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ABSTRACT

We propose novel motion representations for animating articulated objects consist-
ing of distinct parts. In a completely unsupervised manner, our method identifies
meaningful object parts, tracks them in a driving video, and infers their motions by
considering their principal axes. In contrast to the previous keypoint-based works,
our method extracts meaningful and consistent regions, describing locations, shape,
and pose. The regions correspond to semantically relevant and distinct object parts,
that are more easily detected in frames of the driving video. To force decoupling
of foreground from background, we model non-object related global motion with
a homography. Our model1 can animate a variety of objects, surpassing previous
methods by a large margin on existing benchmarks. We present a challenging
new benchmark with high-resolution videos and show that the improvement is
particularly pronounced when articulated objects are considered.

1 INTRODUCTION

Animation—bringing static objects to life—has broad applications across education and entertainment.
Animated characters and objects increase the creativity and appeal of content, improve the clarity
of material through storytelling, and enhance user experiences. Imagine the Mona Lisa describing
the manner in which she was painted, or Michelangelo’s David detailing the method with which he
was sculpted, or an influential historical figure shedding light on key events of the past (Fig. 1); how
much more engaging this would be.

Figure 1: An animation produced by our method.

Until very recently, animation techniques neces-
sary for achieving such results required a trained
professional, specialized hardware, software,
and a great deal of effort. Quality results gener-
ally still do, but vision and graphics communi-
ties have attempted to address some of these lim-
itations by training data-driven methods (Wang
et al., 2018a; Chan et al., 2019; Ren et al., 2020; Geng et al., 2019; Gafni et al., 2019) on object
classes for which prior knowledge of object shape and pose can be learned. This, however, requires
ground truth pose and shape data to be available during training.

Recent works have sought to avoid the need for ground truth data through unsupervised motion
transfer (Wiles et al., 2018; Siarohin et al., 2019a;b). Significant progress on the several key challenges
have been made, including training using image reconstruction as a loss, and disentangling motion
from appearance. This has created the potential to animate a broader range of object categories,
without any domain knowledge or labelled data, requiring only videos of objects in motion during
training. However, two key problems remain open. The first is how to represent the parts of an
articulated or non-rigid moving object, including their shapes and poses. The second is given the
object parts, how to animate them using the sequence of motions in a driving video.

Initial attempts involved extracting unsupervised keypoints (Lorenz et al., 2019; Kim et al., 2019) in
end-to-end frameworks (Wiles et al., 2018; Siarohin et al., 2019b;a), then warping a feature embedding
of a source image to align its keypoints with those of a driving video. Follow on work (Siarohin et al.,
2019a) additionally modelled the motion around each keypoint with local, affine transformations,

1We plan to publish the source code and trained models along with the paper.
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and introduced a generation module that both composites warped source image regions and inpaints
occluded regions, to render the final image. This enabled a variety of creative applications2, for
example needing only one source face image to generate a near photo-realistic animation, driven by a
video of a different face.

However, the resulting unsupervised keypoints are detected on the boundary of the objects. While
points on edges are easier to identify, tracking such keypoints between frames is problematic, as any
point on the boundary is a valid candidate, making it hard to establish correspondences between frames.
A further problem is that the unsupervised keypoints do not correspond to semantically meaningful
object parts, and represent location and direction, but not shape. Due to this limitation, animating
articulated objects, such as bodies, remains challenging. Furthermore, these methods assume static
backgrounds, i.e., no camera motion, leading to leakage of background motion information into one
or several of the detected keypoints. Despite significant breakthroughs, these remaining deficiencies
limit the scope of the core innovation to more trivial object categories and motions, and lower quality
outputs, especially when objects are articulated.

This work introduces two contributions critical to addressing these challenges. First, we redefine
the underlying motion representation. Instead of using keypoints, we switch to regions that allow
first-order motion to be measured, rather than regressed. This enables improved convergence, more
stable, robust object and motion representations, and also empirically captures the shape of the
underpinning object parts, leading to better motion segmentation. Fig. 3 contains several examples of
region vs. keypoint-based motion representation.

Secondly, we explicitly model background or camera motion between training frames by predicting
the parameters of a global homography explaining non-object related motions. This enables the
model to focus solely on the foreground object, making the identified points more stable, and further
improves convergence.

These contributions unlock significant gains in capability for unsupervised motion transfer methods,
resulting in much improved animation of articulated objects in particular. Furthermore, the framework
scales better in the number of unsupervised regions, resulting in more detailed motion. Our method
outperforms previous unsupervised animation methods on a variety of datasets, including talking
faces, taichi videos and animated pixel art. We additionally present a new dataset, TED talk speakers,
to create a more challenging benchmark for the task of animating articulated objects.

2 RELATED WORK

Image animation methods can be separated into supervised, which require knowledge about the
animated object during training, and unsupervised, which do not. Such knowledge typically includes
landmarks (Cao et al., 2014; Zakharov et al., 2019; Qian et al., 2019; Ha et al., 2020), semantic
segmentations (Nirkin et al., 2019), and parametric 3D models (Geng et al., 2019; Thies et al., 2016;
Deng et al., 2020; Nagano et al., 2018; Liu et al., 2019). As a result, supervised methods are limited
to a small number of object categories for which a lot of labelled data is available, such as faces and
human bodies. Early face reenactment work (Thies et al., 2016) fitted a 3D morphable model to
an image, animating and rendering it back using graphical techniques. Further works used neural
networks to get higher quality rendering (Kim et al., 2018; Wang et al., 2018b), sometimes requiring
multiple images per identity (Geng et al., 2019; Pumarola et al., 2018). A body of works treats
animation as an image-to-image (Siarohin et al., 2018) or a video-to-video (Wang et al., 2018a; Chan
et al., 2019; Ren et al., 2020) translation problem. Apart from some exceptions (Wang et al., 2019),
these works further constrain the problem to animating a single instance of an object, such as a single
face (Kim et al., 2018; Bansal et al., 2018) or a single human body (Chan et al., 2019; Ren et al., 2020;
Wang et al., 2018a), requiring retraining (Bansal et al., 2018; Chan et al., 2019; Ren et al., 2020) or
fine-tuning (Zakharov et al., 2019) for each new instance. Despite promising results, generalizing
these methods beyond a limited range of object categories remains challenging. Additionally, they
tend to transfer not only the motion but also the identity of the driving object, making the shape of the
animated face or a body similar or identical to the driving face or body (Kim et al., 2018; Zakharov
et al., 2019).

2E.g. a music video in which static face images are animated using prior work (Siarohin et al., 2019a).
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Figure 2: Overview of our model. The region predictor returns heatmaps for each part in the
source and the driving images. We then compute principal axes of each heatmap, to transform
each region from the source to the driving frame through a whitened reference frame. Region and
background transformations are combined by the pixel-wise flow prediction network. The target
image is generated by warping the source image in a feature space using the pixel-wise flow, and
inpainting newly introduced regions, as indicated by the confidence map.

Unsupervised methods address some of these limitations. They do not require any labelled data
regarding the shape or landmarks of the animated object. Video-generation-based animation methods
predict future frames of a video, given the first frame and an animation class label, such as "make
a happy face", "do jumping jack", or "play golf" (Tulyakov et al., 2018; Saito et al., 2017; Clark
et al., 2019). A further group of works re-target animation from a driving video to a source frame.
X2Face (Wiles et al., 2018) builds a canonical representation of an input face, and generates a
warp field conditioned on the driving video. Monkey-Net (Siarohin et al., 2019b) learns a set of
unsupervised keypoints to generate animations. Follow-up work substantially improves the quality
of animation by considering a first order motion model (FOMM) (Siarohin et al., 2019a) for each
keypoint, represented by regressing a local, affine transformation. Both of these works apply to a
wider range of objects including faces, bodies, robots, and pixel art animations. Empirically, these
methods extract keypoints on the boundary of the animated objects. Articulated objects such as
human bodies are therefore challenging, as internal motion, for example, an arm moving across the
body, is not well modeled, producing unconvincing animations.

This work presents an unsupervised method. We argue that the limitations of previous such methods
in animating articulated objects is due to an inability of their internal representations to capture
complete object parts, their shape and pose. X2Face (Wiles et al., 2018) assumes an object can be
represented with a single RGB texture, while other methods find keypoints on edges (Siarohin et al.,
2019b;a). Our new region and background motion representations address these shortcomings.

3 METHOD

Our unsupervised animation framework consists of a system design, and methods for training this
system using two different frames, source S, and driving D, from the same video.

3.1 SYSTEM DESIGN

FOMM (Siarohin et al., 2019a), the current state-of-the-art method in unsupervised animation
learning, consists of two main parts: motion estimation and image generation. The contributions
of our work lie in novel motion representations within the first part of this framework. Our system,
outlined in Fig. 2, therefore follows the FOMM design as closely as possible, in order to demonstrate
the impact due specifically to our contributions.
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Table 1: Comparing our model with FOMM (Siarohin et al., 2019a) on TaiChiHD (256), for K = 5,
10 and 20. (Best result in bold.)

5 regions 10 regions 20 regions
L1 (AKD, MKR) AED L1 (AKD, MKR) AED L1 (AKD, MKR) AED

FOMM (Siarohin et al., 2019a) 0.062 (7.34, 0.036) 0.181 0.056 (6.53, 0.033) 0.172 0.062 (8.29, 0.049) 0.196
Ours w/o skip & bg 0.060 (6.44, 0.030) 0.169 0.058 (5.60, 0.026) 0.162 0.057 (5.36, 0.026) 0.156

Ours 0.048 (6.09, 0.029) 0.159 0.048 (5.45, 0.028) 0.152 0.046 (5.30, 0.026) 0.142

(a) Keypoints vs regions (b) Selected qualitative comparisons
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Figure 3: Comparison of motion/part representations. Regression-based keypoint representations
do not provide consistent detection between frames (marked with red). Additionally, background
motion leaks into one or several detected keypoints. Our PCA-based regions (with and without
background motion) correctly identify meaningful parts, are consistent between frames, and use
additional regions more effectively.

3.1.1 REGIONS AND COARSE MOTION

Regions FOMM learns to detect K distinct object regions, where K is a user-defined parameter.
An encoder-decoder region predictor network takes an image as input, and outputs K heatmaps,
M1, ..,MK . The final network layer is a softmax operation, s.t. Mk ∈ [0, 1]H×W , where H and W
are the height and width of the image respectively, and

∑
z∈Z m

k
z = 1, where z is a pixel location

(x, y coordinates) in the image, the set of all pixel locations being Z , and mk
z is the k-th heatmap

weight at pixel z. We use the same region representation and encoder here. Nevertheless, the encoded
regions differ significantly (see Fig. 3), ours mapping to meaningful object parts such as the limbs of
an articulated body, due to our novel foreground motion representation, described below.

Estimating foreground region motion FOMM estimates a first-order transformation from an
image X to a reference frame R, for each region separately. The region heatmap encodes translation
by its mean position, while other affine parameters are regressed per pixel and then pooled per region
according to the heatmap weights. Here we change the way this transformation is represented: all
motion is measured directly from the heatmap. Translation is given by the mean position, as before,
while in-plane rotation and scaling in x- and y-directions are computed via a principal component
analysis (PCA) of the heatmap. Shear is not captured, therefore our transform isn’t fully affine, with
only five degrees of freedom instead of six. Nevertheless, it captures sufficient motion, shear being a
less significant component of the affine transform for this task. The transformation of a region from
the reference frame to the image is computed as follows:

µk =
∑
z∈Z

mk
zz, (1)

UkSkV kT =
∑
z∈Z

mk
z

(
z − µk

) (
z − µk

)T
, (via SVD), (2)

AX←R =
[
UkSk

1
2 , µk

]
. (3)
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The singular value decomposition (SVD) approach to computing PCA (Wall et al., 2003) is used here.
We refer to FOMM and our estimation approaches as regression-based and PCA-based, respectively.
The reference frame in both is used only as an abstract, intermediate coordinate frame between the
source and driving image coordinate frames. However, here (in contrast to FOMM) it is not in fact
abstract, corresponding to the coordinate frame where the heatmap is whitened (i.e. has zero mean
and identity covariance); see Fig. 2. Driving to source image motion is then

Ak
S←D = Ak

S←R

[
Ak

D←R
0 0 1

]−1
. (4)

Estimating background motion FOMM has no background motion model. We observe that with
significant background motion between frames, e.g. due to camera motion, predicted regions can
therefore include the moving background, reducing test-time accuracy. To resolve this, we additionally
regress a background homography transformation, H, using an encoder network that takes as input
the source and driving images, concatenated along the channel dimension, and outputs eight real
values, h1, .., h8, such that H =

[
[h1, h2, h3]

T [h4, h5, h6]
T [h7, h8, 1]

T
]
. With background motion

well modeled, we show that the network is able to separate background and object motion in a
completely unsupervised manner.

3.1.2 IMAGE GENERATION

Given these coarse motions, FOMM then renders the target image in two stages: a pixel-wise flow
generator converts coarse motions to dense optical flow, then a composition network warps the source
image according to the flow, and also inpaints missing regions. We follow this architecture, and
summarize these two modules here, but refer the reader to Siarohin et al. (2019a) for the full details.

Pixel-wise flow generation Coarse motions are combined via a weighted sum, to compute a dense,
per pixel motion, or flow. The per pixel weights, as well as a confidence map, are computed via an
encoder-decoder network. The input is a H ×W × (4K + 3) tensor, with four channels per region,
three for the source image warped according to the region’s motion model, and one for a heatmap
of the region, which is a gaussian approximation to Mk, in order to avoid leakage of driving image
appearance through the heatmap. Here we add a further three input channels (compared to FOMM)
for the source image warped according to the background motion model.

Warping and inpainting The source image is passed through an encoder network. The resulting
feature map is warped and masked according to the pixel-wise flow and confidence map from the
previous module, respectively. A decoder then renders the final image, inpainting missing parts. In
contrast to FOMM, but similar to Monkey-Net (Siarohin et al., 2019b), here skip connections are used
between the encoder and decoder. The skip connection feature maps are also warped and masked.

3.2 TRAINING

The proposed model is trained end-to-end using a reconstruction loss in the feature space of the
pretrained VGG-19 network (Johnson et al., 2016; Wang et al., 2017). Following Siarohin et al.
(2019a); Wang et al. (2003), we adopt a multi-resolution version of the reconstruction loss:

Lrec(D̂,D) =
∑
l

∑
i

∣∣∣Vi(Fl � D̂)−Vi(Fl �D)
∣∣∣ , (5)

where D̂ is the generated image, Vi is the ith-layer of the VGG-19 pretrained network, Fl is a
downsampling operator. Similarly to Wang et al. (2017); Siarohin et al. (2019a) we used conv1_2,
conv2_2, conv3_2, conv4_2, conv5_2 layers and downsampled the images to 1, 0.5, 0.25, 0.125 of
the original edge size. In total we have 20 reconstruction terms. To improve detection of unsupervised
regions we follow the unsupervised keypoint detection literature (Jakab et al., 2018; Zhang et al., 2018)
and adopt the equivariance loss, denoted as Leq. We use a thin-plate spline implementation provided
in FOMM (Siarohin et al., 2019a). The final loss is a sum of the two loss terms, L = Lrec + Leq.
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Figure 4: Qualitative comparisons. We show representative examples of articulated animation using
our method and FOMM (Siarohin et al., 2019a), on two datasets of articulated objects: TED-talks
(left) and TaiChiHD (right). Zoom in for greater detail.

4 EVALUATION

We now discuss the datasets, metrics and experiments used to evaluate the proposed method. Later
we compare with prior work, as well as ablate our contributions.

4.1 TOY MOTION REPRESENTATION EXPERIMENT
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Figure 5: Mean test-time absolute rotation
error, as a function of training set size.

To demonstrate the benefit of the proposed PCA-
based motion representation, we devise an experi-
ment on rotated rectangles (see Appendix E): the
task is to predict the rotation angle of a rectangle
in an image. To fully isolate our contribution, we
consider a supervised task, where three different ar-
chitectures learn to predict angles under the L1 loss.
The first, a Naive architecture, directly regresses the
angle using an encoder-like architecture. The sec-
ond is Regression-based, as in to FOMM (Siarohin
et al., 2019a). The third uses our PCA-based ap-
proach (see Appendix E). Test results are presented
in Fig. 5, against training set size. The Naive baseline
struggles to produce meaningful results for any size
of training set, while Regression-based performance
improves with more data. However, the PCA-based
significantly improves accuracy over the Regression-based one, being over an order of magnitude
better with a large number of samples. This shows that it is significantly easier for the network to infer
geometric parameters of the image, such as angle, using our proposed PCA-based representation.

4.2 BENCHMARKS

We evaluate our method on several benchmark datasets for animating human faces and bodies. Each
dataset has separate training and test videos. The datasets are as follows:

• VoxCeleb (Nagrani et al., 2017) consists of interview videos of different celebrities. We
extract square, face regions and downscale them to 256× 256, following FOMM (Siarohin
et al., 2019a). The number of frames per video ranging from 64 to 1024.

• TaiChiHD (Siarohin et al., 2019a) consists of cropped videos of full human bodies per-
forming Tai Chi actions. We evaluate on two resolutions of the dataset: 256× 256 (from
FOMM (Siarohin et al., 2019a)), and a new, 512 × 512 subset, removing videos lacking
sufficient resolution to support that size.

• TED-talks is a new dataset, collected for this paper in order to demonstrate the generalization
properties of our model. We cropped the upper part of the human body from the videos,
downscaling to 384× 384. The number of frames per video ranges from 64 to 1024.

6
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Table 2: Video reconstruction: comparison with the state of the art on four different datasets. For all
methods we use K = 10 regions. (Best result in bold.)

TaiChiHD (256) TaiChiHD (512) TED-talks VoxCeleb
L1 (AKD, MKR) AED L1 (AKD, MKR) AED L1 (AKD, MKR) AED L1 AKD AED

FOMM 0.056 (6.53, 0.033) 0.172 0.075 (17.12, 0.66) 0.203 0.033 (7.07, 0.014) 0.163 0.041 1.27 0.134
Ours 0.048 (5.45, 0.028) 0.152 0.064 (14.00, 0.44) 0.171 0.026 (4.02, 0.007) 0.119 0.040 1.28 0.133

Further datasets are used in the supplementary material.

Since video animation is a relatively new problem, there are not currently many effective ways of
evaluating it. For quantitative metrics, prior works (Siarohin et al., 2019b;a) use video reconstruction
accuracy as a proxy for image animation quality. We adopt the same metrics here:

• L1 error measures the difference between reconstructed video and ground-truth video pixel
values using the L1 metric.

• Average keypoint distance (AKD) and missing keypoint rate (MKR) evaluate the difference
between poses of reconstructed and ground truth video. Landmarks are extracted from
both videos using public, body (Cao et al., 2017) (for TaiChiHD and TED-talks) and
face (Bulat & Tzimiropoulos, 2017) (for VoxCeleb) detectors. AKD is then the average
distance between corresponding landmarks, while MKR is the proportion of landmarks
present in the ground-truth that are missing in the reconstructed video.

• Average Euclidean distance (AED) evaluates how well identity is preserved in reconstructed
video. Public re-identification networks for bodies (Hermans et al., 2017) (for TaiChiHD
and TED-talks) and faces (Amos et al., 2016) extract identity from reconstructed and ground
truth frame pairs, then we compute the average L2 norm of their difference across all pairs.

4.3 COMPARISON WITH THE STATE OF THE ART

We compare our method with the current state of the art for unsupervised animation, FOMM (Siarohin
et al., 2019a), across all datasets, on both reconstruction (the training task) and animation (the test-
time task). We used an extended training schedule compared to Siarohin et al. (2019a), with 50%
more iterations. To compare fairly with FOMM (Siarohin et al., 2019a), we also re-trained it with the
same training schedule.

Reconstruction quality Quantitative reconstruction results are reported in Tab. 2. We first show
that our method reaches state-of-the-art results on a dataset with non-articulated objects such as faces.
Indeed, when compared with FOMM (Siarohin et al., 2019a) on VoxCeleb our method shows on-par
results. The situation changes, however, when articulated objects are considered, such as human
bodies in TaiChiHD and TED-talks datasets, on which our improved motion representations boost all
the metrics. The advantage over the state of the art holds at different resolutions, for TaiChiHD (256),
TaiChiHD (512) and TED-talks, as well as for different numbers of selected regions (discussed later).

Animation quality Fig. 3 & 4 show selected and representative animations respectively, using our
method and FOMM (Siarohin et al., 2019a), on articulated bodies, both using absolute motion. The
results show clear improvements, in most cases, in animation quality, especially of limbs.

Animation quality was evaluated quantitatively through a user preference study similar to that of
Siarohin et al. (2019a). AMT users were presented with the source image, driving video, and the
output from our method and FOMM (Siarohin et al., 2019a), and asked which of the two videos
they preferred. 50 such videos were evaluated, by 50 users each, for a total of 2500 preferences per
study. The results, shown in Tab. 4, further support the reconstruction scores in Tab. 2. When the
animated object is not articulated (VoxCeleb), the method delivers results comparable to the previous
work. When bodies are animated (TaiChiHD & TED-talks), FOMM (Siarohin et al., 2019a) fails to
correctly detect and animate the articulated body parts such as hands. Our method renders them in
the driving pose even for extreme cases, leading to a high preference in favor of it.

Finally, we applied animation from a TED-talks video to a photograph of Winston Churchill, shown
in Fig. 1, demonstrating animation of out of domain data.
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Table 3: Ablation study on TaiChiHD (256) dataset
with K = 10. (Best result in bold.)

L1 (AKD, MKR) AED

No pca or bg model 0.060 (6.14, 0.033) 0.163
No pca 0.049 (6.04, 0.034) 0.163

No bg model 0.059 (5.47, 0.027) 0.164
Full method 0.048 (5.45, 0.028) 0.152

Table 4: User study: the proportion (%)
of users that prefer our method over
FOMM (Siarohin et al., 2019a).

Dataset User preference (%)

VoxCeleb 52.2%
TaiChiHD (256) 83.0%

TED-talks 91.0%

4.4 ABLATIONS

In order to understand how much benefit each of our contributions bring, we ran a number of ablation
experiments, detailed in Tab. 3.

PCA-based vs. regression-based representations First we compare the PCA-based motion model
with the previous, regression-based one (Siarohin et al., 2019a). From the qualitative, heatmap depic-
tions in Fig. 3, we observe that the regression-based method localizes one edge of each corresponding
part, while our method predicts regions that roughly correspond to the segmentation of the object into
its constituent, articulated parts. This meaningful segmentation arises completely unsupervised.

From Tab. 1 we note that adding the PCA-based representation alone (second row) had marginal
impact on the L1 score (dominated by the much larger background region), but it had a much larger
impact on other metrics, which are more sensitive to object-part-related errors on articulated objects.
This is corroborated by Tab. 3.

We intuit that PCA-based estimation both captures regions and improves performance because it is
much easier for the convolutional network to assign pixels of an object part to the corresponding
heatmap than to directly regress motion parameters to an abstract reference frame. This is borne out
by our toy experiment (sec. 4.1). In order to estimate the heatmap it need only learn all appearances
of the corresponding object part, whereas regression-based networks must learn the joint space of all
appearances of a part in all possible geometric configurations (e.g. rotated, scaled etc.).

One of the most important hyper-parameters of our model is the number of regions,K. The qualitative
and quantitative ablations of this parameter are shown in Fig. 3 and Tab. 1 respectively. We can
observe that, while the regression-based representation fails when the number of keypoints grows to
20, our PCA-based representation scales well with the number of regions.

Modeling background motion Tab. 3 shows that methods with background motion modeling
have much lower L1 error. Since background constitutes a large portion of the image, and L1

treats all pixels equally, this is to be expected. AED was also impacted, suggesting that the identity
representation captures some background appearance. However, since AKD & MKR metrics evaluate
object pose only, they are not improved by background modelling.

5 CONCLUSION

We have argued that previous unsupervised animation frameworks’ poor results on articulated objects
are due to their representations. We propose a new, PCA-based, region motion representation, which
we believe both makes it easier for the network to learn region motion, and encourages it to learn
semantically meaningful object parts. In addition, we propose a background motion estimation
module to decouple foreground and background motion. Qualitative and quantitative results across
a range of datasets and tasks demonstrate several key benefits: improved region distribution and
stability, improved reconstruction accuracy and user perceived quality, and an ability to scale to more
regions. We also introduce a new, more challenging dataset, TED-talks, for benchmarking future
improvements on this task.

While we show some results on out of domain data (Fig. 1), generalization remains a significant
challenge to making this method broadly practical in articulated animation of inanimate objects.
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A TED-TALKS DATASET CREATION

To create the TED-talks dataset, we downloaded 3,035 YouTube videos, shared under the “CC BY –
NC – ND 4.0 International” license,3 using the "TED talks" query. From these initial candidates, we
selected the videos where the upper part of the person is visible for at least 64 frames, and the height
of the person bounding box was at least 384 pixels. After that, we manually filtered out static videos
and videos in which a person is doing something other than presenting. We ended up with 411 videos,
and split these videos in 369 training and 42 testing videos. We then split each video into chunks
from a consistent camera angle (i.e. with no cuts to another camera), and for which the presenter
didn’t move too far from their starting position in the chunk. We cropped the a square region around
the presenter, such that they had a consistent scale, and downscaled this region to 384× 384 pixels.
Chunks that lacked sufficient resolution to be downscaled, or had a length shorter than 64 frames,
were removed. Both the distance moved and the region cropping were achieved using a bounding
box estimator for humans (Wu et al., 2019). Overall, we obtained 1,177 training video chunks and
145 test videos chunks.

B IMPLEMENTATION DETAILS

For a fair comparison, in order to highlight our contributions, we mostly follow the architecture
design of FOMM (Siarohin et al., 2019a). Similar to FOMM, our region predictor, background
motion predictor and pixel-wise flow predictor operate on a quarter of the original resolution, e.g.
64 × 64 for 256 × 256 images, 96 × 96 for 384 × 384 and 128 × 128 for 512 × 512. We use the
U-Net (Ronneberger et al., 2015) architecture with five "convolution - batch norm - ReLU - pooling"
blocks in the encoder and five "upsample - convolution - batch norm - ReLU" blocks in the decoder
for both the region predictor and the pixel-wise flow predictor. For the background motion predictor,
we use only the five block encoder part. Similarly to FOMM (Siarohin et al., 2019a), we use the
Johnson architecture (Johnson et al., 2016) for image generation, with two down-sampling blocks,
six residual-blocks, and two up-sampling blocks. However, we add skip connections that are warped
and weighted by the confidence map. Our method is trained using Adam (Kingma & Ba, 2014)
optimizer with learning rate 2e− 4 and batch size 48, 20, 12 for 256× 256, 384× 384 and 512× 512
resolutions respectively. During the training process, the networks observe 3M source-driving pairs,
each pair selected at random from a random video chunk, and we drop the learning rate by a factor of
10 after 1.8M and 2.7M pairs. We use 4 Nvidia P100 GPUs for training.

C MGIF DATASET

We run additional experiments on the MGif (Siarohin et al., 2019b) dataset to further demonstrate
the superiority of PCA-based representations over regression-based ones. The dataset contains a
set of animations of articulated, 2D, cartoon animals. The qualitative results are presented in the
supplementary video. We can observe that our PCA-based representation successfully tracks all
legs, while the regression-based representation often misses some of the legs, which leads to worse
reconstruction quality. This observation is further confirmed by quantitative evaluation; the L1 error
for FOMM (Siarohin et al., 2019a) is 0.0223, while for our method it is 0.0206.

D COMPARISON WITH OTHER METHODS

The main paper has focused on comparing our method to FOMM (Siarohin et al., 2019a), as it is
both most similar to our work, and the current state-of-the-art. We show quantitative results using
prior works (Wiles et al., 2018; Siarohin et al., 2019b) in Table 5. These are significantly inferior to
both FOMM and our method.

3This license allows for non-commercial use.
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Table 5: Video reconstruction comparison. (Best result in bold.)

TaiChiHD (256) VoxCeleb
L1 (AKD, MKR) AED L1 AKD AED

X2Face 0.080 (17.65, 0.109) 0.27 0.078 7.69 0.405
Monkey-Net 0.077 (10.80, 0.059) 0.228 0.049 1.89 0.199

FOMM 0.056 (6.53, 0.033) 0.172 0.041 1.27 0.134
Ours 0.048 (5.45, 0.028) 0.152 0.040 1.28 0.133

E TOY EXPERIMENT DETAILS

The rotated rectangles dataset consists of images of rectangles randomly rotated from 0◦ to 90◦,
along with labels that indicate the angle of rotation. The rectangles have different, random colors.
Visual samples are shown in Fig. 6.

Figure 6: Examples of synthetic rectangle dataset.

We tested three different networks: Naive, Regression-based and PCA-based. The Naive network
directly predicts an angle from an image using an encoder and a fully-connected layer. Regression-
based is similar to FOMM (Siarohin et al., 2019a); the angle is regressed per pixel an using hourglass
network, and pooled according to heatmap weights predicted using the same hourglass network. PCA-
based is our method described in Sec. 3; we predict the heatmap using an hourglass network, PCA is
performed according to eq. equation 2, and the angle is computed from matrix U as arctan(U10/U00).

Each of the networks was trained, on subsets of the dataset of varying sizes, to minimize the L1 loss
between predicted and ground truth rotation angle. All models were trained for 100 epochs, with
batch size 8. We used the Adam optimizer, with a learning rate of 10−4. We varied the size of the
training set from 32 to 1024. Results, on a separate, fixed test set of size 128, were then computed,
shown in Fig. 5.
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