bahmani et al., 2024a), establishing new state-
of-the-art results. These findings highlight Dream-
Gen'’s capability to generate photorealistic, tempo-
rally coherent worlds while supporting fine-grained
user interaction for immersive scene exploration.
In summary, our contributions are three-fold:

* We propose DreamGen, a unified framework

that synthesizes interactive panoramic 4D worlds
from a single image, effectively bridging static
reconstruction and dynamic scene modeling.

* We design a novel three-stage pipeline that com-
bines monocular depth estimation and diffusion-
based inpainting for 3D Gaussian Splatting,
spatial-temporal reprojection for consistent se-
quence generation, and a real-time Supersplat
renderer for user-controllable 4D visualization.

* We conduct extensive experiments on the World-
Score benchmark, where DreamGen achieves
state-of-the-art performance across controlla-
bility, visual quality, and motion consistency,
outperforming strong baselines such as Lucid-
Dreamer, CogVideoX, and 4D-fy.

2 Related Work

Single-View 3D Reconstruction. Single-view 3D
reconstruction, positioned at the forefront of com-
puter vision and graphics research, has been exten-
sively explored and applied across various studies
(Tatarchenko et al., 2019; Xue et al., 2022; Tono
et al., 2024; Zheng et al., 2024). However, The
task remains inherently ill-posed, as reconstruct-
ing a complete 3D structure from a single view-
point necessitates reasoning about unseen regions
(Liu et al., 2024b). Learning-based methods have
become dominant due to their robustness and us-
ability (Yang et al., 2023a). For example, Zhang
et al. (Zhang et al., 2017) pioneered generalized
single-view voxel reconstruction. Represent the



3D space as a grid of voxels, where each voxel
indicates whether it’s occupied or empty. Alter-
natively, 3D shapes can be represented as a set of
points in space (Leberl et al., 2010; Chen et al.,
2024a; Guo et al., 2020; Liang et al., 2024; Zhu
et al., 2024). While both representations are sim-
ple and effective, they may lack detailed surface
information. Pixel2Mesh(Yang et al., 2023a) gen-
erates 3D mesh models from single RGB images.
This method represents 3D shapes as a collection of
vertices, edges, and faces, providing a more struc-
tured and surface-aware representation. Moreover,
implicit representations, such as Signed Distance
Functions (Lin et al., 2020) and Neural Radiance
Fields (Yu et al., 2023), facilitate the reconstruction
of high-fidelity 3D geometries; the former excels in
capturing intricate surface details, while the latter
enables accurate novel view synthesis, including
applications in facial avatar modeling. But implicit
fields like SDFs or NeRFs give static, heavy mod-
els. DreamGen remedies these limits by combining
monocular depth with diffusion inpainting to re-
cover occluded regions, then converting the result
into a lightweight 3D-Gaussian scene.

4D Scene Reconstruction. Moving beyond static
reconstruction, 4D scene reconstruction focuses
on capturing both spatial and temporal variations
in dynamic scene (Li et al., 2024c; Weng et al.,
2022; Yang et al., 2023a; Wu et al., 2024; Yu et al.,
2023; Xu et al., 2024). Several recent concur-
rent studies (L1 et al., 2024c; Luiten et al., 2024,
Xie et al., 2024; Yang et al., 2024c, 2023b) have
also demonstrated real-time rendering performance
by integrating temporal coherence or time depen-
dency into 3DGS. These methods either fail to
produce significant and rapid action representa-
tions within the dataset (Li et al., 2024c) or are
limited to generating only moderate-resolution out-
puts (Yang et al., 2023b). In contrast, 4K4DGen (Li
et al., 2024a) demonstrates the ability to generate
360° panoramic omnidirectional dynamic scenes
at 4K (4096 x 2048) resolution. DynamicScaler
(Liu et al., 2024a) overcomes the limitations of
4K4DGen’s range of motion for scalable panoramic
dynamic scene synthesis with seamless motion ca-
pabilities.

Physics-based Interaction. While 4D scene re-
construction captures spatiotemporal variations, in-
teractive modeling remains largely constrained to
3D due to the lack of explicit physical constraints
in dynamic scenes (Weng et al., 2022; Sanchez-
Gonzalez et al., 2020; Jiang et al., 2024). Phys-

Gaussian (Xie et al., 2024), integrate physics-aware
constraints into 3D Gaussian Splatting, enabling
more structured and plausible scene dynamics. Lu-
cidDreamer (Chung et al., 2023) renders faster and
in real-time with Gaussian Splatting, allowing users
to interactively adjust the scene’s perspective, light-
ing, and even local structure. Unlike the Lucid-
Dreamer, WonderWorld (Yu et al., 2024a) focuses
on making 3D scene generation more interactive,
accelerating scenario generation through FLAGS
and reducing the time cost of extended scenarios.
Existing methods either focus on 4D reconstruc-
tion without interactivity or constrain interaction
to static 3D scenes. Our work integrates spatiotem-
poral modeling with physics-aware constraints, en-
abling real-time, interactive 4D scene manipulation
while maintaining temporal coherence.

3 Preliminary

In this section, we describe the underlying prin-
ciples of constructing a multi-view consistent 3D
scene from a single panoramic image, following
the LucidDreamer (Chung et al., 2023) pipeline. It
reconstructs a navigable 3D scene from a single
panoramic image by iteratively alternating Dream-
ing and Alignment. A monocular estimator first
predicts a depth map Dg for the input panorama
I, and the image—depth pair is lifted into an initial
point cloud

Py = ¢2-3([Lo, Do), K, ), (1)

where K denotes camera intrinsics and €2 the pixel
domain.

At iteration t, the current cloud F; is rendered
from a novel pose 7341 to yield a colour—depth hint

Ii1 = ¢39(P, K, Tyi1). 2

A diffusion network hallucinates the missing re-
gions,

It = S(Li41), (3)
and a depth estimator provides

Dyi1 = D(Iit1). “4)

A global scale d;1, obtained via an ¢; fit on over-
lapping rays, aligns the depth as

Diy1 = diy1 Diy1. )
The inpainted view is lifted into 3D

Pii1 = ¢o3([Ie41, Div1], K, Tiv1),  (6)
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Figure 2: DreamGen pipeline overview. (1) Scene construction: a single panoramic image is lifted into a view-
consistent 3D Gaussian scene via LucidDreamer, leveraging monocular depth estimation and diffusion-based
inpainting for completeness. (2) Temporal sequence generation: an image-to-video model synthesizes a dynamic
panorama, which is then decomposed into RGB—depth frames to form a temporally coherent sequence. (3)
Interactive 4D rendering: the frame sequence is streamed to a real-time renderer, allowing users to explore and edit

the evolving scene along the time axis.

then snapped to nearby rays of F; to form
W (P,+1). The scene is updated by

Py = PLUW(Pyyq). (7)

Repeating this Dreaming—Alignment cycle progres-
sively densifies and stabilises the geometry, after
which anisotropic Gaussians are optimised for pho-
torealistic rendering.

4 Method

Taking a single panoramic image as input, the goal
of DreamGen is to generate a panoramic 4D envi-
ronment capable of interacting with humans. The
pipeline of DreamGen is broadly divided into three
stages: scene construction, temporal sequence gen-
eration, and interactive 4D rendering. In the first
stage, a view-consistent 3D Gaussian splatting
scene is constructed by leveraging monocular depth

estimation and diffusion-based inpainting to ex-
pand the initial point cloud and enhance scene
completeness. In the second stage, a temporal se-
quence is synthesized by projecting the 3D scene
into a panoramic representation, from which indi-
vidual frames are dynamically reconstructed into
geometry-aware 3D structures to maintain spatial-
temporal consistency. Finally, in the third stage,
the reconstructed 4D scene undergoes Gaussian
splat optimization and is integrated into an event-
driven, immersive web-based rendering framework,
enabling real-time exploration and manipulation,
as shown in 2.

4.1 Scene Construction

Starting from Py (defined in Preliminary), we it-
erate Dreaming and Alignment as above to obtain
a dense, view-consistent point cloud. After con-
vergence we optimise 3-D Gaussians to obtain the



renderable scene used by subsequent stages.

4.2 Temporal Sequence Generation

Temporal sequence generation is systematically
partitioned into two primary stages: View Render-
ing and Frame Reprojection and Playback Control.
In the View Rendering stage, the 3D scene is pro-
jected onto the image plane along a continuously
varying camera trajectory, thereby synthesizing a
sequence of images that capture the scene from
diverse perspectives. In the subsequent Frame Re-
projection and Playback Control stage, each ren-
dered frame is re-lifted into 3D space to recover its
underlying geometric structure, while the tempo-
ral interval between successive frames serves as a
critical parameter that governs the playback speed
and ensures both temporal resolution and visual
continuity in the resulting video.

View Rendering. Once the densified 3D scene
is obtained as the point cloud Py, we generate a
temporal sequence by rendering the scene from
a continuously varying set of camera poses. Let
{P(t) }+er denote a smoothly parameterized cam-
era trajectory over the temporal domain 7'. For
each time instance ¢ € T', the projection of a 3D
point p € Py onto the image plane is defined by a
perspective projection function:

q:= KP(t) [pT7 1]T’

m(p, K, P(t)) = (qi1/a3, q2/q3).

where K is the fixed camera intrinsic matrix and
P(t) encapsulates the camera extrinsics at time ¢.

The rendered image I(t) is then synthesized by
aggregating the contributions of all points in Py.
Formally, for each pixel coordinate (u,v) in the
image, we define:

I(t)(u,0) = ) w(p,u,v; P(t)) C(p),

pPEPN

where C(p) represents the color of point p, and
w(p, u, v; P(t)) is a weighting function—often de-
rived from a Gaussian kernel or splatting func-
tion—that quantifies the contribution of p to
the pixel (u,v) based on the distance between
7(p, K, P(t)) and (u,v).

To form a panoramic video, the continuous tra-
jectory P(t) is discretely sampled at time instances

ti=to+i1At, i=0,1,2,...,

where At determines the temporal resolution (i.e.,
frame rate) of the video. The resulting sequence of
frames {I(t;)}3°, captures the scene as viewed
from gradually changing perspectives, ensuring
both spatial fidelity and temporal coherence across
the panoramic video, as shown in 3.
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Figure 3: A smooth camera trajectory projects the re-
constructed 3D point cloud Py onto the image plane,
rendering successive frames I (¢) and I(¢1) from tem-
porally varying viewpoints.

Frame Reprojection and Playback Control. Sub-
sequent to view rendering, each generated frame
1(t) is reprojected back into 3D space to recover
the underlying scene structure. Specifically, for ev-
ery frame, a corresponding depth map D(t) is esti-
mated using a monocular depth estimation method.
The lifting function ¢o_,3(+) is then applied over
the entire pixel domain {2 to reconstruct the set of
3D points:

Pl(t) = ¢2—>3([I(t)7 D(t)]7 K, Q)

This reprojection effectively retrieves the 3D geom-
etry corresponding to each rendered view, ensuring
that the synthesized imagery is consistent with the
original spatial structure.

Furthermore, the temporal interval At between
consecutive frames plays a crucial role in control-
ling the playback speed of the panoramic video. A
smaller At results in a higher frame rate, leading
to brisk transitions, whereas a larger At produces
a slower, more gradual animation. By carefully
selecting At, we can balance the need for smooth
visual transitions with the fidelity of 3D reconstruc-
tion across the temporal sequence.

This two-stage process—comprising view ren-
dering followed by frame reprojection—ensures
that the dynamic panorama maintains both spatial
accuracy and temporal coherence, thereby facilitat-
ing reliable interactive exploration of the synthe-
sized 3D environment.



Table 1: Quantitative Evaluation of Generation Models

Models Avg Controllability Quality Dynamics

Camera Object Content 3D Photo  Style Subjective Motion Motion Motion

Ctrl Ctrl Align  Consist Consist Consist Qual Acc Mag  Smooth

3D Generation
Allegro 51.97 24.84 57.47 51.48 70.50 69.89 65.60 4741 5439 40.28 37.81
Vchitect-2.0 3847 2655 4954 6575 4153 4230  25.69 4458 3359 3381 21.31
SceneScape 35.51 8499 4744  28.64 7654  62.88  21.85 3275 - - -
Text2Room 4347 9401 3893 5079 8871 8836 37.23 36.69 - - -
LucidDreamer 49.28 8893  41.18 75.00 90.37 90.20  48.10 58.99 - - -
WonderJourney 44.63  84.60 37.10 3554 80.60 79.03  62.82 66.56 - - -
InvisibleStitch 4278  93.20 36.51 29.53  88.51 89.19 3237 58.50 - - -
‘WonderWorld 50.88 9298 51.76 7125 86.87 8556 70.57 49.81 - - -
4D Generation
4D-fy 32,10  69.92 55.09 0.85 3547 1.59  32.04 089 2222 2288 80.06
DreamGen (Ours) (SVD) 63.00 7257 4270 5890  70.64 94.94 55.89 4697 60.85 61.25 6529
DreamGen (Ours) (Hunyuan Video) 66.49 80.21 68.15 6533 7518 9042  80.25 55.16  50.07 45.11 55.03
DreamGen (Ours) (Wan 2.1) 68.14 93.12 5504 7615 91.01 9495 70.13 65.23 4517 4026  50.38

4.3 interactive 4D rendering

The interactive 4D rendering module is built upon
a robust, event-driven framework that integrates
real-time editing with smooth temporal anima-
tion. In our system, this is achieved by coupling
a Supersplat-based renderer with a timeline mod-
ule that governs frame progression and playback
control.

Real-Time Editing. The real-time editing module
constitutes the interactive core of our 4D render-
ing system, enabling dynamic manipulation of 3D
scenes through an event-driven architecture that
facilitates seamless communication among system
components. At the foundation of this module is a
centralized event bus, which serves as the primary
mechanism for real-time interaction management.
Within this framework (Contributors, 2025), multi-
ple event-handling modules are systematically inte-
grated, including register Camera PosesEvents, reg-
iste r Editor Events, register Selection Events, and
register Transform Handler Events. These mod-
ules collectively enable real-time adjustments to
the virtual camera, selection of scene objects us-
ing various tools (e.g., rectangle, brush, polygon,
lasso, and sphere), and transformations such as
translation, rotation, and scaling. By leveraging
this event-driven infrastructure, modifications are
instantaneously propagated through the rendering
pipeline, ensuring a highly responsive and interac-
tive editing experience.

Timeline control. The timeline control component
orchestrates the temporal evolution of the 4D scene

by ensuring smooth, cyclic animation and precise
playback control. A dedicated timeline module
continuously updates the current time and frame
index based on the elapsed time and a predefined
frame rate. Specifically, let At denote the elapsed
time between update ticks and f, the frame rate.
At each update, the current time is updated as:

t < (t+ At x f,) mod F,

where F' is the total number of frames. The discrete
frame index is then determined by:

izmod({tj, F),

which ensures that the frame index wraps around
cyclically for continuous looping. Furthermore, the
timeline module provides interfaces to adjust the
total frame count, frame rate, and keyframe set-
tings, thereby offering fine-grained temporal con-
trol that synchronizes with user-driven real-time
editing. These features maintain high temporal
resolution and visual continuity throughout the in-
teractive 4D rendering environment.

S Experiment

In Section 4, we have elaborated on the design
principles and detailed methodology of our pro-
posed DreamGen framework, encompassing scene
construction, temporal sequence generation, and
interactive 4D rendering. To validate the effective-
ness of our approach, we conduct comprehensive
experiments and analyses in this section.
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Figure 4: Visualization of DreamGen model outputs. Left panels show the input images and prompts. Center
panels depict the generated 4D scenes, capturing detailed environments based on the inputs. Green markers indicate
specific details that are dynamically animated, as shown in the sequences on the right panels.

5.1 Implementation Detail

Our method is implemented using the PyTorch
framework, and all experiments are conducted
on a server equipped with an NVIDIA TESLA
A100 40G SXM4 GPU. Specifically, we utilize
MiDaS (Ranftl et al., 2020) for monocular depth
estimation, Stable Diffusion (Rombach et al., 2022)
for diffusion-based image inpainting and scene ex-
pansion, and adopt the open-source implementation
of LucidDreamer (Chung et al., 2023) for 3D Gaus-
sian splatting. The interactive rendering module
is built upon the SuperSplat (Contributors, 2025)
framework, with the frontend interface developed
using React and Three.js.

5.2 Quantitative Results

The results in Table 1 presents a comprehensive
quantitative evaluation of our proposed Dream-
Gen models compared to existing state-of-the-art
(SOTA) 3D and 4D generation methods. Our
DreamGen models consistently outperform pre-
vious methods across multiple evaluation met-
rics, demonstrating superior overall performance.
Specifically, our best-performing variant, Dream-
Gen (Wan 2.1), achieves the highest average score
of 68.14, surpassing all other models by a signif-
icant margin. It notably excels in controllability
metrics, achieving top scores in Camera Control
(93.12), Content Alignment (76.15), and 3D Con-

sistency (91.01). Additionally, DreamGen (Wan
2.1) demonstrates outstanding quality, obtaining
the highest Photo Consistency score (94.95) and
the second-highest Style Consistency (70.13) and
Subjective Quality (65.23) scores. Our DreamGen
(Hunyuan Video) variant also shows strong per-
formance, particularly excelling in Object Control
(68.15) and Style Consistency (80.25), indicating
its capability to precisely control object placement
and maintain stylistic coherence. In terms of dy-
namics, DreamGen (SVD) achieves the best per-
formance, leading in Motion Accuracy (60.85) and
Motion Magnitude (61.25), and ranking second in
Motion Smoothness (65.29). This highlights its
strength in generating accurate and smooth mo-
tion dynamics. Compared to existing 3D genera-
tion methods such as Allegro, LucidDreamer, and
WonderWorld, our DreamGen models significantly
improve upon both controllability and quality met-
rics. Furthermore, when compared to the existing
4D generation method (4D-fy), our models demon-
strate substantial improvements across all metrics,
particularly in Content Alignment, 3D Consistency,
and Photo Consistency.

5.3 Visualization Results

Figure 4 illustrates the advanced capabilities of
our DreamGen models in generating and animating
complex scenes from textual descriptions. This fig-



ure showcases two distinct examples that highlight
the versatility and effectiveness of our approach
in handling diverse narrative contexts and visual
styles.

In the first example, the input prompt describes
a vibrant, colorful floating community. The cen-
tral frame vividly depicts this imaginative setting,
showing detailed structures suspended above an
enchanted landscape. The sequence of animation
frames on the right (¢ = 0 to ¢ = 5) demonstrates
the model’s ability to generate consistent charac-
ter motion while preserving the visual style and
intricate details—an essential feature for animated
storytelling and dynamic content creation.

In contrast, the second example is based on
a noir-themed indoor scene described as a dark,
messy room. The central image captures the somber
atmosphere using dramatic lighting and shadowing
techniques, accurately reflecting key elements such
as the bottle, shoe soles, and jacket. The accompa-
nying frame sequence (¢t = 0 to ¢ = 2) highlights
the model’s capacity to simulate subtle scene dy-
namics, underscoring its strength in realistic 4D
scene generation and nuanced visual storytelling.

Table 2: Ablation study highlighting the contributions
of key components in DreamGen. Removing ZoeDepth
significantly degrades all metrics, especially 3D consis-
tency and subjective quality, demonstrating its critical
role in depth-aware reconstruction. Omitting Spherical
Projection leads to a notable drop in style and 3D con-
sistency. Excluding Video Rendering severely harms
3D consistency despite maintaining photorealism.

3D Photo Style Subjective
Method Consist. Consist. Consist. Qual.
DreamGen (Ours) (Wan 2.1) 76.15 91.01 94.95 70.13
w/o ZoeDepth 47.21 81.56 61.24 22.56
w/o Spherical Projection 66.21 90.66 85.26 70.01
w/o Video Rendering 27.53 90.81 92.10 70.34

5.4 Ablation Studies

The ablation results in Table 2, underscore the crit-
ical roles of specific components in our DreamGen.
Removing ZoeDepth led to a significant drop in
3D consistency (from 76.15 to 47.21) and subjec-
tive quality (from 70.13 to 22.56), highlighting its
importance in depth perception and overall aes-
thetic appeal. The absence of Spherical Projection
slightly decreased photo consistency (from 91.01 to
90.66), suggesting its contribution to photorealistic
rendering, albeit less critical than ZoeDepth. Sim-
ilarly, omitting Video Rendering slightly affected
subjective quality (from 70.13 to 70.34), indicating

DreamGen

Figure 5: Visual comparison of 4D scene reconstruction
quality with and without the integration of ZoeDepth
in DreamGen. The panoramic volcanic scene recon-
structed by DreamGen is shown at the top, with close-
up regions highlighting structural fidelity and texture
consistency. Red boxes mark significant artifacts or dis-
tortions when ZoeDepth is removed. The left and right
columns display detailed patches for models w/ and w/o
ZoeDepth, demonstrating improvements in geometry
and texture realism when depth estimation is applied.

its role in enhancing dynamic visual content. These
results demonstrate that each component is vital
for maintaining the high quality and consistency
of the generated images, confirming their collec-
tive contribution to the model’s state-of-the-art per-
formance. The removal of ZoeDepth introduces
substantial degradation in both geometric integrity
and texture consistency. As visualized in Figure 5,
its absence leads to collapsed geometry, distorted
surfaces, and fragmented regions, particularly in
areas requiring fine depth reasoning such as lava
contours and mountainous boundaries. Without
ZoeDepth, the model fails to infer accurate depth
from monocular cues, resulting in flattened struc-
tures and ambiguity.

6 Conclusion

We present DreamGen, a unified framework for
generating interactive panoramic 4D worlds from
a single image. Through a three-stage pipeline,
including scene construction, temporal sequence
generation, and interactive rendering, DreamGen
achieves state-of-the-art performance across con-
trollability, quality, and dynamics on the World-
Score benchmark. Extensive experiments and visu-
alizations demonstrate its ability to generate coher-
ent, editable, and immersive 4D scenes, opening
new directions for world modeling and embodied
Al applications.



Limitation

Computational Overhead. Although DreamGen
delivers state-of-the-art controllability and scene
quality, its pipeline is still highly time-consuming.
The iterative monocular—to—multi-view depth re-
finement and diffusion-based inpainting require
multiple forward passes for every novel viewpoint,
and the subsequent Gaussian-splat optimisation
further extends the overall runtime. Such heavy
computation limits the method’s applicability in
latency-sensitive scenarios such as AR/VR stream-
ing or on-device content creation.

Real-Time Responsiveness. DreamGen’s Super-
splat renderer sustains interactive frame rates for
moderately complex worlds, but performance de-
grades sharply as the point budget or shader com-
plexity increases. In densely occluded outdoor
scenes we observe noticeable input—display lag that
impedes fine-grained camera control and object
manipulation. While aggressive LOD pruning and
foveated rendering can mitigate slowdowns, they
risk introducing popping artefacts and degrading
peripheral fidelity.

Perceptual Artefacts. Despite the LucidDreamer-
based depth initialisation, failure modes persist
in regions with transparent, specular, or texture-
less surfaces. These areas yield noisy depth es-
timates that propagate to the multi-view optimi-
sation stage, manifesting as floating fragments or
stretched splats in the final 4D reconstruction. Post-
hoc bilateral filtering reduces noise but cannot fully
recover fine geometry or eliminate dis-occlusion
ghosts.

Directions for Future Work. Efficient single-
pass depth hallucination, tensor-core-aware splat
optimisation, and adaptive streaming strategies
could substantially lower the computational burden
and boost runtime FPS. Incorporating uncertainty-
aware depth networks and geometry-consistent dif-
fusion priors offers a promising path to mitigate
artefacts in challenging photometric conditions. Fi-
nally, expanding evaluation to open-world, multi-
agent settings would provide a more comprehen-
sive picture of DreamGen’s strengths and limita-
tions.
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A Appendix

A.1 Baseline

Text2Room Text2Room (Hollein et al., 2023),
noted around March 2023, is an innovative method
designed to generate room-scale, textured 3D
meshes directly from a given text prompt, func-
tioning effectively as an Image-to-Video (or rather,
image-sequence-to-3D) system for 3D scene con-
struction at resolutions like 512x512. It achieves
this by utilizing pre-trained 2D text-to-image mod-
els to synthesize a sequence of images from var-
ious viewpoints, which are then cohesively lifted
into a consistent 3D scene representation through a
combination of monocular depth estimation and a
text-conditioned inpainting model.
LucidDreamer LucidDreamer (Chung et al.,
2023) is a sophisticated framework, with research
published around November 2023, for the domain-
free generation of high-fidelity 3D Gaussian Splat-
ting scenes from either a single text prompt or an
image, often operating with 512x512 image in-
puts/outputs for its 2D components. It uniquely
employs a recursive "Dreaming and Alignment"
methodology, leveraging large-scale diffusion mod-
els for creating multi-view consistent images that
are subsequently elevated to 3D. A key innovation
is its use of Interval Score Matching (ISM) to pro-
duce detailed and realistic 3D models, effectively
mitigating the over-smoothing issues prevalent in
earlier Score Distillation Sampling (SDS) based
methods.

WonderJourney = WonderJourney (Yu et al.,
2024b) is an Image-to-3D Scenes model, high-
lighted in research around December 2023, and
was notably evaluated as part of the comprehen-
sive WorldScore benchmark for world generation.
The model is particularly recognized for its strong
emphasis on creating extensive and comprehensive
virtual worlds from image inputs, positioning it as
a significant contributor to advancements in large-
scale, dynamic scene generation.

InvisibleStitch InvisibleStitch (Engstler et al.,
2024) is an Image-to-3D Scenes model, with devel-
opments noted around April 2024, specifically men-
tioned for its application in the realm of 3D content
generation, working with image inputs at resolu-
tions like 512x512. While detailed public docu-
mentation on a uniquely named "InvisibleStitch"
model can be limited, its context within 3D 12V
evaluations suggests a focus on seamlessly creating
or integrating elements within 3D scenes or videos
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derived from initial static images.

WonderWorld WonderWorld (Yu et al., 2024a),
with research contributions noted around June
2024, is an Image-to-Video 3D scene generation
model that was also a subject of evaluation in the
WorldScore benchmark, handling inputs/outputs
around 512x512. It is particularly distinguished by
its interactive capabilities and its specialized focus
on generating immersive 3D environments origi-
nating from single input images, thereby playing
a key role in assessing diverse aspects of world
generation technologies.

4D-fy 4D-fy (Bahmani et al., 2024b) is a cutting-
edge Text-to-4D generation technique that synthe-
sizes dynamic 3D scenes (4D content) from tex-
tual prompts. It introduces an innovative "Hy-
brid Score Distillation Sampling" (Hybrid SDS)
method, which strategically blends supervisory
signals from multiple pre-trained diffusion mod-
els—including Text-to-Image (T2I), 3D-aware T2I,
and Text-to-Video (T2V) models—through an al-
ternating optimization process. This approach is
designed to achieve state-of-the-art 4D scenes char-
acterized by compelling visual appearance, robust
3D structure, and naturalistic motion.

A.2 Experimental Details

All experiments were executed on a single NVIDIA
TESLA A10040GB GPU (Ubuntu 22.04, PyTorch
2.0.1 compiled for CUDA 11.6). We fixed the ran-
dom seed to 42 for torch, numpy, and Python’s
random module, and enabled deterministic cuDNN
kernels to ensure bit-wise reproducibility. Through-
out the pipeline we used a DDIM sampler with
50 diffusion steps. Scene construction employs
a “look-around” camera sweep, while temporal
synthesis follows a “back_and_forth” dolly; both
trajectories are sampled at 30 fps.

A.3 WorldScore Evaluation Metrics

We adopt the WorldScore benchmark (Duan et al.,
2025) to evaluate world generation performance
across 3D, 4D, image-to-video (I2V), and text-to-
video (T2V) paradigms. The benchmark assesses
models along three main dimensions: controllabil-
ity, quality, and dynamics, via ten specific metrics.

A.3.1 Controllability Metrics

Camera Controllability: Measures the deviation
of the generated camera trajectory from the refer-
ence:

€camera = V€0 * €t ()



where ey and e; are the scale-invariant rotational
and translational errors.

Object Controllability: Computes the success rate
of open-set object detection using entities extracted
from the next-scene prompt N. The model is re-
warded if the mentioned objects appear in the gen-
erated scene.

Content Alignment: Evaluated by computing the
CLIP score (Hessel et al., 2021) between the full
prompt N and the generated video frames.

A.3.2 Quality Metrics

3D Consistency: Uses DROID-SLAM to calculate
reprojection error between co-visible pixels across
frames:

1
€reproj = m

S e -n@y)E ©

(i,5)eV

where pj; is the observed 2D projection, and II(-)
is the camera projection function.

Photometric Consistency: Detects texture flick-
ering using optical flow-based Average End-Point
Error (AEPE):

N
1
ephow = 37 D [Pai = Pasll,  (10)
=1

where p’Aﬂ- is the position tracked via backward
optical flow from frame B.

Style Consistency: Computes visual style differ-
ence between the first and last frame using Gram
matrix difference:

1D

Estyle = HGI - GTHF

Subjective Quality: An ensemble metric combin-
ing CLIP-IQA+ and CLIP-Aesthetic scores (Wang
et al., 2023), selected to best align with human
preference via a 200-participant study.

A.3.3 Dynamics Metrics

Motion Accuracy: Evaluates whether motion oc-
curs in the intended dynamic region:

Smotion-acc = maX(F O] M) - maX(F @M) 12)

where F' is the optical flow magnitude and M is
the mask for the target dynamic region.

Motion Magnitude: Captures the strength of mo-
tion by computing median flow magnitude across
frames:

13)

Smotion-mag = mediaH(F)
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Motion Smoothness: Assessed by interpolating
dropped frames and comparing to ground truth
using a combination of MSE, SSIM, and LPIPS
scores.

A.3.4 Score Normalization

Each raw metric score s is normalized to the range
[0, 1] using:

5 — bmin

Snorm = <a : b
max

bmin

+(1— a)> (14)

where o = 1 for metrics where higher is better, and
a = —1 otherwise. (-) denotes clipping to [0, 1].

A.4 More Results

In this section, we present additional results show-
casing the capabilities of our proposed method in
generating 4D scenes from a single-view image
prompt. As illustrated in Figure 6, the top sequence
captures the temporal dynamics at a fixed spatial
viewpoint, while the bottom sequence displays spa-
tial variations across different viewpoints. These
frames are jointly fused to reconstruct a temporally
evolving 3D scene, forming a unified 4D represen-
tation. The central visualization demonstrates the
resulting spatio-temporal scene, enabling immer-
sive exploration along both time and space axes.
As illustrate in Figure 7, We two distinct applica-
tions of our 4D scene generation method, demon-
strating its versatility and effectiveness across dif-
ferent environments and themes. In the top exam-
ple, our method has generated a 4D interactive hol-
iday living room scene from a single input image.
The panoramic image was transformed to include
a cozy scene that features a decorated Christmas
tree, chairs, and ambient lighting. The user in-
teraction pathway allows for navigation through
the scene over time, showcasing how the environ-
ment evolves and reacts to simulated changes in
viewpoint and lighting, enhancing the immersive
experience. The bottom example showcases a dra-
matically different scenario—a highly detailed 4D
rendered scene of a volcanic eruption. Starting
from an input image of a mountain, our method
dynamically models lava flowing down the slopes,
with realistic smoke, ash, and backlighting effects
that reflect the sunset illumination. This example
highlights the method’s capability to handle com-
plex natural phenomena and render them with cine-
matic quality. The temporal dimension is particu-
larly emphasized here, with the sequence of frames
showing the progression of the eruption, offering
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Figure 6: Generated 4D scene from a single-view image prompt. The top sequence illustrates temporal dynamics
captured at a fixed spatial viewpoint, while the bottom sequence shows spatial variations across different viewpoints.
These frames are jointly fused to reconstruct a temporally evolving 3D scene, forming a unified 4D representation.
The center visualization demonstrates the resulting spatio-temporal scene, enabling immersive exploration along
both time and space axes.

a compelling visualization of dynamic geological
events.

B Reproducibility Statement

We used Al assistants (e.g., ChatGPT) for grammar
correction and language refinement only. No con-
tent generation or experimental decision-making
was done by Al tools.
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Figure 7: Demonstrating the versatility of our 4D scene generation method with two contrasting scenarios. Top: An
interactive 4D holiday living room scene generated from a panoramic image, featuring a cozy fireplace, decorated
Christmas trees, and dynamic ambient lighting, with user interaction paths allowing navigation through time.
Bottom: A dynamic 4D rendering of a volcanic eruption, originating from a single image of a mountain, showcasing
molten lava flows, realistic smoke and ash effects, and dramatic backlighting simulating sunset, with a timeline
illustrating the progression of the eruption.
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