

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TEXT-TO-3D BY STITCHING A MULTI-VIEW RECON- STRUCTURE NETWORK TO A VIDEO GENERATOR

Anonymous authors

Paper under double-blind review

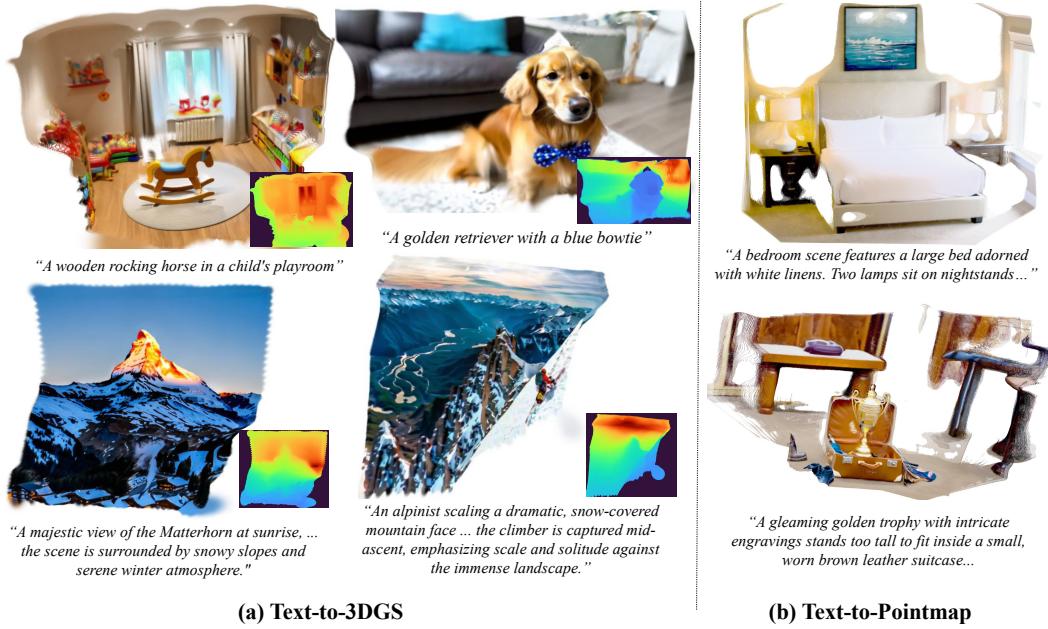


Figure 1: **Text-to-3D generation with VIST3A.** Video models excel at generating latent visual content from text prompts, whereas 3D foundation models shine when it comes to decoding such a latent representation into consistent scene geometry. By stitching a video generator and a 3D reconstruction network together and aligning their latents, we obtain an end-to-end model that produces high-quality Gaussian splats (a) or point maps (b) from text prompts.

ABSTRACT

The rapid progress of large, pretrained models for both visual content generation and 3D reconstruction opens up new possibilities for text-to-3D generation. Intuitively, one could obtain a formidable 3D scene generator if one were able to combine the power of a modern latent text-to-video model as “generator” with the geometric abilities of a recent (feedforward) 3D reconstruction system as “decoder”. We introduce VIST3A, a general framework that does just that, addressing two main challenges. First, the two components must be joined in a way that preserves the rich knowledge encoded in their weights. We revisit *model stitching*, i.e., we identify the layer in the 3D decoder that best matches the latent representation produced by the text-to-video generator and stitch the two parts together. That operation requires only a small dataset and no labels. Second, the text-to-video generator must be aligned with the stitched 3D decoder, to ensure that the generated latents are decodable into consistent, perceptually convincing 3D scene geometry. To that end, we adapt *direct reward finetuning*, a popular technique for human preference alignment. We evaluate the proposed VIST3A approach with different video generators and 3D reconstruction models. All tested pairings markedly improve over prior text-to-3D models that output Gaussian splats. Moreover, by choosing a suitable 3D base model, VIST3A also enables high-quality text-to-pointmap generation.

054 1 INTRODUCTION

056 With image and video generators now a commodity, text-to-3D models that produce 3D scenes from
 057 text prompts have become a new research frontier, with applications in AR/VR, gaming, robotics,
 058 and simulation. Early methods for 3D generation adopt Score Distillation Sampling (SDS) (Poole
 059 et al., 2023; Tang et al., 2024b; Wang et al., 2023b; Chen et al., 2024b) to optimize a 3D representa-
 060 tion, e.g. a NeRF (Mildenhall et al., 2021; Müller et al., 2022) or 3D Gaussian Splats (3DGS, Kerbl
 061 et al., 2023) under a pretrained 2D diffusion prior (Rombach et al., 2022). A drawback these methods
 062 have in common is the need for slow per-scene optimization. Another line of work uses multi-stage
 063 pipelines that first synthesize images and then lift them to 3D with a separate model (Tang et al.,
 064 2024a; Xu et al., 2024b; Zhang et al., 2024b) or with per-scene optimization (Gao et al., 2024; Wu
 065 et al., 2024a; Yu et al., 2024b); employ progressive warping and refinement (Shriram et al., 2025; Yu
 066 et al., 2025; 2024a); or sequentially chain multiple generative modules (Yang et al., 2025b; Engstler
 067 et al., 2025). The multi-stage design not only increases model complexity and engineering effort,
 068 but also makes such models prone to error accumulation (Lin et al., 2025; Meng et al., 2025).

069 A recent trend is to directly generate the 3D representation with end-to-end latent diffusion models (LDMs,
 070 Schwarz et al., 2025; Lan et al., 2024; Li et al., 2025b;a). A prominent line of work starts from pretrained 2D im-
 071 age (Esser et al., 2024; Rombach et al., 2022) or video models (Team, 2024; Yang et al., 2024b) and finetunes them
 072 to output multi-view 2D latents, reusing the pretrained pri-
 073 ors (Szymanowicz et al., 2025; Liang et al., 2025; Schwarz
 074 et al., 2025; Lin et al., 2025; Yang et al., 2025c; Go et al.,
 075 2025a;b). Subsequently, a VAE-style decoder is trained to
 076 decode those latents into the desired 3D representation, see
 077 Fig. 2. The LDM-like design unifies 2D generation and
 078 multi-view reconstruction within the latent space and en-
 079 ables efficient 3D scene generation with a compact, well-
 080 amortized decoder.

081 Still, two key limitations remain. First, we argue that the
 082 Achilles heel of existing 2D-to-3D diffusion models is the
 083 decoder. By simply repurposing the 2D VAE to produce
 084 3D outputs, the network must learn 3D reconstruction more
 085 or less from scratch, which requires extensive training and
 086 large datasets that are hard to obtain (Yang et al., 2025c; Szymanowicz et al., 2025; Go et al., 2025b).
 087 This practice becomes increasingly problematic as new, better 3D foundation models emerge (Wang
 088 et al., 2025d;a; 2024b; Zhang et al., 2025) and the ad-hoc trained decoders of text-to-3D models fall
 089 further behind the state of the art in 3D vision.

090 Second, the prevalent training scheme tends to suffer from weak alignment between the generative
 091 model and the VAE decoder. Typically, the former is finetuned on multi-view datasets with a gener-
 092 ative objective like a diffusion loss (Song et al., 2020; Sohl-Dickstein et al., 2015; Ho et al., 2020) or
 093 flow matching (Liu et al., 2023; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023), which only
 094 indirectly promotes 3D-consistent latents. Moreover, the separate training may cause the latents,
 095 even if 3D-consistent, to be out of domain from the perspective of the decoder. To mitigate that mis-
 096 alignment, it has been proposed to add rendering losses that promote decodable latents (Lin et al.,
 097 2025). However, the resulting objective is based on single-step sampling and does not sufficiently
 098 take into account the denoising trajectory, leading to weak alignment at inference.

099 We introduce **VIST3A**: **V**ideo **I**VAE **S**titching and **3D** **A**lignment. The proposed method consists of
 100 two complementary components that address the above-mentioned limitations, see Fig. 2. First, we
 101 resort to the concept of *model stitching* (Pan et al., 2023; Lenc & Vedaldi, 2015; Bansal et al., 2021;
 102 Csiszárík et al., 2021; Yang et al., 2022) to leverage powerful, pretrained feedforward 3D models for
 103 decoding, rather than start from scratch. The idea is to attach the relevant part of a 3D reconstruction
 104 network as a “decoder” to the latent space of a video VAE. For this to work, there needs to be one or
 105 more layers in the 3D model whose activations are similar (up to a linear transformation) to those in
 106 the VAE’s latent space, despite their independent pretraining. Perhaps surprisingly, this turns out to
 107 be the case. For the 3D model, we identify the layer with the most linear relation to the LDM latents,

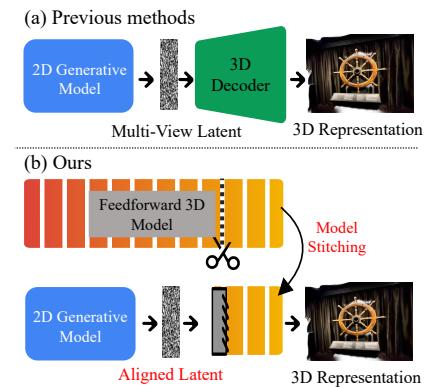


Figure 2: **Comparison with existing, LDM-based 3D generators.** Instead of training a custom decoder from multi-view 2D latents to 3D outputs, we stitch and align an existing, pretrained 3D reconstruction model.

108 slice the network before that layer, and retain the downstream portion as 3D decoder. After fitting
 109 a single, linear stitching layer (in closed form), the VAE latent space already matches the expected
 110 input of the 3D decoder well, such that subsequent fine-tuning will be minor and not degrade the
 111 respective generative and 3D reasoning capabilities of the two base models.

112 Second, we further improve alignment between the generative model and the stitched decoder
 113 through *direct reward finetuning* (Clark et al., 2023; Xu et al., 2023; Prabhudesai et al., 2024; Wu
 114 et al., 2024c; Shen et al., 2025). In that technique, commonly used to align diffusion models with
 115 human preferences, reward signals are defined based on the “goodness” of the VAE output – in our
 116 setting, the visual quality and 3D consistency of the decoded 3D representations. Maximizing these
 117 rewards encourages the LDM to produce latents that are 3D-consistent and lie within the decoder’s
 118 input domain, ensuring high-quality outputs. Importantly, our alignment compares video model
 119 outputs and images rendered from the generated 3D scenes, hence it does not require labels.

120 In our experiments, we show that the proposed stitching scheme is applicable across a range of video
 121 generative models and also across several different feedforward 3D models. VIST3A’s direct 3D
 122 decoding consistently outperforms prior text-to-3DGS methods, and additionally offers high-quality
 123 pointmap generation from text prompts.

2 RELATED WORKS

125 **3D generation.** Recent works have explored various 3D representations for generative modelling,
 126 including point clouds (Mo et al., 2023; Nichol et al., 2022; Vahdat et al., 2022), meshes (Xu et al.,
 127 2024a), voxel grids (Sanghi et al., 2023), NeRFs (Chen et al., 2023; Müller et al., 2022; Mildenhall
 128 et al., 2021), and 3DGS (Henderson et al., 2024; Zhang et al., 2024a; Kerbl et al., 2023). Score
 129 distillation using 2D diffusion models is time-consuming, as it requires per-scene test time optimi-
 130 zation (Wang et al., 2023a; Shi et al., 2023; Wang et al., 2023b), while multi-stage pipelines (Yu
 131 et al., 2024b; Liu et al., 2024; Zheng et al., 2025) lack robustness and create significant engineering
 132 overhead. For further details on multi-stage pipelines, please refer to Appendix A.

133 More recently, the field has shifted towards end-to-end latent diffusion models, where the generator
 134 operates in the latent space of a VAE, and the latter directly decodes the resulting latents to 3D
 135 outputs. Many of these works focus on object-centric asset generation (Wu et al., 2024b; Zhao et al.,
 136 2023; Lin et al., 2025) and train the LDM on curated datasets such as Objaverse (Deitke et al., 2023),
 137 with single objects or bounded scenes, and controlled camera paths. Consequently, they are unable
 138 to handle real-world challenges like strongly varying scene scale, variable lighting, etc.

139 To tackle such situations, recent methods (Szymanowicz et al., 2025; Liang et al., 2025; Schwarz
 140 et al., 2025; Lin et al., 2025; Yang et al., 2025c; Go et al., 2025a;b) repurpose the comprehensive
 141 knowledge of the visual world that is implicit in 2D image generators. The general strategy is to
 142 finetune a pretrained 2D model on multi-view data, by using generative losses to enforce cross-view
 143 consistency. In many cases training is further supported by additional 3D cues like camera poses (Li
 144 et al., 2024; Go et al., 2025b), depthmaps (Go et al., 2025a; Yang et al., 2025c), or pointmaps (Szy-
 145 manowicz et al., 2025). The resulting multi-view latents are decoded to 3D scenes with a dedicated
 146 VAE-style decoder, meaning that 3D reasoning capabilities must be rebuilt from scratch, and that
 147 they are only weakly aligned with the generator output – limitations which we address with VIST3A.

148 **Learned 3D reconstruction.** A notable trend in 3D computer vision is the trend to move away
 149 from multi-stage pipelines and iterative optimization towards end-to-end, feedforward 3D mod-
 150 ellings. Classical reconstruction pipelines based on SfM (Hartley & Zisserman, 2003; Schönberger
 151 & Frahm, 2016) and MVS (Furukawa et al., 2015; Schönberger et al., 2016) require incremental, iter-
 152 ative optimization, whereas recent advances like DUSt3R (Wang et al., 2024b) and MASt3R (Leroy
 153 et al., 2024) directly predict 3D point maps in one forward pass. Several follow-up works have
 154 further reduced test-time optimization (Tang et al., 2025; Wang et al., 2025b; Yang et al., 2025a).
 155 Likewise, 3D Gaussian splatting has evolved from per-scene optimization to feedforward predic-
 156 tion (Charatan et al., 2024; Chen et al., 2024a; Ye et al., 2024). Once more, data scaling has been a
 157 critical factor (Wang et al., 2025a;d). Consequently, replicating the 3D capabilities of recent feed-
 158 forward models as part of VAE training would be difficult and costly. VIST3A offers a solution
 159 by reusing, rather than rebuilding, models like AnySplat (Jiang et al., 2025), VGGT (Wang et al.,
 160 2025a), or MVDUSt3R (Tang et al., 2025).

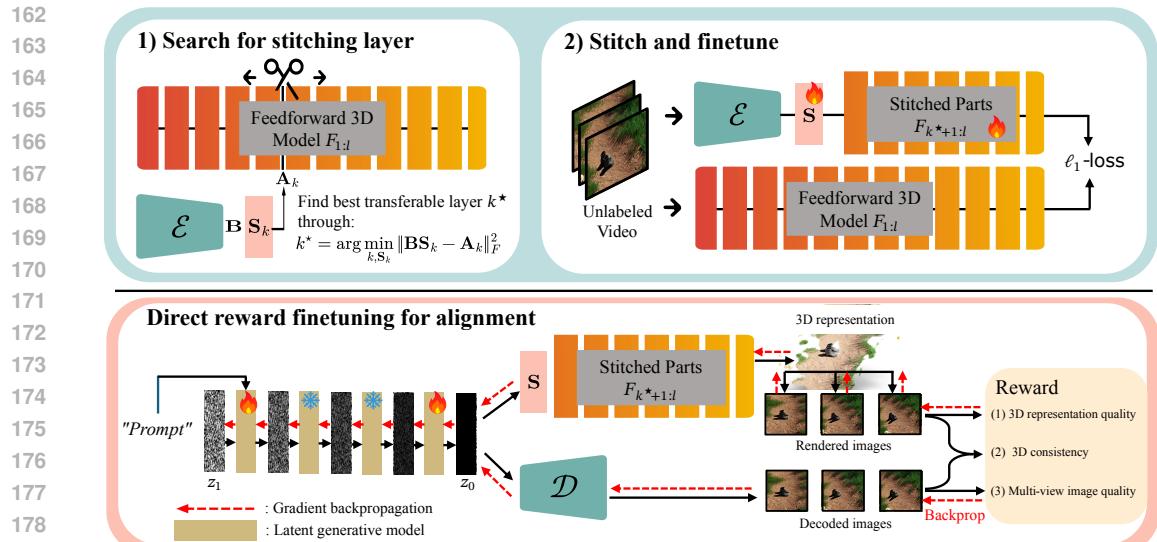


Figure 3: **VIST3A constructs a 3D VAE through model stitching (top), then aligns it with a generative model via direct reward finetuning (bottom).** Stitching repurposes a part of a pretrained 3D vision model as decoder to obtain a 3D VAE. Direct reward finetuning simulates full-trajectory denoising, forcing the generative model to produce 3D-consistent, decodable latents.

Model stitching. Recomposing the heads and tails of two different networks was initially studied as a way to assess the equivariance of neural representations (Lenc & Vedaldi, 2015), and as an experimental tool to compare two different representations (Csiszárík et al., 2021; Bansal et al., 2021). To ensure invariance against trivial affine transformations, the head of some trained network A is normally attached to the tail of another network B via a linear, trainable *stitching layer*. Besides revealing similarities between networks that common metrics like CKA (Kornblith et al., 2019) would miss, it was also found that different architectures that were trained on the same data can often be stitched into a new, hybrid model with minimal degradation (Bansal et al., 2021). This has opened the door for practical uses of stitching, e.g. DeRy (Yang et al., 2022) for resource-constrained reassembly of pretrained models and SN-Net (Pan et al., 2023) to build networks with varying scales. Going one step further, we demonstrate that strong 3D VAEs¹ can be obtained by stitching a foundational 3D model to the latent space of a video VAE as its decoder, even if they were trained independently on different data.

3 METHODOLOGY

VIST3A consists of two key components, see Fig. 3: (1) model stitching to optimally attach (part of) a foundational 3D model as the decoder for the latent, and (2) direct reward finetuning to optimize the alignment of the (latent) generative model with that new decoder.

3.1 MODEL STITCHING FOR 3D VAE CONSTRUCTION

Our objective is to build a 3D VAE by seamlessly combining the encoder of a video LDM and a feedforward 3D reconstruction model. Note that, for stitching purposes, one can skip the denoising loop, since feeding images into the encoder already gives clean latents. Let \mathcal{E} denote the encoder and \mathcal{D} the decoder of the VAE, and let $F_{1:l}(\mathbf{x}) = f_l \circ \dots \circ f_1(\mathbf{x}) = \mathbf{y}$ be the feedforward 3D network that maps a set of views \mathbf{x} to a 3D output \mathbf{y} , with l the total number of layers in that feedforward model. As shown in Fig. 3, we cut the feedforward model at layer k^* and stitch the downstream part $F_{k^*+1:l} = f_l \circ \dots \circ f_{k^*+1}$ to the output layer of the encoder \mathcal{E} , with the help of a linear *stitching layer* \mathbf{S} . In doing so, we obtain a new 3D VAE $\mathcal{M}_{\text{stitched}}$ that outputs the same representation $\hat{\mathbf{y}}$ as the original 3D model:

$$\mathcal{M}_{\text{stitched}} = F_{k^*+1:l} \circ \mathbf{S} \circ \mathcal{E}(\mathbf{x}) = \hat{\mathbf{y}}, \quad \mathcal{D}_{\text{stitched}} = F_{k^*+1:l} \circ \mathbf{S} \quad (1)$$

¹To be consistent with existing literature (Lan et al., 2024; Yang et al., 2025c), we also use the term “3D VAE”, although the mapping from 2D images to 3D scene is, technically, not a variational auto-encoder.

216 The front portion $F_{1:k^*}$ of the 3D model is discarded – but if the clean encoder latents, after the affine
 217 warping \mathbf{S} , are (almost) the same as the activations f_{k^*} , then the back portion will still produce the
 218 same output, $\hat{\mathbf{y}} \approx \mathbf{y}$. In other words, the stitched VAE $\mathcal{M}_{\text{stitched}}$ is an approximation of the original
 219 3D model F . It retains much of the ability to map multi-view images to a 3D reconstruction and
 220 only requires a little fine-tuning to restore that ability.

221 **Step 1: Finding the stitching index and initialization.** To identify the layer k^* in the 3D model
 222 whose representation is most compatible with the VAE latent, we first push a set of N samples
 223 through the encoder \mathcal{E} to obtain their latents $\mathbf{B} \in \mathbb{R}^{N \times D_{\mathcal{E}}}$. Here, $D_{\mathcal{E}}$ denotes the dimensionality
 224 of the encoder latent space, and D_F^k denotes the dimensionality of the feature (activation) at layer
 225 k . Then, we scan over candidate layers $k \in \{1, \dots, l-1\}$ of the 3D model and, for each layer in
 226 turn, extract the activations $\mathbf{A}_k \in \mathbb{R}^{N \times D_F^k}$ and fit the linear stitching layer $\mathbf{S}_k^* \in \mathbb{R}^{D_{\mathcal{E}} \times D_F^k}$ that best
 227 recovers the activations of the 3D model at layer k , by solving a least-squares problem:

$$\mathbf{S}_k^* = \arg \min_{\mathbf{S}_k} \|\mathbf{B}\mathbf{S}_k - \mathbf{A}_k\|_F^2 = (\mathbf{B}^\top \mathbf{B})^{-1} \mathbf{B}^\top \mathbf{A}_k. \quad (2)$$

230 Finally, we select the stitching layer k^* that leads to the smallest (mean squared) error, $k^* =$
 231 $\arg \min_k \|\mathbf{B}\mathbf{S}_k^* - \mathbf{A}_k\|_F^2$, and assemble the 3D VAE by concatenating \mathcal{E} , $\mathbf{S}_{k^*}^*$ and $F_{k^*+1:l}$. Empirically,
 232 we find that most combinations of foundational VAEs and 3D feedforward models can be
 233 stitched in this manner, with minimal performance loss.

234 **Step 2: Stitched decoder finetuning.** To further reduce the remaining discrepancies between the
 235 newly assembled 3D VAE and the original 3D model, we finetune \mathbf{S} and $F_{k^*+1:l}$ to reproduce the
 236 predictions of the original 3D model \mathbf{y} , using them as pseudo-targets. Practical feedforward models
 237 produce multiple outputs (e.g., point maps, depth, poses), so we optimize a weighted sum of ℓ_1
 238 losses for all of them. Note that the fine-tuning step is self-supervised and does not require labels. In
 239 our implementation, we restrict the stitching layer to a 3D convolution and employ LoRA (Hu et al.,
 240 2022) for updating $F_{k^*+1:l}$, to prevent large deviations from the pretrained weights. For further
 241 details, see Appendix B.1.

242 3.2 ALIGNMENT VIA DIRECT REWARD FINETUNING

244 So far, we have assembled a 3D VAE with a strong, pretrained 3D decoder. However, during text-to-
 245 3D inference, the latents are not obtained from the encoder but generated from noise by the denoising
 246 loop conditioned on the text prompt. Therefore, we must also align the generative model itself with
 247 the 3D decoder, such that it produces decodable latents.

248 Previous work finetunes the generative network by minimizing generative losses over some multi-
 249 view dataset. Unfortunately, that strategy does not ensure 3D-consistent latents. Even if it did, the
 250 finetuning bypasses the decoder, hence there is no guarantee that the generated latents fall within the
 251 distribution expected by the 3D VAE and can be decoded to meaningful outputs.

252 To address the disconnect between the denoising loop and the 3D VAE, we adopt direct reward
 253 finetuning to align the two. In other words, we extend conventional, generative multi-view finetuning
 254 with reward maximization. The conventional generative loss L_{gen} uses paired data, i.e., multi-view
 255 images and corresponding prompts. In contrast, the proposed reward term $r(\cdot, c)$ relies only on the
 256 text prompt and requires no ground-truth images. Our total loss is defined as

$$L_{\text{total}} = L_{\text{gen}} - r(z_0(\theta, c, z_T), c), \quad (3)$$

259 where θ are the parameters of the video generative model, c represents the text prompt, z_T is the
 260 initial noise, and $z_0(\theta, c, z_T)$ is the final latent produced by the denoising loop.

261 **Reward.** The proposed reward function consists of three components that ensure high-quality
 262 and 3D-consistent generation. (1) *Multi-view Image Quality*: As we keep the encoder frozen, the
 263 generated latents can be decoded by the original video decoder \mathcal{D} to obtain multi-view images. We
 264 evaluate these images against the input prompt using CLIP-based (Fang et al., 2024) and HPSv2
 265 human preference scores (Wu et al., 2023) to promote prompt adherence and visual quality, similar
 266 to DanceGRPO (Xue et al., 2025). (2) *3D Representation Quality*: To encourage high-quality 3D
 267 outputs after decoding with $\mathcal{D}_{\text{stitched}}$, we render the generated 3D scenes (pointmaps and/or 3DGS)
 268 back into 2D views and apply the same (CLIP + HPSv2) metrics to them as above. (3) *3D Consistency*: To enforce 3D consistency, we render the 3D representation from the same viewpoints as the
 269 multi-view images reconstructed by the video decoder \mathcal{D} , using the camera poses predicted by the

270 feedforward 3D model. We then compute a combination of ℓ_1 -loss and LPIPS (Zhang et al., 2018)
 271 for each pair of decoded and rendered images belonging to the same viewpoint. The final (negative)
 272 reward is a weighted sum of these three losses. For further details, see Appendix B.2.

273 **Alignment algorithm.** To optimize the generative model according to the reward function above,
 274 we employ direct reward finetuning (Clark et al., 2023; Xu et al., 2023; Prabhudesai et al., 2024; Wu
 275 et al., 2024c; Shen et al., 2025). I.e., the model generates samples by unfolding the full denoising
 276 path, and the rewards computed from these samples are then backpropagated through the denoising
 277 chain. While the algorithm benefits from gradient-based feedback, it can also suffer from exploding
 278 gradient norms. To stabilize the optimization, we generalize the idea of DRTune (Wu et al., 2024c):
 279 gradients are detached from the inputs to the generative model, but retained during the update step
 280 to the next denoising state. In this way, reward propagation remains stable even at early denoising
 281 steps. Furthermore, we modify the optimizer for better computational efficiency by (i) randomized
 282 sampling, using fewer timesteps than during inference, and (ii) randomizing the subset of denoising
 283 steps where gradients are backpropagated, such that the model learns from diverse denoising
 284 trajectories. For further details, see Appendix B.2.

285 In summary, we perform joint, end-to-end alignment of the VAE and the generative model, unlike
 286 conventional multi-view fine-tuning that keeps them separate. Reward tuning ensures that, through-
 287 out the iterative denoising process, the generative model remains aligned with our 3D VAE and
 288 generates latents that suit the stitched decoder.

290 4 EXPERIMENTAL RESULTS

291 In what follows, we demonstrate **VIST3A**’s text-to-3D generation performance. The main findings
 292 are that **VIST3A** clearly outperforms existing feedforward text-to-3DGS approaches and also of-
 293 fers high-quality text-to-pointmap generation. Moreover, we experimentally analyze our two core
 294 components, self-supervised *model stitching* and *alignment finetuning*.

295 4.1 EXPERIMENTAL SETUPS

296 We provide a high-level overview of the experimental setup. A complete description of evaluation
 297 protocols and training details can be found in Appendix C.

301 **Target 3D models.** We target last-generation foundational 3D vision models that have been
 302 trained on large-scale datasets, have demonstrated generality and reliable performance across di-
 303 verse domains, and require only images as input. For our experiments, we select three represen-
 304 tative state-of-the-art models: (1) *MVDUSt3R* (Tang et al., 2025) predicts pointmaps and Gaussian
 305 splats, (2) *VGGT* (Wang et al., 2025a) predicts pointmaps, depth maps and camera poses, and (3)
 306 *AnySplat* (Jiang et al., 2025) predicts Gaussian splats and camera poses.

307 **Target video generators.** Our primary video model is Wan 2.1 T2V large (Wan et al., 2025), a
 308 state-of-the-art text-to-video generator. To demonstrate the generality of VIST3A across different
 309 architectures, we additionally use several other latent video models, including CogVideoX (Yang
 310 et al., 2024b), SVD (Blattmann et al., 2023), and HunyuanVideo (Kong et al., 2024).

311 **Training data.** We finetune stitched VAEs on DL3DV-10K (Ling et al., 2024) and ScanNet (Dai
 312 et al., 2017), without 3D labels. To align the video generator in latent space, we utilize DL3DV-10K
 313 to compute the generative loss, with prompts from the HPSv2 training set (Wu et al., 2023).

314 4.2 MAIN RESULTS: 3D GENERATION

315 Stitching Wan to the 3D models listed in Section 4.1 yields two types of generative models: (i) Text-
 316 to-3DGS when using AnySplat or MVDUSt3R as decoder; and (ii) Text-to-Pointmap when using
 317 VGGT or MVDUSt3R. Both variants are evaluated in the following.

318 **Baselines.** Important baselines for text-to-3DGS are SplatFlow (Go et al., 2025a), Director3D (Li
 319 et al., 2024), Prometheus3D (Yang et al., 2025c), and VideoRFSplat (Go et al., 2025b). Additionally,
 320 we include Matrix3D-omni (Yang et al., 2025d), to our knowledge, the only other model that unifies
 321 generation and reconstruction in latent space.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 1: Quantitative results on T3Bench and SceneBench.

Method	T3Bench (Object-centric)						SceneBench (Scene-level)																	
	Imaging↑			Aesthetic↑			CLIP↑			Unified Reward			Imaging↑			Aesthetic↑			CLIP↑			Unified Reward		
	Align.↑	Coher.↑	Style↑	Align.↑	Coher.↑	Style↑	Align.↑	Coher.↑	Style↑	Align.↑	Coher.↑	Style↑	Align.↑	Coher.↑	Style↑	Align.↑	Coher.↑	Style↑	Align.↑	Coher.↑	Style↑	Align.↑	Coher.↑	Style↑
Matrix3D-omni	43.05	37.66	25.06	2.44	3.10	2.69	46.65	37.62	24.04	2.66	3.29	2.80	58.83	56.55	32.75	3.56	3.89	3.56	62.08	55.67	30.26	3.72	3.97	3.47
Director3D	54.32	53.33	30.94	3.25	3.43	3.05	47.79	52.81	29.31	3.36	3.67	3.20	57.03	54.11	31.38	3.36	3.68	3.17	64.87	56.96	30.18	3.67	3.86	3.40

Table 2: Quantitative results on DPG-Bench.

Method	DPG-Bench					
	Global↑	Entity↑	Attribute↑	Relation↑	Other↑	
Matrix3D-omni	53.32	42.44	56.23	37.12	10.32	
Director3D	66.67	64.96	60.85	45.15	22.73	
Prometheus3D	45.45	48.35	55.03	33.50	9.10	
SplatFlow	69.70	68.43	65.55	50.49	40.91	
VideoRFSplat	36.36	56.93	66.89	48.53	31.82	
VIST3A: Wan + MVDUSt3R	81.82	84.31	86.13	68.93	54.55	
VIST3A: Wan + AnySplat	78.79	85.58	84.12	76.70	45.45	

Table 3: Stitching enhances NVS.

Method	PSNR↑	SSIM↑	LPIPS↓
SplatFlow	19.10	0.671	0.278
VideoRFSplat	19.05	0.674	0.281
Prometheus3D	19.56	0.683	0.277
AnySplat	20.85	0.695	0.238
Hunyuan + AnySplat	21.17	0.710	0.242
SVD + AnySplat	21.48	0.720	0.218
CogVid + AnySplat	21.32	0.716	0.222
Wan + AnySplat	21.29	0.718	0.232

Evaluation protocol. We evaluate text-to-3DGS models on three benchmarks: T3bench (He et al., 2023) for object-centric generation, SceneBench (Yang et al., 2025c) for scene-level synthesis, and DPG-bench (Hu et al., 2024) to assess adherence to long, detailed prompts. On T3bench and SceneBench, we render images and compute Imaging Quality and Aesthetic Quality scores as defined by VBench (Huang et al., 2024) to assess visual fidelity, CLIP score (Hessel et al., 2021) for text-prompt alignment, and Alignment, Coherence, and Style scores according to Wang et al. (2025c) as comprehensive quality metrics. We prefer to avoid traditional no-reference metrics like NIQE (Mittal et al., 2012b) and BRISQUE (Mittal et al., 2012a) that have sometimes been used in the context of 3D generation, but lack a meaningful connection to the conditional generation task (e.g., they can be gambled by always returning the same sharp and colorful, high-scoring image, independent of the prompt). For DPG-bench, we follow the suggested protocol (Hu et al., 2024), but upgrade from the originally proposed language models to the more capable, UnifiedReward LLM (based on Qwen 7B). Text-to-pointmap models are evaluated qualitatively, as no established benchmarks or baselines exist.

Quantitative Results. Tables 1 and 2 show the results for the three text-to-3DGS benchmarks. Notably, both tested VIST3A variants exhibit superior performance across all datasets and evaluation metrics. On T3bench, both Wan+AnySplat and Wan+MVDUSt3R consistently outperform all baselines, with particularly large margins in Imaging Quality and Coherence score. For the more complex scene-level synthesis of SceneBench, our models reach Imaging Quality scores >60 and Coherence scores >3.8 , again a marked improvement over prior art. On DPG-bench, our models greatly outperform the baselines, mostly scoring >75 (often even ≈ 85), values that previously seemed out of reach. The consistent gains on T3bench, SceneBench, and DPG-bench demonstrate the effectiveness and versatility of our stitching approach for text-based 3D scene generation. We attribute these results to the power of foundational contemporary video and 3D models, which our stitching and fine-tuning scheme unlocks for the purpose of 3D generative modeling.

Qualitative Results. Figure 4 qualitatively compares VIST3A (Wan+AnySplat) to several baselines. In line with the quantitative results, VIST3A produces superior, visually compelling, and geometrically coherent renderings that closely follow the input prompts; whereas previous methods tend to exhibit artifacts, structural distortions, and poor text alignment. Further qualitative results, including Wan+MVDUSt3R and Wan+AnySplat variants of VIST3A, as well as text-to-pointmap examples, can be found in Appendix D.2. Interestingly, we find that, even without specific training on very long image sequences, VIST3A can generate coherent large-scale scenes by extending the number of frames generated by the LDM. This demonstrates that our framework preserves the ability of video generator and the 3D decoder to handle long sequences. Examples are depicted in Fig. 16.

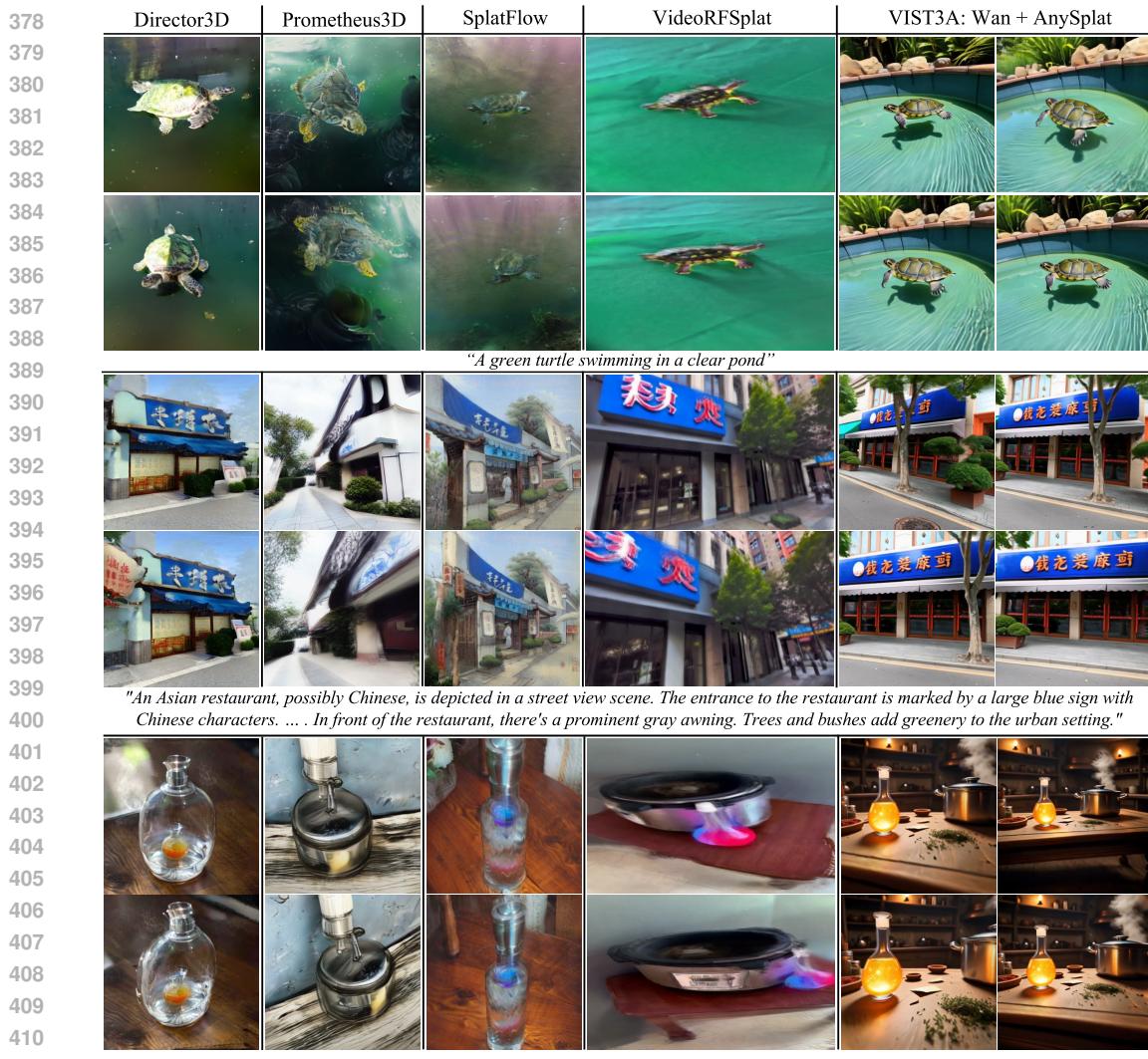


Figure 4: **Qualitative results for 3DGS generation.** We show samples from T3Bench (top), SceneBench (middle), and DPG-bench (bottom). VIST3A generates realistic and crisp 3D scenes and adheres to intricate details in the prompt.

4.3 MAIN RESULTS: MODEL STITCHING

Stitching the 3D foundation models from Section 4.1 with a video VAE yields two variants: a VAE for Gaussian splats (AnySplat + video VAE) or a VAE capable of reconstructing pointmaps and camera poses (MV3Dust3R or VG3D + video VAE). In the following, we evaluate both variants.

Evaluation protocol. For 3DGS models, we evaluate novel-view synthesis on RealEstate10K (Zhou et al., 2018), with 8 source and 4 target images. For 3D reconstruction models, we follow Pi3 (Wang et al., 2025d) and assess pointmap quality on 7Scenes (Shotton et al., 2013) and ETH3D (Schöps et al., 2017), and camera pose estimation on RealEstate10K and ScanNet (Dai et al., 2017). Specifically, Accuracy (Acc.), Completion (Comp.), and Normal Consistency (N.C.) are used for pointmap estimation, while camera pose estimation is evaluated with Relative Rotation Accuracy (RRA) and Relative Translation Accuracy (RTA) at 5° and their AUC up to 30°.

Novel view synthesis. Table 3 reports results on RealEstate10K. Stitching AnySplat onto any video model always improves over using AnySplat alone. We attribute the gains to the richer appearance representation of video VAE latents. The experiment is consistent with the results of Wonder-

Table 4: Results of point map reconstruction with stitched models.

Method	Pointmap Estimation												Camera Pose Estimation						
	7-Scenes						ETH3D						RealEstate10K			ScanNet			
	Acc. \downarrow	Comp. \downarrow	NC. \uparrow	Acc. \downarrow	Comp. \downarrow	NC. \uparrow	Mean	Med.	Mean	Med.	Mean	Med.	Mean	Med.	RRA@5 \uparrow	RTA@5 \uparrow	AUC@30 \uparrow	ATE \downarrow	RPE-T \downarrow
MVDUSt3R	0.026	0.011	0.030	0.013	0.730	0.838	0.400	0.291	0.376	0.159	0.805	0.905	98.66	12.91	42.34	0.015	0.019	0.691	
VGGT	0.020	0.008	0.029	0.016	0.694	0.790	0.263	0.188	0.197	0.120	0.855	0.961	99.51	15.75	50.06	0.015	0.015	0.500	
Hunyuan+MVDUSt3R	0.027	0.012	0.032	0.012	0.699	0.806	0.405	0.288	0.399	0.166	0.802	0.887	98.36	12.40	41.97	0.016	0.019	0.668	
SVD+MVDUSt3R	0.026	0.011	0.030	0.013	0.727	0.834	0.410	0.310	0.387	0.168	0.804	0.899	98.12	12.67	41.69	0.016	0.020	0.690	
CogVid+MVDUSt3R	0.028	0.012	0.033	0.014	0.699	0.808	0.412	0.281	0.387	0.157	0.781	0.888	98.29	12.36	41.96	0.016	0.019	0.680	
Wan+MVDUSt3R	0.027	0.011	0.032	0.012	0.712	0.825	0.401	0.297	0.386	0.164	0.797	0.910	98.28	12.30	42.12	0.016	0.019	0.680	
Wan+VGGT	0.018	0.008	0.032	0.015	0.693	0.790	0.265	0.166	0.193	0.121	0.837	0.960	99.65	15.98	50.86	0.014	0.015	0.520	

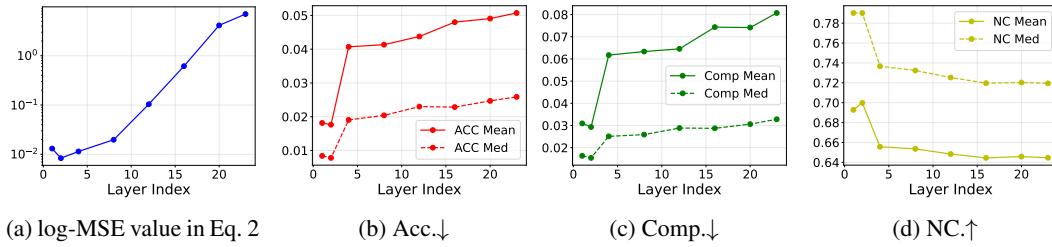


Figure 5: MSE and pointmap quality on 7-Scenes vs. to stitching layer. Lower MSE in the stitching layer correlates with better 3D reconstruction.

land (Liang et al., 2025), where operating in latent space rather than RGB space also benefits 3DGs. Moreover, our stitched VAEs outperform the earlier VAE-based approaches. Remarkably, we surpass Prometheus3D and VideoRFSplat despite their use of camera poses and large-scale training data, showing that stitching high-performance 3D models is indeed an effective strategy to obtain powerful 3D VAEs.

Pointmap reconstruction results. Table 4 shows that stitching preserves the accuracy and completeness of the original 3D foundation models: both pointmap quality and camera pose accuracy barely change when using video encoder latents as input. The results confirm that stitching achieves its goal, to take advantage of the pretrained models’ 3D reconstruction capabilities and repurpose them for generative modeling, without relying on large training datasets or labels.

4.4 ABLATIONS

Effectiveness of MSE for finding stitching layer (Sec 3.1). We pick the best layer for stitching according to a fairly simple criterion, namely the one that best supports a linear transfer of the encoder latents. To analyze the impact of this design, we train stitched decoders for the combination (Wan+VGGT) while varying the stitching index. In Fig. 5, we see that layers with lower stitching residual indeed yield better pointmaps, supporting the MSE of the linear stitching layer as our selection criterion.

This empirical trend is also consistent with existing theory: Theorem 1 in Insulla et al. (2025) shows that the stitching risk of the hybrid network, obtained by connecting the source model’s early layers f_1 with the target model’s latter layers f_2 via a linear map $S_{1,2}$, is upper-bounded by the MSE at the stitching layer,

$$\mathbb{E}[\|g_2(S_{1,2}f_1)(x) - g_2(f_2)(x)\|^2] \leq \kappa_2^2 \mathbb{E}[\|S_{1,2}f_1(x) - f_2(x)\|^2], \quad (4)$$

where κ_2 is the Lipschitz constant of g_2 . Thus, an MSE is related to the upper bound on the stitching error, supporting our use of MSE.

Furthermore, motivated by the observation of Insulla et al. (2025) that the right-hand side of Eq. 4 takes a similar form of kernel alignment, we investigate whether CKA (Kornblith et al., 2019) can track the trend of final performance. Figure 6 reports the CKA between latent representation of Wan VAE and the representations at different layer indices of VGGT (larger values indicate higher similarity). As shown, CKA captures the overall degradation in performance as the layer index increases; however, it is less precise than MSE in identifying the best layer, failing to capture that the best perfor-

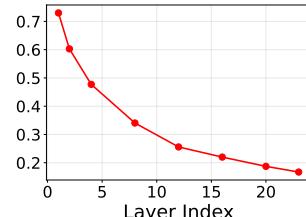


Figure 6: CKA visualization.

486 mance is achieved at layer 2. These results suggest that, in our setting, MSE is a more reliable
 487 indicator of transferability than CKA.

488 **Impact of direct reward finetuning (Sec 3.2).** As shown in Appendix D.1, direct reward finetuning
 489 is more effective than a pretrained video model on its own, as well as that same model finetuned on
 490 multi-view data, with each reward component contributing to the overall performance.

491 **Benefits of integrated vs. sequential 3D generation.** In Appendix D.2, we observe that an in-
 492 tegrated approach is more robust to noise in the latent space, which suggests it may lead to more
 493 consistent 3D reconstruction from noise in the generation process.

496 5 CONCLUSION

497 We have presented VIST3A, a framework for training latent diffusion models that generate 3D
 498 content from text prompts. Our key idea is to employ model stitching as a way to integrate the
 499 generative abilities of modern video models with the 3D understanding of recent feedforward 3D
 500 models. We found that this strategy indeed leads to high-quality 3D VAEs, while not requiring la-
 501 beled data or massive training runs. To then align a latent-space video generator with the stitched
 502 3D decoder it feeds into, we design a reward-based finetuning strategy. Together, these two mea-
 503 sures yield a family of text-to-3D models with high-quality, geometrically consistent 3D outputs. In
 504 passing, they extend 3D generation to other outputs of foundational 3D models, such as pointmaps
 505 and depthmaps. More broadly, we see great potential for model stitching as a general tool to com-
 506 bine two or more foundational neural networks, including latent generative models, into powerful
 507 end-to-end solutions.

509 REFERENCES

511 Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
 512 interpolants. In *International Conference on Learning Representations*, 2023.

513 Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare neural
 514 representations. *Advances in Neural Information Processing Systems*, 34:225–236, 2021.

515 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
 516 models with reinforcement learning. In *International Conference on Learning Representations*,
 517 2024.

518 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
 519 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
 520 latent video diffusion models to large datasets. *preprint arXiv:2311.15127*, 2023.

521 David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelSplat: 3d gaus-
 522 sian splats from image pairs for scalable generalizable 3d reconstruction. In *IEEE/CVF Confer-
 523 ence on Computer Vision and Pattern Recognition*, pp. 19457–19467, 2024.

524 Hansheng Chen, Jiatao Gu, Anpei Chen, Wei Tian, Zhuowen Tu, Lingjie Liu, and Hao Su. Single-
 525 stage diffusion NeRF: A unified approach to 3d generation and reconstruction. In *IEEE/CVF
 526 International Conference on Computer Vision*, pp. 2416–2425, 2023.

527 Luxi Chen, Zihan Zhou, Min Zhao, Yikai Wang, Ge Zhang, Wenhao Huang, Hao Sun, Ji-Rong Wen,
 528 and Chongxuan Li. FlexWorld: Progressively expanding 3d scenes for flexible-view synthesis.
 529 *preprint arXiv:2503.13265*, 2025.

530 Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-
 531 Jen Cham, and Jianfei Cai. MVsplat: Efficient 3d gaussian splatting from sparse multi-view
 532 images. In *European Conference on Computer Vision*, pp. 370–386, 2024a.

533 Zilong Chen, Feng Wang, Yikai Wang, and Huaping Liu. Text-to-3d using gaussian splatting. In
 534 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 21401–21412, 2024b.

535 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
 536 on differentiable rewards. *preprint arXiv:2309.17400*, 2023.

540 Adrián Csiszárík, Péter Kőrösi-Szabó, Ákos Matszangosz, Gergely Papp, and Dániel Varga. Similar-
 541 ity and matching of neural network representations. *Advances in Neural Information Processing*
 542 *Systems*, 34:5656–5668, 2021.

543

544 Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
 545 Nießner. ScanNet: Richly-annotated 3d reconstructions of indoor scenes. In *IEEE/CVF Conference*
 546 *on Computer Vision and Pattern Recognition*, pp. 5828–5839, 2017.

547 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
 548 Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of an-
 549 notated 3d objects. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 550 13142–13153, 2023.

551

552 Paul Engstler, Aleksandar Shtedritski, Iro Laina, Christian Rupprecht, and Andrea Vedaldi. SynCity:
 553 Training-free generation of 3d worlds. *preprint arXiv:2503.16420*, 2025.

554 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 555 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 556 high-resolution image synthesis. In *International Conference on Machine Learning*, 2024.

557

558 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
 559 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-
 560 tuning text-to-image diffusion models. In *Advances in Neural Information Processing Systems*,
 561 2023.

562 Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander T Toshev, and Vaishaal
 563 Shankar. Data filtering networks. In *International Conference on Learning Representations*, 2024.

564

565 Hao Feng, Zhi Zuo, Jia-hui Pan, Ka-hei Hui, Yihua Shao, Qi Dou, Wei Xie, and Zhengzhe
 566 Liu. WonderVerse: Extendable 3d scene generation with video generative models. *preprint*
 567 *arXiv:2503.09160*, 2025.

568

569 Rafail Fridman, Amit Abecasis, Yoni Kasten, and Tali Dekel. SceneScape: Text-driven consistent
 570 scene generation. *Advances in Neural Information Processing Systems*, 36:39897–39914, 2023.

571

572 Yasutaka Furukawa, Carlos Hernández, et al. Multi-view stereo: A tutorial. *Foundations and*
 573 *trends® in Computer Graphics and Vision*, 9(1-2):1–148, 2015.

574

575 Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin Brualla, Pratul
 576 Srinivasan, Jonathan Barron, and Ben Poole. CAT3D: Create anything in 3d with multi-view
 577 diffusion models. *Advances in Neural Information Processing Systems*, 37:75468–75494, 2024.

578

579 Hyojun Go, Byeongjun Park, Jiho Jang, Jin-Young Kim, Soonwoo Kwon, and Changick Kim. Splat-
 580 Flow: Multi-view rectified flow model for 3d gaussian splatting synthesis. In *IEEE/CVF Confer-
 581 ence on Computer Vision and Pattern Recognition*, pp. 21524–21536, 2025a.

582

583 Hyojun Go, Byeongjun Park, Hyelin Nam, Byung-Hoon Kim, Hyungjin Chung, and Changick Kim.
 584 VideoRFSplat: Direct scene-level text-to-3d gaussian splatting generation with flexible pose and
 585 multi-view joint modeling. *preprint arXiv:2503.15855*, 2025b.

586

587 Richard Hartley and Andrew Zisserman. *Multiple view geometry in computer vision*. Cambridge
 588 University Press, 2003.

589

590 Yuze He, Yushi Bai, Matthieu Lin, Wang Zhao, Yubin Hu, Jenny Sheng, Ran Yi, Juanzi Li, and
 591 Yong-Jin Liu. t3Bench: Benchmarking current progress in text-to-3d generation. *preprint*
 592 *arXiv:2310.02977*, 2023.

593

594 Paul Henderson, Melonie de Almeida, Daniela Ivanova, and Titas Anciukevičius. Sampling 3d
 595 gaussian scenes in seconds with latent diffusion models. *preprint arXiv:2406.13099*, 2024.

596

597 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
 598 reference-free evaluation metric for image captioning. *preprint arXiv:2104.08718*, 2021.

594 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 595 *arXiv:2207.12598*, 2022.

596

597 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 598 *Neural Information Processing Systems*, 33:6840–6851, 2020.

599 Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli,
 600 Trung Bui, and Hao Tan. LRM: Large reconstruction model for single image to 3d. *preprint*
 601 *arXiv:2311.04400*, 2023.

602

603 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 604 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Con-*
 605 *ference on Learning Representations*, 2022.

606 Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. ELLA: Equip diffusion models
 607 with LLM for enhanced semantic alignment. *preprint arXiv:2403.05135*, 2024.

608

609 Ziqi Huang, Yinan He, Jiahuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 610 ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. VBench: Comprehensive benchmark suite for
 611 video generative models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 612 pp. 21807–21818, 2024.

613 Francesco Insulla, Shuo Huang, and Lorenzo Rosasco. Towards a learning theory of representation
 614 alignment. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 615 <https://openreview.net/forum?id=DShqJA1Z64>.

616

617 Lihan Jiang, Yucheng Mao, Linning Xu, Tao Lu, Kerui Ren, Yichen Jin, Xudong Xu, Mulin Yu,
 618 Jiangmiao Pang, Feng Zhao, et al. AnySplat: Feed-forward 3d gaussian splatting from uncon-
 619 strained views. *preprint arXiv:2505.23716*, 2025.

620 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale im-
 621 age quality transformer. In *Proceedings of the IEEE/CVF international conference on computer*
 622 *vision*, pp. 5148–5157, 2021.

623

624 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d Gaussian splat-
 625 ting for real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4):139–1, 2023.

626

627 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 628 Bo Wu, Jianwei Zhang, et al. HunyuanVideo: A systematic framework for large video generative
 629 models. *preprint arXiv:2412.03603*, 2024.

630

631 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
 632 network representations revisited. In *International Conference on Machine Learning*, pp. 3519–
 3529, 2019.

633

634 Yushi Lan, Shangchen Zhou, Zhaoyang Lyu, Fangzhou Hong, Shuai Yang, Bo Dai, Xingang Pan,
 635 and Chen Change Loy. GaussianAnything: Interactive point cloud flow matching for 3d object
 636 generation. *preprint arXiv:2411.08033*, 2024.

637

638 Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
 639 Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
 640 feedback. *preprint arXiv:2302.12192*, 2023.

641

642 Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equiv-
 643 ariance and equivalence. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp.
 644 991–999, 2015.

645

646 Vincent Leroy, Yohann Cabon, and Jérôme Revaud. Grounding image matching in 3d with MASt3R.
 647 In *European Conference on Computer Vision*, pp. 71–91, 2024.

648

649 Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong Hong, Kalyan
 650 Sunkavalli, Greg Shakhnarovich, and Sai Bi. Instant3d: Fast text-to-3d with sparse-view gen-
 651 eration and large reconstruction model. *preprint arXiv:2311.06214*, 2023.

648 Weiyu Li, Jiarui Liu, Hongyu Yan, Rui Chen, Yixun Liang, Xuelin Chen, Ping Tan, and Xiaox-
 649 iao Long. CraftsMan3D: High-fidelity mesh generation with 3d native diffusion and interactive
 650 geometry refiner. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 651 5307–5317, 2025a.

652 Xinyang Li, Zhangyu Lai, Lining Xu, Yansong Qu, Liujuan Cao, Shengchuan Zhang, Bo Dai,
 653 and Rongrong Ji. Director3D: Real-world camera trajectory and 3d scene generation from text.
 654 *Advances in Neural Information Processing Systems*, pp. 75125–75151, 2024.

655 Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu,
 656 Yuan-Chen Guo, Ding Liang, Wanli Ouyang, et al. TripoSG: High-fidelity 3d shape synthesis
 657 using large-scale rectified flow models. *preprint arXiv:2502.06608*, 2025b.

658 Hanwen Liang, Junli Cao, Vudit Goel, Guocheng Qian, Sergei Korolev, Demetri Terzopoulos, Kon-
 659 stantinos N Plataniotis, Sergey Tulyakov, and Jian Ren. Wonderland: Navigating 3d scenes from
 660 a single image. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 798–
 661 810, 2025.

662 Chenguo Lin, Panwang Pan, Bangbang Yang, Zeming Li, and Yadong MU. DiffSplat: Repurposing
 663 image diffusion models for scalable gaussian splat generation. In *International Conference on
 664 Learning Representations*, 2025.

665 Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo,
 666 Zixun Yu, Yawen Lu, et al. DL3DV-10K: A large-scale scene dataset for deep learning-based 3d
 667 vision. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22160–22169,
 668 2024.

669 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 670 matching for generative modeling. In *International Conference on Learning Representations*,
 671 2023.

672 Fangfu Liu, Wenqiang Sun, Hanyang Wang, Yikai Wang, Haowen Sun, Junliang Ye, Jun Zhang,
 673 and Yueqi Duan. ReconX: Reconstruct any scene from sparse views with video diffusion model.
 674 *preprint arXiv:2408.16767*, 2024.

675 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
 676 Di Zhang, and Wanli Ouyang. Flow-GRPO: Training flow matching models via online RL.
 677 *preprint arXiv:2505.05470*, 2025.

678 Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
 679 transfer data with rectified flow. In *International Conference on Learning Representations*, 2023.

680 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 681 arXiv:1711.05101*, 2017.

682 Xuyi Meng, Chen Wang, Jiahui Lei, Kostas Daniilidis, Jiatao Gu, and Lingjie Liu. Zero-1-to-G:
 683 Taming pretrained 2d diffusion model for direct 3d generation. *arXiv preprint arXiv:2501.05427*,
 684 2025.

685 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 686 Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. *Communications
 687 of the ACM*, 65(1):99–106, 2021.

688 Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assess-
 689 ment in the spatial domain. *IEEE Transactions on Image Processing*, 21(12):4695–4708, 2012a.

690 Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality
 691 analyzer. *IEEE Signal Processing Letters*, 20(3):209–212, 2012b.

692 Shentong Mo, Enze Xie, Ruihang Chu, Lanqing Hong, Matthias Niessner, and Zhenguo Li. DiT-3D:
 693 Exploring plain diffusion transformers for 3d shape generation. *Advances in Neural Information
 694 Processing Systems*, 36:67960–67971, 2023.

702 Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a multiresolution hash encoding. *ACM Transactions on Graphics*, 41(4):1–15, 2022.

703

704

705 Chaojun Ni, Xiaofeng Wang, Zheng Zhu, Weijie Wang, Haoyun Li, Guosheng Zhao, Jie Li, Wenkang Qin, Guan Huang, and Wenjun Mei. WonderTurbo: Generating interactive 3d world in 0.72 seconds. *preprint arXiv:2504.02261*, 2025.

706

707

708 Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-E: A system for generating 3d point clouds from complex prompts. *preprint arXiv:2212.08751*, 2022.

709

710

711 Julian Ost, Andrea Ramazzina, Amogh Joshi, Maximilian Bömer, Mario Bijelic, and Felix Heide. LSD-3D: Large-scale 3d driving scene generation with geometry grounding. *preprint arXiv:2508.19204*, 2025.

712

713

714 Zizheng Pan, Jianfei Cai, and Bohan Zhuang. Stitchable neural networks. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16102–16112, 2023.

715

716

717 Byeongjun Park, Hyojun Go, Hyelin Nam, Byung-Hoon Kim, Hyungjin Chung, and Changick Kim. Steerx: Creating any camera-free 3d and 4d scenes with geometric steering. *arXiv preprint arXiv:2503.12024*, 2025.

718

719

720 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression: Simple and scalable off-policy reinforcement learning. *preprint arXiv:1910.00177*, 2019.

721

722 Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. DreamFusion: Text-to-3d using 2d diffusion. In *International Conference on Learning Representations*, 2023.

723

724

725 Mihir Prabhudesai, Russell Mendonca, Zheyang Qin, Katerina Fragkiadaki, and Deepak Pathak. Video diffusion alignment via reward gradients. *preprint arXiv:2407.08737*, 2024.

726

727

728 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36:53728–53741, 2023.

729

730

731 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.

732

733

734 Aditya Sanghi, Rao Fu, Vivian Liu, Karl D.D. Willis, Hooman Shayani, Amir H. Khasahmadi, Srinath Sridhar, and Daniel Ritchie. CLIP-Sculptor: Zero-shot generation of high-fidelity and diverse shapes from natural language. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18339–18348, 2023.

735

736

737

738

739 Johannes L Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 4104–4113, 2016.

740

741 Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. Pixelwise view selection for unstructured multi-view stereo. In *European Conference on Computer Vision*, pp. 501–518, 2016.

742

743

744 Thomas Schöps, Johannes L Schonberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc Pollefeys, and Andreas Geiger. A multi-view stereo benchmark with high-resolution images and multi-camera videos. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3260–3269, 2017.

745

746

747

748

749 Katja Schwarz, Norman Mueller, and Peter Kortschieder. Generative gaussian splatting: Generating 3d scenes with video diffusion priors. *preprint arXiv:2503.13272*, 2025.

750

751 Xiangwei Shen, Zhimin Li, Zhantao Yang, Shiyi Zhang, Yingfang Zhang, Donghao Li, Chunyu Wang, Qinglin Lu, and Yansong Tang. Directly aligning the full diffusion trajectory with fine-grained human preference. *preprint arXiv:2509.06942*, 2025.

752

753

754 Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. MVDream: Multi-view diffusion for 3d generation. *preprint arXiv:2308.16512*, 2023.

755

756 Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi, Antonio Criminisi, and Andrew
 757 Fitzgibbon. Scene coordinate regression forests for camera relocalization in RGB-D images. In
 758 *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 2930–2937, 2013.

759
 760 Jaidev Shriram, Alex Trevithick, Lingjie Liu, and Ravi Ramamoorthi. RealmDreamer: Text-driven
 761 3d scene generation with inpainting and depth diffusion. In *International Conference on 3D*
 762 *Vision*, 2025.

763 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 764 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learn-*
 765 *ing*, pp. 2256–2265, 2015.

766 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
 767 Ben Poole. Score-based generative modeling through stochastic differential equations. *preprint*
 768 *arXiv:2011.13456*, 2020.

769
 770 Wenqiang Sun, Shuo Chen, Fangfu Liu, Zilong Chen, Yueqi Duan, Jun Zhang, and Yikai Wang.
 771 DimensionX: Create any 3d and 4d scenes from a single image with controllable video diffusion.
 772 *preprint arXiv:2411.04928*, 2024.

773 Stanislaw Szymanowicz, Jason Y Zhang, Pratul Srinivasan, Ruiqi Gao, Arthur Brussee, Aleksander
 774 Holynski, Ricardo Martin-Brualla, Jonathan T Barron, and Philipp Henzler. Bolt3D: Generating
 775 3d scenes in seconds. *preprint arXiv:2503.14445*, 2025.

776
 777 Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. LGM:
 778 Large multi-view gaussian model for high-resolution 3d content creation. In *European Conference*
 779 *on Computer Vision*, pp. 1–18, 2024a.

780 Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. DreamGaussian: Generative
 781 Gaussian splatting for efficient 3d content creation. In *International Conference on Learning*
 782 *Representations*, 2024b.

783 Zhenggang Tang, Yuchen Fan, Dilin Wang, Hongyu Xu, Rakesh Ranjan, Alexander Schwing, and
 784 Zhicheng Yan. MV-DUSt3R+: Single-stage scene reconstruction from sparse views in 2 seconds.
 785 In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5283–5293, 2025.

786
 787 Genmo Team. Mochi 1. <https://github.com/genmoai/models>, 2024.

788 Qwen Team. Qwen2.5-vl, January 2025. URL <https://qwenlm.github.io/blog/qwen2.5-vl/>.

789
 790 Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten Kreis, et al. LION: La-
 791 tent point diffusion models for 3d shape generation. *Advances in Neural Information Processing*
 792 *Systems*, 35:10021–10039, 2022.

793
 794 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 795 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 796 models. *preprint arXiv:2503.20314*, 2025.

797
 798 Haiping Wang, Yuan Liu, Ziwei Liu, Wenping Wang, Zhen Dong, and Bisheng Yang. Vis-
 799 taDream: Sampling multiview consistent images for single-view scene reconstruction. *preprint*
 800 *arXiv:2410.16892*, 2024a.

801 Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score Jacobian
 802 chaining: Lifting pretrained 2d diffusion models for 3d generation. In *IEEE/CVF Conference on*
 803 *Computer Vision and Pattern Recognition*, pp. 12619–12629, 2023a.

804
 805 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 806 Novotny. VGGT: Visual geometry grounded transformer. In *IEEE/CVF Conference on Computer*
 807 *Vision and Pattern Recognition*, pp. 5294–5306, 2025a.

808 Qianqian Wang, Yifei Zhang, Aleksander Holynski, Alexei A Efros, and Angjoo Kanazawa. Con-
 809 tinuous 3d perception model with persistent state. In *IEEE/CVF Conference on Computer Vision*
 810 *and Pattern Recognition*, pp. 10510–10522, 2025b.

810 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. DUSt3R: Ge-
 811 ometric 3d vision made easy. In *IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 812 *nition*, pp. 20697–20709, 2024b.

813

814 Yibin Wang, Yuhang Zang, Hao Li, Cheng Jin, and Jiaqi Wang. Unified reward model for multi-
 815 modal understanding and generation. *arXiv preprint arXiv:2503.05236*, 2025c.

816 Yifan Wang, Jianjun Zhou, Haoyi Zhu, Wenzheng Chang, Yang Zhou, Zizun Li, Junyi Chen, Jiang-
 817 miao Pang, Chunhua Shen, and Tong He. π^3 : Scalable permutation-equivariant visual geometry
 818 learning. *preprint arXiv:2507.13347*, 2025d.

819

820 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolific-
 821 Dreamer: high-fidelity and diverse text-to-3d generation with variational score distillation. In
 822 *Advances in Neural Information Processing Systems*, pp. 8406–8441, 2023b.

823 Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi Gao, Daniel Watson, Pratul P
 824 Srinivasan, Dor Verbin, Jonathan T Barron, Ben Poole, et al. ReconFusion: 3d reconstruction
 825 with diffusion priors. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 826 21551–21561, 2024a.

827

828 Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao
 829 Yao. Direct3D: Scalable image-to-3d generation via 3d latent diffusion transformer. *Advances in*
 830 *Neural Information Processing Systems*, 37:121859–121881, 2024b.

831 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
 832 Human preference score v2: A solid benchmark for evaluating human preferences of text-to-
 833 image synthesis. *preprint arXiv:2306.09341*, 2023.

834 Xiaoshi Wu, Yiming Hao, Manyuan Zhang, Keqiang Sun, Zhaoyang Huang, Guanglu Song, Yu Liu,
 835 and Hongsheng Li. Deep reward supervisions for tuning text-to-image diffusion models. In
 836 *European Conference on Computer Vision*, pp. 108–124, 2024c.

837

838 Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Shenghua Gao, and Ying Shan. InstantMesh:
 839 Efficient 3d mesh generation from a single image with sparse-view large reconstruction models.
 840 *preprint arXiv:2404.07191*, 2024a.

841 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 842 Dong. ImageReward: Learning and evaluating human preferences for text-to-image generation.
 843 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

844

845 Yinghao Xu, Zifan Shi, Wang Yifan, Hansheng Chen, Ceyuan Yang, Sida Peng, Yujun Shen, and
 846 Gordon Wetzstein. GRM: Large Gaussian reconstruction model for efficient 3d reconstruction
 847 and generation. In *European Conference on Computer Vision*, pp. 1–20, 2024b.

848 Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei
 849 Liu, Qiushan Guo, Weilin Huang, et al. DanceGRPO: Unleashing GRPO on visual generation.
 850 *preprint arXiv:2505.07818*, 2025.

851 Jianing Yang, Alexander Sax, Kevin J Liang, Mikael Henaff, Hao Tang, Ang Cao, Joyce Chai,
 852 Franziska Meier, and Matt Feiszli. Fast3R: Towards 3d reconstruction of 1000+ images in one
 853 forward pass. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 21924–
 854 21935, 2025a.

855

856 Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Weihan Shen, Xiaolong Zhu, and Xiu
 857 Li. Using human feedback to fine-tune diffusion models without any reward model. In *IEEE/CVF*
 858 *Conference on Computer Vision and Pattern Recognition*, pp. 8941–8951, 2024a.

859 Shuai Yang, Jing Tan, Mengchen Zhang, Tong Wu, Gordon Wetzstein, Ziwei Liu, and Dahua Lin.
 860 LayerPano3D: Layered 3d panorama for hyper-immersive scene generation. In *ACM SIGGRAPH*,
 861 2025b.

862

863 Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, and Xinchao Wang. Deep model reassembly.
 864 *Advances in Neural Information Processing Systems*, 35:25739–25753, 2022.

864 Yuanbo Yang, Jiahao Shao, Xinyang Li, Yujun Shen, Andreas Geiger, and Yiyi Liao. Prometheus:
 865 3d-aware latent diffusion models for feed-forward text-to-3d scene generation. In *IEEE/CVF*
 866 *Conference on Computer Vision and Pattern Recognition*, pp. 2857–2869, 2025c.
 867

868 Zhongqi Yang, Wenhong Ge, Yuqi Li, Jiaqi Chen, Haoyuan Li, Mengyin An, Fei Kang, Hua Xue,
 869 Baixin Xu, Yuyang Yin, et al. Matrix-3d: Omnidirectional explorable 3d world generation.
 870 *preprint arXiv:2508.08086*, 2025d.

871 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 872 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. CogVideoX: Text-to-video diffusion models
 873 with an expert transformer. *preprint arXiv:2408.06072*, 2024b.

874 Botao Ye, Sifei Liu, Haofei Xu, Xuetong Li, Marc Pollefeys, Ming-Hsuan Yang, and Songyou
 875 Peng. No pose, no problem: Surprisingly simple 3d gaussian splats from sparse unposed im-
 876 ages. *preprint arXiv:2410.24207*, 2024.

877 Hong-Xing Yu, Haoyi Duan, Junhwa Hur, Kyle Sargent, Michael Rubinstein, William T Freeman,
 878 Forrester Cole, Deqing Sun, Noah Snavely, Jiajun Wu, et al. WonderJourney: Going from any-
 879 where to everywhere. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 880 6658–6667, 2024a.

882 Hong-Xing Yu, Haoyi Duan, Charles Herrmann, William T Freeman, and Jiajun Wu. WonderWorld:
 883 Interactive 3d scene generation from a single image. In *IEEE/CVF Conference on Computer*
 884 *Vision and Pattern Recognition*, pp. 5916–5926, 2025.

885 Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li, Zhipeng Huang, Xiangjun Gao, Tien-
 886 Tsin Wong, Ying Shan, and Yonghong Tian. ViewCrafter: Taming video diffusion models for
 887 high-fidelity novel view synthesis. *preprint arXiv:2409.02048*, 2024b.

889 Bowen Zhang, Yiji Cheng, Jiaolong Yang, Chunyu Wang, Feng Zhao, Yansong Tang, Dong Chen,
 890 and Baining Guo. GaussianCube: Structuring gaussian splatting using optimal transport for 3d
 891 generative modeling. *preprint arXiv:2403.19655*, 2024a.

892 Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, and Zexiang Xu.
 893 GS-LRM: Large reconstruction model for 3d gaussian splatting. In *European Conference on*
 894 *Computer Vision*, pp. 1–19, 2024b.

896 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 897 effectiveness of deep features as a perceptual metric. In *IEEE/CVF Conference on Computer*
 898 *Vision and Pattern Recognition*, 2018.

899 Shangzhan Zhang, Jianyuan Wang, Yinghao Xu, Nan Xue, Christian Rupprecht, Xiaowei Zhou,
 900 Yujun Shen, and Gordon Wetzstein. FLARE: Feed-forward geometry, appearance and camera
 901 estimation from uncalibrated sparse views. In *IEEE/CVF Conference on Computer Vision and*
 902 *Pattern Recognition*, pp. 21936–21947, 2025.

904 Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang, Pei Cheng, Bin Fu, Tao Chen, Gang Yu,
 905 and Shenghua Gao. Michelangelo: Conditional 3d shape generation based on shape-image-text
 906 aligned latent representation. *Advances in Neural Information Processing Systems*, pp. 73969–
 907 73982, 2023.

908 Kaizhi Zheng, Ruijian Zhang, Jing Gu, Jie Yang, and Xin Eric Wang. Constructing a 3d town from
 909 a single image. *preprint arXiv:2505.15765*, 2025.

910 Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
 911 Learning view synthesis using multiplane images. *preprint arXiv:1805.09817*, 2018.

913
 914
 915
 916
 917

918 A EXTENDED RELATED WORKS
919

920 **Pipeline-based 3D generation.** A line of recent works follows a pipeline design, chaining together
921 multiple modules and models. Typically, the first stage generates multi-view images from text or
922 a single input image, followed by a separate reconstruction model that lifts these views into a 3D
923 representation (Tang et al., 2024a; Xu et al., 2024b; Zhang et al., 2024b; Li et al., 2023; Park et al.,
924 2025), with large models such as LRM (Hong et al., 2023) often used for this step. However, since
925 the generative and reconstruction stages are trained and executed independently, errors accumulate
926 across these parts (e.g., view inconsistency, texture flicker). Moreover, such pipeline schemes are
927 less robust to latent-space perturbations than approaches where generation and reconstruction are
928 performed jointly in the same latent space (see Section D.2).

929 A second category of methods (Liu et al., 2024; Yu et al., 2024b; Gao et al., 2024; Sun et al., 2024;
930 Wang et al., 2024a) also generates multi-view images before lifting them into 3D, but replaces large
931 pretrained reconstruction models with per-scene optimization of NeRFs (Mildenhall et al., 2021) or
932 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023). While this strategy avoids reliance on pretrained
933 decoders, it remains prone to error accumulation and requires costly per-scene optimization, making
934 inference slow and computationally expensive.

935 A third line of works introduces progressive expansion and refinement pipelines (Yu et al., 2024a;
936 Ni et al., 2025; Chen et al., 2025; Fridman et al., 2023; Feng et al., 2025; Yu et al., 2025). Some
937 adopt iterative warping and inpainting strategies (Yu et al., 2024a; Ni et al., 2025; Fridman et al.,
938 2023; Yu et al., 2025), while others leverage video generative models to unfold 3D scenes in a
939 progressive manner (Chen et al., 2025; Feng et al., 2025). Beyond these, additional works propose
940 elaborate multi-stage pipelines that further increase complexity (Yang et al., 2025b; Ost et al., 2025).
941 However, such designs are overly complex and suffer from slow inference.

942 **Alignment for text-to-2D models.** Recent studies have explored several strategies for aligning
943 pretrained text-to-2D models with human preferences: (1) direct fine-tuning with scalar re-
944 wards (Clark et al., 2023; Xu et al., 2023; Prabhudesai et al., 2024; Wu et al., 2024c; Shen et al.,
945 2025), (2) Reward Weighted Regression (RWR) (Peng et al., 2019; Lee et al., 2023), (3) Direct Pref-
946 ference Optimization (DPO) (Rafailov et al., 2023; Yang et al., 2024a), and (4) PPO-based policy
947 gradients (Black et al., 2024; Fan et al., 2023; Liu et al., 2025). In this work, we adopt *direct fine-
948 tuning*, which uses gradient-based feedback to align the generative model with the stitched decoder,
949 ensuring that the resulting latents yield high-quality, 3D-consistent outputs.

950 B METHODOLOGY DETAILS AND ITS IMPLEMENTATION
951

952 In this section, we provide additional details about the methodology behind VIST3A, extending
953 the description given in Section 3. We first elaborate on the architectural and training aspects of
954 our stitching method in Section B.1, including the stitching layers and loss functions used for MV-
955 DUST3R (Tang et al., 2025), VGGT (Wang et al., 2025a), and AnySplat (Jiang et al., 2025). Sec-
956 tion B.2 then details the direct reward finetuning methodology, outlining the reward formulations
957 and their implementation for each 3D model (VGGT, AnySplat, and MVDUST3R).

958 B.1 MODEL STITCHING
959

960 **Stitching layer.** We implement the stitching layer \mathbf{S} as a single Conv3D layer. Relying only on
961 Conv3D parameters to align the spatial and temporal dimensions between the latent and the features
962 from $F_{k+1:l}$ can result in unnatural configurations, such as excessively large padding size. To address
963 this, we first interpolate the latent representation to the target dimensions and then apply Conv3D,
964 which provides a cleaner alignment of spatial and temporal dimensions. This design still admits a
965 closed-form expression of the stitching layer, as shown in Eq. 2.

966 **Loss function for each 3D model.** We train the stitched VAE using an ℓ_1 loss between its outputs
967 and those of the original 3D model. Since 3D model outputs often consist of multiple components,
968 we compute the ℓ_1 loss for each component separately and then aggregate them with a weighted sum.
969 Assigning equal weights can destabilize training and even cause divergence, since some components
970 (e.g., confidence terms) have much larger scales than others. To mitigate this, we reweight the
971

972 component losses to approximately balance their scales. The specific weighting strategy is adapted
 973 to each 3D model as follows:
 974

- 975 • **MVDUSt3R.** The outputs consist of pointmaps, confidence scores for the pointmaps, and
 976 3D Gaussian primitives. We assign a weight of 10^{-2} to the confidence term, while pointmap
 977 and Gaussian primitive losses are left unscaled.
- 978 • **VGGT.** Outputs include pointmaps, depth maps, camera poses, and confidence for both
 979 pointmaps and depth. In addition, following VGGT’s practice, we add gradient-based reg-
 980 ularization losses on pointmaps and depth maps. We weight the pose loss by 5, all con-
 981 fidence terms by 5×10^{-3} , and gradient regularization losses by 5×10^{-3} . Other losses
 982 remain unscaled.
- 983 • **AnySplat.** Outputs include depth maps, Gaussian primitives, confidence for both depth
 984 and Gaussian primitives, camera poses, and anchor features. Additionally, we introduce
 985 gradient-based regularization losses on the depth maps. We weight all confidence terms by
 986 10^{-2} , gradient regularization losses by 5×10^{-3} , Gaussian scale parameters by 10, and
 987 anchor features by 0.1. Depth and other Gaussian parameters are left unscaled.

988
 989 **Hyperparameters and implementation details.** For the stitching layer \mathbf{S} , we adopt a single 3D
 990 convolution with kernel size, stride, and padding chosen to align the latent features from the video
 991 VAE with the representation space of each 3D model:

- 992 • **MVDUSt3R:** a 3D convolution with kernel size $5 \times 7 \times 7$, output channels 1024, stride
 993 $1 \times 3 \times 3$, and padding $2 \times 0 \times 0$.
- 994 • **VGGT:** a 3D convolution with kernel size $5 \times 3 \times 3$, output channels 1024, stride $1 \times 2 \times 2$,
 995 and padding $2 \times 1 \times 1$.
- 996 • **AnySplat:** a 3D convolution with kernel size $5 \times 3 \times 3$, output channels 1024, stride
 997 $1 \times 2 \times 2$, and padding $2 \times 1 \times 1$.

998 Before applying the convolution, the interpolation layer recovers the temporal dimension com-
 1000 pressed by the video VAE and adjusts the spatial size so that it matches the resolution expected
 1001 by the feedforward 3D model. The input resolution of the video VAE is set to 384×384 for MV-
 1002 DUST3R and 512×512 for both AnySplat and VGGT, as these configurations empirically yield
 1003 stable training for the respective generative backbones. We employ LoRA with rank $r = 64$ and
 1004 scaling factor $a = 32$ to Conv2D and linear layers across all cases.

1006 B.2 DIRECT REWARD FINETUNING

1008 **Reward details.** We combine CLIP-based scores and HPSv2.1 human preference scores to con-
 1009 struct rewards for both multi-view image quality and 3D representation quality. Specifically, we use
 1010 DFN (Fang et al., 2024) as the CLIP model and HPSv2.1 (Wu et al., 2023). Given an image I and
 1011 its associated prompt c , we denote the HPSv2.1 score as s_{hps} and the DFN CLIP score as s_{clip} . The
 1012 quality reward is then defined as

$$1013 R_{\text{quality}}(I, c) = s_{\text{clip}}(I, c) + s_{\text{hps}}(I, c) - 2, \quad (5)$$

1015 which implies that maximizing the reward is equivalent to maximizing the underlying score.

1016 For the **multi-view image quality reward**, we compute the scores using the multi-view images
 1017 decoded from the video decoder and their corresponding prompts. For the **3D representation qual-
 1018 ity reward**, we compute the scores using the rendered images obtained from the 3D representation
 1019 reconstructed by the stitched decoder, together with the same prompts.

1020 The 3D consistency reward is computed as a combination of the pixel-level ℓ_1 loss and the LPIPS
 1021 between a decoded multi-view image and its corresponding rendering from the reconstructed 3D
 1022 representation. Formally, given a decoded image I_{decode} and the estimated camera pose $\hat{\pi}$ predicted
 1023 by the stitched decoder, we obtain the rendered image $I_{\text{rendered}}(\hat{\pi})$ from the 3D representation. The
 1024 consistency reward is then defined as

$$1025 R_{\text{consistency}}(I_{\text{decode}}, I_{\text{rendered}}(\hat{\pi})) = -|I_{\text{decode}} - I_{\text{rendered}}(\hat{\pi})|_1 - 0.25 \times \text{LPIPS}(I_{\text{decode}}, I_{\text{rendered}}(\hat{\pi})). \quad (6)$$

1026 Here, the negative sign ensures that maximizing the reward corresponds to minimizing both the ℓ_1
 1027 distance and the perceptual discrepancy between the decoded and rendered images.
 1028

1029 However, applying these rewards to all decoded multi-view images and their rendered counterparts
 1030 is computationally expensive. To reduce computational cost, we compute all rewards only on two
 1031 sampled decoded views and their corresponding rendered images. The final reward is then obtained
 1032 by a weighted combination of the three components: the multi-view image quality reward and the
 1033 3D representation quality reward are each scaled by 1/16, while the 3D consistency reward is scaled
 1034 by 0.05. These scaled terms are summed to form the overall training reward.

1035 **Alignment Algorithm.** For alignment, we adopt DRTune (Wu et al., 2024c)-style direct re-
 1036 ward finetuning, which enables stable reward optimization through selective gradient computation.
 1037 We outline one training iteration of our
 1038 finetuning in Algorithm 1. First, we calculate the generative loss using multi-
 1039 view datasets, then simulate the de-
 1040 noising process. Since matching the
 1041 full number of inference-time denoising
 1042 steps during training is costly, we
 1043 instead sample t steps from a reduced
 1044 range $[T_1, T_2]$ to lower the computa-
 1045 tional burden. Additionally, to reduce
 1046 time and memory costs, we only enable
 1047 gradient computation at K selected
 1048 training steps t_{train} out of the total t
 1049 steps. Following DRTune, the input z_{τ}
 1050 to the generative model is detached at
 1051 each step to stabilize optimization. Fi-
 1052 nally, we calculate the reward from the
 1053 sampled latent and combine it with the
 1054 generative loss by subtraction (for max-
 1055 imization) before backpropagation and parameter updates.

Algorithm 1 One Training Iteration of Alignment Training

```

1: Input: generative model  $\theta$ , reward  $r$ , sampling step range
    $[T_1, T_2]$ , # of gradient enabled steps  $K$ , prompt  $c$ , data  $D$ .
2:  $L_{\text{gen}} \leftarrow$  calculate generative loss with  $D$ 
3:  $t \sim \text{Uniform}(T_1, T_2)$   $\triangleright$  Sample number of denoising steps
4:  $z_T \sim \mathcal{N}(0, I)$   $\triangleright$  Initialize starting noise
5: Define  $t$ -step schedule  $\{\tau_j\}_{j=0}^t$  with  $\tau_0 = T, \tau_t = 0$ 
6:  $t_{\text{train}} \leftarrow$  randomly select  $K$  indices from  $\{1, \dots, t\}$ 
7: for  $j = 1$  to  $t$  do  $\triangleright$  Denoising from  $T$  to 0
8:    $\hat{z}_{\tau_j} \leftarrow \text{stop\_grad}(z_{\tau_j})$ 
9:   if  $j \in t_{\text{train}}$  then
10:    prediction  $\leftarrow \text{model}(\theta, \hat{z}_{\tau_j}, \tau_j)$ 
11:   else
12:    no_grad: prediction  $\leftarrow \text{model}(\theta, \hat{z}_{\tau_j}, \tau_j)$ 
13:    $z_{\tau_{j+1}} \leftarrow \text{update}(z_{\tau_{j-1}}, \text{prediction})$ 
14:    $r(z_0, c) \leftarrow$  Calculate reward of generated latent.
15:    $L_{\text{total}} \leftarrow L_{\text{gen}} - r(z_0, c)$ 
16: Backpropagate  $\nabla_{\theta} L_{\text{total}}$ , then optimize  $\theta$ 

```

1056 **Hyperparameter in sampling process.** For generating samples required in the $[T_1, T_2]$ direct
 1057 reward tuning stage, we set $T_1 = 10$ and $T_2 = 50$ in Algorithm 1, ensuring that the number of
 1058 diffusion steps is smaller than the typical steps in inference. The number of gradient-enabled steps
 1059 is set to $K = 2$ to reduce memory consumption during training. For scheduling, we adopt the default
 1060 scheduler from Wan 2.1 (Wan et al., 2025).

C DETAILS ON EXPERIMENTAL SETUPS

C.1 TRAINING SETUP

1066 **Setup for stitching layer search.** To identify the stitching layer, we rely on representations from
 1067 the feedforward 3D model and the corresponding latents computed on the same dataset. Specifically,
 1068 we utilize a subset of the DL3DV dataset, comprising 200 scenes for VGGT, 800 scenes for
 1069 AnySplat, and 3,200 scenes for MVDUSt3R, with only 13 views per scene used for the search. We
 1070 limit our search to the encoder layers of each model, as we observe that MSE values consistently
 1071 increase within deeper layer indices.

1072 **Setup for stitched VAE finetuning.** We train on a combination of the DL3DV and ScanNet
 1073 datasets, defining one epoch as a full pass over DL3DV and two passes over ScanNet. For each
 1074 training iteration, a number of scenes are sampled according to the batch size. From each selected
 1075 scene, we randomly sample 9 or 13 views to serve as input samples for training. The models are
 1076 trained for 50 epochs in total. The batch sizes are set to 12 for VGGT, 24 for MVDUSt3R, and 12
 1077 for AnySplat. The learning rate is fixed at 2×10^{-4} for all models with cosine decay scheduling
 1078 and 500-step warmup. For training, we use AdamW (Loshchilov & Hutter, 2017), apply gradient
 1079 clipping with a norm threshold of 1.0, and use gradient checkpointing on each stitched VAE block
 to reduce memory consumption. In addition to LoRA parameters, for AnySplat and VGGT, we also

1080 finetune register tokens and class tokens. This is necessary because we remove the earlier layers that
 1081 originally process these tokens into intermediate representations, requiring adaptation of the token
 1082 handling mechanism. We further utilize gradient checkpointing for every stitched VAE block.
 1083

1084 **Setup for generative model finetuning.** We finetune the generative models using only the
 1085 DL3DV dataset. For generative loss computation, we use a batch size of 12 with 13 views per
 1086 scene. Reward calculation uses a prompt batch size of 4, with 13 views for AnySplat and MV-
 1087 DUST3R, and 9 views for VGGT. We again adopt AdamW with a learning rate of 1×10^{-4} , apply
 1088 gradient clipping at a 0.1 norm, and train LoRA parameters with rank 8 and alpha 16. Gradient
 1089 checkpointing is enabled for all model blocks to reduce memory usage.

1090
 1091 **C.2 DETAILED EVALUATION PROTOCOL**

1092 **Details for 3D generation evaluation.** For T3Bench, we evaluate on all 300 prompts, in contrast
 1093 to prior works that considered only the 100 single-object-with-surroundings subset. SceneBench is
 1094 evaluated on 80 prompts from the Prometheus3D (Yang et al., 2025c) prompt set, targeting scene-
 1095 level generation. For DPG-Bench, we sample 100 prompts from the original 1K-prompt dataset.
 1096

1097 For Matrix3D-omni, we used their official code for text-to-generation and employed Panorama LRM
 1098 for reconstruction during inference. For SDS-based methods like SplatFlow and Director3D that
 1099 perform refinement, we evaluated the final results after SDS optimization. We generate 13 frames
 1100 for all models using 80 denoising steps, and apply classifier-free guidance (Ho & Salimans, 2022)
 1101 with a scale of 7.5. We observed that the Gaussian splatting produced by the MVDUST3R model
 1102 does not generalize well across diverse domains, often failing to estimate the scale of primitives. To
 1103 address this issue, we refined the Gaussian primitives using the source view for 100 optimization
 1104 steps, minimizing a reconstruction loss defined as $\text{MSE} + 0.05 \times \text{LPIPS}$. For this refinement, we
 1105 used the Adam optimizer with separate learning rates for each parameter group: 2e-4 for means,
 1106 5e-4 for opacity, 5e-4 for scale, 1e-4 for rotation, and 0 for rgbs. This lightweight refinement effec-
 1107 tively corrected the scale estimation errors. For our text-to-3DGS evaluation, we render 8 random
 1108 viewpoints from the generated Gaussian Splatting representations for assessment.

1109 We evaluate our method and baselines across a range of metrics. To measure the semantic similarity
 1110 between the input prompt and the rendered images of the generated 3DGS, we compute the CLIP
 1111 score using the clip-vit-base-patch16 model. Additionally, we adopt the VBench (Huang et al., 2024)
 1112 framework to assess key image properties. For Imaging Quality, which targets low-level distortions,
 1113 we employ the same MUSIQ model (Ke et al., 2021) in VBench. For Aesthetic Quality, we use
 1114 the LAION aesthetic predictor to evaluate the color richness and artistic merits, again following
 1115 VBench. The predictor’s native 0-10 rating is linearly normalized to a 0-1 scale for our analysis.

1116 For a more comprehensive assessment of generative quality, we utilize the Unified Reward
 1117 model (Wang et al., 2025c), which is based on the powerful Qwen 2.5-7B Vision Language
 1118 Model (Team, 2025)². This provides fine-grained, pointwise scores on complex attributes equipped
 1119 with a powerful understanding capability. By feeding the input prompt and rendered images into a
 1120 format adapted from the official implementation script³, we obtain scores for three key aspects:

1121 • *Alignment*: How well the image content matches the text prompt.
 1122 • *Coherence*: The logical and visual consistency of the image, free of distortions.
 1123 • *Style*: The aesthetic appeal of the image, independent of prompt accuracy.

1124 This suite of metrics enables a robust and multifaceted evaluation of our model’s performance.
 1125

1126 **Details for model stitching evaluation.** For novel-view synthesis, we follow prior works (Go
 1127 et al., 2025a;b) and adopt an 8-frame input setup to evaluate performance on 4 target views. To
 1128 accommodate the fixed-length input requirements of video VAE architectures due to temporal
 1129 compression, we pad shorter sequences by duplicating the final frame. For estimating the camera poses
 1130 of the target views, we adopt the strategy from AnySplat (Jiang et al., 2025), which jointly predicts
 1131

²<https://huggingface.co/CodeGoat24/UnifiedReward-qwen-7b>

³https://github.com/CodeGoat24/UnifiedReward/blob/main/inference_qwen/image_generation/qwen_point_score_ACS_image_generation.py

1134 **Table 5: Ablation study on direct reward finetuning on SceneBench.** We compare (1) no finetuning-
 1135 ing; (2) multi-view-only finetuning (generative loss only); (3) reward tuning with 3D-consistency
 1136 reward only; (4) reward tuning with quality reward only; and (5) reward tuning with both rewards
 1137 (full).

Method	Imaging	Aesthetic	CLIP	Unified Reward		
				Alignment	Coherent	Style
Finetuning-free	50.56	53.70	28.14	3.101	3.354	3.393
Multi-view only	54.56	52.08	29.71	3.622	3.834	3.351
Multi-view + 3D Consistency	38.67	50.59	29.77	3.581	3.767	3.275
Multi-view + Quality	62.27	58.23	30.34	3.643	3.842	3.358
Ours	64.87	56.96	30.18	3.667	3.862	3.400

1148 the poses and renders the corresponding images. This contrasts with previous VAE-based methods
 1149 that presume access to ground-truth camera poses for rendering.

1151 For pointmap and camera pose estimation evaluation, we use a 13-frame input setup. Since our
 1152 stitched VAE’s encoder is a video VAE, we arrange the multi-view images (typically provided un-
 1153 ordered by previous works) into sequences with smooth view transitions to resemble video input.
 1154 We adopt Pi3 (Wang et al., 2025d) official evaluation code and follow their preprocessing pipeline.

C.3 SELECTION CRITERION FOR 3D MODELS

1159 In this section, we elaborate on the criteria used for selecting 3D foundation models in VIST3A.

1160 Our primary criterion for selecting a 3D backbone is the scale of the pretraining dataset, which
 1161 mainly determines the generalizability of the model. This is because the coupled 3D model should
 1162 cover highly diverse domains of video generative models. AnySplat (Jiang et al., 2025) is selected as
 1163 it represents one of the few Gaussian Splatting models trained on such a scale. For pointmap-based
 1164 models, we utilize MVDUSt3R (Wang et al., 2024b) for its balance of dataset scale and efficiency
 1165 (facilitating feasibility checks), and VGGT (Wang et al., 2025a) for its superior performance and
 1166 pretraining scale.

D FURTHER ABLATION STUDIES

D.1 IMPACT OF DIRECT REWARD FINETUNING

1172 In the following, we conduct an ablation study to analyze the effects of our direct reward finetuning,
 1173 comparing our full method against four well-defined baselines:

- (1) Finetuning-free: Here, we use the original pretrained video model. Since our finetuning
 freezes the encoder, its latent space remains compatible with our 3D stitched decoder.
- (2) Multi-view Only: The model finetuned with only the flow-matching loss on multi-view
 data, serving as our primary baseline before rewards are introduced.
- (3) Multi-view + Consistency: The model finetuned with both the multi-view loss and the
 3D-consistency reward. This isolates the impact on the 3D consistency reward.
- (4) Multi-view + Quality: The model finetuned with both the multi-view loss and the qual-
 ity reward. This isolates its impact on quality reward.

1183 To ensure a fair comparison against reward-based methods, which often take more time for one
 1184 training iteration, the finetuning variant on multi-view data was trained for the same wall-clock
 1185 duration.

1186 Table 5 reports the quantitative results. The finetuning-free baseline yields the lowest performance.
 1187 Lacking any 3D-aware training, it frequently produces geometrically inconsistent outputs and suffers

1226 Figure 7: **Qualitative comparison of different finetuning strategies.** Pretrained video model
1227 (No-Finetuning) produces dynamic videos, causing severe ghosting in the reconstructed 3D scenes.
1228 Multi-view finetuning (Multi-view only) reduces this motion and improves 3D consistency but in-
1229 troduces semantic and quality degradations, while our direct reward tuning (Ours) yields sharper
1230 renderings that better align with the input text prompts.

1231
1232
1233
1234
1235 from significant visual artifacts when its native resolution is adapted to our 3D decoder. Introduc-
1236 ing multi-view supervision (Multi-view Only) substantially improves 3D consistency and overall
1237 performance, confirming the value of this training signal.

1238 The reward components have distinct effects when added to the multi-view objective. Training
1239 with the 3D-consistency reward (Multi-view + Consistency) leads to a notable performance drop, as
1240 the model optimizes for geometric correctness at the expense of detail, resulting in overly blurred
1241 images. Conversely, adding the quality reward (Multi-view + Quality) achieves substantial improve-
1242 ments across most metrics by enhancing prompt coherence and aesthetic appeal.

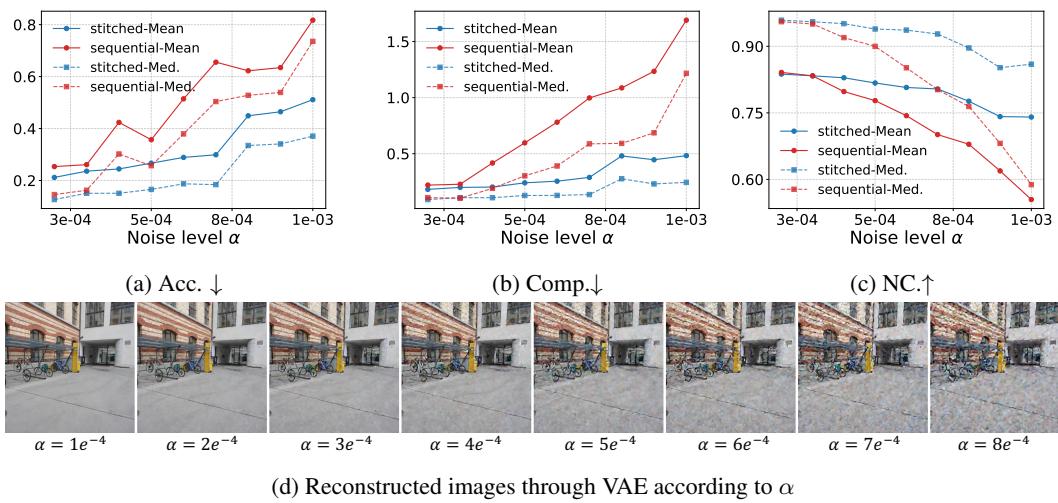


Figure 8: **Pointmap estimation performance comparison on ETH3D dataset between the stitched VGGT and the sequential approach (VAE followed by VGGT) under varying noise scales injected into the latent space.** The stitched model demonstrates greater robustness to noise injection in the VAE.

Finally, our full method, which combines both rewards with multi-view training, achieves the best imaging quality and Unified Reward scores. While its aesthetic and CLIP scores are slightly below the Multi-view + Quality variant, the marked improvement in imaging quality demonstrates that our combined objective successfully guides the model to generate visually sharp and geometrically faithful 3D representations.

To further analyze the effect of our training strategy, we provide a qualitative comparison between the pretrained video model, the multi-view-only finetuning baseline, and our reward-tuned model in Fig. 7. As shown in the decoded frames, the **No-Finetuning** baseline (pretrained video generator) often produces dynamic videos with temporal motion. This leads to severe ghosting artifacts in the generated 3D scenes, clearly visible as multiple outlines of the footballs and the car.

The **Multi-view only** baseline (second row) effectively suppresses this motion, enforcing 3D consistency. However, relying solely on a multi-view dataset limits the model’s generalizability, and the lack of alignment with the decoder hinders the model from generating latents that are well reconstructible by the decoder. As a result, the generations exhibit semantic and quality degradations: the “green” football is missing in the first example, and the car becomes blurrier in the second example.

In contrast, our direct reward tuning (**Ours**) applies rewards to the decoded 3D representation of the stitched decoder, explicitly encouraging high reconstruction quality, 3D consistency, and better alignment with the text prompt. Consequently, it produces sharper and more faithful renderings than the baselines in both examples.

D.2 BENEFITS OF INTEGRATED VS. SEQUENTIAL 3D GENERATION

In our model-stitching design, generation and reconstruction take place in the shared latent space of the video diffusion VAE and the stitched 3D decoder. A common alternative is a sequential pipeline that decodes latents into RGB frames before applying a feedforward 3D model (e.g., VGGT) without further adaptation. To probe the core benefit of our unified formulation, we injected controlled perturbations into the latent representation, using

$$z' = z + \alpha \|z\| \epsilon, \quad \epsilon \sim \mathcal{N}(0, I), \quad (7)$$

where α is a scalar controlling the perturbation strength. We then compared two paths: (i) decode the corrupted latent to RGB and feed the images sequentially into the original VGGT (baseline), and (ii) directly input the noised latent into our stitched 3D decoder (unified latent framework).

1296

1297 Table 6: **User study results.** Participants rank five methods in terms of text alignment and visual
1298 quality of rendered videos from generated 3DGS (lower average rank is better).

Method	Text Alignment (Avg. Rank \downarrow)	Visual Quality (Avg. Rank \downarrow)
Director3D	3.03	2.99
SplatFlow	3.38	3.88
Prometheus3D	3.25	3.71
VideoRFSplat	2.74	2.92
VIST3A (Wan+ AnySplat)	1.54	1.45

1304

1305

1306 Figure 8 reports pointmap estimation performance on ETH3D as a function of noise level α . Our
 1307 stitched VGGT consistently outperforms the sequential decode-and-reconstruct pipeline under noise
 1308 injection, indicating that the VAE decoder in the sequential path amplifies errors. Moreover, as
 1309 shown in Fig. 8d, the performance gap is observed even at noise levels ($\alpha = 1e^{-4}$ to $2e^{-4}$) where
 1310 visual artifacts are hardly perceptible. This suggests that the unified design offers stronger robust-
 1311 ness, as imperceptible perturbations from the noise of generative processes can already degrade the
 1312 sequential pipeline.

1313

1314

1315

1316

1317

D.3 HUMAN EVALUATION

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

To further support the effectiveness of our method, we conduct a user study comparing **VIST3A** against four baselines (Director3D, SplatFlow, Prometheus3D, and VideoRFSplat). We ask participants to rank the methods based on two criteria: (1) Text Alignment and (2) Visual Quality of rendered videos from the generated 3DGS. A total of 28 participants evaluate 14 randomly selected samples from T3Bench, SceneBench, and DPG-Bench.

1335

1336

1337

1338

As summarized in Table 6, **VIST3A** achieves the best performance (lowest average rank) on both criteria. Notably, participants rank **VIST3A** as the top-1 method in 68.68% of cases for text alignment and 87.91% for visual quality, demonstrating its superiority in generating high-fidelity and semantically consistent 3D scenes.

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

E ADDITIONAL RESULTS

To comprehensively validate each component of **VIST3A**, we present additional experiments in this section.

Analysis on searched stitching index. In Section 4.4, we showed that earlier layers in the network tend to be more linearly correspondent. We extend this analysis to various VAE architectures, including CogVideoX, SVD, Hunyuan, and Wan, paired with MVDUSt3R and AnySplat, to observe the generalizability of this finding.

Figure 9 shows the log-MSE values measuring linear transferability between latents and the feed-forward 3D model’s representations. From the results, early layers of 3d models consistently show lower MSE values across all VAE-feedforward 3D model combinations. This supports the hypothesis that latent representations capture low-level features for input reconstruction, which are more linearly transferable to the early layers of the feedforward 3D model that also encode such features. However, the results reveal an important distinction: while relative MSE ordering within each VAE architecture correlates with stitching performance (as in Section 4.4), absolute MSE values across different VAEs do not predict cross-architecture performance. For instance, CogVideoX + AnySplat achieves the lowest absolute MSE (0.008) but delivers 21.32 PSNR in Table 3, while SVD + AnySplat with a higher MSE (0.012) achieves superior performance at 21.48 PSNR. This indicates that optimal stitching layers must be identified independently for each VAE-3D model pair.

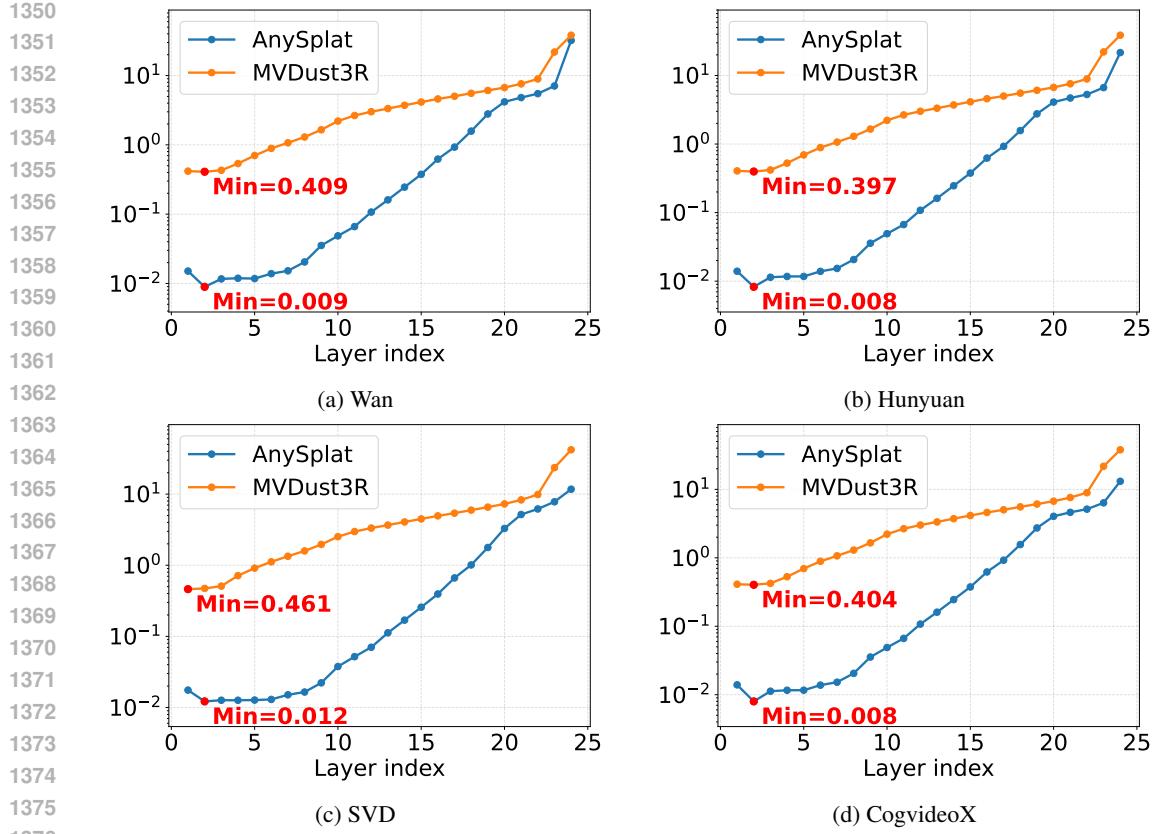


Figure 9: **Log-MSE values in Eq. 2 across various video VAEs.** Early layers of feedforward models show lower MSE values within each VAE architecture. While lower MSE correlates with better stitching performance within the same VAE (e.g., layer 2 outperforms layer 16 for Wan in Fig 5), absolute MSE values cannot predict performance across different VAE architectures. For instance, despite CogVideoX and Hunyuan + AnySplat having the lowest absolute MSE (0.008), SVD + AnySplat achieves the best performance (21.48 PSNR) in Table 3.

Table 7: **Video generation performance comparison between the original video generator and VIST3A on VBench.**

Model	Quality Score	Semantic Score	Total Score
Original video generator	0.7827	0.7275	0.7716
VIST3A (Wan + AnySplat)	0.8143	0.7143	0.7943

Prompt-based camera control. Modern video generative model, including Wan 2.1, can reflect camera-related prompts such as “aerial view” and “camera pans left to right” in the generated videos. As our framework is built upon the Wan 2.1 backbone, we inherit this property, enabling text-driven viewpoint control in 3D generation. As illustrated in Fig. 10, the prompt containing “Aerial dronshot” induces a high-angle, downward-looking perspective (Top), whereas the prompt with “Camera pans left to right” results in a horizontal sweeping motion that traverses the scene from left to right (Bottom). This shows that our model effectively inherits the semantic camera instruction understanding capability of pretrained video generative models.

Impact of VIST3A finetuning on video generation performance. We aim for video generative models to produce 3D-consistent frames, and we propose a finetuning strategy toward this goal. Here, we evaluate how much this finetuning degrades the original model’s generative capability. To measure this, we use VBench (Huang et al., 2024), a well-established benchmark for video generation. We generate videos using the original model by matching the resolution to the VIST3A

1420 Figure 10: **Viewpoint control in 3DGS generation with prompts.** **(Top)** The prompt containing
1421 “Aerial dronshot” results in a high-angle downward perspective. **(Bottom)** The prompt containing
1422 “Camera pans left to right” generates a trajectory where the viewpoint sweeps across the scene from
1423 left to right.

1424
1425
1426 inference setting, and compare the video results of the finetuned model with VIST3A with Wan and
1427 AnySplat.

1428 As shown in Table 7, the VIST3A-adapted model achieves a higher quality score and a higher total
1429 score than the original video generator, with only a marginal difference in the Semantic Score. This
1430 demonstrates that VIST3A’s finetuning does not significantly degrade the video model’s generative
1431 capability—in fact, the overall VBench performance is slightly improved under the VIST3A setup.

1432
1433 **Additional qualitative results.** We present additional qualitative results of VIST3A with Wan +
1434 AnySplat in Fig. 11–13. Text-to-pointmap generation results obtained by combining VGTT with
1435 Wan through VIST3A are shown in Fig. 14. Finally, Fig. 15 illustrates VIST3A results with MV-
1436 Dust3R + Wan.

1437 F LIMITATIONS

1440 While our approach demonstrates strong results, it also has certain limitations. Our stitched model
1441 inherits its encoder from a video generation model, which is inherently designed for sequential,
1442 temporally coherent video input. Consequently, its performance is not guaranteed for arbitrarily
1443 unordered inputs, such as typical multi-view image datasets. To ensure the encoder operates effec-
1444 tively, the input images must be arranged into a coherent sequence that simulates the smooth view
1445 transitions of a video clip.

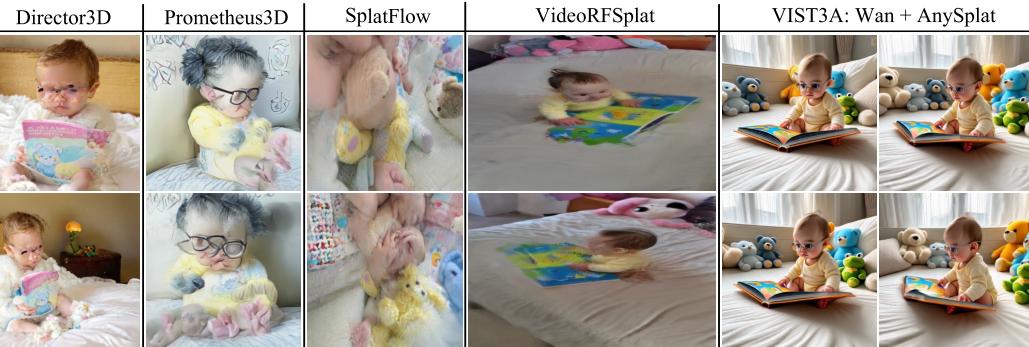
1446 G USE OF LARGE LANGUAGE MODELS

1447 LLMs were used exclusively for text polishing and grammar refinement.

1450
1451
1452
1453
1454
1455
1456
1457

1458

1459



1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

"A small infant with round, silver-framed glasses perched on their nose is comfortably sitting in the center of a plush white bed. The child, dressed in a pale yellow onesie, holds an open, colorful picture book with both tiny hands, appearing to gaze intently at the illustrations. Surrounding the infant are an assortment of plush toys, including a fluffy blue bear and a soft green frog, scattered about the soft, cream-colored bedsheets."

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

"An imaginative scene unfolds with a castle intricately constructed from golden tortilla chips, its towers and walls standing tall amidst a flowing river of vibrant red salsa. Surrounding the edible fortress, tiny burritos, wrapped in soft tortillas with visible fillings, appear to be animated and meandering along the banks of the salsa river. The entire whimsical landscape is set upon a large plate, suggesting a playful, culinary creation."

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

"A bluebird perched on a tree branch"

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

"A wooden rocking chair on a porch"

1508

1509

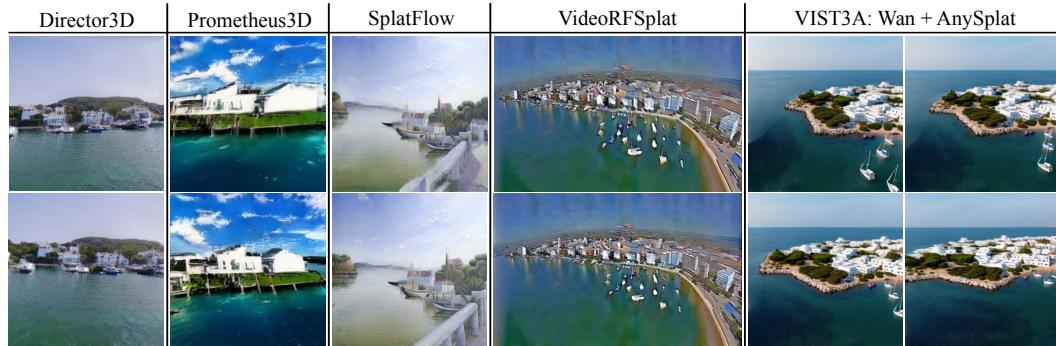
1510

1511

Figure 11: Qualitative comparison of 3DGS generation. The top two rows show samples from DPG-Bench, and the bottom two rows present samples from T3Bench. VIST3A generates realistic scenes with fine-grained details that faithfully reflect the input prompt, outperforming baselines.

1512

1513



1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

"A coastal town with white buildings and green vegetation is seen in the image. Several boats are anchored near the shore, suggesting recreational activities. The clear sky and calm waters indicate fair weather conditions."

"A gray metal folding chair is situated behind a desk. A computer monitor is visible behind the chair."

1536

Figure 12: Qualitative comparison of 3DGS generation on SceneBench. VIST3A outperforms baselines by generating higher-fidelity scenes with accurate geometry and appearance.

1539

1540

1541

1542

1543

1544

1545

1546

1547

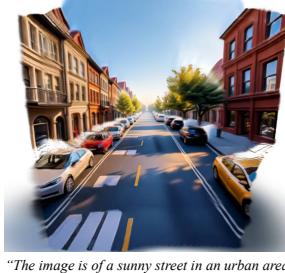
1548

1549

1550

"A girl is reading a hardcover book in her room"

"An intricately-carved wooden chess set"



"The image is of a sunny street in an urban area, lined with tall buildings and parked cars."

"An aged crimson oven occupies the corner of a rustic kitchen, its window revealing the golden-brown crust of bread as it bakes within. Next to it, a towering, polished metallic spoon leans against a weathered brick wall, reflecting the soft kitchen light. Scattered nearby are a scattering of flour and a wooden rolling pin on a worn, marble countertop."

"An intricately designed airship, with sleek steel panels and ornate golden trims, hovers gracefully above a bustling port. The city skyline, a fantastical fusion of floating islands and elevated platforms, echoes the artistic vision of Ivan Shishkin's creations on ArtStation, reminiscent of the game Bioshock Infinite. Captured with the depth of field effect of a 35mm lens, the image exudes a cinematic quality, with the airship's cables and anchors creating a stark contrast against the backdrop of the sky-high metropolis."

"The image displays a tranquil forested canyon with towering trees, surrounded by dense vegetation. The sky is clear and blue, indicating calm weather conditions. Sunlight filters through the canopy, casting dappled shadows on the ground below. Despite the lush foliage,"

1561

1562

1563

1564

1565

Figure 13: Generated 3D scenes from VIST3A: Wan + AnySplat. These are 3DGS viewed directly in the interactive viewer. VIST3A preserves high visual quality even under noticeably altered camera trajectories, demonstrating robustness and stability across novel viewpoints.

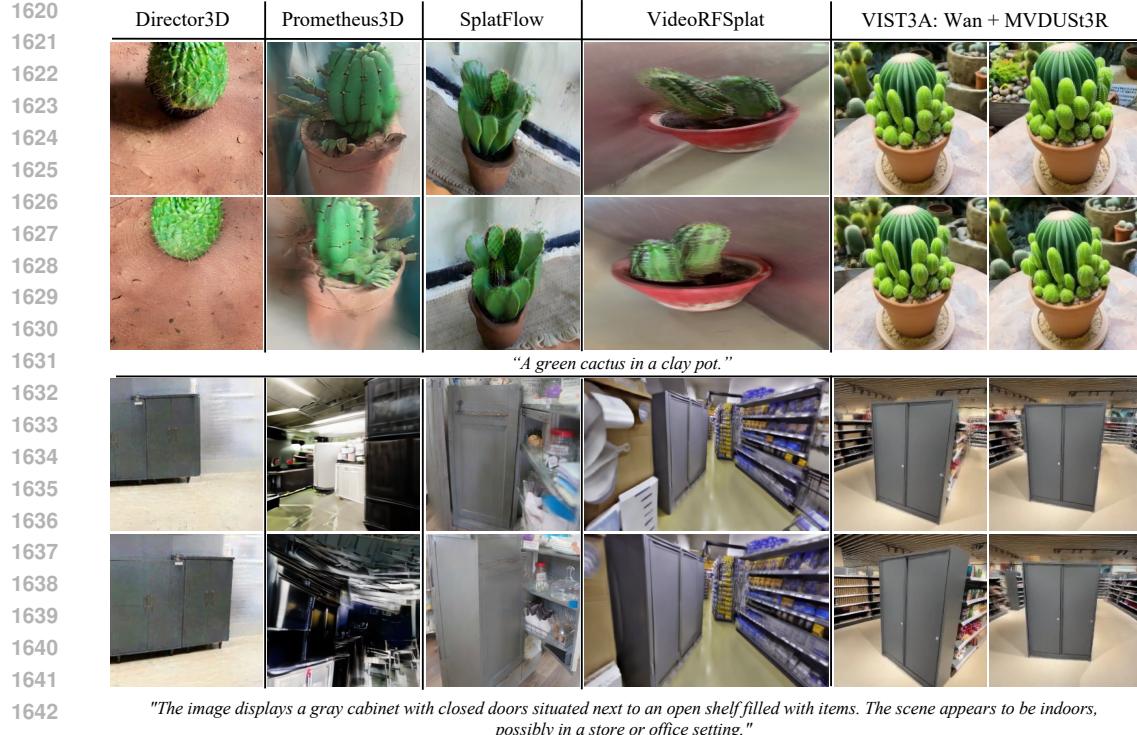


Figure 15: Qualitative comparison of 3DGS generation on SceneBench - VISTA: Wan+MVDUST3R.

Figure 16: Generated 3D scenes from VIST3A: Wan + AnySplat bt extending the number of frames. These are 3DGS viewed directly in the interactive viewer. VIST3A preserves high visual quality even under noticeably altered camera trajectories, demonstrating robustness and stability across novel viewpoints.