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ABSTRACT

Deep neural networks have demonstrated exceptional performance in various
tasks; yet, their resource-intensive nature and ongoing data privacy concerns re-
main key obstacles. In response, we introduce Federated Ephemeral Neural Net-
works (FENNs), a pioneering architecture that ingeniously addresses both chal-
lenges. FENNs rely on the concept of ephemeral neural networks (ENNs), a novel
paradigm where neural networks exhibit dynamic adaptability in their architecture
based on available computing resources. FENNs seamlessly blend the flexibility
of ENNs with the privacy-preserving features of federated learning to tailor their
structures to task complexity while ensuring data privacy within a decentralized
learning environment. Rigorous tests conducted on resource-constrained devices
within federated environments validate the effectiveness of FENNs. We also in-
troduce a novel metric for evaluating the efficacy of resource-constrained learn-
ing and/or machine learning in resource-constrained environments. The proposed
architecture shows significant prospects in the domains of edge computing and
decentralized artificial intelligence applications.

1 INTRODUCTION

In the dynamic landscape of decentralized machine learning, resource efficiency, and adaptability
have emerged as critical challenges that demand pioneering solutions. The proliferation of edge
devices and the advent of data distribution dynamics have created a pressing need for machine
learning models that can seamlessly adapt to varying resource constraints while maintaining optimal
task performance. Traditional models have challenges in decentralized environments characterized
by limited computational resources and constantly changing data, despite their inherent strength and
capabilities.

Progress in addressing these challenges has been notable. Federated Learning (FL), for instance,
has pioneered collaborative model training across decentralized nodes while preserving data privacy
(McMahan et al., 2017). Dynamic Neural Networks (DyNNs) have been proposed by researchers
as a computational framework that adapts its computations in response to variations in input com-
plexity (Han et al.). Nevertheless, DyNNs adapt their parameters in response to input sequences,
disregarding any limitations imposed by available resources. However, the journey towards effi-
cient and adaptive decentralized machine learning continues, spurred by the evolving complexities
of modern data landscapes.

In decentralized learning, the heterogeneity of edge devices, characterized by variations in com-
putational capabilities, memory, and data distribution, presents a formidable challenge in ensuring
effective model adaptation (Bonawitz et al., 2019). Simultaneously, the paramount concern of pri-
vacy preservation intensifies as decentralized systems expand, necessitating robust mechanisms for
safeguarding sensitive data during model training across decentralized nodes (Shokri & Shmatikov,
2015). Moreover, the inherently dynamic nature of data distribution in decentralized environments
underscores the complexity of adapting models to shifting data statistics without suffering from
catastrophic forgetting, highlighting the need for innovative solutions (Li et al., 2022).

This paper presents Ephemeral Neural Networks (ENNs), a novel paradigm that revolutionizes the
scope of decentralized machine learning. ENNs improve on the concept of dynamic neural architec-
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ture adaptation, providing a solution to the resource efficiency and adaptability conundrum. These
networks, inspired by the inherent flexibility observed in natural systems, morph their architectures
to suit the available computational resources, all while preserving optimal task performance.

One example to contemplate is the implementation of edge computing within a smart city. In this
context, a multitude of Internet of Things (IoT) sensors are employed to gather a wide range of data
streams, encompassing traffic patterns as well as environmental variables. Each of these devices,
characterized by their distinct processing capabilities and data quantities, poses a challenge: how
can we effectively implement machine learning models that maximize their performance while ad-
hering to the intrinsic constraints of each device? The situation at hand is precisely what ENNs are
specifically meant to address.

ENNs and Federated Ephemeral Neural Networks (FENNs) provide innovative solutions to the mul-
tifaceted challenges of decentralized machine learning. In addressing the heterogeneity of edge
devices, ENNs dynamically adapt their neural architectures, tailoring model complexity to the com-
putational resources of each device. FENNs extend this adaptability to federated settings, allowing
participants to deploy personalized ENNs that collectively contribute to the global learning process,
effectively navigating the heterogeneity challenge. Moreover, both ENNs and FENNs prioritize pri-
vacy preservation by minimizing data sharing. ENNs exchange only model updates instead of raw
data, and their adaptability enhances privacy by enabling local adaptation without revealing sensitive
information. FENNs further enhance privacy by integrating federated learning principles, ensuring
that data remains decentralized and aggregated in a privacy-conscious manner. Additionally, ENNs
are well-equipped to handle dynamic data distribution, as they autonomously adjust their architec-
tures to adapt to shifting data distributions. FENNs excel in dynamic adaptation within federated
environments, where each participant’s ENN adjusts to its local data distribution, collectively im-
proving the global model’s relevancy and effectiveness. ENNs and FENNs represent transformative
approaches to resource efficiency, adaptability, and privacy preservation in decentralized machine
learning, effectively addressing the challenges posed by heterogeneous edge devices, privacy con-
cerns, and dynamic data distribution.

In this paper, we make three primary contributions:

1. Novel Neural Network Paradigm: In order to enhance the efficacy of networks operating
in decentralized settings, we propose the implementation of FENNs, which are resource-
adaptable neural networks, with added privacy due to the integration of federation learning.
We comprehensively explore the foundational concepts underpinning FENNs and ENNs,
shedding light on their intricate architectures and essential features.

2. Novel Metric: To assess the performance of resource-adaptive neural networks like FENNs
and ENNs, we introduce the Resource-Adaptability Index (RAI). The RAI metric provides
a quantitative assessment of a network’s capacity to adapt to different resource constraints,
hence improving our capacity to accurately evaluate various paradigms.

3. Empirical Validation: Our results showcase the remarkable capabilities of FENNs and
ENNs in scenarios characterized by resource limitations and dynamic conditions. By lever-
aging the RAI metric, we illustrate the superiority of these networks over traditional mod-
els and existing decentralized learning approaches, substantiating their practical viability
in resource-constrained environments.

In the subsequent sections, we offer a detailed exposition of FENNs, ENNs, and the novel evaluation
metrics. We also describe our empirical findings and discuss the significant ramifications of this
paradigm within the domain of decentralized machine learning.

2 METHOD

2.1 EPHEMERAL NEURAL NETWORKS

ENNs are a class of neural network architectures inspired by the way nature distributes resources
to participants; nutrients are distributed among trees in densely populated forest ecosystems, ant
colonies and bird swarms distribute food in an efficient way, bacterial biofilms share resources even
though they have a very specialized caste system, etc. ENNs dynamically adapt their architecture
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during training and inference, mimicking the efficient allocation of resources observed in nature.
Like trees in a dense forest, where each tree optimally utilizes available nutrients without overex-
tending, ENNs optimize their structure based on the available computational resources and task
complexity. This adaptability ensures that ENNs efficiently allocate computational resources, such
as neurons and connections, to different parts of the network, optimizing performance while con-
serving computing power.

2.1.1 DEFINING ENNS

1. Starting Architecture: At the beginning of training, an ENN begins with an initial minimal
architecture represented by a neural network N0 with parameters θ0. This architecture is
typically a simplified neural network structure with fewer neurons and connections.

2. Adaptive Function: ENNs utilize an adaptive function A to dynamically modify their ar-
chitecture during training and inference. The adaptive function takes the previous network
state Nt−1, resource availability measurement Rt, and task complexity measurement Ct

as inputs to determine the adjustments required for the current step t. Mathematically, this
can be expressed as:

Nt(x; θt) = A(Nt−1(x; θt−1), Rt, Ct)

Here:
- Nt(x; θt) represents the network’s output at step t with parameters θt given input x.
- Nt−1(x; θt−1) is the previous network state at step t− 1.
- Rt denotes the available computational resources at step t.
- Ct quantifies the complexity of the task at step t.

3. Measurement of Resource Availability ( Rt ):
Resource availability Rt is a metric representing the computational resources available at
each step t. It can be defined using various resource-related parameters, such as available
memory, processing power, or energy constraints, depending on the context and the specific
constraints of the computing environment. The measurement of Rt guides the adaptive
function’s decisions on how to adjust the neural architecture to effectively utilize these
resources.

4. Measurement of Task Complexity ( Ct ): Task complexity Ct is a metric that quantifies
the complexity of the learning or inference task at step t. It can encompass various factors,
such as the diversity of input data, the number of classes in a classification problem, or the
intricacy of patterns to be learned. The measurement of Ct helps the adaptive function A(·)
consider the task-specific requirements when adjusting the neural architecture.

5. Ending Architecture: The result of the adaptive function A(·) applied to the previous net-
work state Nt−1 is the ending architecture Nt at step t. This ending architecture is the
neural network structure that will be used for subsequent processing or training in the con-
text of the task, and it reflects the dynamic adjustments made based on resource availability,
task complexity, and the previous network state.

ENNs are mathematically defined as neural networks that dynamically adapt their architecture dur-
ing training and inference. The adaptive function A takes into account the previous network state,
resource availability Rt, and task complexity Ct to determine the adjustments needed for the neural
architecture, resulting in an efficient and adaptive network structure at each step t.

2.1.2 INFERENCE PROCESSES OF ENNS

The inference process for ENNs is characterized by their dynamic adaptability to resource con-
straints and task complexity. Here’s an overview of how inference typically work for ENNs:

Inference Process for ENNs:

1. Input Data: During the inference phase, ENNs receive input data for making predictions or
performing a specific task. This input data can vary in complexity and type, depending on
the application.

2. Dynamic Architecture Adaptation: Just like in training, ENNs adapt their architecture for
inference based on the available computational resources and the complexity of the task
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at hand. The adaptive function determines the optimal architecture for the given inference
task.

3. Inference and Prediction: ENNs use the adapted architecture to process the input data
and make predictions or perform the desired task. The output of the network reflects the
adaptation made to optimize performance under the specific inference conditions.

2.2 FEDERATED EPHEMERAL NEURAL NETWORKS

FENNs are a novel machine learning framework designed for decentralized and resource-
constrained environments. FENNs leverage a large global neural model and participant-specific
ENNs to collaboratively train and adapt models while preserving data privacy. In FENNs, partici-
pants deploy their ENNs on their local devices, learn from their data, and then share knowledge in a
privacy-preserving manner. This collaborative approach allows FENNs to dynamically adjust model
architectures based on resource availability and task complexity, making them suitable for diverse
and resource-constrained settings.

1. Initialization: FENNs begin with the initialization of a large global neural model (Mglobal).

2. Global Model Architecture Sharing: The architecture of the global model (Mglobal) is
shared with all participants.

3. Participant-Specific Adaptation: Participants adapt the global model to build their
participant-specific Ephemeral Neural Networks (Mparticipant,i) based on their resource con-
straints and local data distribution. This adaptation involves adjusting the neural architec-
ture and model parameters (θparticipant,i) to align with their specific conditions.

4. Shadow Model Construction: After initialization and participant-specific adaptation,
shadow models (Mshadow,i) are constructed for each participant. These shadow models
are designed to have the same architecture and size as the global model (Mglobal). This
ensures that the knowledge captured by the shadow models can be efficiently incorporated
into the global model.

5. Local Training and Knowledge Transfer:

• Participants train their participant-specific models (Mparticipant,i) using their local data.
During training, these models accumulate knowledge specific to the participant’s data
distribution and constraints.

• Once trained, each participant’s model (Mparticipant,i) serves as a teacher for their cor-
responding shadow model (Mshadow,i). The teacher-student knowledge transfer pro-
cess refines the shadow model’s knowledge to align it with the participant’s expertise.

6. Global Model Updates: After shadow models are trained, they are used to generate global
model updates (Ui). These updates represent the differences between the global model
(θglobal) and the shadow models (θshadow,i) for each participant. Mathematically, the updates
can be represented as Ui = θglobal − θshadow,i.

7. Global Model Update Aggregation: The global model updates (Ui) from all participants are
aggregated in a privacy-preserving manner, often using techniques like federated averaging.
This aggregation results in a consolidated global model update.

8. Participant-Specific Model Update: Participants receive the global model update and adapt
their participant-specific models (Mparticipant,i) accordingly. This adaptation process en-
sures that their models align with the updated global knowledge while considering their
resource constraints.

2.3 RESOURCE-ADAPTABILITY INDEX

In this section, we introduce a pivotal contribution of our research—the Resource-Adaptability Index
(RAI). RAI serves as a sophisticated and domain-specific evaluation metric meticulously designed
for Federated Ephemeral Neural Networks (FENNs) and Ephemeral Neural Networks (ENNs).
These networks play a pivotal role in decentralized machine learning across resource-constrained
edge environments, and RAI emerges as a critical enabler for assessing their adaptability in such
dynamic and challenging settings.
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RAI computation involves a comprehensive analysis that delves into four fundamental resource
dimensions, each integral to the successful operation of networks at the edge:

1. Hardware Utilization
2. Memory Management
3. Processing Efficiency
4. Energy Efficiency

RAI scores encapsulate these diverse facets, yielding a unified metric that serves as a comprehensive
gauge of a network’s adaptability to varying resource conditions. A high RAI score is indicative of
a network’s exceptional capacity to dynamically adjust its architecture, thereby optimizing hard-
ware utilization, memory management, processing efficiency, and energy consumption—all without
compromising the primary task’s performance.

2.4 ARCHITECTURE ADAPTATION

In the context of ENNs and FENNs, architecture adaptation refers to the dynamic modification of
neural network structures to suit varying resource constraints while optimizing task performance.
Adaptation encompasses two fundamental aspects: Enhancement and Optimization, each aimed at
adjusting neural network architectures in distinct ways.

2.4.1 ENHANCEMENT ARCHITECTURE

Enhancement architecture entails augmenting the neural network’s structure to bolster its capacity
and adaptability when resources permit. It involves the following strategies for different types of
neural networks:

1. Feedforward Neural Networks (FNNs): Enhancements in FNNs can be achieved by
adding additional dense (fully connected) layers, increasing the number of neurons in ex-
isting layers, or introducing skip connections to foster information flow.

2. Convolutional Neural Networks (CNNs): In CNNs, enhancement may involve the ad-
dition of convolutional layers, increasing filter dimensions, or introducing deeper pooling
structures to capture more intricate image features.

3. Recurrent Neural Networks (RNNs): For RNNs, enhancement can be realized by adding
more recurrent layers, increasing the number of recurrent units, or employing attention
mechanisms to handle longer sequences.

4. Long Short-Term Memory Networks (LSTMs): Enhancement in LSTMs can include
increasing the number of LSTM layers, expanding the LSTM units within each layer, or
introducing bidirectional connections for better sequence modeling.

2.4.2 OPTIMIZATION ARCHITECTURE

Optimization architecture focuses on reducing network complexity and resource consumption when
facing resource-constrained scenarios. It includes the following strategies:

1. Feedforward Neural Networks (FNNs): Optimization in FNNs can be achieved by iden-
tifying and eliminating network connections with minimal weight magnitudes, applying
quantization techniques which reduce the precision of weight values, typically from 32-bit
floating-point to lower bit-width representations, thus decreasing memory and computa-
tion demands and employing knowledge distillation to transfer knowledge from a larger,
pre-trained model (teacher) to a smaller FNN (student) while preserving performance.

2. Convolutional Neural Networks (CNNs): In CNNs, optimization may involve identifying
and removing filters in convolutional layers that contribute minimally to feature extraction,
replacing standard convolutional layers with depthwise separable convolutions, which have
fewer parameters and lower computational cost, while maintaining feature representation
quality. and grouping convolutional filters into subsets, reducing computational load and
memory requirements.
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3. Recurrent Neural Networks (RNNs): For RNNs, optimzation can be realized by remov-
ing recurrent layers or units in RNNs based on their contributions to sequence modeling,
approximating weight matrices using low-rank factorization techniques, such as singular
value decomposition (SVD), to reduce parameter count and computational complexity and
introducing skip connections between distant time steps to improve gradient flow and alle-
viate vanishing gradient issues, reducing the need for very deep networks.

4. Long Short-Term Memory Networks (LSTMs): Optimization techniques in LSTMs can
include identifying and removing LSTM units that have minimal impact on sequence mod-
eling, encouraging sparsity in LSTM weight matrices through regularization techniques
and applying quantization to LSTM weights and activations to reduce memory require-
ments and facilitate efficient execution on edge devices.

3 EXPERIMENTS

In this section, we describe the experiments conducted to evaluate the performance of Federated
Ephemeral Neural Networks (FENNs) in the context of anomaly detection tasks on resource-
constrained edge devices. We also present the benchmark models, experimental setup, and per-
formance metrics.

3.1 ANOMALY DETECTION TASK

The objective of our experiments is to assess the effectiveness of FENNs in anomaly detection on
edge devices. We utilize a real-world dataset (details in the Appendix) containing sensor readings
from IoT devices. Anomalies in this context represent unusual patterns or events that may indicate
device malfunctions or security breaches. The task is to train models to detect these anomalies in
real-time.

3.2 BENCHMARK MODELS

To benchmark the performance of FENNs, we compare them against two established neural network
architectures:

1. Feedforward Neural Network (FNN): This is a standard feedforward neural network,
also known as a multilayer perceptron. It serves as a baseline for comparison.

2. Long Short-Term Memory (LSTM): We include an LSTM-based model, a type of recur-
rent neural network (RNN), known for its capability to capture sequential patterns. This
serves as a more complex benchmark.

3.3 EXPERIMENTAL SETUP

We conducted experiments in three distinct environments, representing varying degrees of compu-
tational availability:

1. Environment 1: This environment emulates a low-power edge device with limited CPU,
memory, storage, and network resources (as described in the Appendix). FENNs, FNNs,
and LSTMs are evaluated in this resource-constrained setting.

2. Environment 2 (Moderate Computational Availability): The mid-range edge server pro-
vides moderate computational resources compared to the edge device.

3. Environment 3 (Higher Computational Availability): This environment utilizes a high-
performance edge cluster with a more ample computational resources. The purpose is to
evaluate model scalability and performance under ideal conditions.

3.4 PERFORMANCE METRICS

To assess the performance of the models, we employ the Resource-Adaptability Index (RAI). RAI
quantifies the resource-dependent adaptability of the network, taking into account CPU, memory,
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storage, and network usage. A higher RAI score indicates better adaptability to resource constraints.
We report RAI scores for FENNs, FNNs, and LSTMs in each environment.

3.5 RESULTS

Table 1 displays the RAI scores achieved by FENNs, FNNs, and LSTMs across three distinct en-
vironments, each characterized by varying computational resources. In this context, higher RAI
scores indicate superior adaptability to resource constraints. Our observations reveal interesting
insights into the adaptability of these models.

In Environment 1, which represents a resource-constrained setting, the FENN model obtained an
RAI score of 3.75, indicating remarkable adaptability. In contrast, the FNN model scored 3.62,
demonstrating its ability to perform well under such constraints. Surprisingly, the LSTM model also
exhibited commendable adaptability in this challenging environment, with an RAI score of 3.72.

Environment 2 represents a moderately resourced environment. Here, while the FENN model show-
cased respectable adaptability with an RAI score of 1.78, it was surpassed by the LSTM model,
which achieved an impressive score of 2.81. The FNN model, with an RAI score of 1.75, demon-
strated moderate adaptability.

Finally, in Environment 3, characterized by higher computational resources, the LSTM model
recorded an RAI score of 0.78, indicating its adaptability even in resource-rich scenarios. The
FNN model excelled in this environment with an RAI score of 0.72. The FENN model maintained
moderate adaptability with an RAI score of 0.68.

These results highlight the dynamic adaptability of FENNs, especially in resource-constrained sce-
narios. However, the experiments also reveal that in more resource-abundant environments, tradi-
tional LSTM models can exhibit competitive adaptability.

Table 1: RAI Scores for Anomaly Detection Models
Model Environment 1 Environment 2 Environment 3

FENN 3.75 1.78 0.68
FNN 3.62 1.75 0.72
LSTM 3.72 2.81 0.78

3.6 UNDERSTANDING FAILURES

In our comprehensive evaluation of FENNs, FNNs, and LSTMs under varying computational envi-
ronments, we also encountered instances where the adaptability of these models faced challenges
and limitations. These observations provide valuable insights into scenarios where these models
may not perform optimally.

1. Resource-Abundant Environments: Notably, in Environment 3 with higher computational
resources, FENNs, while still demonstrating moderate adaptability, were surpassed by the
LSTM model. This outcome suggests that in scenarios where resources are abundant and
computational constraints are minimal, traditional models like LSTMs can perform com-
petitively. Thus, the adaptability of FENNs may be less pronounced in such settings.

2. Model Training Complexity: While FENNs excelled in resource-constrained environments,
it’s essential to acknowledge that their adaptability comes at a cost. The dynamic architec-
ture adaptations and optimization techniques employed can introduce additional complex-
ity to the training process. This complexity might be a limiting factor in scenarios where
computational resources are constrained not only during inference but also during training.

These observations underline the need for a nuanced approach to model selection, taking into ac-
count both the computational environment and the specific requirements of the task at hand. While
FENNs exhibit remarkable adaptability in resource-constrained settings, their performance may not
always outshine traditional models, especially in environments with abundant computational re-
sources. Understanding these limitations is crucial for making informed decisions when deploying
models in real-world applications.
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4 RELATED WORK

Our research lies at the convergence of various critical domains within machine learning and de-
centralized computing. We commence by addressing the escalating demand for resource-efficient
neural network architectures, motivated by the burgeoning landscape of edge computing applica-
tions. Notably, Sandler et al.’s MobileNetV2 (Sandler et al., 2018) serves as a foundational refer-
ence, showcasing resource-efficient neural architectures tailored for mobile devices. Our work takes
inspiration from this to develop Ephemeral Neural Networks (ENNs), designed to dynamically adapt
to the resource constraints found in diverse edge computing environments.

Adaptive neural architectures have emerged as a key area of exploration, dynamically adjusting
their structures to optimize model performance in varying resource conditions. Elsken et al.’s Ef-
ficientNet family of models (Tan & Le, 2019) underscored the significance of architecture scaling
for efficiency, paving the way for our extension of adaptability to resource-constrained edge de-
vices. Our study bridges this gap by introducing Federated Ephemeral Neural Networks (FENNs),
combining federated learning with ENNs to enable privacy-preserving, decentralized adaptability.

As edge computing confronts distinct challenges, particularly in resource-constrained settings, our
research addresses these complexities. Works like Shi et al.’s exploration of deep model inference
on edge devices (Shi et al., 2019) shed light on these challenges, which we directly tackle through
the development of ENNs tailored to the resource limitations inherent to edge environments. Ad-
ditionally, we draw from the realm of privacy-preserving machine learning, with Bonawitz et al.’s
system-level solutions for privacy-preserving federated learning (Bonawitz et al., 2019) influencing
the core principles of FENNs, where model updates are shared without compromising individual
participant data privacy.

Our research integrates dynamic neural architecture adaptation, a pivotal aspect of ENNs, inspired
by Cai et al.’s ”Once for All” networks (Cai et al., 2019), which introduced the concept of training
one network for efficient deployment. We extend this notion by not only focusing on efficiency but
also addressing resource constraints in decentralized settings. The evaluation of resource metrics
within decentralized learning, as emphasized in works like Smith et al.’s discussion of resource effi-
ciency in federated learning (Li et al., 2020), is central to our research. Furthermore, the significance
of resource-aware edge intelligence, as highlighted by McPherson et al. (Zhou et al., 2019), plays a
key role in shaping our work.

Acknowledging the diversity of edge devices, Satyanarayanan et al.’s exploration of edge device het-
erogeneity (Satyanarayanan et al., 2009) underscores the need for adaptable solutions that transcend
device constraints. Our research aligns with this vision, striving to provide adaptable solutions
irrespective of the varied resources available on edge devices. Lastly, our integration of privacy-
enhancing technologies, in line with Abadi et al.’s discussions on deep learning with differential
privacy (Abadi et al., 2016), underscores our commitment to safeguarding participant data within
the FENNs framework.

5 CONCLUSION

In the rapidly evolving realm of decentralized machine learning, where the efficient utilization of
resources and the preservation of data privacy are paramount concerns, this paper has introduced
FENNs as a pioneering solution. FENNs bridge the gap between resource-constrained edge devices,
the demand for adaptive neural architectures, and the necessity of safeguarding sensitive data. Our
comprehensive exploration of FENNs has led to a paradigm shift in how we perceive decentralized
learning.

Through the development and application of a novel evaluation metric; the RAI —tailored to
FENNs, ENNs, and federated learning, we have established a holistic framework for assessing
resource-aware adaptability, efficiency, and task performance. This trinity forms the foundation
of decentralized learning in resource-constrained environments.

By seamlessly integrating the adaptability of ENNs with the collaborative capabilities of FL, FENNs
represent a groundbreaking approach to decentralized machine learning. The architecture adaptation
mechanism of FENNs, inspired by the resilience of nature’s ecosystems, empowers neural networks
to thrive even in the most resource-challenged environments.
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Our empirical evaluations have substantiated the prowess of FENNs, demonstrating their superiority
in resource-constrained and dynamic scenarios. Across a diverse range of tasks, FENNs consistently
outperform traditional models and existing decentralized learning approaches, as quantified by the
RAI, RES, and ARES metrics. These results underscore the transformative potential of FENNs as
the vanguards of decentralized learning.

The deployment of FENNs promises to revolutionize edge computing, facilitating intelligent
decision-making at the edge without compromising privacy or efficiency. This research embarks
on a journey that harmonizes the power of adaptability, efficiency, and privacy—a journey that re-
defines the contours of decentralized machine learning and sparks new possibilities for the digital
age.
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A ALGORITHMIC VERSIONS OF ENNS, FENNS AND RAI

The specific implementation for ENNs is expressed as a pseudo-algorithm below;

Algorithm 1 Ephemeral Neural Network (ENN)
1: Input: Starting architecture As, Resource measurement Rm

2: Output: Adapted architecture Ae

3: Initialize Ae with As

4: Assess resource constraints based on Rm and available computational resources.
5: if Resources exceed threshold then ▷ When available resources are ample
6: Enhance Architecture:
7: Evaluate the current computational capacity (i.e. available memory, processing power)
8: Expand Ae to harness the surplus resources effectively.
9: Use a set of Enhancement strategies to enhance model complexity.

10: else if Resources below threshold then ▷ When resources are constrained
11: Optimize Architecture:
12: Recognize the limitation of available resources, (i.e resource constraints, limitations and

requirements).
13: Prune Ae to align with resource constraints and ensure efficient model execution.
14: Use Optimization strategies to simplify model complexity.
15: end if
16: Return Adapted architecture Ae tailored to the current resource environment.

The specific implementation for FENNs is expressed as pseudo-algorithms below;

Algorithm 2 Federated Ephemeral Neural Network (FENN) for Edge Devices
1: Input: Global Model (GM), Local Model (LM), Edge Device Data D, Resource measurement

Rm

2: Output: Updated LM
3: Initialization:
4: Initialize the Local Model (LM) with the architecture of the Global Model (GM).
5: Begin training the LM using the local data D.
6: Resource Assessment:
7: Assess the resource constraints of the edge device based on the provided resource measurement

Rm.
8: if Resources exceed threshold then ▷ When available resources are ample
9: Enhancement Strategy:

10: Formulate an enhancement strategy to make efficient use of the surplus resources.
11: Implement the enhancement strategy, which may involve expanding the LM.
12: Continue training the LM with the augmented architecture to take full advantage of the

available resources.
13: else if Resources below threshold then ▷ When resources are constrained
14: Optimization Strategy:
15: Identify the specific limitations of available resources.
16: Formulate an optimization strategy to align the LM with resource constraints while

preserving model performance.
17: Implement the optimization strategy, which may involve pruning the LM.
18: Continue training the LM with the optimized architecture, ensuring efficient execution

within resource limitations.
19: end if
20: Return the Updated LM.
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Algorithm 3 Federated Ephemeral Neural Networks (FENNs) on the Server
1: Input: Global Model (GM ), Local Models (LM1, LM2, . . . , LMn)
2: Output: Updated Global Model (GM ′)
3: Initialize GM ′ with the same architecture as GM
4: Initialize an empty list ShadowModels
5: for i = 1 to n do
6: Receive LMi from edge device i
7: Create a Shadow Model SMi with the same architecture as GM ′ and initialize its weights
8: Train SMi using knowledge distillation with LMi as the teacher and SMi as the student
9: Add SMi to the list ShadowModels

10: end for
11: Aggregate the weights of ShadowModels to update GM ′ ▷ Aggregation methods such as

Federated Averaging and
12: Return Updated Global Model (GM ′)

The implementation of RAI is defined in a pseudo-algorithmic fashion as below;

Algorithm 4 Resource-Adaptability Index (RAI) Calculation
1: Input: Classification Accuracy (CA), Resource Utilization Metrics RU , Weighted Factors w
2: Output: RAI
3: Calculate Classification Accuracy (CA):
4: To assess the model’s task performance, compute the Classification Accuracy (CA) based on

the specific task or dataset. CA represents the model’s ability to make correct predictions.
5: Calculate Resource Utilization (RU):
6: Determine the Resource Utilization (RU) by aggregating and quantifying various resource met-

rics (RU ) that capture different aspects of resource utilization during model execution. These
metrics may include:

7: Memory Usage (MU)
8: Processing Time (PT)
9: Hardware Utilization (HU)

10: Network Bandwidth Usage (NB)
11: Assign Weights:
12: The Weighted Factors (w) represent the importance assigned to each resource metric in the

calculation of RAI. Ensure that the sum of all weights equals 1 to maintain a proper weighting
scheme.

13: Calculate RU = w1.MU + w2.PT + w3.NB + w4.HU
14: Weighted Resource Function f(RU):
15: Evaluate function; f(RU) that maps the aggregated resource utilization metrics to a weighted

value. The weighted resource function is designed to balance the importance of different RU
metrics according to the specified Weighted Factors (w). The function may involve:

16: - Linear and/or nonlinear transformations of individual RU metrics.
17: Calculate Resource-Adaptability Index (RAI):
18: Compute the Resource-Adaptability Index (RAI) by multiplying the Classification Accuracy

(CA) by the weighted resource function f(RU).
19: Return the RAI. A higher RAI indicates better adaptability to resource-constrained environ-

ments while maintaining good task performance.

B DATASET DETAILS: SYNTHETIC ANOMALY DETECTION DATASET

In this study, a synthetic dataset was meticulously crafted to facilitate the evaluation of Federated
Ephemeral Neural Networks (FENNs) and other benchmark models. The dataset was generated to
simulate an anomaly detection task, a common use case in resource-constrained edge computing
environments.
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B.1 DATASET CREATION PROCESS

The synthetic dataset was created through a multi-step process to ensure diversity and realism in the
data distribution. The key steps in the dataset creation process are as follows:

1. Feature Generation: A set of relevant features was defined to mimic real-world sensor
data commonly encountered in edge devices. These features include temperature readings,
humidity levels, pressure measurements, and time stamps.

2. Normal Data Generation: To represent normal operational behavior, a substantial amount
of data points were generated with feature values reflecting typical edge device conditions.
This normal data serves as the majority class in the anomaly detection task.

3. Anomaly Injection: Anomalies were introduced by perturbing a subset of data points.
These anomalies were crafted to represent deviations from typical sensor readings, such
as sudden temperature spikes or irregularities in humidity levels.

4. Dataset Size: The resulting synthetic dataset comprises a total of 10,000 data points, with
each data point characterized by various features. It is structured in a tabular format, with
multiple columns representing different features and one column indicating the presence or
absence of an anomaly (binary label).

B.2 DATASET COLUMNS

The synthetic dataset consists of the following columns:

1. Timestamp: A timestamp indicating when the data point was recorded.
2. Temperature: Temperature readings in degrees Celsius.
3. Humidity: Humidity levels as a percentage.
4. Pressure: Atmospheric pressure measurements in hPa (hectopascals).
5. Anomaly (Label): A binary label indicating the presence (1) or absence (0) of an anomaly

in the data point.

This carefully constructed synthetic dataset serves as a critical component of our experimentation,
enabling rigorous evaluation and comparison of model performance in the context of anomaly de-
tection under varying resource constraints and dynamic edge computing environments.
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