
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RANDOM CONTROLLED DIFFERENTIAL EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a training-efficient framework for time-series learning that combines
random features with controlled differential equations (CDEs). In this approach,
large randomly parameterized CDEs act as continuous-time reservoirs, mapping
input paths to rich representations. Only a linear readout layer is trained, resulting
in fast, scalable models with strong inductive bias. Building on this foundation, we
propose two variants: (i) Random Fourier CDEs (RF-CDEs): these lift the input
signal using random Fourier features prior to the dynamics, providing a kernel-free
approximation of RBF-enhanced sequence models; (ii) Random Rough DEs (R-
RDEs): these operate directly on rough-path inputs via a log-ODE discretisation,
using log-signatures to capture higher-order temporal interactions while remain-
ing stable and efficient. We prove that in the infinite-width limit, these model in-
duces the RBF-lifted signature kernel and the rough signature kernel, respectively,
offering a unified perspective on random-feature reservoirs, continuous-time deep
architectures, and path-signature theory.
We evaluate both models across a range of time-series benchmarks, demonstrating
competitive or state-of-the-art performance. These methods provide a practical
alternative to explicit signature computations, retaining their inductive bias while
benefiting from the efficiency of random features. Code is publicly available at:
https://anonymous.4open.science/r/RandomSigJax-C768/

1 INTRODUCTION

Controlled differential equations (CDEs) generalize ordinary differential equations by allowing dy-
namics to be driven by an exogenous path x : [0, T ] → Rd rather than by time alone. This view-
point has become central to modern time-series learning: it underlies the continuous-depth limit of
residual networks (Cirone et al., 2023), connects naturally to deep state-space models and sequence
models with long context (Rangapuram et al., 2018; Gu & Dao, 2023), and yields the neural CDE
paradigm in which the vector field is represented by a neural network and learned from data (Kidger
et al., 2020; Jhin et al., 2024). Beyond modelling, CDEs provide a clean analytical lens for studying
expressivity and invariances of sequence models.

A complementary analytic tool for path-valued data is the signature of a path, i.e., the sequence of
iterated integrals that linearizes CDE solution maps in the tensor algebra (Lyons, 1998). Signatures
also induce powerful kernels on path space with universality and stability guarantees. In practice,
however, signature features and signature kernels can be computationally demanding at high trun-
cation levels, motivating approximations and random features.

Reservoir computing offers an appealing alternative: use a large, randomly initialized dynamical
system to produce rich features of the input, and train only a linear readout (Lukoševičius & Jaeger,
2009). This training-light approach scales well and often works competitively. Yet, principled
reservoirs for path data that come with nontrivial statistical or kernel limits – and that retain the
continuous-time structure of CDEs – are less developed.

1.1 RELATED LITERATURE

A growing body of research has drawn connections between random neural networks and kernel
methods. Early works demonstrated that infinitely wide neural networks converge to Gaussian pro-
cesses (Neal, 1996; Williams, 1996). This idea was later extended to deep networks and their train-
ing dynamics: in the infinite-width limit, gradient descent on a network is equivalent to kernel
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regression with the so-called Neural Tangent Kernel (Jacot et al., 2018). In parallel, random feature
models were introduced to approximate kernel maps with random projections (Rahimi & Recht,
2007; 2008). For example, random Fourier features approximate shift-invariant kernels with a lin-
ear readout, while Extreme Learning Machines fix hidden weights and train only the output layer,
achieving universal approximation under standard conditions on the activation and sufficient width
(Huang, 2014). These insights inspire reservoir computing, which leverages large random dynami-
cal systems as feature extractors (Maass et al., 2002; Jaeger, 2007). This approach scales well and
has demonstrated strong performance in time-series forecasting and classification tasks.

For sequence data, the path signature provides an expressive feature map with strong guarantees
(Lyons, 1998), spawning a body of work on signature features and signature kernels in learning
and statistics (Chevyrev & Kormilitzin, 2016; Cochrane et al., 2021; Salvi et al., 2021b; Toth &
Oberhauser, 2020). A key advance is the PDE/Volterra characterisation and scalable computation of
the untruncated signature kernel (Salvi et al., 2021a), with recent numerical refinements (Cass et al.,
2025) and applications across regression, classification, and Bayesian inference (Lemercier et al.,
2021a;b).

Randomized signatures compress path information by sampling random linear functionals of the
(log-)signature coordinates. Discrete-time constructions with approximation and concentration
guarantees were developed by Cuchiero et al. (2021), their practical efficacy as reservoirs for learn-
ing rough dynamics has been demonstrated in Compagnoni et al. (2023), while universal approxi-
mation on path space via finite mixtures of randomized signature features was established by Biagini
et al. (2024).

Of particular relevance, Toth et al. (2025) propose Random Fourier Signature Features (RFSF): the
input path is first lifted pointwise into a RBF reproducing kernel Hilbert space via random Fourier
features and the signature transform is then approximated in that feature space. We adopt RFSF as
a strong baseline and point of comparison for our random differential equation-based reservoirs.

1.2 CONTRIBUTIONS

In this work, we bridge these viewpoints by developing random feature models for path-valued
data that leverage the continuous-time dynamics of CDEs. Our contributions can be summarized as
follows:

• Models. We propose two architectures: (i) RF-CDE, which lifts inputs with random Fourier
features and then evolves them through a random CDE; and (ii) R-RDE, which operates
directly on geometric rough paths via a log-ODE discretization that uses log-signatures to
capture higher-order temporal interactions.

• Theory. We prove infinite-width limits: RF-CDE converges to the RBF-lifted signature
kernel, and R-RDE converges to the rough signature kernel.

• Efficiency. At finite width, both models require training only a linear readout, yielding
fast, scalable pipelines in the spirit of reservoir computing. We provide a user-friendly,
optimized JAX implementation, RandomSigJax.

• Experiments. Across time-series benchmarks, our models are competitive with – or sur-
pass – strong baselines, including Random Fourier Signature Features.

2 MATHEMATICAL BACKGROUND

We use the following notation throughout:

• V and W denote Banach spaces.
• ∆T := {(s, t) ∈ [0, T ]2 : 0 ≤ s ≤ t ≤ T} is the (time) two–simplex.
• MN (R) is the set of N ×N real matrices.
• ξN is the Gaussian measure of matrices in MN (R): if the random matrix A ∼ ξN then its

entries Aij are i.i.d. according to a standard normal distribution.

• C1(J ;V ) is the space of continuously differentiable paths from a compact interval J ⊂ R+

into V .
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2.1 CONTROLLED DIFFERENTIAL EQUATIONS

Controlled differential equations (CDEs) describe dynamics driven by a path x : [0, T ] → Rd rather
than by time alone:

Zt = z0 +

d∑
i=1

∫ t

0

fi
(
Zs

)
dx i

s , fi : W → W. (1)

They capture how a system Zt ∈ W reacts to an external control x, and sit at the heart of continuous-
time sequence models.

The main subtlety is how to define the integrals in Eq. 1. If x has bounded variation – i.e. finite total
variation, equivalently finite 1-variation (Definition A.1 in Appendix A) – the integrals are classical
Riemann-Stieltjes integrals and the CDE is well-posed under standard Lipschitz conditions on fi.

If x is rougher but has finite p-variation with p < 2, Young integration applies and Eq. 1 still
makes sense provided the vector fields are sufficiently regular. Beyond this threshold (p ≥ 2),
pathwise Riemann–Stieltjes/Young integrals break down; we handle this regime by lifting lift x to a
(geometric) rough path carrying iterated integrals and interpret Eq. 1 via rough integration – see the
rough-path background in Section 2.4.

2.2 SIGNATURE AND SIGNATURE KERNELS

A central tool in the analysis of controlled systems is the path signature, which encodes the essential
information of a path through its iterated integrals. Let x : [0, T ] → V be a continuous path of finite
p-variation with p < 2. Then, for any t ∈ [0, T ], the signature Sig(x)0,t is the unique solution to the
signature CDE:

d Sig(x)0,t = Sig(x)0,t ⊗ dxt, Sig(x)0 = 1 := (1, 0, 0, . . . ),

taking values in the tensor algebra

T ((V )) :=
{
A = (a0, a1, . . . )

∣∣ a0 ∈ R, ak ∈ V ⊗k for k ≥ 1
}
.

equipped with componentwise addition and tensor multiplication ⊗. Explicitly,

Sig(x)0,T =
(
1, S1(x), S2(x), . . .

)
, Sk(x) =

∫
0<t1<···<tk<T

dxt1 ⊗ · · · ⊗ dxtk .

The signature has several important properties, including: (i) it uniquely determines a path up to
tree-like equivalence (Hambly & Lyons, 2010); (ii) robustness to missing or irregular samples; and
(iii) universality, i.e. any continuous functional of a path can be approximated arbitrarily well by
linear functionals of its signature.

As the signature is infinite dimensional, for practical use it is truncated. We define the truncated
tensor algebra over V of order N ∈ N as the quotient TN (V ) := T ((V ))/T>N , by the ideal

T>N = {A = (a0, a1, . . . ) ∈ T ((V )) : a0 = · · · = aN = 0},
and the truncated signature at level N is SigN := π≤N (Sig(·)), with π≤N the canonical projection.

Further details on the tensor algebra are given in Appendix A.1, and Appendix A.2 reviews the main
properties of the signature.

Signature kernels. Endowing T ((V )) with a suitable inner product yields the signature kernel
Kx,y

Sig (s, t) = ⟨Sig(x)0,s, Sig(y)0,t⟩T ((V )). (2)

When the inner product on each tensor power V ⊗k is chosen to be the Hilbert-Schmidt inner product
induced from ⟨·, ·⟩V , the resulting inner product on (a subsect of) T ((V )) can be defined by linearity
as ⟨v, w⟩T ((V )) =

∑∞
k=0⟨vk, wk⟩V ⊗k . The signature kernel is universal and, when the paths are

differentiable, admits an alternative characterization as the solution to the linear hyperbolic PDE
(Salvi et al., 2021a)

∂s∂tK
x,y
Sig (s, t) = ⟨ẋs, ẏt⟩V Kx,y

Sig (s, t), Kx,y
Sig (0, t) = Kx,y

Sig (s, 0) = 1. (3)

Further details on the signature kernels are provided in Appendix A.3.
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2.3 RANDOM FOURIER SIGNATURE FEATURES

The RBF kernel admits an explicit feature representation: there is a map ϕ : Rd → H into its
reproducing kernel Hilbert space (RKHS) – Definition A.2 – such that κRBF(x, y) = ⟨ϕ(x), ϕ(y)⟩H.
Equivalently, by Bochner’s theorem, any shift-invariant positive-definite kernel k(x, y) = f(x− y)
can be written as

k(x, y) =

∫
Rd

ei ω
⊤(x−y) dµ(ω),

for a probability measure µ (Gaussian for RBF). This yields Random Fourier Features (RFF): sam-
ple frequencies ω1, . . . , ωF ∼ µ and define the real map ϕF

µ : Rd → R2F

ϕF
µ (x) =

1√
F

(
ei⟨ω1,x⟩, . . . , ei⟨ωM ,x⟩), ⟨ϕF

µ (x), ϕ
F
µ (y)⟩ ≈ κRBF(x, y). (4)

where we concatenate the real and imaginary part. When the random Fourier feature map is applied
along the path and then the signature is taken we are given the naı̈ve Random Fourier Signature
Features (RFSF), first proposed in Toth et al. (2025):

RFSFN,F(x) := SigN (ϕF
µ (x)) ∈ TN (R2F ). (5)

As F grows, ϕF
µ approximates the RKHS feature map of RBF; as N grows, SigN approaches the full

signature. Hence taking the inner product ⟨RFSFN,F(x),RFSFN,F(y)⟩TN (R2F ) provides a practical
approximation to the RBF–lifted signature kernel, which can be defined in the limit as

Kx,y
Sig-RBF(s, t) = ⟨Sig(ϕ ◦ x)s, Sig(ϕ ◦ y)t⟩T ((H)). (6)

While computing the full signature suffers from the curse of dimensionality, Toth et al. (2025) de-
velops projection schemes that render RFSFs computationally tractable. Recall that, from a com-
putational standpoint, using explicit features rather than kernels avoids constructing and inverting
large Gram matrices, yielding far better scalability.

2.4 ROUGH PATHS

Rough path theory generalizes controlled differential equations to paths of limited regularity, includ-
ing those with finite p-variation for p > 2. In contrast to classical paths, rough paths carry additional
algebraic structure encoding iterated integrals, which enables a well-posed theory of integration and
differential equations driven by such paths.
Definition 2.1 (Rough Path). Let p ≥ 1 and let ω be a control (i.e. ω : ∆T → [0,+∞) is contin-
uous, super-additive, and vanishes on the diagonal). A p-rough path over V controlled by ω is a
continuous map X : ∆T → T ⌊p⌋(V ) such that:

1. X0
s,t = 1 for all s, t ∈ ∆T

2. Chen’s identity holds: Xs,u ⊗ Xu,t = Xs,t

3. it has finite p-variation on ∆T controlled by ω, in the sense

∥πk(X)∥V ⊗k ≤ ω(s, t)i/p

βpΓ(i/p)
, ∀s, t ∈ ∆T , ∀k = 1, . . . , ⌊p⌋,

where βp ∈ R is a constant that depends only on p, and the norm ∥ · ∥V ⊗k is defined in
Eq. 17 in Appendix A.

Definition 2.2 (Geometric Rough Path). A geometric p-rough path is a p-rough path that can be
expressed as the limit, with respect to the p-variation metric (see Definition A.3 in Appendix A), of a
sequence (π⌊p⌋(Sig(x

(n)))) of truncated signatures of bounded variation paths (x(n))n≥1.

We denote by Ωp(V ) the space of p-rough paths and by GΩp(V ) ⊂ Ωp(V ) the geometric ones.
Given our definitions Ω1(Rd) is the space of d-dimensional continuous paths of bounded variation.

The tensor algebra T ((V )) carries the Lie bracket [A,B] := A ⊗ B − B ⊗ A. The free Lie algebra
on V , denoted L((V )), is the smallest Lie subalgebra of T ((V )) containing V ; elements are finite
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linear combinations of iterated brackets [ei1 , [ei2 , . . . , eik ] · · · ], where {e1, . . . , ed} is a basis of V .
Its degree-m truncation is Lm(V ) := π≤m(L(V )).

This allows us to define the log-signature as log(Sig(x)) ∈ L((V )) (or logn(Sig(x)) ∈ L≤n(V )
at finite level), which collects only Lie monomials and thereby removes algebraic redundancies,
yielding a more compact coordinate system than the raw signature. The logarithmic map acting on
T((V)) is described by Eq. 18 in Appendix A.

For p ≥ 1 and q ≥ 1 real numbers, the (rough) signature kernel is the map defined for any two
geometric p- and q-rough paths X,Y, by

KX,Y
Sig (s, t) = ⟨Sig(X)0,s, Sig(Y)0,t⟩T ((V )). (7)

Finally, rough paths can drive differential equations, which we use in this paper. Appendix A.5
provides a brief review, including the Universal Limit Theorem (Lyons, 1998), guaranteeing exis-
tence and uniqueness of RDEs driven by geometric rough paths under Lip(γ) vector fields (Defini-
tion A.5).

3 RANDOM CONTROLLED DIFFERENTIAL EQUATIONS

In this section, we review the random controlled differential equation model of Cirone et al. (2023),
then introduce our variants and state the corresponding limit theorems.

3.1 R-CDE: RANDOM CONTROLLED DIFFERENTIAL EQUATIONS

Let x ∈ C1([0, T ];Rd) and let DM = {0 = t0 < · · · < tM = T} be any partition of [0, T ].
Consider a 1-layer, randomly initialized, homogeneous ResNet driven by x, with random readout
w ∼ ξN (independent of the dynamics). Its output is

ΨN
φ (x) :=

1√
N

〈
w, ZN

tM (x)
〉
RN ,

where the hidden state evolves by the Euler-type recursion on DM

ZN
ti+1

(x) = ZN
ti (x) +

1√
N

d∑
k=1

Ak φ
(
ZN
ti (x)

)
∆xk

ti , ZN
t0 (x) = z0 ∈ RN ,

with ∆xk
ti := xk

ti+1
− xk

ti , nonlinearity φ, and i.i.d. random matrices Ak ∼ ξN in MN (R).

Intuitively, as depth M → ∞ (with mesh size |∆M | := maxi(ti+1 − ti) → 0), this recursion
converges to a continuous-time controlled system. We take this limit as the definition of the Random
Controlled Differential Equation (R-CDE):

dZN
t (x) =

m∑
i=1

Ai φ
(
ZN
t (x)

)
dxi

t, ZN
0 (x) = z0 ∈ RN . (8)

The expected inner product of these features converges to the signature kernel, and the readout
converges to a Gaussian process with this covariance – thereby characterizing the joint infinite-
width/continuous-depth limit of controlled ResNets.
Theorem 3.1 (Cirone et al. (2023)). Let x, y ∈ C1([0, T ];Rd) and let ZN

s (x), ZN
t (y) solve Eq. 8

with the same (Ai)
d
i=1 and φ = id. Then for all s, t ∈ [0, T ],

lim
N→∞

1

N
EξN

[〈
ZN
s (x), ZN

t (y)
〉
RN

]
= Kx,y

sig (s, t),

the (Hilbert–Schmidt) signature kernel of (x, y), defined in Eq. 2. Moreover, with w ∼ ξN indepen-
dent of (Ai) and ZN (x),

lim
N→∞

ΨN
φ (x) = GP

(
0,Kx,x

Sig

)
,

in the sense of finite-dimensional distributions.
Remark 3.1. Our theoretical analysis assumes Gaussian matrices for simplicity; however, the con-
clusions hold for any ensemble ξN with the standard moment/tail conditions (centered, unit vari-
ance, sub-Gaussian operator–norm tails), as shown by Cass & Turner (2024).
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3.2 RF-CDE: RANDOM FOURIER CONTROLLED DIFFERENTIAL EQUATIONS

Motivated by the empirical success of Random Fourier Signature Features (Section 2.3) and by the
RBF-lifted signature kernel (Eq. 6), we extend the R-CDE framework by incorporating a random
Fourier lift of the driving signal.

Let ϕF
µ : Rd → R2F be the RFF map in Eq. 4 and, for xt ∈ C1([0, T ],Rd), we denote the lifted

path by
XF

t := ϕF
µ (xt) ∈ RF ,

where µ is the Gaussian measure. Notice that XF
t is also differentiable as it is a composition of

differentiable functions. Then we define the Random Fourier CDE (RF-CDE) as

dZN,F
t (x) =

1√
N

F∑
i=1

Ai φ
(
ZN,F
t (x)

)
dXF,i

t , ZN,F
0 (x) = z0 ∈ RN , (9)

where z0, (Ai) ∼ ξN independent across i and from the RFF randomness, and XF,i
t denotes the i-th

component of the lifted path.

Theorem 3.2. Let xt, yt be differentiable paths on [0, T ] and ZN,F
s (x), ZN,F

t (y) solve Eq. 9 with

φ = id and the same Ai
i.i.d.∼ ξN (independent of the RFF draw). Then, for every s, t ∈ [0, T ]

lim
F→∞

lim
N→∞

1

N
EξN

[〈
ZN,F
s (x), ZN,F

t (y)
〉
RN

]
= Kx,y

Sig-RBF(s, t),

where Kx,y
Sig-RBF(s, t) denotes the RBF–lifted signature kernel (Eq. 6).

We refer the reader to Appendix B.1 for the proof of this theorem.

Discretization. In practice, we discretize Eq. 9, thereby extending its applicability beyond smooth
drivers to piecewise-linear paths. We also include a bias vector bi ∼ ξN together with scaling
parameters σA, σb, and σ0 (tuned via grid search). Applying an Euler scheme yields

∆ZN,F
t (x) =

1√
N

F∑
i=1

(
σAAi φ

(
ZN,F
t (x)

)
+ σbbi

)
∆XF,i

t , ZN,F
0 (x) = σ0z0 ∈ RN , (10)

where ∆XF,i
t = XF,i

ti+1
−XF,i

ti and XF,i
t is the i-th coordinate of the lifted path XF

t .

3.3 R-RDE: RANDOM ROUGH DIFFERENTIAL EQUATIONS

We now extend the model to non-smooth drivers by working directly with geometric p-rough paths.
This serves two purposes: (i) noisy time series often benefit from higher–order information, which
signatures/log-signatures provide as stable features; (ii) in many applications the (log-)signature is
already available or estimable, so operating in rough-path space avoids information loss.

Let f ∈ Hom(V,W ) be a continuous linear map. For each k ≥ 1, f induces a map

f⊗k : V ⊗k → W⊗k s.t. f⊗k(v1 ⊗ · · · ⊗ vk) := f(v1)⊗ · · · ⊗ f(vk) with f⊗0 := Id.

The elements of V ⊗k ⊂ T ((V )) can be interpreted as functions on words of length k over an
alphabet Ad = 1, . . . , d. A word w = i1i2 . . . ik corresponds to the basis element ei1 ⊗ · · · ⊗ eik
in V ⊗k. Denote as Wm

d the set of all words formed by letters in Ad of length |w| ≤ m, and
Wd :=

⋃
m≥0 Wm

d . Let (Ai) ∈ End(RN ) (the algebra of endomorphisms of RN under composition
with unit IN ), and let ΓA : T ((Rd)) → End(RN ) be the unital algebra homomorphism

ΓA(G) =
∑

w∈Wd

Aw⟨G, w⟩, where Aw :=
1

N
k
2

Ai1 · · ·Aik for w = i1 · · · ik ∈ Wd, (11)

extended multiplicatively by ΓA(uv) = ΓA(u) ◦ ΓA(v) and ΓA(1) = IN . Here ⟨G, w⟩ denotes
the w–coordinate of the tensor G ∈ T ((Rd)). The map ΓA is well defined on group-like tensors
G(Rd) ⊂ T ((Rd)) (see Appendix A.4) and in particular on signature increments of geometric rough
paths; we refer to Lemma 6 in Appendix B.2 for the precise statement and proof.
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Linear development along a path. For a bounded-variation path x : [0, T ] → Rd set

SA
t (x) := ΓA

(
Sig(x)0,t

)
∈ End(RN ), (12)

Lemma 1. Let ΓA be as in Eq. 11. If x : [0, T ] → Rd has bounded variation and xA
t :=∑d

i=1 Ai x
i
t, with Ai ∈ End(RN ), then SA

t (x) in Eq. 12 is the unique solution of the linear CDE

dSA
t (x) = SA

t (x) ◦ dxA
t , SA

0 (x) = IN ∈ End(RN ). (13)

See Appendix B.2 for the proof.

By continuity of the Itô–Lyons map (Theorem A.5), Eq. 13 extends to geometric rough drivers. If
X ∈ GΩp(Rd), there exists a unique matrix–valued geometric p-rough path SA ∈ GΩp(End(RN ))
given by the canonical lift of the solution to the rough linear equation

dSA
t (X) = SA

t (X) ◦ dXt SA
0 (x) = IN ∈ End(RN ), (14)

i.e the first level of the lift: π1

(
SA0,t
)
:= SA

t (X) ∈ End(RN ).

Random RDE features. Let (Ai)
d
i=1

i.i.d.∼ ξN be Gaussian random matrices in MN (R), and let SA
be the matrix–valued geometric p-rough path associated with Eq. 14. Define the one–form

f : RN −→ Hom(End(RN ),RN ), f(z)[M ] := M
(
φ(z)

)
,

with non-linearity φ ∈ Lip(γ) (Definition A.5) and γ > p. The random–feature path ZN (X) :
[0, T ] → RN is then defined as the unique solution of the Random RDE

dZN
t (X) = f

(
ZN
t

)
dSAt , ZN

0 = z0 ∈ RN , (15)

where z0 ∼ ξN is independent of {Ai}di=1.
Remark 3.2. In the smooth case (so X ≡ Sig(x) with x of bounded variation), Eq. 15 yields
dZt =

∑d
i=1

(
SA
t (x)Ai φ(Zt)

)
dxi

t. A brief derivation is provided in Appendix B.2.

We now state and prove two theorems: the first establishes existence and uniqueness, while the
second shows convergence to the rough signature kernel introduced in Section 2.2.
Theorem 3.3 (Existence and uniqueness). Let X ∈ GΩp(Rd) with p ≥ 1 and φ ∈ Lip(γ) with
γ > p. Then the R-RDE 15 admits a unique solution ZN ∈ C([0, T ];RN ), and the Itô–Lyons map
(X, z0) 7→ ZN is continuous in the rough-path topology.

Proof. This is a direct application of the Universal Limit Theorem (Theorem A.5) under Lip(γ)
vector fields (Definition A.5) with γ > p.
Theorem 3.4. Let X ∈ GΩp(Rd) and Y ∈ GΩq(Rd) be geometric rough paths. Let ZN

s (X) and
ZN
t (Y) be the solutions of Eq. 15 with φ = id and the same matrices {Ai}di=1 (with Ai ∼ ξN i.i.d.).

Then for all s, t ∈ [0, T ],

lim
N→∞

1

N
EξN

[〈
ZN
s (X), ZN

t (Y)
〉
RN

]
= KX,Y

Sig (s, t),

where where KX,Y
Sig denotes the rough signature kernel defined in Eq. 7.

We refer the reader to Appendix B.3 for the proof of this theorem.

Log–ODE discretization. For rough drivers, naı̈ve Euler schemes ignore the algebraic structure
of the signal, breaking Chen’s multiplicativity. The log–ODE method (Lyons, 2014) addresses this
by summarizing each time step [ti, ti+1] via the log-signature

Li := logm
(
Xti,ti+1

)
∈ Lm(Rd),

which maps increments into the step-m free Lie algebra – see Section 2.4. One then advances
the state on [ti, ti+1] by solving an ODE with constant Lie coefficients Li. This preserves the
group/Chen structure exactly and removes the algebraic redundancies of the tensor algebra.
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Let W̃m
d be a fixed Hall/Lyndon basis of Lie words of length |w| ≤ m. Given a collection of random

matrices {B1, . . . , Bd} with Bi
i.i.d.∼ ξN , define the linear map ΠB : Lm(Rd) → End(RN ) by

ΠB(G) :=
∑

w∈W̃m
d

B(w)
〈
logm(Gti,ti+1

), w
〉
, B(w) :=

1

N
k
2

[· · · [[Bi1 , Bi2 ], Bi3 ], . . . , Bik ]

for w = i1 · · · ik, where [A,B] = AB −BA is the Lie bracket.

Given X ∈ GΩm(Rd) and a partition DM = {0 = t0 < · · · < tM = T}, we update, we update

Z̃N
ti+1

= Z̃N
ti +ΠB(Xti,ti+1

)φ
(
Z̃N
ti

)
, Z̃N

t0 = z0 ∈ RN , (16)

which uses only the log-signature coefficients ⟨logm(Xti,ti+1
), w⟩ and the corresponding com-

mutators B(w), keeping the discretization faithful to the rough-path algebra while remaining ex-
plicit. Scaling and bias hyperparameters are incorporated analogously to the RF-CDE discretization
(Eq. 10) and tuned by grid search.

4 EXPERIMENTS

In this section, we detail our random differential equation models’ performance for time series clas-
sification. We implement RF-CDE via the discretization in Eq. 10 and R-RDE via the log-ODE
scheme in Eq. 16. For completeness, we also benchmark the R-CDE of Cirone et al. (2023) – de-
scribed in Section 2.1 – which, to our knowledge, has not been tested for time-series classification.

Benchmarks. We compare against Random Fourier Signature Features (RFSF) in the two projec-
tion variants of Toth et al. (2025) – Diagonal Projection (DP) and Tensorized Random Projection
(TRP). We also benchmark the PDE-based signature kernel (SigPDE) with the RBF base kernel
(Salvi et al., 2021a), and standard time-series baselines: Random Fourier Features (RFF), RBF,
GAK, and Random Warping Series (RWS). For space, full results for RBF, GAK, RWS, and RFF
are deferred to Appendix C, as these methods rarely attain state-of-the-art performance on our suite
but are included for completeness.

Remark 4.1. SigPDE, GAK, and RBF are not random-feature methods: in the SVM setting they
require computing and inverting the kernel Gram matrix, which can be a bottleneck as the number
of samples grows. By contrast, random-feature models learn only a linear readout on top of fixed
random dynamics, avoiding kernel matrix operations and retaining linear-in-samples complexity.

Computational Time. Table 4 summarizes the computational complexity of our signature-based
random-feature extractors. These models scale linearly with the sequence length ℓ, unlike kernel
baselines such as SigPDE, RBF, and GAK which scale quadratically. Among our methods, R-RDE
is typically the slowest due to an additional O(N3) component arising from matrix development;
however, this cubic term is independent of the batch size B, so it can be precomputed.

R-CDE RFCDE (ours) R-RDE (ours) RFSF-DP RFSF-TRP

O(BℓN2d) O(BℓF (N2 + d)) O(N2dM (Bℓ+N)) O(BℓF (Md+ 2M )) O(BℓM(dF + F 2))

Table 1: Asymptotic feature-extraction cost (ignoring the final linear readout). Here B is batch size,
F the number of random Fourier features, d the input dimension, ℓ the sequence length, M the
truncation level of the signature, and N the (output) feature dimension.

UEA Datasets. The UEA archive (Dau et al., 2019) is a collection of datasets for benchmarking
classifiers on multivariate time series classification problems. The data modality ranges from various
sources e.g. human activity recognition, motion and ECG classification, audio spectra recognition,
and others. A summary of the dataset characteristics can be found in Table 2 in Dau et al. (2019).

Experimental Setup. Full details – including the grid-search ranges – are deferred to Appendix C.
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Results. With 250 random features, RF-CDE is the strongest of random-feature models on av-
erage, followed by the non-parametric SigPDE baseline. Averaging across the 16 UEA datasets,
RF-CDE attains 0.741 accuracy versus 0.738 for SigPDE, while RFSF variants are slightly behind
(0.725–0.726), and R-RDE and R-CDE trail further (0.708 and 0.695, respectively). RF-CDE is
particularly competitive on medium-difficulty tasks (e.g., Libras, NATOPS), and R-RDE occasion-
ally leads among random-feature methods on structure-rich datasets (e.g., UWaveGestureLibrary).
These trends suggest that injecting an RBF lift before the controlled dynamics (RF-CDE) is an ef-
fective way to capture local geometry in continuous time, whereas the rough-path variant (R-RDE)
helps when higher-order interactions matter. Table 4 reports the results.

R-CDE RF-CDE R-RDE RFSF-DP RFSF-TRP SigPDE

ArticularyWordRecognition 0.950 0.967 0.957 0.977 0.983 0.983
AtrialFibrillation 0.333 0.467 0.467 0.400 0.266 0.333
BasicMotions 1.000 1.000 1.000 0.975 0.975 1.000
Cricket 0.972 0.972 0.902 0.972 0.958 0.972
EigenWorms 0.420 0.630 0.612 0.786 0.771 0.794
Epilepsy 0.935 0.971 0.935 0.942 0.942 0.891
EthanolConcentration 0.312 0.358 0.373 0.430 0.407 0.460
FingerMovements 0.550 0.550 0.530 0.570 0.530 0.610
Handwriting 0.331 0.331 0.331 0.380 0.362 0.409
Libras 0.889 0.911 0.867 0.833 0.906 0.867
NATOPS 0.872 0.944 0.906 0.889 0.906 0.928
RacketSports 0.809 0.809 0.737 0.829 0.809 0.849
SelfRegulationSCP1 0.877 0.877 0.840 0.887 0.904 0.904
SelfRegulationSCP2 0.555 0.555 0.567 0.483 0.494 0.544
StandWalkJump 0.467 0.667 0.400 0.400 0.533 0.400
UWaveGestureLibrary 0.853 0.844 0.903 0.856 0.853 0.866

Avg. acc. (↑) 0.695 0.741 0.708 0.726 0.725 0.738
Avg. rank (↓) 4.250 3.062 4.125 3.406 3.594 2.562

Table 2: UEA test accuracies with N = 250 signature-based random-feature models (SigPDE is a
kernel baseline: no random features). For each row, the best result is highlighted in bold.

Ablation: number of features. We repeat the full protocol with 500 random features for R-CDE,
RF-CDE, and R-RDE. Doubling the feature budget yields modest gains – typically a few percentage
points on the more challenging datasets – while leaving easier tasks essentially unchanged. Being a
kernel methods, SigPDE is unaffected by this ablation. Results are included in Appendix C.

5 CONCLUSIONS

We introduced a training-efficient framework for time-series learning based on random continuous-
time reservoirs whose infinite-width limits coincide with established path kernels: RF-CDE yields
the RBF-lifted signature kernel, and R-RDE yields the rough signature kernel. This places our
models on the same framework as infinite-width neural networks. Empirically, with only a few
hundred features, both models are competitive on UEA benchmarks while avoiding kernel-matrix
inversion and scaling linearly in sequence length. The result is a scalable alternative to explicit
signature computation.

Future Directions. Looking forward, we see several natural extensions: learn (or sparsify) the
spectral measures that define the reservoirs; derive non-asymptotic approximation and generaliza-
tion bounds that quantify finite-feature performance; and couple our continuous-time features with
probabilistic heads for calibrated uncertainty and streaming inference. It will also be interesting to
study NTK dynamics around the random reservoir, to design adaptive log-structured discretizations
for very long contexts.
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A ALGEBRAIC AND ANALYTIC BACKGROUND

This appendix collects the algebraic objects (tensor and free Lie algebras, group-like elements), the
analytic objects (signatures, rough paths), and the two key theorems we rely on (the PDE char-
acterization of the signature kernel and Lyons’ Universal Limit Theorem). We keep statements
self-contained; detailed proofs can be found in standard references (Cass & Salvi, 2024; Lyons,
1998).

A.1 TENSOR ALGEBRA

Let V be a Banach space. The spaces of formal polynomials and formal power series over V are
defined respectively as

T (V ) =

∞⊕
k=0

V ⊗k, and T ((V )) =

∞∏
k=0

V ⊗k,

where V ⊗k denotes the k-fold tensor product of V . Both T (V ) and T ((V )) can be endowed with the
operations of component-wise addition and multiplication ⊗, the latter defined for any two elements
A = (a0, a1, . . . ) and B = (b0, b1, . . . ) as

A⊗ B = (c0, c1, c2, . . . ), where V ⊗k ∋ ck =

k∑
i=0

ai ⊗ bk−i, ∀k ≥ 0.

When endowed with these two operations and the natural action of R by λA = (λa0, λa1, . . . ),
T ((V )) becomes a real, non-commutative unital algebra with unit 1 = (1, 0, 0, . . . ) called the tensor
algebra.

The level-m truncated tensor algebra over V of order m ∈ N is the quotient

Tm(V ) := T ((V ))/T>m(V ) ∼=
m⊕

k=0

V ⊗k,

where
T>m(V ) := {A = (a0, a1, . . . ) ∈ T ((V )) : a0 = · · · = am = 0}

We denote by π≤m : T ((V )) → Tm(V ) the canonical projection and by πk : T ((V )) → V ⊗k the
level maps.

Finally, we can define a norm on V ⊗k as

∥v∥V ⊗k =

√√√√ k∏
i=1

⟨vi, vi⟩V , for v = vi . . . vk. (17)

A.2 SIGNATURES AND THEIR BASIC PROPERTIES

Signatures extend iterated integrals beyond smooth curves, but to do so we must quantify how
“rough” a path is. The right scale is p-variation: it measures the cumulative oscillation of a path and
yields a topology under which Young integrals (for p < 2) and, more generally, rough integrals (for
p ≥ 2) are well posed.
Definition A.1 (p-variation). Let x : [0, T ] → V be continuous. For any [s, t] ⊆ [0, T ],

∥x∥p−var,[s,t] =

(
sup

D⊂[s,t]

∑
ti∈D

∥∥xti+1
− xti

∥∥p)1/p

,

where the supremum is over all partitions D of [s, t].

The induced p-variation metric on C([0, T ];V ) is

dp-var(x, y) := ∥x− y∥p-var,[0,T ].

12
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Let x : [0, T ] → V be a path of bounded variation. Its signature over [s, t] is

Sig(x)s,t =
(
1, S1(x), S2(x), . . .

)
, Sk(x) =

∫
s<u1<···<uk<t

dxu1
⊗ · · · ⊗ dxuk

.

The signature satisfies Chen’s identity (it is multiplicative):

Sig(x)s,u ⊗ Sig(x)u,t = Sig(x)s,t

Lemma 2 (Factorial decay). For x of bounded variation and all k ≥ 1,∥∥∥∥∥∥
∫

· · ·
∫

s<u1<···<uk<t

dxu1
⊗ · · · ⊗ dxuk

∥∥∥∥∥∥
V ⊗k

≤
(∥x∥1-var;[s,t])

k

k!
.

where the norm on V ⊗k is given by Eq. 17 and ∥ · ∥1-var;[s,t] denotes the 1-variation norm given by
Definition A.1.

Three foundational properties make signatures effective for learning:

Theorem A.1 (Uniqueness up to tree-like equivalence). If Sig(x)0,T = Sig(y)0,T then x and y are
tree-like equivalent; conversely, tree-like equivalent paths have equal signatures. On classes where
tree-like structure is ruled out (e.g. reduced paths), the signature is injective.

Theorem A.2 (Universality of linear functionals on signatures, (Hambly & Lyons, 2010)). Let K
be a compact set of bounded-variation paths (modulo tree-like equivalence). Then the linear span
of coordinate iterated integrals {⟨ℓ, Sig(·)0,T ⟩ : ℓ ∈ T ((V )) finite} is dense in C(K), the space of
continuous functions on K with the topology of uniform convergence.

Lemma 3 (Reparameterization invariance). Let x : [t0, T ] → Rd be a continuous path of bounded
variation and let [a, b] and [c, d] be two subintervals of [t0, T ]. Let λ : [c, d] → [a, b] be a reparam-
eterization. Then Sig(x)a,b = S(x ◦ λ)c,d.

For some applications it might be important to keep the time parameterization of the path x. In this
case, it suffices to add time as an extra coordinate of x to get the time-augmented path x̂ : t 7→ (t, xt).

A.3 SIGNATURE KERNELS AND A PDE CHARACTERIZATION

Kernel methods measure similarity via inner products in a (possibly infinite-dimensional) feature
space. This is formalized by the notion of a reproducing kernel Hilbert space (RKHS): a Hilbert
space of functions in which point evaluation is a continuous linear functional represented by the
kernel. We recall the standard definition below.

Definition A.2. Let X be a nonempty set and k be a positive definite kernel on X . A Hilbert space
Hk of real-valued functions on X equipped with an inner product ⟨·, ·⟩Hk

is called a reproducing
kernel Hilbert space (RKHS) with reproducing kernel k, if for any x ∈ X and for any f ∈ Hk the
following two conditions are satisfied:

1. the feature map k(x, ·) ∈ Hk;

2. the reproducing property f(x) = ⟨f, k(x, ·)⟩Hk
holds.

Intuitively, the element k(x, ·) ∈ Hk plays the role of an (often infinite-dimensional) feature vector
for x. An immediate consequence of the reproducing property is the feature–space inner product
identity

k(x, y) = ⟨k(x, ·), k(y, ·)⟩Hk
, x, y ∈ X .

In our setting, the feature map of a path is its signature – the sequence of iterated integrals living in
the tensor algebra. Given an (Hilbert-Schmidt) inner product ⟨·, ·⟩V on V , define for k ≥ 1

〈
v1 ⊗ · · · ⊗ vk, w1 ⊗ · · · ⊗ wk

〉
V ⊗k :=

k∏
j=1

⟨vj , wj⟩V .

13
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For A = (a0, a1, . . .) and B = (b0, b1, . . .) in T ((V )), set〈
A,B

〉
T ((V ))

:=

∞∑
k=0

〈
ak, bk

〉
V ⊗k .

This induces the signature kernel

Kx,y
Sig (s, t) :=

〈
Sig(x)0,s, Sig(y)0,t

〉
T ((V ))

.

When x, y are differentiable, Kx,y
Sig is characterized as the unique solution to a linear hyperbolic

Goursat PDE.
Theorem A.3 (PDE/Volterra characterization, (Salvi et al., 2021a)). Let x, y ∈ C1([0, T ];V ). Then
k(s, t) := Kx,y

Sig (s, t) solves

∂s∂tk(s, t) = ⟨ẋs, ẏt⟩V k(s, t), k(s, 0) = k(0, t) = 1,

equivalently,

k(s, t) = 1 +

∫ s

0

∫ t

0

⟨ẋu, ẏv⟩V k(u, v) dv du.

Conversely, the (unique) solution of this problem coincides with ⟨Sig(x)0,s, Sig(y)0,t⟩.

A direct corollary is a universality statement for the induced kernel on path space.
Theorem A.4 (Universality/characteristicness of the signature kernel). On compact sets of paths
(modulo tree-like equivalence), the signature kernel is universal (its RKHS is dense in continuous
functions) and characteristic (mean embeddings of Borel probability measures are injective).

A.4 ROUGH PATHS AND LIE ALGEBRAS

For tensor-valued paths, the p-variation extends in the usual rough-path way: apply p-variation level-
wise to each homogeneous tensor component and combine (up to an equivalent norm) to obtain the
standard p-variation metric on T ⌊p⌋(V ).
Definition A.3 (p-variation metric). The p-variation metric of two p-rough paths X,Y : ∆T →
T ⌊p⌋ (V ) is defined as follows

dp(X,Y) = max
1≤k≤⌊p⌋

sup
D

(∑
tk∈D

∥∥πk(Xti,ti+1
)− πk(Yti,ti+1

)
∥∥p/k
V ⊗k

)1/p

,

where the supremum is taken over all partitions D of the interval [0, T ], and the norm on V ⊗k is
given by Eq. 17.

This metric is the natural topology for rough paths (Definition 2.1): the class of geometric p-rough
paths GΩp(V ) is the closure, under dp, of truncated signatures of bounded-variation paths (Defini-
tion 2.2).

The associative tensor algebra (T ((V )),⊗) carries a commutator

[A,B] = A⊗ B− B⊗ A.

Equipped with [·, ·], the same underlying vector space becomes a (noncommutative) Lie algebra.
Iterated brackets quantify non-commutativity and generate the “Lie words” that will organize the
algebraic content of iterated integrals.
Definition A.4 (Lie polynomials and Lie series). Let L0 = 0, L1 = V , and Lk+1 = [V,Lk], with
[V,U ] denoting the linear span of all elements of the form [e, f ] where (e, f) ∈ V × U for any two
linear subspaces V,U of T ((V )).

The space of Lie polynomials over V , denoted as L(V ), is defined as:

L(V ) =

∞⊕
k=0

Lk.
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The space of Lie formal series over V , denoted as L((V )) ⊂ T ((V )) is defined as

L((V )) =
{
L =

(
l0, l1, . . .

)
| ∀k ≥ 0, lk ∈ Lk

}
.

For any n ≥ 1, the step-n free Lie algebra is defined by Ln(V ) := π≤n(L((V ))) with elements
called Lie polynomials of degree n. Define the (formal) exponential and logarithm w.r.t. tensor
multiplication,

exp(A) :=
∞∑

n=0

A⊗n

n!
, log(1+ A) :=

∞∑
n=1

(−1)n−1

n
A⊗n, (18)

and their level-m truncations expm := π≤m ◦ exp, logm := π≤m ◦ log.

The group-like subset
G(V ) := exp

(
L((V ))

)
⊂ T ((V ))

is a Lie group under the tensor product; at level n we write Gn(V ) := π≤n(G(V )) with mutually
inverse maps

exp : L((V )) → G(V ) and log : G(V ) → L((V )),

and
expn : Ln(V ) → Gn(V ) and logn : Gn(V ) → Ln(V ).

For any bounded-variation path (and, by continuity, for geometric rough paths), the signature
Sig(x)s,t ∈ G(V ) is group-like. Correspondingly, the log-signature log(Sig(x)s,t) lies in the free
Lie algebra L((V )) (or its truncation Ln(V ) at finite step). This identification is what allows Lie-
algebraic discretizations (e.g. log-ODE schemes) that respect the path’s multiplicative structure.

A.5 ROUGH DIFFERENTIAL EQUATIONS (RDES)

This section follows Cass & Salvi (2024) and gives a precise pathwise meaning to rough differential
equations (RDEs)

dYt = f (Yt) dXt, Y0 = y0 ∈ RN (19)

driven by a geometric rough path X (Definition 2.2).

The main idea is to approximate the (geometric) rough path X ∈ GΩp(V ) by signatures of
smooth/bounded–variation paths in p-variation, solve the ordinary controlled differential equations
(CDEs) along those smooth drivers, and define the rough solution as the uniform limit of the smooth
solutions. The key tool is Lyons’ Universal Limit Theorem (Theorem A.5), which also yields sta-
bility/continuity of the solution map (the Itô –Lyons map).

Before stating it we recall the definition of γ-Lipschitz function (in the sense of Stein).

Definition A.5 (Lip(γ) functions). Let V,W be two normed space and let γ > 0. A function
g : V → W is called γ-Lipschitz if g is ⌊γ⌋ times continuously differentiable and such that there
exists a constant M ≥ 0 such that the supremum norm of its kth derivative, k = 0, . . . , ⌊γ⌋, and
the (γ − ⌊γ⌋)-Hölder norm of its ⌊γ⌋th derivative are bounded by M . The smallest M satisfying
these conditions is the γ Lipschitz norm of g, denoted by ∥g∥Lip γ := ∥g∥Lip γ(V,W ). We denote by
Lip γ(V,W ) the space of γ-Lipschitz functions from V to W .

One-forms and the rough integral (informal). In an RDE the map f : W → Hom(V,W ) is
naturally viewed as a one-form: at each state y ∈ W , f(y) is a linear map V → W to be integrated
against the (rough) increment of the driver. When V = Rd we often write f = (f1, . . . , fd) with
fi : W → W , so that the coordinate form is

dYt =

d∑
i=1

fi(Yt) dX
i
t .

Since X is rough, the integral cannot be defined by Riemann–Stieltjes sums at level 1 only. Instead
one uses all available iterated integrals of X up to level m = ⌊p⌋.
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Controlled paths and compensated Riemann sums. A path Y : [0, T ] → W is controlled by
X if its increments admit an expansion Yu,v = Y ′

u X1
u,v + Ru,v with higher-order consistency and

suitable p-variation bounds on the remainder Ru,v . For such Y and f ∈ Lip(γ) with γ > p, the
rough integral

∫ t

0
f(Yu) dXu is defined as the limit, as |D| → 0, of the compensated sums∑

[u,v]∈D

(
f(Yu)X1

u,v + Df(Yu)[f(Yu)]X2
u,v + · · · + Dm−1f(Yu)[f(Yu), . . . , f(Yu)︸ ︷︷ ︸

m−1 times

]Xm
u,v

)
,

where Xk
u,v ∈ V ⊗k are the level-k increments of the geometric rough path. This construction agrees

with the classical Riemann–Stieltjes (or Young) integral when the driver is smooth (or has p < 2),
and it is the pathwise notion used in Eq. 19.
Theorem A.5 (Universal Limit Theorem (Lyons, 1998)). Let p ≥ 1 and let Xn : [0, T ] → V be a
sequence of continuous paths of bounded variation which converges in p-variation to a geometric
p-rough path X : ∆T → T ⌊p⌋(V ). Let f : V → Hom(V,W ) be a Lip(γ) function with γ > p.
Consider the controlled differential equations

dY n
t = f(Y n

t )dXn
t , Y n

0 = y0 ∈ W (20)

Then, there exists a unique geometric rough path Z = (X,Y) : ∆T → T ⌊p⌋(V ⊕W ) such that Y n

converges to Y in p-variation. Moreover, the Itô map If : (y0,X) → Y is continuous in p-variation.

Definition A.6 (RDE solution). Let X ∈ GΩp(V ) be a geometric p-rough path. We say that the
continuous path Y : [0, T ] → W of finite p-variation is a solution to the RDE

dYt = f (Yt) dXt, Y0 = y0 ∈ W

if Y belongs to the set of (uniform) limit points constructed in Theorem A.5. In particular, if f :
W → Hom(V,W ) is linear or γ-Lipschitz with γ > p, then Y is unique.

The notion of RDE solution presented in Definition A.6 maps a geometric p-rough path to a W -
valued continuous path of finite p-variation. However, it might be desirable to construct a “full”
solution also as a geometric rough path. This is the case, for example, if one is interested in using a
solution to a first RDE to be the driving signal for a second RDE. More precisely, we will say that
Y ∈ GΩ(W ) is the (full) solution to the RDE

dYt = f (Yt) dXt, started at Y0 ∈ Sig⌊p⌋ (Ω1(W ))

if there exists a sequence (Xn) of continuous bounded variation paths such that the sequence of
truncated signatures (Sig⌊p⌋(Xn)) converges in p-variation to X and such that the sequence (Y0 ·
Sig⌊p⌋(Y n)) converges uniformly on [0, T ] to Y as n → ∞, where {Y n} are the solutions to the
CDEs 20, with Y0 = π1(Y0).
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B PROOFS

Before proving the main theorems, we record two auxiliary results used in our proofs. First, we show
that the inner product of time-derivatives of Random Fourier Feature lifts converges almost surely
to the corresponding RKHS cross term; we include a self-contained proof. Second, we invoke a
trace–moment identity for products of random matrices from Cass & Turner (2024) (proof therein).

Lemma 4. Let x, y ∈ C1([0, T ],Rd) and ϕF : Rd → R2F be the random Fourier feature map

ϕF
µ (z) :=

1√
F

(
cos(ω⊤

1 z), sin(ω
⊤
1 z), . . . , cos(ω

⊤
F z), sin(ω

⊤
F z)

)
∈ R2F ,

where {ωj}Fj=1
i.i.d.∼ µ and µ is the standard Gaussian measure on Rd. Define the lifted curves

XF
t := ϕF

µ (xt), and Y F
t := ϕF

µ (yt).

Let H := L2(µ;R2) and define the (infinite-dimensional) feature map

ϕ(z) :=
(
cos(ω⊤z), sin(ω⊤z)

)
∈ R2, ⟨u, v⟩H :=

∫
Rd

u(ω)⊤v(ω) dµ(ω).

Let Xt := ϕ(xt) ∈ H, and Yt := ϕ(yt) ∈ H; then, for every s, t ∈ [0, T ], we have

1. almost sure convergence 〈
ẊF

s , Ẏ F
t

〉
R2F

a.s.−−−−→
F→∞

〈
Ẋs, Ẏt

〉
H. (21)

2. convergence in L1:∫ T

0

∫ T

0

∣∣〈ẊF
s , Ẏ F

t

〉
R2F −

〈
Ẋs, Ẏt

〉
H

∣∣ dt ds F→∞−−−−→ 0. (22)

where ẊF
s is the derivative w.r.t. time of XF

s , and similarly for Ẏ F
t , Ẋs, and Ẏt.

Proof. Differentiating component-wise,

d

dt
cos(ω⊤

j xt) = − sin(ω⊤
j xt)ω

⊤
j ẋt,

d

dt
sin(ω⊤

j xt) = cos(ω⊤
j xt)ω

⊤
j ẋt,

and similarly with xt, ẋt replaced by yt, ẏt. Hence

ẊF
s =

1√
F

(
− sin(ω⊤

j xs)ω
⊤
j ẋs, cos(ω

⊤
j xs)ω

⊤
j ẋs

)F
j=1

,

and analogously for Ẏ F
t . The Euclidean inner product becomes

〈
ẊF

s , Ẏ F
t

〉
R2F =

1

F

F∑
j=1

(ω⊤
j ẋs)(ω

⊤
j ẏt)

(
sin(ω⊤

j xs) sin(ω
⊤
j yt) + cos(ω⊤

j xs) cos(ω
⊤
j yt)

)

=
1

F

F∑
j=1

(ω⊤
j ẋs)(ω

⊤
j ẏt) cos

(
ω⊤
j (xs − yt)

)
=:

1

F

F∑
j=1

gωj
(s, t).

Define
gω(s, t) := (ω⊤ẋs)(ω

⊤ẏt) cos
(
ω⊤(xs − yt)

)
.

Then {gωj (s, t)}Fj=1 are i.i.d. with mean

Eµ[gω(s, t)] =

∫
Rd

(ω⊤ẋs)(ω
⊤ẏt) cos

(
ω⊤(xs − yt)

)
dµ(ω).

On the other hand, in the RKHS model H = L2(µ;R2),
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Ẋs(ω) =
(
− sin(ω⊤xs)ω

⊤ẋs, cos(ω
⊤xs)ω

⊤ẋs

)
,

and similarly for Ẏt(ω). Therefore

〈
Ẋs, Ẏt

〉
H =

∫
Rd

(ω⊤ẋs)(ω
⊤ẏt)

(
sin(ω⊤xs) sin(ω

⊤yt) + cos(ω⊤xs) cos(ω
⊤yt)

)
dµ(ω)

=

∫
Rd

(ω⊤ẋs)(ω
⊤ẏt) cos

(
ω⊤(xs − yt)

)
dµ(ω) = Eµ[gω(s, t)].

Thus Eµ[gω(s, t)] = ⟨Ẋs, Ẏt⟩H. By Cauchy–Schwarz and | cos | ≤ 1

|gω(s, t)| ≤ ∥ω∥2 ∥ẋs∥ ∥ẏt∥.

Since

i. the sequence {gωj
(s, t)}j≥1 is i.i.d.,

ii. x, y ∈ C1([0, T ],Rd) implies that ∥ẋs∥, ∥ẏt∥ are bounded on [0, T ],
iii.

∫
∥ω∥2 dµ(ω) < ∞ as the Gaussian distribution has finite variance, so gω(s, t) is inte-

grable,

we can apply the strong law of large numbers, giving that

1

F

F∑
j=1

gωj
(s, t)

a.s.−−−−→
F→∞

Eµ[gω(s, t)] =
〈
Ẋs, Ẏt

〉
H,

which proves Eq. 21.

For the L1 convergence,

∣∣〈ẊF
s , Ẏ F

t

〉
R2F

∣∣ ≤
( 1

F

F∑
j=1

∥ωj∥2
)
∥ẋu∥ ∥ẏv∥

a.s.−−−−→
F→∞

Eµ∥ω∥2 ∥ẋu∥ ∥ẏv∥.

Since Eµ∥ω∥2 < ∞ for Gaussian µ, there exists C(ω) < ∞ such that, for all F ,

|⟨ẊF
s , Ẏ F

t ⟩R2F | ≤ C(ω) ∥ẋs∥ ∥ẏt∥, and |⟨Ẋs, Ẏt⟩H| ≤ C(ω) ∥ẋs∥ ∥ẏt∥,

Hence, ∣∣〈ẊF
s , Ẏ F

t

〉
R2F −

〈
Ẋs, Ẏt

〉
H

∣∣ ≤ 2C(ω) ∥ẋs∥ ∥ẏt∥ (23)

Since ẋ, ẏ ∈ L1([0, T ]), the envelope on the right is integrable over [0, T ]2. Combining the almost-
sure pointwise convergence with the bound in Eq. 23, and using the continuity (hence measurability)
of the maps

(s, t) 7→ ⟨ẊF
s , Ẏ F

t

〉
R2F and (s, t) 7→

〈
Ẋs, Ẏt

〉
H

the hypotheses of the dominated convergence theorem are satisfied. Therefore,∫ T

0

∫ T

0

∣∣⟨ẊF
s , Ẏ F

t ⟩R2F − ⟨Ẋs, Ẏt⟩H
∣∣ dt ds F→∞−−−−→ 0,

which proves Eq. 22.
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Lemma 5 (Cass & Turner (2024)). Suppose that for each N ∈ N,
{
AN

i : 1 ≤ i ≤ d
}

is a col-
lection of d Gaussian matrices. Let n,m ≥ 0 be non-negative integers and consider the words
I = i1 . . . in ∈ Wn

d , and J = j1 . . . jm ∈ Wm
d (where W ·

d is defined in Section 3.3), with corre-
sponding matrix products

AN
I := AN

i1 . . . A
N
in

AN
I⋆J :=

(
AN

I

)T
AN

J

Then, setting k = n+m,

lim
N→∞

1

N
k
2+1

E
[
tr
(
AN

I⋆J

)]
=

{
1, if I = J

0, otherwise

We use the convention that if n = 0, then AN
I = IN , the N ×N identity matrix.

B.1 PROOF OF THEOREM 3.2

For convenience we restate Theorem 3.2 and provide its proof.

Theorem. Let xt, yt be differentiable paths on [0, T ] and ZN,F
s (x), ZN,F

t (y) solve Eq. 9 with φ =

id and the same Ai
i.i.d.∼ ξN (independent of the RFF draw). Then, for every s, t ∈ [0, T ]

lim
F→∞

lim
N→∞

1

N
EξN

[〈
ZN,F
s (x), ZN,F

t (y)
〉
RN

]
= Kx,y

Sig-RBF(s, t),

where Kx,y
Sig-RBF(s, t) denotes the RBF–lifted signature kernel (Eq. 6).

Proof. Recall from Section 3.2 that we denote

XF
t := ϕF

µ (xt) ∈ R2F , and Y F
t := ϕF

µ (yt) ∈ R2F .

where ϕF
µ is the random Fourier map defined in Eq. 4.

For fixed F , the R-CDE limit (Theorem 3.1) applied to the drivers XF and Y F gives

lim
N→∞

1

N
EξN

[
⟨ZN,F

s (x), ZN,F
t (y)⟩RF

]
= kF (s, t) where kF := KXF ,Y F

sig , (24)

Let k := Kx,y
Sig-RBF. By the PDE/Volterra characterization of the signature kernel (Theorem A.3),

kF , k : [0, T ]2 → R are the unique solutions of the two-parameter Volterra equations

kF (s, t) = 1 +

∫ s

0

∫ t

0

qF (u, v) kF (u, v) dv du,

and

k(s, t) = 1 +

∫ s

0

∫ t

0

q(u, v) k(u, v) dv du,

respectively, with driving kernels qF (u, v) := ⟨ẊF
u , Ẏ F

v ⟩R2F and q(u, v) := ⟨Ẋu, Ẏv⟩H, where H
is the RKHS of the RBF feature map.

By Lemma 4, qF → q in L1([0, T ]2) almost surely (over the RFF draw), and there exists an envelope

|⟨ẊF
s , Ẏ F

t ⟩R2F | ≤ C(ω) ∥ẋs∥ ∥ẏt∥, and |⟨Ẋs, Ẏt⟩H| ≤ C(ω) ∥ẋs∥ ∥ẏt∥,

with ∥ẋu∥, ∥ẏv∥ ∈ L1(0, T ) and C(ω) < ∞. The standard Volterra stability estimate via the
two-parameter Grönwall inequality (Defranco, 1976), therefore yields

∥kF − k∥∞ ≤ exp
(
C∥ẋs∥L1 ∥ẏt∥L1

)
∥qF − q∥L1 .
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Consequently, kF (s, t) → k(s, t) = Kx,y
Sig-RBF(s, t) uniformly on [0, T ]2 for µ-almost every RFF

draw. Taking F → ∞ in Eq. 24 and using this uniform convergence (together with the uniform
bound implied by the envelope in the stability estimate) proves the theorem by dominated conver-
gence.

B.2 PROOFS AND LEMMAS FOR SECTION 3.3

We first state and prove a lemma ensuring that ΓA is well defined and convergent on group-like
elements (signature increments). We then prove Lemma 1 from the main text. Finally, we include a
short derivation of the smooth–driver setting mentioned in Remark 3.2.
Lemma 6 (Absolute convergence of ΓA on signature increments). Let p ≥ 1, d ∈ N, and let
X ∈ GΩp(Rd) with control ω. Fix matrices A1, . . . , Ad ∈ End(RN ) and set

κ := max
1≤i≤d

1√
N

∥Ai∥ < ∞.

For a word w = i1 · · · ik define Aw := N− k
2 Ai1 · · ·Aik and ΓA by Eq. 11. Then for every (s, t) ∈

∆T the series ∑
w∈Wd

Aw ⟨Xs,t, w⟩

converges absolutely in End(RN ). Consequently ΓA(Xs,t) is well-defined and (s, t) 7→ ΓA(Xs,t)
is continuous.

By sub-multiplicativity and the definition of κ,

∥Aw∥ = N− k
2 ∥Ai1 · · ·Aik∥ ≤ N− k

2

k∏
j=1

∥Aij∥ ≤ κk for |w| = k.

Group the series by word length and use the triangle inequality:∑
w∈Wd

∥Aw∥ |⟨Xs,t, w⟩| ≤
∞∑
k=0

κk
∑
|w|=k

|⟨Xs,t, w⟩|.

By Cauchy–Schwarz, ∑
|w|=k

|⟨Xs,t, w⟩| ≤ d
k
2 ∥πk(Xs,t)∥,

where ∥ · ∥ is the Hilbert–Schmidt norm. Geometric p-rough paths satisfy the factorial decay (see
Definition 2.1):

∥πk(Xs,t)∥ ≤ Cp ω(s, t)
k
p

Γ(kp + 1)

for some Cp > 0 that depends only on p. Hence

∑
w∈Wd

∥Aw∥ |⟨Xs,t, w⟩| ≤ Cp

∞∑
k=0

(
κ d1/2

)k ω(s, t)
k
p

Γ(kp + 1)
.

By Stirling’s formula, Γ(k/p + 1) ∼ (k/p)k/pe−k/p
√
2πk/p, which outgrows any exponential;

thus the right-hand series converges for all ω(s, t) < ∞. Absolute convergence implies the claim.
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B.2.1 PROOF OF LEMMA 1

For convenience we restate Theorem 1 and provide its proof.

Lemma. Let ΓA be as in Eq. 11. If x : [0, T ] → Rd has bounded variation and xA
t :=

∑d
i=1 Ai x

i
t,

with Ai ∈ End(RN ), then SA
t (x) in Eq. 12 is the unique solution of the linear matrix CDE

dSA
t (x) = SA

t (x) ◦ dxA
t , SA

0 (x) = IN ∈ End(RN ).

Proof. For x of bounded variation, the signature solves Chen’s integral equation

Sig(x)s,t = 1 +

∫
(s,t]

Sig(x)s,u ⊗ dxu,

with dxu = (dx1
u, . . . , dx

d
u). Applying the algebra homomorphism ΓA (which sends 1 7→ IN ,

concatenation ⊗ to composition, and ei 7→ Ai) yields

SA
s,t(x) := ΓA

(
Sig(x)s,t

)
= IN +

∫
(s,t]

SA
s,u(x) ◦ dxA

u , dxA
u :=

d∑
i=1

Ai dx
i
u,

i.e. dSA
t (x) = SA

t (x) ◦ dxA
t with SA

0 (x) = IN ∈ End(RN ). Uniqueness follows from standard
Picard iteration for linear matrix CDEs driven by bounded-variation paths.

B.2.2 REMARK 3.2 (SMOOTH-DRIVER DERIVATION)

Assume x has bounded variation so that X = Sig(x). Starting from

Zt = Z0 +

∫ t

0

dSA
u

(
φ(Zu)

)
,

expand dSA
u using SA

u =
∑

w∈Wd
Aw⟨Sig(x)0,u, w⟩:

Zt = Z0 +

∫ t

0

( ∑
w∈Wd

Aw d⟨Sig(x)0,u, w⟩
)(

φ(Zu)
)
.

Write each non-empty word as w = ŵ i (last letter i) and use d⟨Sig(x)0,u, ŵi⟩ = ⟨Sig(x)0,u, ŵ⟩ dxi
u

and d⟨Sig(x)0,u, ∅⟩ = 0 to get

Zt = Z0 +

d∑
i=1

∫ t

0

( ∑
ŵ∈Wd

Aŵi ⟨Sig(x)0,u, ŵ⟩
)(

φ(Zu)
)
dxi

u.

By multiplicativity of ΓA (so Aŵi = AŵAi),∑
ŵ

Aŵi ⟨Sig(x)0,u, ŵ⟩ =
(∑

ŵ

Aŵ ⟨Sig(x)0,u, ŵ⟩
)
Ai = SA

u Ai,

and hence

Zt = Z0 +

d∑
i=1

∫ t

0

(
SA
u Ai φ(Zu)

)
dxi

u.
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B.3 PROOF OF THEOREM 3.4

For convenience we restate Theorem 3.4 and provide its proof.
Theorem. Let X ∈ GΩp(Rd) and Y ∈ GΩq(Rd) be geometric rough paths. Let ZN

s (X) and
ZN
t (Y) be the solutions of Eq. 15 with φ = id and the same matrices {Ai}di=1 (with Ai ∼ ξN i.i.d.).

Then for all s, t ∈ [0, T ],

lim
N→∞

1

N
EξN

[〈
ZN
s (X), ZN

t (Y)
〉
RN

]
= KX,Y

Sig (s, t),

where where KX,Y
Sig denotes the rough signature kernel defined in Eq. 7.

Proof. As in the smooth/CDE case, the (matrix) Dyson/Chen expansion under φ = id gives

lim
N→∞

1

N
EξN

[〈
ZN
s (X), ZN

t (Y)
〉
H

]
= lim

N→∞
EξN

 ∞∑
I,J∈Wd

1

N
|I⋆J|

2 +1
tr
(
AN

I⋆J

)
SigI(X)s SigJ(Y)t


where Wd is introduced in Section 3.3 and SigI(·) denotes the coordinate of the signature associated
to the word I (i.e. SigI(·) := ⟨Sig(·), I⟩).
From here, the argument mirrors Cass & Turner (2024), which also underpins the alternative proof
of Theorem 3.1. In order to apply Lemma 5, we would like to exchange the limit and expectation and
the double sum. By Fubini-Tonelli and the dominated convergence theorem, to justify the exchange
it is enough to show that

∞∑
|I|,|J|=0

1

N
|I⋆J|

2 +1
EξN

[∣∣tr (AN
I⋆J

)∣∣] ∣∣∣SigI(X)s SigJ(Y)t∣∣∣ (25)

is uniformly bounded in N . As the matrices Ai are Gaussian it holds that

1

N
|I⋆J|

2 +1
EξN

[∣∣tr (AN
I⋆J

)∣∣] ≤ 1

N
|I⋆J|

2 +1
EξN

[∥∥AN
I⋆J

∥∥
op

]
≤ κ|I⋆J|Γ

(
|I ⋆ J|

2
+ 1

)
for a constant κ and where ∥ · ∥op is the operator norm.

Then, by the factorial decay of (the signature of) rough paths (Definition 2.1), and the fact that the
L2 norm is at least as large as the L1 norm on V ⊗n, there exists some ω > 0 for which Eq. 25 is
bounded by

∞∑
n,m=0

Γ
(
n+m

2 + 1
)
(ωκ)m+n

Γ(np + 1)Γ(mq + 1)
≤

∞∑
n,m=0

√
Γ(n+ 1)Γ(m+ 1)(ωκ)n+m

Γ(np + 1)Γ(mq + 1)

where the inequality follows from logarithmic convexity of Γ. By Stirling’s formula,

Γ(αn+ 1) ≍
√
2π (αn)αn+

1
2 e−αn as n → ∞,

the numerator grows subfactorially relative to the product Γ(n/p + 1)Γ(m/q + 1), so the double
series converges for any fixed (ω, κ). Hence, by an exchange of limits and an application of Lemma
5, we see that

lim
N→∞

1

N
EξN

[〈
ZN
s (X), ZN

t (Y)
〉
H

]
=

∞∑
|I|,|J|=0

lim
N→∞

1

N
|I⋆J|

2 +1
EξN

[
tr
(
AN

I⋆J

)]
SigI(X)s SigJ(Y)t

=

∞∑
|I|=0

SigI(X)s SigJ(Y)t

= ⟨Sig(X)s Sig(Y)t⟩T ((V ))

= KX,Y
Sig (s, t)

which concludes our proof.
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C ADDITIONAL EXPERIMENTAL RESULTS AND DETAILS

C.1 EXPERIMENTAL SETUP

Preprocessing. We use the archive’s pre-specified train/test splits. Each dataset is min–max scaled
to [−1, 1], and sequences are represented via piecewise-linear interpolation. We apply time and base-
point augmentation, and tune the inclusion of a lead–lag transform via grid search. All sequences
are resampled to length 200 following Toth et al. (2025).

Implementation. Random differential equation models are implemented in our library
RandomSigJax. All the other benchmarks have been evaluated using the KSig library (Tóth
et al., 2025) built on CuPy (Nishino & Loomis, 2017). Both libraries use CuML to perform
SVM/LinearSVM calculations on GPU.

Compute. All experiments were run on a single NVIDIA RTX 3090 GPU. Each approach is
trained and evaluated 3 times on each dataset, then the median test accuracy is taken.

Hyperparameter grids. We tune all models via grid search; the swept grids are listed below.

For all models using RFFs, the Fourier frequency scale is swept over
{0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 25, 50, 100}× the bandwidth suggested by Toth
et al. (2025).

Model–specific ranges are:

• RFSF: signature level M ∈ {2, 3, 4, 5}.

• All Random Differential Equation models:

– activation ∈ {id, tanh,ReLU};
– σA ∈ {0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0};
– σB ∈ {0.1, 0.25, 0.5};
– σ0 ∈ {0.0, 0.5, 1.0, 1.5}.

• R - RDE: signature level M ∈ {2, 3, 4, 5}, capped so that the number of (log-)signature
coordinates does not exceed the feature budget.

• RF - CDE: number of Fourier features F ∈ {32, 64, 128, 256, 512, 1024}, capped at 50×
the input dimension.

All feature-based models optionally apply feature normalisation (True/False).

Other baselines (SigPDE, RBF/GAK/RWS, SVMs) use standard grids over their key hyperparame-
ters (kernel bandwidths, regularisation, warping parameters).

Remark C.1. SigPDE is evaluated only with an RBF base kernel (Salvi et al., 2021a), due to the
superior empirical performance reported therein.

C.2 ABLATION: NUMBER OF RANDOM FEATURES

We study sensitivity to feature count by repeating the main evaluation with N = 500 random fea-
tures. Table C.2 below mirrors the main setting (training three runs per dataset and reporting mean
accuracy).

The largest average gains appear for the randomized-signature baselines (RFSF-DP 0.726 → 0.747,
RFSF-TRP 0.725 → 0.737), while RF-CDE remains essentially flat (0.741 → 0.733) and R-RDE
shows a slight lift (0.708 → 0.711), with clearer improvements on harder sets (e.g., EigenWorms
for RF-CDE: 0.630 → 0.664, UWaveGestureLibrary for R-RDE: 0.903 → 0.913). Easy tasks (e.g.,
BasicMotions) are already saturated at near-perfect accuracy. In short, our random differential equa-
tion reservoirs already operate efficiently at 250 features; doubling N yields incremental benefits on
a subset of challenging datasets.
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R-CDE RF-CDE R-RDE RFSF-DP RFSF-TRP SigPDE

ArticularyWordRecognition 0.973 0.983 0.950 0.973 0.983 0.983
AtrialFibrillation 0.200 0.333 0.400 0.400 0.333 0.333
BasicMotions 1.000 1.000 1.000 0.975 1.000 1.000
Cricket 0.986 0.986 0.917 0.958 0.958 0.972
EigenWorms 0.458 0.664 0.612 0.824 0.817 0.794
Epilepsy 0.942 0.971 0.942 0.942 0.957 0.891
EthanolConcentration 0.319 0.407 0.375 0.517 0.414 0.460
FingerMovements 0.520 0.610 0.550 0.590 0.600 0.610
Handwriting 0.331 0.380 0.362 0.424 0.426 0.409
Libras 0.856 0.911 0.867 0.872 0.900 0.867
NATOPS 0.889 0.944 0.906 0.867 0.933 0.928
RacketSports 0.809 0.829 0.717 0.889 0.842 0.849
SelfRegulationSCP1 0.877 0.881 0.843 0.894 0.881 0.904
SelfRegulationSCP2 0.578 0.578 0.557 0.533 0.494 0.544
StandWalkJump 0.333 0.400 0.467 0.400 0.400 0.400
UWaveGestureLibrary 0.850 0.850 0.913 0.897 0.859 0.866

Avg. acc. (↑) 0.683 0.733 0.711 0.747 0.737 0.738
Avg. rank (↓) 4.812 2.812 4.125 3.187 3.031 3.031

Table 3: Test accuracy with N = 500 random features. SigPDE is a kernel method (no random
features), so its results are unaffected by N . For each row, the best result is highlighted in bold.

C.3 ADDITIONAL BASELINES: CLASSICAL KERNELS AND RFF

For completeness, we report standard time-series baselines: Random Fourier Features (RFF), RBF
kernel SVM, Global Alignment Kernel (GAK), and Random Warping Series (RWS). RFF is eval-
uated at two budgets (250 and 500 features), whereas RWS is reported only for the 250-feature
setting. These baselines rarely achieve state-of-the-art performance on our suite but serve as useful
reference points.

RFF-250 RFF-500 RWS GAK RBF

ArticularyWordRecognition 0.980 0.980 0.970 0.977 0.977
AtrialFibrillation 0.333 0.333 0.427 0.333 0.267
BasicMotions 0.925 0.925 0.995 1.000 0.975
Cricket 0.889 0.889 0.958 0.944 0.917
EigenWorms 0.431 0.431 0.578 0.511 0.496
Epilepsy 0.775 0.775 0.925 0.870 0.891
EthanolConcentration 0.316 0.316 0.284 0.361 0.346
FingerMovements 0.620 0.620 0.580 0.500 0.620
Handwriting 0.247 0.247 0.591 0.481 0.307
Libras 0.783 0.783 0.828 0.767 0.800
NATOPS 0.906 0.906 0.900 0.922 0.917
RacketSports 0.757 0.757 0.861 0.849 0.809
SelfRegulationSCP1 0.894 0.894 0.829 0.915 0.898
SelfRegulationSCP2 0.483 0.483 0.456 0.511 0.439
StandWalkJump 0.267 0.267 0.333 0.267 0.533
UWaveGestureLibrary 0.838 0.838 0.897 0.887 0.766

Avg. acc. (↑) 0.679 0.679 0.721 0.703 0.706

Table 4: Baseline comparison on UEA datasets: Random Fourier Features (250/500), Random
Warping Series (RWS) – number of features = 250, Global Alignment Kernel (GAK), and RBF
kernel SVM. Entries are test accuracies using the standard splits.
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