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Abstract

T cell receptors (TCRs) bind to pathogen- or self-derived epitopes to elicit a T
cell response as part of the adaptive immune system. Determining the specificity
of TCRs provides context for immunological studies and can be used to identify
candidates for novel immunotherapies. To avoid costly experiments, large-scale
TCR-epitope databases are queried for similar sequences via various distance func-
tions. Here, we developed the deep-learning based distance meTCRs. Contrary to
most previous approaches, the method avoids computational expansive pairwise
string operations by comparing TCRs in a numeric embedding. In contrast to
models which are trained specificity-agnostic, we directly utilize epitope infor-
mation by applying deep metric learning to guide the training. Summarizing, we
present meTCRs as a scalable alternative to embed TCR repertoires for clustering,
visualisation, and querying against the ever-increasing amount TCR-epitope pairs
in publicly available databases.

1 Introduction

T cells recognize epitopes, i.e., peptide sequences derived from antigens, via the highly variable T
cell receptor (TCR). Due to the immense diversity, the adaptive immune system is able to fight a
wide variety of diseases including infections and tumors: At least 107 different TCR sequences exist
in an individual human being, while population wide estimation exceed 1020 TCRs [1]. Through
recent advances in single-cell technology, T cell specificity can now be determined in large TCR
repertoires for predefined epitopes [2]. Early studies have shown, that TCRs with similar sequences
are likely bind to the same epitope [3, 4]. Following, various approaches were developed to cluster
TCR sequences based on their specificity, or to perform database queries by calculating pairwise
sequence similarity. Most approaches are either based on string-based comparison [5, 6, 7] or
numeric embeddings [8, 9]. Typically, string-base approaches make use of heuristic similarity
measurements, which often rely of computationally costly pairwise string operations. While this is
partially avoided for numeric representations, they usually rely on unsupervised approaches such as
biophysical-informed embeddings or Variational Autoencoders, which are not specifically trained
to preserve epitope specificity. To circumvent these shortcomings, we propose meTCRs - a numeric
TCR embedding, which incorporates specificity annotation during training by applying supervised

*These authors contributed equally to this work.

36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, USA.



deep metric learning [10]. We envision meTCRs to become a valuable tool to derive meaningful
representations of TCRs, which seamlessly scale to downstream tasks such as clustering on large-scale
single-cell datasets or querying vast databases to assign specificity. Furthermore, the method can
continuously improve by incorporating novel developments in the field of deep metric learning and
by the ever-increasing amount of publicly available training data.

2 Method

Data pre-processing: Paired epitope and TCR sequencing data were obtained from three publicly
available databases IEDB [11], VDJdb [12], and McPAS-TCR [13] for training and validation. More
specifically, we extracted the hypervariable complementarity-determining region 3 of the beta-chain
(CDR3-β) of the TCR as it lays in close proximity to the epitope and is assumed to be the driving
factor in antigen recognition [14] and is therefore most prevalent in those databases. To harmonize the
datasets, leading cysteine and ending phenylalanine or tryptophan were removed from the CDR3-β
sequences. The amino acid sequences were end-padded to the maximal sequence length (l = 36) in
the dataset and one-hot encoded. The epitope annotations were solely used as categorical labels.

Architecture: Let D = {(xk
TCR, b

k)}Nk=1 be a dataset consisting of the pre-processed CDR3-β
sequence xk

TCR ∈ Al and the categorical binding label bk ∈ B for each database entry k, where A
represents the set of possible amino acids and padding character, and B corresponds to the set of all
binding epitopes. meTCRs consists of an embedding model E, which takes the xk

TCR as an input. As
embedding model, we implemented multilayer perceptrons (MLPs), convolutional neural networks
(CNNs), long short-term memory networks (LSTMs) [15], and transformers [16]. For the first three
architectures the one-hot encoded CDR3-β sequence is directly used as input. For the transformer
encoder, an additional position-wise encoding was added to a learnt embedding layer. Eventually, a
final linear layer is applied to the output of the last network layer. Thereby, the embedding network
projects the input data into the representation hi

TCR = E(xi
TCR) ∈ Rdemb with the embedding

dimension demb on which all downstream tasks are performed.

Loss function: Most deep metric learning losses are calculated on batches of both positive and
negative pairs [10]. Typically, selecting informative tuples during training is a challenging design
choice. In the case of meTCRs, a pair of TCRs is a positive pair if the receptors of database entry A
and B bind on a common epitope (bA = bB) and negative if this is not the case (bA ̸= bB). However,
common TCR databases only contain experimentally validated epitope bindings and miss negative
pairs. Furthermore, TCRs might be cross-reactive, i.e., a TCR may recognize multiple epitopes.
Therefore, randomly creating samples by pairing TCRs from different epitope classes can create
false-negative pairs. The Barlow Twin loss

LBT (A,B) =
∑
i

(1− CAB
ii )2 + λ

∑
i

∑
j ̸=i

(CAB
ij )2 (1)

circumvents these challenges [17]. Here, the cross correlation matrix

with CAB
ij =

∑
m hA

m,ih
B
m,j√∑

m(hA
m,i)

2
√∑

m(hB
m,j)

2
(2)

of batch-normalized inputs is calculated on positive pairs only. Overall, the Barlow Twin loss maxi-
mizes the similarity between paired representation while the embedding’s redundancy is minimized.
Batch normalization ensured that no trivial representation is learned even though only positive pairs
are used.

Training Details: The models were trained on the processed data from IEDB and VDJdb excluding
duplicates, which resulted in N=145,331 entries. Pairs of (Xk

TCR, b
k) were randomly divided into

training and validation set with a split of 80%-20%. Due to the nature of the Barlow Twin loss, the
batches need to be composed of paired input sequences. To this end, epitope classes which contained
only one TCR sequence within a set were removed. During training, hierarchical sampling is applied
to build batches of size N . In the first step, N

2 epitopes are sampled randomly and proportional to the
epitope distribution within the training set to prevent over-representation of small classes. Following,
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Table 1: Classification metrics of models trained with the IEDB-VDJdb data and TCRmatch on the
McPAS-TCR dataset.

Method F1@10 P@10 R@10 MAP@1 MAP@10 NMI

MLP 0.215 0.136 0.505 0.201 0.078 0.268
CNN 0.248 0.161 0.540 0.217 0.096 0.287
LSTM 0.209 0.133 0.486 0.146 0.072 0.271
Transformer 0.328 0.227 0.593 0.314 0.164 0.346
TCRmatch 0.336 0.232 0.609 0.330 0.170 —

two binding TCRs are sampled for all selected epitopes. The model was trained using the ADAM
optimizer [18]. All hyperparameter of the embedding model, the optimizer, and the loss function
were optimized via the Tree-Structured Parzen Estimator (TPE) algorithm [19] as implemented in the
Optuna framework [20] to maximize the mean average precision (MAP) [10] at 10 on the validation
set (see Results).

3 Results

We generated an independent set from the processed McPAS-TCR database by removing all pairs
which already appear in the training or validation set from the IEDB and VDJdb and epitopes with
only one reported TCR, which resulted in a test set T of N=7,733. Note, that prediction on this set
are especially challenging due to a shift in epitopes between databases. Only two out of the five most
abundant epitopes in the training set are present in the test set, and two out of the five largest classes
in the test set are available in the training set with more than 50 TCRs. We embedded the test set via
the different versions of the embedding network E, followed by calculating pairwise distances using
the Euclidean norm. Additionally, pairwise distances are derived from TCRmatch as a string-based
baseline method.

To measure the ability to predict specificity with meTCRs, we report classification based metrics.
Here, the k-nearest neighbors FR

q are determined for each element q of the test set based on the
pairwise distances. Following, the metrics for F1-score (F1@R), precision (P@R), and recall (R@R)
at R = 10 are reported. While R@R describes the average of samples for which a correct pair is
contained within the R nearest neighbors, P@R is calculated as the average amount of matching
samples within R nearest neighbors. F1@R is calculated as the harmonic mean between R@R and
P@R. Further, we report the mean average precision at R ∈ {1, 10}

MAP@R =
1

N

∑
bq∈T

1

R

∑
bi∈FR

q

1(bq=bi)P@i (3)

as proposed in [10] which incorporates the rank of the retrieval. To evaluate the consistency of
meTCRs’ embedding space, we cluster the embedded samples via the K-Means algorithm with K
equal to the number of epitope classes in the test set and report the normalized mutual information
(NMI). Finally, we report the AUC-ROC as a threshold based evaluation metric.

The choice of embedding network heavily influenced the models’ performance. The transformer-
based model surpassed the remaining models by a large margin on all classification and clustering
metrics (Table 1). However, meTCRs still falls short compared to the string-comparison based method
TCRmatch by approximately one point across all metrics. In this evaluation, the predicted specificity
by meTCRs and TCRmatch corresponds to the true specificity in approximately one third of the
database queries. While this performance is not yet sufficient to accurately determine the specificity
of TCRs, it provides researchers with a valuable initial guess for further experimental validation.

Similar trends between the different embedding networks were also observed to a lesser degree for
AUC-ROC based evaluation across the five most abundant epitopes (Table 2), except for the LSTM-
based model, which surprisingly outperformed the transformer-model on the two most abundant
epitopes and on the weighted average. Interestingly, meTCRs outperformed TCRmatch by large
margins for most classes with at least one model version. Further, there is a large discrepancy in the
performance for different epitopes. It needs to be further evaluated, whether the low similarity for
these epitopes are inherent to the dataset and why different versions of the models fail to generalize
to for individual classes.
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Table 2: Support in the test (n-Test) and training set (n-Train) and AUC-ROC of models trained
with the IEDB-VDJdb data and TCRmatch on the McPAS-TCR dataset for the five most abundant
epitopes (long sequences were abbreviated).

Epitope n-Test n-Train MLP CNN LSTM Transformer TCRMatch

LPRRSGAAGA 1,983 159 0.510 0.559 0.650 0.508 0.542
CRVLCCYVL 404 31 0.511 0.554 0.611 0.577 0.447
WEDLFCDES... 364 0 0.538 0.541 0.679 0.737 0.487
GILGFVFTL 358 3,502 0.435 0.435 0.472 0.528 0.485
RFYKTLRAE... 302 2 0.644 0.633 0.607 0.810 0.716

Weigthed AVG 0.517 0.550 0.626 0.569 0.537

4 Discussion

Here, we introduced meTCRs for clustering and querying databases of TCRs as an alternative to
classical string metrics or novel unsupervised approaches. Contrary to previous methods, meTCRs
directly utilizes epitope binding information during training of a TCR distance by applying deep
metric learning. The method can be easily scaled to large datasets or databases by pre-computing
the numeric representation for each TCR, followed by the calculation of the computational cheap
Euclidean pairwise distances on these embeddings.

In future work, the method can further be improved by adjusting for the imbalance in the databases
by different sample schemes, loss weigthing, or further model adaptation. Exemplary, the IEDB,
as largest source of TCR-epitope pairs, contains a total of 939 different classes. However, 49%
of the TCRs stem from one of eight epitopes. Second, the performance can further be improved
by collecting the ever-increasing amount of publicly available binding data. In previous studies,
additional information on the TCR such as the α-chain, or V(D)J-gene annotation benefited TCR-
epitope prediction and clustering [3]. However, full TCR-sequence data is sparse in public databases.
Therefore, the model architecture could be adjusted for the missing value problem to embed TCRs with
various degrees of information. Lastly, the presented evaluation highlights, that meTCRs generalizes
well to unseen epitopes. However, an in-depth validation of meTCRs is yet to be performed for a
wider variety of diseases and use cases. One major application of the method will be queries to
databases, where most of the epitopes were already observed by the model during training. Therefore,
meTCRs needs to be thoroughly compared to common methods like TCRmatch [6], TCRdist [5], and
DeepTCR [8] for performance and computational cost in this use-case.

Upon these improvements, we envision meTCRs to become a fast and scalable solution for providing
a specificity-informed representation of TCR repertoires that enables downstream tasks such as
visualisation and clustering. Especially the ability to conduct computationally efficient queries to
large TCR-epitope databases, provides a compelling alternative to determine specificity of TCR
sequences from low-throughput experiments and large-scale single-cell studies without the need for
exhaustive wet-lab experiments.

Data and code availability

The corresponding data are publicly available and were downloaded from IEDB (https://www.
iedb.org/, accessed March, 6th, 2022), VDJdb (https://vdjdb.cdr3.net/, accessed Febru-
ary, 25th, 2022), and McPAS-TCR (http://friedmanlab.weizmann.ac.il/McPAS-TCR/, ac-
cessed March, 1st, 2022). The code to reproduce the results is available at https://github.
com/SchubertLab/meTCRs. All reported models can be downloaded from https://doi.org/10.
5281/zenodo.7113264.
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