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Abstract

We demonstrate the efficacy of using intermediate representations from a single foundation
model to enhance various music downstream tasks. We introduce SoniDo, a music foun-
dation model (MFM) designed to extract hierarchical features from target music samples.
By leveraging hierarchical intermediate features, SoniDo constrains the information gran-
ularity, leading to improved performance across various downstream tasks including both
understanding and generative tasks. We specifically evaluated this approach on representa-
tive tasks such as music tagging, music transcription, music source separation, and music
mixing. Our results reveal that the features extracted from foundation models provide
valuable enhancements in training downstream task models. This highlights the capabil-
ity of using features extracted from music foundation models as a booster for downstream
tasks. Our approach not only benefits existing task-specific models but also supports music
downstream tasks constrained by data scarcity. This paves the way for more effective and
accessible music processing solutions.

Figure 1: SoniDo extracts hierarchical features of target music samples, which are useful for solving music
downstream tasks including understanding and generative tasks.
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1 Introduction

A foundation model is a pre-trained model developed on a large-scale dataset that can be adapted for a
variety of downstream tasks (Bommasani et al., 2021). Several language processing models (Radford et al.,
2021; Brown et al., 2020; Devlin et al., 2018; Team et al., 2024) are considered foundation models due to
their ability to unify all language tasks as sequence prediction tasks, e�ectively addressing multiple tasks
with a single model. These foundation models have gained signi�cant attraction and are widely used in
everyday applications. In contrast, a powerful music foundation model capable of handling variousmusic
downstream tasksfor music production is lacking (Ma et al., 2024). We categorize the tasks that a music
foundation model primarily addresses into two types:understanding tasks, such as tagging and transcription,
and generative tasks, such as mixing and mastering.

Several multi-task models have been proposed as potential music foundation models (Li et al., 2023a; Yang
et al., 2023; Copet et al., 2023; Agostinelli et al., 2023). However, this approach necessitates the inclusion of
the desired tasks during the training phase. A notable strategy to overcome this limitation is to inject features
extracted from a pre-trained large-scale model into smaller back-end models for downstream tasks that were
not seen during training. This ensemble approach, which combines a large-scale model with various smaller
models, can e�ectively function as a music foundation model. The codi�ed audio language modeling (CALM)
framework proposed by Castellon et al. (2021) is the �rst work in this direction, utilizing the intermediate
representations from Jukebox (Dhariwal et al., 2020) to tackle music information retrieval (MIR) tasks,
covering most music understanding tasks. Beyond MIR,Donahue et al. (2022) leveraged representations
from Jukebox for melody transcription. Other studies have followed this approach to address time-invariant
MIR tasks using the latest generative models based on residual quantized variational Autoencoders (RQ-
VAEs) (Zeghidour et al., 2022; Défossez et al., 2023), enhancing the state-of-the-art (SOTA). However,
these applications remain limited to music understanding tasks. Li et al. (2023b) expanded the focus to
include music source separation, a generative task, but encountered instability issues during training. The
performance of this extension does not yet match that of the baselines mentioned by Mitsufuji et al. (2022).
An extensive overview of related work can be found in Appendix A.

We extended the methodology from MIR tasks to generic music downstream tasks. To address both un-
derstanding and generative tasks, we focus on a tokenization-based generative modeling approach, which
is directly analogous to foundation models in the natural language processing �eld. Furthermore, We hy-
pothesize that the representation structure of foundation models is crucial in this context. Speci�cally, we
propose that hierarchical representations, which divide information of varying granularity into di�erent levels
of embedding, are expected to provide e�cient information hierarchy for all downstream tasks including both
understanding and generative tasks. We empirically verify this hypothesis in Section 4. In contrast, music
foundation models that have been applied to boost music downstream tasks do not have such a hierarchical
structure. For example, Jukebox (Castellon et al., 2021; Donahue et al., 2022) is trained to have multi-level
representation inspired from hierarchical latent representation (Razavi et al., 2019); however, each level is
independently trained. RQ-VAEs (Yang et al., 2023; Li et al., 2023b) learn factorized representation that
has a self-organized coarse-to-�ne structure, however, they are not hierarchical.

In accordance with the aforementioned hypothesis, we outline this study as follows. We propose and train
our music foundation model, SoniDo (meaning sound in Spanish), on a high-�delity internal dataset 1 to
establish a task-agnostic feature extraction pipeline.SoniDo is a generative model consisting of a multi-level
transformer with a multi-level hierarchical encoder. With proper pre-processing, we infuse its intermediate
representation as features to task-speci�c models on various music downstream tasks with data augmentation.
Moreover, for understanding tasks, we proposed an on-the-�y data augmentation calledtoken-out to avoid
over�tting. Performance evaluation was done by benchmarking with representative tasks from understanding
to generative tasks: music tagging, music transcription, music source separation, and music mixing.

1The rights of this internal dataset are trained on licensed content only. Except for as speci�cally authorized by the rights
owner, the rights owner expressly prohibits and has opted out of any text or data mining, web scraping or similar, reproductions,
extractions or uses, of its content for any purposes, including in relation to training, developing, or commercializing any Al
System.
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Table 1: Performance overview of applying extracted features to various downstream tasks. Bold: best,
underline: second best. The result marked with * is obtained with a di�erent evaluation protocol. The
results marked with „ are numbers reported in Castellon et al. (2021).

Downstream Task Dataset Metric SoniDo
MusicGen

Small
MusicGen

Large
Jukebox-5B MERT Task-Speci�c SOTA

Multi-task Music Tagging MusicTagATune
ROC-AUC 91.7 90.4 90.5 91.5„ 91.3 92.0

(Huang et al., 2022a)
mAP 41.5 38.8 39.0 41.4„ 40.2 38.4

Pitch Estimation
Nsynth

Acc. 93.8 93.3 92.8 91.6„ 94.4 89.2 (McCallum et al., 2022)
Instrument Classi�cation Acc. 78.0 71.9 74.2 70.4„ 72.6 78.2 (Wang et al., 2022)

Emotion Regression EmoMusic AveragedR2 64.7 45.6 46.2 66.9„ 68.0 63.0* (Castellon et al., 2021)
Key Detection GiantSteps Weighted Acc. 63.5 65.2 62.4 66.7„ 65.6 79.6 (Castellon et al., 2021)

Genre Classi�cation GTZAN Acc. 80.7 75.2 70.3 79.7„ 79.3 83.5 (McCallum et al., 2022)
Singer Identi�cation

VocalSet
Acc. 87.0 82.3 83.3 82.6„ 87.1 80.3 (Modrzejewski et al., 2023)

Technique Identi�cation Acc. 74.4 66.1 63.9 76.7„ 76.9 65.6 (Yamamoto et al., 2022)

Music Transcription MAPS

Frame F1 83.92 82.94 81.53 84.23 - 82.89

(Toyama et al., 2023)
Note F1 86.45 85.97 85.14 86.54 - 85.14

Note w/ O�set F1 68.27 68.27 66.28 68.26 - 66.34
Note w/

O�set & Velocity F1
51.34 50.42 48.69 50.46 - 48.20

Source Separation

MUSDB18

SDR (bass) 9.50 8.86 8.17 7.12 5.6 11.31

(Lu et al., 2024)
SDR (drums) 8.65 8.03 7.50 6.65 3.6 9.49
SDR (other) 5.91 5.59 5.54 4.77 3.0 7.73
SDR (vocals) 8.07 7.57 7.66 6.84 5.3 10.66

MDXDB21
hidden

SDR (bass) 8.14 7.44 7.40 6.58 - 7.86

(Rouard et al., 2023)
SDR (drums) 8.16 8.31 7.37 6.58 - 7.89
SDR (other) 5.21 5.26 4.93 4.59 - 5.09
SDR (vocals) 8.04 7.81 7.73 7.12 - 7.70

Music Mixing
MDXDB21-dry

hidden

Stereo-Invariant 79.86 87.27 87.32 87.97 - 82.09

(Martínez-Ramírez et al., 2022)
Spectralmape 0.221 0.229 0.228 0.231 - 0.193
Panningmape 0.175 0.244 0.219 0.249 - 0.179
Dynamicmape 0.064 0.072 0.073 0.075 - 0.070
Loudnessmape 0.171 0.148 0.132 0.144 - 0.152

The encoder design ofSoniDo is inspired by Jukebox but makes the representation hierarchical by enforcing
the �ne level to be conditioned by the coarse levels using a hierarchical autoencoder framework called
hierarchically quantized VAE (HQ-VAE) (Takida et al., 2024). We then use a transformer-based multi-
level auto-regressive model to characterize the probability mass of learnt HQ-VAE embeddings. We extract
features from the intermediate representation ofSoniDo by �rst converting input audio with the encoder
into tokens, feeding them into the transformers, and extracting the intermediate output from the midst layer.
We refer to these extracted features asSoniDo features.

As shown in Table 1, we testSoniDo 's feature injection for selected downstream tasks along with several
baselines. To the best of our knowledge, this is the �rst study on enhancing both understanding and
generative tasks with the intermediate representation from a single model. We brie�y list our major �ndings:

1. We empirically show that, with an auto-regressive generative model that is established on hierar-
chical representation, its intermediate representation can serve as generic booster of various music
downstream tasks.

2. We verify that the extracted intermediate representation is bene�cial for music understanding tasks
even with only an extra shallow back-end network. The extension of the shallow network with
attention layers leads to further improvement.

3. We show that the extracted intermediate representation is bene�cial for enhancing task-speci�c
models, through the applications to both understanding and generative tasks.

4. Several of the above improvements in each task category result in new SOTA scores. The summary
of our results is shown in Table 1.

2 Proposed Two-stage Hierarchical Model: SoniDo

To explore the e�ectiveness of hierarchical modeling in boosting downstream tasks, we adopt a typical
two-stage generative modeling (Dhariwal et al., 2020; Copet et al., 2023; Li et al., 2023a). In stage-1, we
use an HQ-VAE for hierarchical representation learning, dividing information into di�erent levels based on
granularity. In stage-2, we use auto-regressive modeling to learn the multi-level token streams extracted
from the stage-1 model. Finally, features from stage-2 model are extracted as described in Section 3.1.
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2.1 Stage-1 Model: HQ-VAE

We construct the architecture of SoniDo to learn a hierarchical representation of the target dataset. Consider
a music samplex with length T, wherex 2 X � RT . A set of codebooksf B 1; B 2; B 3g is used for learning a
three-layer hierarchical representation onx . For l 2 f 1; 2; 3g, the l th codebook is denoted asB l = f bl;k gK l

k=1 ,
which consists ofK l dl -dimensional trainable vectorsbl;k 2 Rdl . The architecture is designed to extract a
hierarchical latent representation of music samples, which is denoted asZ 1;2;3 := Z 1 
 Z 2 
 Z 3 with Z l 2 B t l

l
(l = 1 ; 2; 3), where t l is the latent sequence length at thel th layer. The discrete tensorsZ 1, Z 2, and Z 3 are
expected to convey the coarse, medium, and �ne-grained information. The reconstruction can be done with
a well-optimized neural function f : B t 1

1 
 B t 2
2 
 B t 3

3 ! X , i.e., x � f (Z 1;2;3).

The architecture is composed of bottom-up and top-down paths, as illustrated in Figure 2(a), the inference
process of which is as follows. A series of encoders in the bottom-up path extracts feature tensors for three
di�erent information resolutions, which are denoted as H l (x ) ( l = 1 ; 2; 3), from sample x . The feature
H l (x ) is used for the top-down path to process the data in a hierarchical manner. The top-down path has
three (top, middle, and bottom) top-down blocks to model hierarchical discrete latent representations. The
top block �rst quantizes ~Z 1 := H 1(x ), which has the most global (coarse) information amongst the encoded
features, into discrete tensorZ 1 by the nearest neighbor search in codebookB 1. At the next step, the
middle latent tensor is conditioned on the top Z 1 to focus more on local details, with the injection ofH 2(x ).
Therefore, the block takes both tensors processed in the top block and bottom-up paths, i.e.,Z 1 and H 2(x ),
generating a raw continuous feature ~Z 2 := G2(H 2(x ); Z 1). The raw feature is then quantized into Z 2 in
the same manner as with codebookB 2. The bottom block repeats a similar process withZ 2 and H 3(x ) to
further re�ne the representation with the additional discrete feature Z 3. Finally, the set of Z 1, Z 2, and Z 3

is decoded to the data space to reconstructx .

We train the architecture including the codebooks within the variational Bayes framework, as an instance
of HQ-VAE, stochastically quantized VAE-2 (SQ-VAE-2) (Takida et al., 2024). To establish a gener-
ative process in this VAE, we �rst de�ne the prior probability distribution on Z 1;2;3 as P(Z 1;2;3) =
P1(Z 1)P2(Z 2jZ 1)P3(Z 3jZ 1;2). Given a chunk of latent variables Z 1, Z 2, and Z 3, a data sample can be
generated under a conditional probability distribution p(x jZ 1;2;3). Concretely, we parameterize the con-
ditional distribution as a normal distribution with function f and a trainable isotropic covariance matrix
as p(x jZ 1;2;3) = N (f (Z 1;2;3); � 2I ). To summarize, the generative process consists of two steps: sam-
pling Z 1;2;3 from the prior distribution and decoding it with the conditional distribution. Note that,
in practice, Z 1;2;3 is sampled from an estimated posterior distribution instead of the prior distribu-
tion, as presented in Section 2.2. Next, the approximated posterior distribution for p(Z 1;2;3jx ) is set as
Q(Z 1;2;3jx ) = Q1(Z 1jx )Q2(Z 2jZ 1; x )Q3(Z 3jZ 1;2; x ). We connect eachQ1, Q2, and Q3 with the compo-
nents in Figure 2(a). Speci�cally, the categorical distribution at the l th layer, Ql (Z l jZ <l ; x ), is de�ned as
a stochastic quantization that is P̂s2

l
(z l;n = bl;k j ~z l;n ) / exp(�k ~z l;n � bl;k k2=2s2

l ) with a trainable positive

scalar s2
l , where z l;n and ~z l;n indicate the nth vectors in Z l and ~Z l , respectively. Finally, the resulting

training objective consists of terms for reconstruction and latent regularization:

L 1(x ) =
T
2

log � 2 + EQ(Z 1; 2 ; 3 j x )

"
kx � f (Z 1;2;3)k2

2

2� 2 +
3X

l =1

�
k ~Z l � Z l k2

F

2s2
l

� H (P̂s2
l
(Z l j ~Z l ))

� #

; (1)

where H (�) is the entropy of a probability mass function. Progressive coding (Takida et al., 2024) is applied
to ensure the amount of information is balanced across the three layers.

2.2 Stage-2 Model: Sparse Transformers

The stage-2 model addresses the gap between the pre-set prior distribution (i.e.,P(Z 1;2;3)) and marginalized
posterior distribution (i.e., Q(Z 1;2;3) := Ep(x ) [Q(Z 1;2;3jx )]) by directly learning the posterior distribution.
We incorporated the contrastive language-audio pretraining (CLAP) model proposed by LAION (Wu* et al.,
2023) into the stage-2 model. To include the CLAP conditioning, we approximateQ� (Z 1;2;3) with a condi-
tioned decomposition as

P� (Z 1;2;3jyaudio ) = P� 1 (Z 1jyaudio )P� 2 (Z 2jZ 1; yaudio )P� 3 (Z 3jZ 1;2; yaudio ); (2)
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(a) Stage 1 model architecture

(b) Stage-2 model architecture

Figure 2: The two stages ofSoniDo .

where � := f � 1; � 2; � 3g is a set of neural networks for the stage-2 model, andyaudio 2 R512 denotes the
feature produced from the CLAP encoder. Thanks to the alignment between the audio and text embeddings
of CLAP, even if the audio dataset has no text caption, we can still feed audio in the training phase,
whereas it allows either audio or text input in the inference stage. The use of a pre-trained encoder is
common in modern generative models. For example, MusicGen (Copet et al., 2023) uses the pre-trained T5
encoder (Ra�el et al., 2019) to model the text conditions. The training objective is negative log-likelihood:

L 2(x ) = EQ � (Z 1; 2 ; 3 j x )pCLAP (y audio j x ) [� logP� (Z 1;2;3jyaudio )]: (3)

We follow Jukebox (Dhariwal et al., 2020) to construct the networks � with sparse transformers (Vaswani
et al., 2017; Child et al., 2019). As illustrated in Figure 2(b), we train three auto-regressive sparse transform-
ers to modelP(Z 1jyaudio ), P(Z 2jZ 1; yaudio ), and P(Z 3jZ 1;2; yaudio ), which we refer to as top prior, middle
conditional prior, and bottom conditional prior, respectively. The middle and bottom priors use the token
sequences from the upper levels, with up-sampling achieved throughupsampling modules, corresponding to
the conditioners of Jukebox. We additionally condition each prior on yaudio . Appendix B.2 provides further
details of the stage-2 model. Appendix B.3 evaluates the common objective metrics onSoniDo .
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2.3 SoniDo vs. Other Music Foundation Models

This section compares the architecture ofSoniDo with those of other well-known music foundation models,
i.e., Jukebox (Dhariwal et al., 2020), MusicLM (Agostinelli et al., 2023), and MusicGen (Copet et al., 2023).
These models are categorized on the basis of how their stage-1 models are constructed; (a) SQ-VAE-2, (b)
multi-resolution VQ-VAEs, and (c) residual vector quantization (RVQ), as illustrated in Figure 3.

(a) SQ-VAE-2 (b) multi-resolution VQ-VAEs (c) RVQ

Figure 3: Stage-1 model comparison.

While SoniDo and Jukebox exhibit some shared characteristics, such as a three-level architecture in the
stage-1 model,SoniDo is based on SQ-VAE-2, whereas Jukebox used multi-resolution VQ-VAEs. In Juke-
box, token streamsZ 1, Z 2, and Z 3 were independently and separately trained for di�erent sampling rates.
Consequently, the l th transformer was designed to generateZ l by upsampling the previous token sequence
Z l � 1 for l = 2 ; 3. In contrast, SoniDo 's token streams from the stage-1 model are jointly trained and
collaboratively contribute to the comprehensive modeling of the waveform at the original sampling rate from
scratch. Given the tight interrelation between token streams from di�erent levels, SoniDo 's l th transformer
is conditioned on all the upper token streams.

Recent approaches such as MusicLM and MusicGen used RVQ in a bottleneck feature space instead of
applying these hierarchical quantization methods (e.g., SQ-VAE-2).These approaches also use transformers
to model the prior of the music-token streamsP(Z1:L ). In the context of token-sequence length for generating
1 s of audio at a target sampling ratesr , the bottom-most token-sequence length inSoniDo and Jukebox is
sr=8, while MusicGen requires a token-sequence length ofsr=640. RVQ-based models excute quantization in
highly compressed latent spaces using a series of vector quantization layers, e�ectively shortening the token
sequence to be learned by transformers in the stage-2 model.

3 SoniDo on Music Downstream Tasks

We �rst obtain SoniDo features from input audio with a task-agnostic feature extraction process. Depending
on whether the downstream task is time-invariant or time-varying, we then apply di�erent pre-processing
steps. Finally, we inject the pre-processedSoniDo features into a proper location of a target task-speci�c
model. The selection of such a location is explained in Section 4.

3.1 Task-agnostic Feature Extraction

We follow the feature extraction pipeline in Castellon et al. (2021); Niizumi et al. (2022); Huang et al.
(2022b) based on the pre-trained frozenSoniDo . The music waveform is �rst converted to multi-level token
sequences via the stage-1 encoder ofSoniDo . The tokens are then fed into the top prior, middle conditional,
and bottom conditional priors of SoniDo without auto-regressive iteration. The middle and bottom priors
are conditioned by the ground-truth tokens produced with the stage-1 encoders. We extract the output
of the N -th ( N = 36 as in Castellon et al. (2021)) transformer layer in those prior models asSoniDo
features. If the CLAP audio embedding is not used as the condition of priors, we call the feature extraction
unconditional extraction; otherwise, CLAP-conditional extraction.
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Figure 4: Attention-based feature aggregation and token-out data augmentation. �T�, �M�, �B� mean
top, middle, and bottom priors, respectively. Token-out augmentation deletes masked tokens from input
sequence. Attention block aggregates sequence into single vector and is followed by MLP to predict tags.

The maximum sequence length of the priors is8192. Since the down-sampling rates in the stage-1 model
are 128� (top), 32� (middle), and 8� (bottom), the same amount of 8192 tokens in di�erent priors cor-
respond to 24 s, 6 s and 1.5 s in the time domain, forming a set of hierarchical multi-rate features. To
save computational resources, theSoniDo features are pre-computed for most downstream tasks, except for
HTDemucs mentioned in Section 4.2.2, where a clip of music is randomly selected on-the-�y during training.
To compute features for a long audio input, we treat the input as overlapping segments with the ratioNovlp .
If Novlp is su�ciently large such that the overlap is longer than the perception �eld of the stage-2 model, it
is guaranteed that the feature extraction result is not a�ected by the segmentation.

3.2 Feature Pre-processing for Time-invariant Downstream Tasks

If the downstream task is time-invariant, we �rst divide input audio into non-overlapping segments of 24
(top), 6 (middle), and 1.5 (bottom) s. For each prior, the SoniDo features of the segment are reduced to a
single token via average pooling, forming3 SoniDo token sequences in the end.

The common practice (Castellon et al., 2021; Li et al., 2023b) suggests using a multi-layer perceptron (MLP)
with a single hidden layer of 512 dimensions to probe the features. However,SoniDo token sequences
originate from priors with di�erent time resolutions, which is di�erent from prior studies. To e�ectively use
these hierarchical features, a sequence aggregation is required. We thus propose to aggregate the sequences
via a standard attention block, which is an attention layer followed by a feed-forward layer. This is inspired
by the attention-based feature aggregation in instrument classi�cation tasks (Gururani et al., 2019; Zhong
et al., 2023a). We �rst concatenate the hierarchicalSoniDo features into a single token sequence then attach
a learnable class token at the front. The attention block is trained to aggregate all features into the class
token, which is then converted to music tags or emotion scores by the aforementioned MLP. Hyperparameters
as well as an ablation study on the sequence aggregation are provided in Appendix C.

To prevent over�tting when using the concatenated token sequence to train the attention block, we propose
an on-the-�y data augmentation method called token-out. This is inspired by SpecAugment (Park et al.,
2019) and masked Transformers (Koutini et al., 2022; Zhong et al., 2023b; Comunità et al., 2024), in which a
part of the input is masked before feeding into deep neural networks. Unlike prior arts, token-out is applied
to the whole token sequence extracted with the multiple layers inSoniDo , as illustrated in Figure 4.The
masking ratio is sampled between 0 and 100% uniformly. As shown in Appendix C, aggregating theSoniDo
features with the shallow attention layer and token-out augmentation led to performance improvement.

3.3 Feature Pre-processing for Time-varying Downstream Tasks

When applying the SoniDo features to a task-speci�c model on a time-varying downstream task, we face
several challenges, such as temporal alignment, proper amount of information compression, and su�cient
feature adaptation before injecting features into the task-speci�c models.

7
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The temporal alignment between theSoniDo features and target model can be achieved by either pooling
the SoniDo features or using linear layers. Examples of these two cases are provided in Appendices E.2
and D, respectively. Compared with average pooling or max-pooling, we found that using linear layers can
yield better performance, as described in Appendix E.2.

Both information compression and feature adaptation can be done with linear layers. The output dimension is
simply set to match the feature dimension of the target task-speci�c model. Empirically, one layer is su�cient
for most of the models we have tested, except for music transcription with hFT-Transformer Toyama et al.
(2023), which requires four layers, as described in Appendix D.3.

4 Experiments

We conducted experiments to examine the usefulness of features extracted from music foundation models
for understanding and generative downstream tasks by addressing two questions:Q1: Do extracted features
have useful information for music understanding? Q2: Can extracted features boost current task-speci�c
models for both understanding and generative tasks? To verify the generalizability of the results, we test
not only the SoniDo features, but also features extracted from Jukebox and the two public versions of
MusicGen (Copet et al., 2023), namely MusicGen Small and MusicGen Large . As a major focus
of this work is to extend the applicable downstream tasks, we evaluate Jukebox's features speci�cally for
time-varying tasks and report the results from Castellon et al. (2021) for time-invariant tasks in Table 1.

To address the �rst question, we selected eight music tagging tasks and music transcription as representatives
for understanding tasks.We veri�ed that the extracted features encompass both time-invariant information of
overall musical properties and time-varying information of speci�c musical events. For the second question,
we tested the injection of extracted features into several task-speci�c models for understanding and generative
tasks. They consist of one transcription model (Toyama et al., 2023), two separation models (Mitsufuji et al.,
2022; Fabbro et al., 2023), and two mixing models from Martínez-Ramírez et al. (2022).

The feature extraction described in Section 3.1 is used for all experiments. Before applying the features
into downstream tasks, task-dependent pre-processing is applied (see Sections 3.2 and 3.3). Details of
the experimental setup, results, and further ablation studies are provided in Appendices C, D, E, and F,
respectively. We only use features extracted from the top and middle layers ofSoniDo . In the preliminary
experiments, we found that including the bottom-layer features does not always improve the performance
of understanding tasks. We assume this is due to the bottom layer mostly containing only the �ne-grained
information irrelevant to the tasks, thus degrading performance. This is discussed further in each subsection.

4.1 Usefulness of Extracted Features for Music Understanding

The following feature probing experiments demonstrate that features extracted fromSoniDo , MusicGen
and Jukebox all contain valuable information, which is consistent with Castellon et al. (2021). However, for
music transcription, the shallow network remains insu�cient to match SOTA models. In Section 4.2, we
show that injecting extracted features into task-speci�c models can boost their performance beyond SOTA.

4.1.1 Music Tagging

We test a wide range of music tagging tasks as well as the emotion regression task: MagnaTagATune
(MTAT) (Law et al., 2009) for auto tagging, Nsynth (Engel et al., 2017) for pitch and instrument recognition,
EmoMusic (Soleymani et al., 2013) for emotion regression, GTZAN (Tzanetakis & Cook, 2002) for genre
classi�cation, GiantSteps (Knees et al., 2015; Korzeniowski & Widmer, 2017) for musical key estimation, and
VocalSet (Wilkins et al., 2018) for singer and singing technique identi�cation. A summary of the datasets
is shown in Table 9 in Appendix C. We followed the pre-processing in previous studies (Li et al., 2023b;
Yuan et al., 2023) and used scikit-learn (Pedregosa et al., 2011) and mir_eval (Ra�el et al., 2014) for
metric computation. The average R2 of arousal and valence axis is reported for EmoMusic. The feature
pre-processing for time-invariant downstream tasks in Section 3.2 including the feature aggregation and
token-out augmentation is applied for all tasks. Following common practice (Castellon et al., 2021; Li et al.,
2023b), an MLP is then used to probe the aggregated features.
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Table 2: Music tagging. Benchmark results ofSoniDo features in music tagging tasks (bold : top-2 score).

Dataset MTAT Nsynth Nsynth EmoMusic GiantSteps GTZAN VocalSet VocalSet
Task Auto tagging Pitch Instrument Emotion regression Key Genre Singer Vocal techniques

Metrics ROC-AUC mAP Acc. Acc. Average R2 Weighted acc. Acc. Acc. Acc.
Supervised

MusiCNN Pons & Serra (2019) 90.6 38.3 64.1 72.6 58.5 12.8 79.0 57.0 70.3
MULE-supervised McCallum et al. (2022) 91.7 41.3 79.3 73.1 64.6 28.6 83.5 - -

Auto-regression
Jukebox Dhariwal et al. (2020); Castellon et al. (2021) 91.5 41.4 91.6 70.4 66.9 66.7 79.7 82.6 76.7

MusicGen-small Copet et al. (2023) 90.4 38.8 93.3 71.9 45.6 65.2 75.2 82.3 66.1
MusicGen-large Copet et al. (2023) 90.5 39.0 92.8 74.2 46.2 62.4 70.3 83.3 63.9

Contrastive
CLMR Spijkervet & Burgoyne (2021) 89.4 36.1 47.0 67.9 56.8 14.9 68.6 49.9 58.1
Slowfast-NFNet-F0 Wang et al. (2022) - 39.5 88.0 78.2 - - - - -

MULE-contrastive McCallum et al. (2022) 91.4 40.4 89.2 74.0 63.9 66.7 73.5 87.5 75.5
Mask reconstruction

HuBERT music Hsu et al. (2021); Li et al. (2023b) 90.2 37.7 77.4 69.3 54.3 14.7 70.0 75.3 65.9
data2vec music Baevski et al. (2022); Li et al. (2023b) 90.0 36.2 93.1 69.4 61.6 50.6 74.1 81.4 71.1

MERT-330M Li et al. (2023b) 91.3 40.2 94.4 72.6 68.0 65.6 79.3 87.1 76.9
Hierarchical auto-regression (ours)

SoniDo 91.7 41.5 93.8 78.0 64.7 63.5 80.7 87.0 74.4

Table 3: Results of feature probing using shallow back-end on MAPS (bold : best, underline: second-best).

Input Note F1(%)

Spectrogram 18.83
Spectrogram + SoniDo Top 57.20
Spectrogram + SoniDo Middle 64.98
Spectrogram + SoniDo Top + SoniDo Middle 66.02
Spectrogram + MusicGen Small 53.18
Spectrogram + MusicGen Large 49.16
Spectrogram + Jukebox 57.13

We conduct a preliminery study for SoniDo with top prior features to compare CLAP-conditional extraction,
unconditional extraction and features from the CLAP encoder. We use the tagging task for coarse-grained
concepts on MTAT, and the classi�cation task for �ne-grained concepts (pitch) on Nsynth. We found that
CLAP performs well for coarse concepts, while unconditional extraction results in better accuracy for pitch
estimation. CLAP-conditional extraction achieves better scores in both tasks. Details can be found in
Appendix C and Table 10. Consequently, we reportSoniDo 's scores with the CLAP-conditional feature
extraction for time-invariant understanding tasks.

The test results on various datasets and benchmarks with prior studies are listed in Table 2. Probing
the SoniDo and MusicGen features both shown competitive scores in most tasks. TheSoniDo 's fea-
tures reached the top-2 performance in auto tagging, pitch estimation, instrument classi�cation, and genre
classi�cation. They also performs well for emotion regression and singer identi�cation. While these are
prompt-conditioned generative models, feature probing using these models reached comparable performance
compared with SOTA encoder-only models specialized for understanding tasks.

4.1.2 Music Transcription

Beyond time-invariant understanding tasks, we continue the test on music transcription, which is a time-
varying understanding task. All of SoniDo , MusicGen , and Jukebox features are obtained with uncon-
ditional extraction described in Section 3.1. The dimension and time resolution of extracted features are
aligned to those of the spectrogram with linear layers. Following Castellon et al. (2021), the features are
concatenated with the spectrogram. A single-layer shallow back-end network is used to probe these features.

We show the transcription performance of the feature probing mentioned above on the MAPS dataset (Emiya
et al., 2010) in Table 3. All the features greatly improved the note-wise F1 score compared with using the
spectrogram only. This suggests that all of SoniDo , MusicGen , and Jukebox features contain useful
information for time-varying understanding tasks.
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Table 4: Music transcription results of F1 scores on MAPS (bold : best score, underline: second best).
�Note� refers to note-wise estimation. First row corresponds to hFT-Transformer (Toyama et al., 2023).

Training data Input Frame Note Note w/ O�set Note w/ O�set&Velocity

100[%]

Spectrogram 82.89 85.14 66.34 48.20
Spectrogram + SoniDo Top 83.92 86.45 68.27 51.34
Spectrogram + SoniDo Top + SoniDo Middle 84.16 85.96 67.37 50.98
Spectrogram + MusicGen Small 82.94 85.97 68.27 50.42
Spectrogram + MusicGen Large 81.53 85.14 66.28 48.69
Spectrogram + Jukebox 84.23 86.54 68.26 50.46

10[%]

Spectrogram 9.83 0.59 0.17 0.46
Spectrogram + SoniDo Top 65.91 66.64 39.88 25.87
Spectrogram + SoniDo Top + SoniDo Middle 71.57 75.00 46.18 30.63
Spectrogram + MusicGen Small 63.73 65.90 39.00 24.94
Spectrogram + MusicGen Large 61.81 63.27 37.03 24.01
Spectrogram + Jukebox 70.43 73.76 45.80 30.42

4.2 Using Extracted Features to Boost Existing Task-speci�c Models

In Section 4.1, we showed that the extracted features contain useful knowledge for music understanding.
In this section, we test all of SoniDo , MusicGen , and Jukebox features on several SOTA task-speci�c
models, the tasks include music transcription, music source separation, and music mixing, which covered
both music understanding and generative tasks. The experimental results indicate that the extracted features
consistently boost the performances of task-speci�c models. We also observed that injecting theSoniDo
features accelerated the decrement of training loss in early epochs.

4.2.1 Music Transcription: hFT-Transformer

We applied the extracted features to hFT-Transformer (Toyama et al., 2023), a SOTA music transcription
model for piano on MAPS (Emiya et al., 2010), to assess whether it surpasses existing models that rely solely
on the spectrogram. On the basis of the input spectrogram, hFT-Transformer estimates the frame-based
note activation, along with the onset, o�set, and velocity of a note (frame, onset, o�set , and velocity). It is a
transformer-based model consisting of two transformer encoders that work on di�erent axes of the input and
a transformer decoder in the middle of these two encoders. Following the processing pipeline in Section 4,
we attempted injecting the SoniDo , MusicGen , and Jukebox features before the 1st encoder, 2nd encoder,
and decoder. We found that feature injection before the decoder yields the best result, thus we adopt this
injection method in the following experiments. All the training hyperparameters were kept the same as in a
previous study (Toyama et al., 2023). Further details are provided in Appendix D.3.

Following the common evaluation practice (Gardner et al., 2022; Toyama et al., 2023), we report four F1
scores: frame-wise, note-wise, note-wise with o�set, and note-wise with o�set and velocity using the check-
point with the best validation F1 score. As shown in Table 4, injecting either SoniDo , MusicGen Small ,
or Jukebox features improves the performance of hFT-Transformer. The performance gap is especially huge
when the model is trained with a small subset of MAPS. This demonstrates the usefulness of injecting music
foundation model features into downstream task models when training data are scarce. We also observed that
the decrement of training loss is faster when eitherSoniDo , MusicGen , or Jukebox features are injected,
as shown in Figure 8 in Appendix D.3.

In the experiment involving the full MAPS, injecting top and middle SoniDo features yields performance
improvement. However, no improvement is observed when all the features from three layers are injected.
A similar trend can be observed from the results ofMusicGen Large . We assume that the network
capacity required to interpret all the information contained in the features could exceeded that of hFT-
Transformer, negatively impacting the model. This suggests that, disentangling feature information on the
basis of information granularity to �lter out irrelevant information is crucial for such injection.
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Table 5: Music source separation. Evaluation results on MUSDB18 and MDXDB21.

Model
MUSDB18 (BSSEval v4 SDR (dB) ) MDXDB21 (global SDR (dB) )

Bass Drums Other Vocals Average Bass Drums Other Vocals Average

Open-Unmix (UMX) 4.01 4.35 2.79 5.66 4.20 4.50 4.46 2.66 5.55 4.29
UMX + MusicGen Small 4.25 4.55 3.18 5.66 4.41 4.61 4.29 2.92 5.42 4.31
UMX + MusicGen Large 3.97 4.25 3.13 5.28 4.16 4.55 4.04 2.95 5.35 4.22
UMX + SoniDo 4.37 4.16 3.00 5.91 4.36 4.71 4.43 2.64 5.69 4.37

HTDemucs (default) 8.94 8.22 5.55 7.56 7.57 7.86 7.89 5.09 7.70 7.13
HTDemucs (ablation 1) 8.81 8.20 5.70 7.69 7.60 7.94 7.97 5.16 7.91 7.24
HTDemucs (ablation 2) 8.75 8.64 5.78 7.85 7.76 7.96 7.69 5.12 7.89 7.17
HTDemucs + STFT-2048 5.65 6.22 4.45 6.56 5.72 5.84 6.13 4.40 6.85 5.80
HTDemucs + STFT-4096 6.44 6.25 4.29 6.28 5.81 6.18 6.19 4.43 6.83 5.91
HTDemucs + CLAP 8.25 7.37 5.21 7.21 7.01 7.37 7.51 4.82 7.47 6.79
HTDemucs + MusicGen Small 8.86 8.03 5.59 7.57 7.51 7.44 8.31 5.26 7.81 7.21
HTDemucs + MusicGen Large 8.17 7.50 5.54 7.66 7.22 7.40 7.37 4.93 7.73 6.86
HTDemucs + Jukebox 7.12 6.65 4.77 6.84 6.35 6.58 6.58 4.59 7.12 6.22

HTDemucs + SoniDo 9.50 8.65 5.91 8.07 8.03 8.14 8.16 5.21 8.04 7.39

HTDemucs (trained on SDXDB23_Bleeding) 3.86 5.52 3.53 5.70 4.65 6.20 5.98 4.53 6.69 5.85
HTDemucs + SoniDo (trained on SDXDB23_Bleeding) 5.50 6.06 3.97 5.82 5.43 6.41 6.40 4.64 7.19 6.16

4.2.2 Music Source Separation: UMX, HTDemucs

We select Open-Unmix (UMX) (Stöter et al., 2019) and Demucs (HTDemucs) (Rouard et al., 2023) for
feature injection. UMX estimates the time-frequency mask of the target source using recurrent neural
network (RNN) blocks. HTDemucs is a hybrid model with waveform U-Net branch and spectral U-Net
branches. We inject the extracted features into the encoder block for UMX using a down-sampling block
and in each HTDemucs branch using a cross-domain Transformer (details in Appendices E.1 and E.3).
Based on the observation in Section 4.2.1 and for simplicity, we inject only top-level features fromSoniDo .

Table 5 lists the SDR scores on the test split of MUSDB18 Ra�i et al. (2017) and the hidden split of
MDXDB21 Mitsufuji et al. (2022); Fabbro et al. (2023). The details of the experiments are provided in
Appendix E. Similar to the experiment discussed in Section 4.2.1, a faster loss decrement is observed, as
shown in Figures 12 and 13 in Appendix E. Injecting theSoniDo features into both UMX and HTDemucs
greatly boosts the separation performance for both models, even on the unseen dataset MDXDB21. It also
improves the separation performance of HTDemucs when training on data corrupted by bleeding errors
(SDXDB23_Bleeding) Fabbro et al. (2023). However, the MusicGen features do not always improve the
results. Injecting the MusicGen Small features improved UMX, but not for the other cases. According to
the ablation study results, injecting short-term Fourier transform (STFT) signal, CLAP features, MusicGen
features, or Jukebox features leads to unstable training. However, no such behavior is observed when injecting
the SoniDo features into HTDemucs. We assume that performance can be improved if instability during
training is avoided. As mentioned in Section 4.2.1, interpreting information contained inMusicGen Large
could cost too much capacity of the downstream model and result in performance degradation.

In summary, we observed that injecting the SoniDo features into separation models not only yields faster
training and better performance but also improves the robustness to dataset corruption.

4.2.3 Music Mixing: Mix-Wave-U-Net, CRAFx2

Mix-Wave-U-Net (Steinmetz et al., 2022) along with a modi�ed CRAFx (Martínez-Ramírez et al., 2020),
henceforth referred to as CRAFx2, are used as the baselines. The input to both networks is the stereo stems
pre-processed by Fx-normalization (Martínez-Ramírez et al., 2022), and the output is the stereo mixture.
These models do not handle high-level information relevant to mixing, such as genre, instrumentation, or
mood. Conditioning these models with extracted features, which implicitly contain such information, is
expected to improve mixing performance. The features are computed from the monaural downmix of the
mixture, which corresponds to the summation of the Fx-normalized input stems. To incorporate these
features, we condition both networks using Feature-wise Linear Modulation (FiLM) layers (Perez et al.,
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Table 6: Music mixing. Evaluation results on the MDXDB21-dry and MUSDB18 test sets include mean
absolute percentage error for audio e�ect-related features, their average, and stereo-invariant loss. More
details are provided in Table 15.

Model
MDXDB21-dry test set MUSDB18 test set

Spectral Panning Dynamic Loudness Average
Stereo

Spectral Panning Dynamic Loudness Avg
Stereo

Invariant Invariant

Mix-Wave-U-Net (default) 0.234 0.215 0.073 0.168 0.173 89.631 0.201 0.164 0.085 0.167 0.154 34.253
Mix-Wave-U-Net + Jukebox 0.240 0.231 0.075 0.154 0.175 83.717 0.206 0.187 0.082 0.157 0.158 32.573
Mix-Wave-U-Net + MusicGen Small 0.240 0.197 0.064 0.147 0.162 80.161 0.214 0.158 0.079 0.163 0.153 32.151
Mix-Wave-U-Net + MusicGen Large 0.241 0.231 0.066 0.145 0.171 81.161 0.205 0.192 0.075 0.167 0.160 32.649
Mix-Wave-U-Net + SoniDo 0.226 0.180 0.067 0.131 0.151 78.180 0.186 0.175 0.063 0.179 0.151 30.116

CRAFx2 (default) 0.193 0.179 0.070 0.152 0.148 82.095 0.193 0.154 0.081 0.165 0.148 32.856
CRAFx2 + Jukebox 0.231 0.249 0.075 0.144 0.175 87.973 0.216 0.220 0.082 0.165 0.171 36.172
CRAFX2 + MusicGen Small 0.229 0.244 0.072 0.148 0.173 87.273 0.211 0.204 0.083 0.178 0.169 36.418
CRAFX2 + MusicGen Large 0.228 0.219 0.073 0.132 0.163 87.318 0.224 0.206 0.080 0.175 0.171 36.519
CRAFX2 + SoniDo 0.221 0.175 0.064 0.171 0.158 79.861 0.187 0.154 0.076 0.169 0.146 30.155

2018). For Mix-Wave-U-Net, we inject features into the up-sampling and bottleneck one-dimensional (1D)
convolutional blocks. For CRAFx2, we use FiLM layers to condition both the latent-space mixer and
synthesis back-end (see Appendix F.1).

We train all models on MUSDB18, and the stereo-invariant loss, along with all training hyperparameters,
remains the same, as in a previous study (Martínez-Ramírez et al., 2022). Due to the inherent subjectivity
of the task, identifying the best model is challenging. Thus, as shown in Table 1, an objective evaluation
is conducted by measuring the proximity between the output mixes and target mixes on the same test sets
as in Martínez-Ramírez et al. (2022). The proximity measurement is based on objective metrics (Steinmetz
et al., 2022; Martínez-Ramírez et al., 2022). These metrics consist of spectral, panning, dynamic, and
loudness low-level audio features, which are the key audio characteristics often manipulated during the
mixing process. Further details and experiments are provided in Appendices F.2 and F.3, respectively.

As shown in Table 6, conditioning both architectures with the SoniDo features improved objective per-
formance. The training and validation curves in Figure 14 of Appendix F.3 show a faster loss decrease in
early epochs and better generalization, respectively. Although there is no standardized objective evaluation
due to the subjective nature of the task (Steinmetz et al., 2022), the presented metrics suggest that the
best-performing model closely aligns with the target mixes, resembling professional human-made mixes.

Using the SoniDo features leads to the best performance. The Jukebox andMusicGen features provide
improvements but not as e�ective as those ofSoniDo , particularly for CRAFx2, where the default model
outperforms both Jukebox andMusicGen in various metrics. For MusicGen , we assume this performance
gap may be attributed to its training on 32 kHz audio compared with the 44.1 kHz used forSoniDo , which
limit its e�ectiveness for full-band tasks, such as music mixing, that require higher sampling rates. There is
no data-driven approach that used task-agnostic features of the input stems for music mixing improvement.
Thus, we can conclude that incorporating theSoniDo features bene�ts both the training and performance
of automatic music mixing models. This aligns with recent design studies (Le�ord et al., 2021; Vanka et al.,
2023), advocating for the incorporation of contextual inputs.

5 Ethical Concerns

To train SoniDo , we acquired an internal dataset of library music with licensing explicitly allowing machine
learning training. The dataset is mostly non-vocal, biased toward orchestral and western music. A model
trained on this dataset is unlikely to characterize equally well for all types of music. The learnt intermediate
embedding may re�ect the bias. When using such a biased music foundation model as a performance booster,
thorough veri�cation is required before using such a model for practical use or the decision process.
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6 Conclusions

We extended the use of music foundation models from MIR to generic music downstream tasks. The
task-agnostic intermediate representation extracted using proposedSoniDo model has been applied to task-
speci�c models of music tagging, music transcription, music source separation, and music mixing. On the
basis of the evaluation results, performance improvement is observed for all selected music downstream tasks.
This suggests that incorporating the intermediate features extracted from a pre-trained auto-regressive music
foundation model should be considered as a generic booster in future development of task-speci�c models.
This is especially helpful when it is di�cult to acquire a su�cient dataset or the computation resource does
not allow large-scale training. A study on the bias propagation of a pre-trained music foundation model to
a downstream task model should be conducted in another future work.
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A Related Work

A.1 Understanding models

Understanding models based on supervised learning (SL) has shown good performance on music tagging
tasks (Zhong et al., 2023a; Koutini et al., 2022; McCallum et al., 2022), but they have di�culties into
addressing tasks that involve unseen annotations during inference (McCallum et al., 2022; Niizumi et al.,
2022).
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Self-supervised learning (SSL), however, learns features without human annotation. For example, contrastive
learning re�ects data similarity and dissimilarity in the learned representation (Spijkervet & Burgoyne, 2021;
McCallum et al., 2022). Masked reconstruction asks the model to predict the missing data and has been
widely applied to language (Devlin et al., 2018), speech (Hsu et al., 2021), sound (Niizumi et al., 2022), and
music tasks (Chen et al., 2023). MERT (Li et al., 2023b) further extended masked reconstruction to both
acoustic and music features.

SSL methods achieved high performance across a wider range of tasks than SL methods. While a comprehen-
sive set of downstream tasks, including music tagging (Li et al., 2023b; McCallum et al., 2022; Niizumi et al.,
2022), music source separation (Chen et al., 2023; Li et al., 2023b) and music bandwidth extension (Zhong
et al., 2023b), has been examined, some tasks related to music production, such as music transcription and
music mixing, have not been well-investigated.

A.2 Generative models

Most understanding models are encoder-only models, in which generation is not covered. In contrast, gen-
erative models have the ability of generation as well as learning representation (Chen et al., 2020; Dhariwal
et al., 2020). Some generative models are based on auto-regressive modeling, thus can execute not only
generation but tasks such as music continuation (Dhariwal et al., 2020; Agostinelli et al., 2023; Copet et al.,
2023). Recent di�usion-based models can even execute music inpainting (Forsgren & Martiros, 2022; Li et al.,
2023a; Huang et al., 2023) and music style transfer (Liu et al., 2023). Multi-tasking can also be achieved by
task-augmentation (Li et al., 2023a) or explicit design (Yang et al., 2023). Generation can be conditioned
by text, lyrics, and melody (Copet et al., 2023; Agostinelli et al., 2023; Dhariwal et al., 2020). The use of
generative models greatly extends the coverage of applicable music downstream tasks.

A.3 Neural tokenizer in generative models

Vector quantization (VQ) (van den Oord et al., 2017) has been a promising step for music generative
modeling. Tokens obtained by VQ can be better characterized with generative models than raw signals.
Building music foundation models on top of tokenizers has become a mainstream approach (Agostinelli
et al., 2023; Copet et al., 2023).

VQ-VAE-2 (Razavi et al., 2019) �rst extended VQ learning to hierarchical discrete representation learning in
computer vision, which prompted the emergence of the pioneering music generation model (Dhariwal et al.,
2020). It was shown to learn global and local information in top and bottom levels, respectively. Another
variant of VQ aimed at learning structured discrete representation is residual VQ, which assigns multiple
codes to encoded vectors in a residual manner (Zeghidour et al., 2022; Lee et al., 2022). Residual VQ was
initially proposed for neural audio codec (Zeghidour et al., 2022; Défossez et al., 2023) and shown to result
in coarse-to-�ne representation (Lee et al., 2022).

HQ-VAE was proposed to encompass two advanced VQ schemes including RVQ within the variational Bayes
framework (Takida et al., 2024). The uni�ed scheme enhances the codebook utilization of the VQ-based
models due to the e�ect of self-annealing (Takida et al., 2022). The authors constructed a hierarchical latent
space with three levels and jointly trained the levels on an audio dataset. The model achieved local-to-global
representation similar to VQ-VAE-2, thus being freed from layer collapse.

B Architecture of SoniDo

SoniDo is a generative model that generates music samples conditioned on given text prompts. We train
the model using an internal dataset contains around 115k studio-quality library music tracks sampled at
44.1 kHz. Their lengths vary from 30s to 150s, their tempos vary between 50bpm to 200bpm, and the total
length is around 4,000h. 90% of the dataset is non-vocal. Although there are more than 50 genres included
in the dataset, it is biased toward orchestral and western music. To generate music samples, we use the
three priors in SoniDo consecutively from the top level to the bottom level. It is important to note that

25



Published in Transactions on Machine Learning Research (05/2025)

during music generation, we use the token sequences sampled from top and middle priors for conditioning.
For training and feature extraction, however, we rely on ground-truth tokens.

Given a text prompt, we �rst obtain the CLAP embedding y text = CLAP.text_embedding (x). Conditioned
on y text , the top prior transformer generates a token sequenceZ 1 in an auto-regressive manner. Subsequently,
Z 1 is fed into the middle conditional transformer along with y text to generateZ 2. The length of Z 2 is four
times that of Z 1. Similarly, we generateZ 3 using the bottom conditional prior by conditioning it with Z 1,
Z 2 and y text . The length of Z 3 is once again four times that ofZ 2. Finally, all the three token sequences
Z 1:3 are fed into the decoder of the stage-1 model for audio reconstruction.

B.1 Stage-1 model

The stage-1 model forSoniDo is based on the aforementioned SQ-VAE-2 structure, as illustrated in Figure
2(a). It is a three-level SQ-VAE-2 (i.e., L = 3 ) autoencoder. It comprises three encoding blocks, denoted
as encoderbottom , encodermiddle , and encodertop , where the bottom layer processes the input audio sampled
at 44.1 kHz. Each encoding block consists of 1-D convolutional layers with a strided convolution for down-
sampling. The down-sampling ratios are set to 8, 4, and 4 forencoderbottom , encodermiddle , and encodertop ,
respectively. The stage-1 model has three decoding blocks,decoderbottom , decodermiddle , and decodertop .
Each is a mirrored version of the encoding block with the same resolution. We train the stage-1 model
on top of the HQ-VAE framework on 4; 000h of 44:1-kHz studio-quality library music. The token sequence
generated by the stage-1 model is used to train the priorP(Z 1:3 ), as presented in the subsequent section.

B.2 Stage-2 model

For the stage-2 model, we followed Jukebox (Dhariwal et al., 2020), which generates hierarchical tokens with
the same down-sampling rates as the stage-1 model (i.e, a token in the top/middle/bottom level compresses
128/32/8 audio samples). Speci�cally, we train three transformers in an auto-regressive manner to model
P(Z 1jyaudio ), P(Z 2jZ 1; yaudio ), and P(Z 3jZ 1:2 ; yaudio ), which we call the top prior, middle conditional prior,
and bottom conditional prior, respectively.

Initially, we train a sparse transformer to learn the probability distribution of top-level token sequence Z 1 in
an auto-regressive manner, conditioned onyaudio (i.e., P� 1 (Z 1jyaudio )). Subsequently, we train other sparse
transformers to model P� i (Z l jZ <l ; yaudio ). These transformers are conditioned by token sequences from
upper levels. We used similar con�gurations of Jukebox's transformers, but modi�ed some hyperparameters,
as shown in Table 7. The primary distinction between them lies in the conditioning mechanism for each
prior. We modi�ed conditioning modules to use yaudio , instead of the original conditioning inputs employed
in Jukebox such as artists, genres, and lyrics. In contrast to Jukebox, the bottom conditional transformer in
our model is conditioned on all the upper token sequencesZ <l , diverging from Jukebox's approach, where
the l th transformer is conditioned on the adjacent upper token sequencesZ l � 1. This di�erence is a result of
the hierarchical structure obtained with SQ-VAE-2, which has a tight interrelation between di�erent levels,
unlike Jukebox's independently trained multi-level token sequences.

We explain the entire conditioning mechanism using the bottom conditional prior as an example, which allows
us to address all the detail (see Figure 2). We �rst obtain the hierarchical discrete representationsZ 1, Z 2,
and Z 3 by applying the pre-trained stage-1 model to an input musical audiox. The goal of training is to make
the model execute next-token prediction onZ 3, conditioned on Z 1, Z 2 and the CLAP embedding yaudio =
CLAP:audio _ embedding(x). We condition the transformer in a frame-by-frame manner. Since each level has
a di�erent time resolution, each token sequence from upper level is �rst converted into embedding sequence
and then up-sampled to the next time resolution by a transposed convolution. We use two up-sampling
modules: one forZ 1 ! Z 2 and the other for Z 1; Z 2 ! Z 3. The conditioning module Z 1 ! Z 2 up-samples
the embedding sequenceZ 1 to match the resolution of Z 2. Similarly, up-sampling module Z 1; Z 2 ! Z 3

takes Z 2 as input, along with the up-sampled embeddings ofZ 1, generating further up-sampled embeddings
tailored to Z 3 's resolution. The resulting frame-level embedding is used to condition the transformer forZ 3.

For the actual next-token prediction task, we shift the token sequenceZ 3 by one position to the right and
embed each token to a continuous vector using an embedding layer. The �rst token, which is empty, is
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