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Figure 1: Spectrograms showing two target vocalizations with reconstruction via our approach
(VocalTrax) and prior work [1]. (Top) a clip of Frank Sinatra singing My Funny Valentine. (Bottom)
original speech audio from the popular “Oh Look, A Strawberry” meme.

Abstract

Articulatory synthesis seeks to replicate the human voice by modeling the physics
of the vocal apparatus, offering interpretable and controllable speech production.
However, such methods often require careful hand-tuning to invert acoustic signals
to their articulatory parameters. We present VocalTrax, a method which performs
this inversion automatically via optimizing an accelerated vocal tract model imple-
mentation. Experiments on diverse vocal datasets show significant improvements
over existing methods in out-of-domain speech reconstruction, while also revealing
persistent challenges in matching natural voice quality.

1 Introduction

The human voice presents a formidable challenge for computational modeling, with its complex
physiology and acoustics. Articulatory speech synthesis [2], which aims to replicate this complexity
by simulating the vocal tract’s physical properties, has long been a prized goal of speech technology
since it results in interpretable and controllable synthesis. While traditional approaches can be
laboriously programmed to construct longer segments [3], they struggle to match the richness and
variability of natural speech and even text-to-speech models [4]. As such, there is a need for acoustic-
to-articulatory inversion methods that generalize to realistic speech, song, and other vocalizations.

This paper introduces VocalTrax, an optimization-based method for matching arbitrary vocal signals
to articulatory parameters using the Pink Trombone1 (PT) articulatory voice synthesizer. At the core
of this is a fast, flexible implementation of PT which allows formulating the sound matching problem
as an optimization task. Given an input voice clip, this approach iteratively optimizes the articulatory
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parameters of the synthesizer to match the acoustic qualities of a reference clip. This flexibility allows
it to tackle a broad range of speech phenomena, from sustained vowels to non-linguistic vocalizations
and even singing voices.

Overall, this work contributes:

1. An accelerated implementation of the Pink Trombone (PT) articulatory synthesizer in JAX,
enabling efficient differentiation and optimization (planned for open-source release).

2. An approach to reconstructing arbitrary vocal signals, with pre-estimation of only the F0s
and otherwise end-to-end optimization, expanding the range of vocalizations that can be
accurately synthesized.

3. Experiments on challenging out-of-domain (real voice) data showing that this approach is
significantly more capable than existing gradient-based optimization approaches for vocal
tract area function estimation, which are largely limited to synthesizing vowel sounds.

2 Related Work

We have been trying to implement machines and anatomical models to emulate human speech for
centuries [5]. Computational methods for modeling the human vocal tract to synthesize speech are
known as articulatory synthesis [2]. These methods consist of controlling aspects such as the tongue or
lips to shape the vocal tract and generate speech by simulating the airflow. These simulations recover
the parameters of the tract, which can be controlled and interpreted to assist with pronunciation [6],
speech disorders [7], and speech recognition [8].

An important part of articulatory synthesis consists of modeling the human vocal tract [9–11].
One way of tackling this problem is gathering and training on the combination of speech and
corresponding biometric data [12–15]. Another approach is what is known as analysis-by-synthesis,
where parameters are iteratively refined to match the sound target [16, 17, 2]. This can be done using
zero-order optimization techniques [18–25], but it usually requires more iterations to converge and
it’s harder to scale. Gradient methods are better at this—and previous research has leveraged neural
networks to solve this task [26–33]—but require large training datasets.

Instead, differentiable vocal tract models can be used to get the best of both worlds: gradient
optimization and no requirement for training data. In prior work [1], a differentiable mapping
between control parameters and the PT synthesizer is optimized by gradient descent for sound
matching vowel sounds. Our approach follows this concept, extending its capabilities beyond vowel
sounds generated by PT; synthesizing realistic speech, song, and other vocalizations.

3 Methods

The Pink Trombone (PT) is a widely used articulatory speech synthesizer, composed of time-invariant
models of the glottal flow derivative (GFD) and vocal tract V . The source GFD is filtered through
V , synthesizing the output. To perform end-to-end sound matching, we split our audio input into
frames, estimate the fundamental frequency F0 for each frame, and optimize the vocal tract and GFD
parameters for all frames simultaneously. We use a simple objective function involving computing
the L2 distance between the log-mel spectrograms of the target and synthesized audio.

3.1 Glottal Flow Derivative

Pink Trombone uses a simplified Liljencrants-Fant (LF) model of the GFD waveform [34]. The LF
model is composed of two parameters, the fundamental frequency F0 and tenseness T , representing
the degree of vocal effort. White noise proportional to 1−

√
T is added to the GFD waveform. We

estimate the fundamental frequency (F0) of each frame using CREPE [35]. The tenseness T for each
frame is optimized alongside the vocal tract parameters.

3.2 Vocal Tract

The GFD waveform is filtered through the vocal tract, allowing for the articulation of consonant
and vowel sounds. PT uses the Kelly-Lochbaum [36] piecewise cylindrical vocal tract model,
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composed of a sequence of 44 segments of increasing distance from the glottis with cross-sectional
areas A1, A2, . . . , A44. At each segment junction, the forward and reversed waves are reflected and
propagated as described by the scattering coefficients:

ki =
Ai −Ai−1

Ai +Ai−1
∀i ∈ {2, . . . , 44} (1)

To aim for physiologically plausible vocal tracts, we used a simplified physical vocal tract model
to determine the diameters d1, d2, . . . , d44 shared across all frames. At each frame, two types
of transformations are applied: the tongue and two constrictions [1]. The tongue, defined by two
parameters, tongue diameter (td) and tongue position (tp), modifies the base diameter into a sinusoidal
shape, mimicking the behavior of the human tongue. One lip and one tract constriction, defined by
parameters cl and ct scale the base diameters of the subset of diameters furthest from and closest to
the glottis, respectively, by a factor of 1− cl and 1− ct. To simplify the gradient-based optimization
approach, we keep the constriction indices set at 12 and 39.

3.3 Optimization

We use a common mel spectrogram representation of the audio signals, and define our objective L as
the L2 distance between the target (T) and synthesized (S) audio:

L(T,S) = ∥ log(|MELSPEC(T)|)− log(|MELSPEC(S)|)∥2 (2)

We minimize L over our parameter space using the AdamW [37] optimizer (with γ = 0.01), and
use a box projection to keep the parameters ∈ [0, 1]. We use a normalized parameter space, back-
transformed to each parameter’s respective range as needed as has been done in other synthesis
packages [38]. We initialize the diameters using the canonical values [1], and other parameters to 0.5
(middle) except T (tenseness coefficients) to 1, to minimize unnecessary noise at the beginning of the
optimization. Unlike prior work [1], we do not use inverse filtering to recover any coefficients, and
instead perform end-to-end optimization of the full apparatus (except for pre-estimated F0s).

4 Results

We evaluated VocalTrax against Vocal-Tract-Grad [1] and ground truth using automated metrics and
human evaluations on multiple datasets. Table 1 shows results of automated evaluations on three
datasets: TIMIT [39] (subset), AudioMNIST [40] (subset), and VIVAE [41]. We used match error
rate (MER) for TIMIT2 and accuracy otherwise. Given the distribution shift between target audio
and even relatively high quality reconstructions, we complement the automated evaluation with a
human evaluation. Table 2 shows human accuracy responses. Importantly, all our evaluations are
on out-of-domain data (i.e. data not synthesized with vocal tract models which can be perfectly
reconstructed given the same tract model, but rather recordings of real speech).

4.1 Automated Evaluations

TIMIT [39] (MER ↓) AudioMNIST [40] (Acc ↑) VIVAE [41] (Acc ↑)

Ground Truth 6.4 73.5 29.2
VocalTrax (Ours) 82.9 20.0 18.4
VTG [1] @ 1024 99.5 9.7 17.7
VTG [1] @ 2048 99.4 12.2 17.3
VTG [1] @ 4096 99.6 10.7 15.6

Table 1: Results from automated evaluations. TIMIT uses the match error rate.

In our automated evaluations, we use three datasets to capture different capabilities. AudioM-
NIST [40] focuses on spoken numbers, which are simple and brief excerpts but do contain semantic
information. Given the scale of this dataset, we use a stratified random sample of 600 test-set

2We use MER because word error rate is sensitive to insertions, and thus brief uninformative responses like
“thanks for watching” (a common Whisper hallucination given incoherent inputs) result in inflated performance.
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examples to evaluate across the different methods. By contrast, VIVAE [41] focuses on paralinguistic
vocalizations, which do not contain any words but convey affective information. For both datasets,
we evaluate using the ARCH [42] benchmark protocol, modified to train on real data, and test on
resynthesized (or ground truth) data. This ensures a realistic evaluation, wherein models are not
trained specifically on the resynthesized speech and can adapt their representations accordingly. Both
datasets are for multi-class classification (10 for AudioMNIST and 6 for VIVAE respectively). For
AudioMNIST, given the scale (30,000 clips), we do a train-test (instead of cross-validated) evaluation.
Finally, we evaluate on a more challenging task: longer-range, higher-vocabulary speech synthesis.
We sub-sample 100 clips from TIMIT [39], which contain multi-word phrases or sentences, and
aim to resynthesize these fully. We use 2000 optimization iterations for TIMIT to account for its
complexity, vs. 1000 for others.

Results are shown in Table 1 for ground truth test set data, our method, and Vocal-Tract-Grad [1].
For the latter, we evaluate it at multiple matched hop and frame lengths: 1024 (ours), 2048, and 4096
(their original). Since Vocal-Tract-Grad focuses on vowel synthesis, AudioMNIST and especially
TIMIT are likely to be quite challenging for it. Overall, we observe that our method is able to deliver
improved reconstructions, judged by their classification and transcription performance, over these
baselines. However, for TIMIT and AudioMNIST, our results remain distant from the ground truth
results due to the significant distribution shift in addition to reconstruction artifacts present.

4.2 Human Evaluations

AudioMNIST [40] VIVAE [41]
Acc ↑ Conf ↑ Acc ↑ Conf ↑

Ground Truth 100.0 (0.0) 4.9 (0.0) 47.8 (3.7) 3.7 (0.1)
VocalTrax (Ours) 48.7 (2.9) 2.9 (0.1) 23.9 (3.2) 2.5 (0.1)
VTG [1] @ 1024 11.0 (1.8) 1.5 (0.1) 14.4 (2.6) 1.7 (0.1)

Table 2: Results from human evaluations (N=10 participants, each rating 30 AudioMNIST [40] and
18 VIVAE [41] samples per source). We show both response accuracy and confidence, each with
standard errors (in parenthesis), computed directly from the sample.

To complement automated evaluations, we ran a listening study (results are shown in Table 2). We
used subsets of AudioMNIST and VIVAE in this study, focusing on (1) how accurately listeners
could identify the category the reconstruction (or original example) belongs to, and (2) how confident
listeners were about their choices. We recruited 10 participants via Prolific, and estimated that the
study took about 20 minutes to complete. The study was determined by our IRB to be exempt.
Participants listened and responded to 90 total AudioMNIST clips (stratified random sample of 3
clips per digit category, and the same 30 for each of ground truth, ours, and Vocal-Tract-Grad [1])
and 54 total VIVAE clips (similarly, 3 per affect category, and the same 18 across the 3 sources).

We modeled accuracy using a mixed-effects logistic regression for each dataset, with random in-
tercepts for digit (AudioMNIST) or category (VIVAE) and for participants. Then, we conducted
pairwise post-hoc contrasts. For AudioMNIST, participants were significantly more accurate iden-
tifying VocalTrax-synthesized digits compared to Vocal-Tract-Grad (odds ratio = 10.7, p<.0001).
This was also true for VIVAE, though with a more modest difference (odds ratio = 1.96, p=.019).
These p-values were adjusted using the Benjamini-Hochberg correction for pairwise tests. For both
datasets, participants were also more confident in classifying our reconstructions. Participants were
less accurate and confident with our reconstructions compared to the ground truth clips, suggesting
significant opportunities to further improve reconstructions of challenging, out-of-domain samples.

5 Conclusion

VocalTrax demonstrates how end-to-end optimization can improve articulatory speech reconstruction
of acoustic signals. Our JAX implementation of Pink Trombone and reconstruction approach can
rapidly reconstruct a variety of vocal signals, which we hope will open up possibilities in speech
analysis, therapy, and voice conversion. However, the quality gap between such synthetic and natural
speech persists. Future work should focus on refining vocal tract models, incorporating perceptual
factors, and expanding to more complex vocal phenomena.
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