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Abstract

Machine Learning (ML) has emerged as a promis-
ing alternative to numerical methods for physics-
based simulation due to its flexibility and effi-
ciency. Flood modeling is a key case study for
ML-based simulation due to its relevance as a tool
for supporting preventive and emergency mea-
sures to mitigate flood risks. However, the com-
plexity of the topography or domain (ground ele-
vation) and the sparsity of the time-evolving pre-
cipitations (external forcing) can be challenging
for most existing ML approaches for simulating
flooding processes in space and time. Another
critical challenge is incorporating physics domain
knowledge (hydraulics) into these data-driven
models. This paper addresses these challenges by
introducing a hydraulics-informed graph neural
network for flood simulation. Given a (geograph-
ical) region and precipitation data, our model
predicts water depths in an auto-regressive fash-
ion. We propose a message-passing framework
inspired by the conservation of momentum and
mass expressed in the shallow-water equations,
which describe the physical process of a flood-
ing event. Empirical results on a dataset cover-
ing 9 regions and 7 historical precipitation events
demonstrate that our model outperforms the best
baseline, and can capture the propagation of water
flow more effectively, especially at the very early
stage of the flooding event when the amount of
water in the domain is scarce. Differently from
some of the most recent methods for ML-based
simulation, which tend to work well only when
the domain is a smooth surface (e.g., flat terrain),
we show that our solution achieves accurate re-
sults for real ground elevation data.
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1. Introduction
Flooding is the natural hazard with the greatest social and
economic impact in the United States and affects lives and
livelihoods around the world (Tellman et al., 2021; Eckstein
et al., 2021; National Academies of Sciences, Engineering,
and Medicine; Jha et al.; PBL Netherlands Environmental
Assessment Agency). In cities, flooding generates direct
property damage, indirect losses through supply chain dis-
ruption, and threats to livelihood through drowning and
interruption of transportation networks, limiting access to
emergency services (Haraguchi & Lall; Han et al.; Gori
et al.; Panakkal et al., a;b). With climate change increasing
the intensity and frequency of extreme precipitation in many
regions (on Climate Change , IPCC), urbanization reducing
natural flood protection (Merz et al., 2014; Sebastian et al.,
2019), and rapid population growth in flood-prone regions,
the severity of urban flooding is projected to continue to
grow (Berkhahn et al., 2019; Schreider et al., 2000).

The evolution of a flooding event is a time-evolving physi-
cal process typically represented by the 2D shallow-water
equations (Eq. 1 & 2). In practice, flooding is modeled
using specialized solvers, such as LISFLOOD-FP (Shaw
et al., 2021) and HEC-RAS (Brunner, 2016), which not
only solve the relevant PDEs but also account for space-
and time-varying rainfall, evolving inundation regions, to-
pographies, and additional features. However, these models
remain computationally expensive and require extensive cal-
ibration of key parameters such as Manning’s roughness
coefficients and infiltration rates (Zajac et al., 2013), with
documented cases of major calibration failures (Van den
Honert & McAneney, 2011). This limits the utility of these
specialized solvers for vitally important applications includ-
ing real-time flood warning, probabilistic hazard assessment,
representation of green infrastructure benefits, and optimiza-
tion of infrastructure design.

Machine learning (ML) methods have emerged as a promis-
ing alternative to hydrodynamic numerical models due to
their flexibility and efficiency (Mosavi et al., 2018; Ben-
tivoglio et al., 2022) (See running times in Appendix A.6).
ML-based models for flooding have generally fallen into
three groups. The first uses time series models such as
Long-Short Term Memory (LSTM) networks trained on
gauge observations to predict the time series of discharge
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(flow/time) at a location (Wi & Steinschneider, 2022; 2023;
Nevo et al., 2021). While this approach has proven flexible
and skillful in transfer learning tasks, it fails to capture the
spatially varying dynamics. The second approach predicts
the maximum extent of a flood, given information on the
area affected and the storm, trained on high water marks
and satellite observations (Muñoz et al., 2021; Berkhahn
et al., 2019; Kabir et al., 2020; Löwe et al., 2021; Hofmann
& Schüttrumpf, 2021). However, such approaches do not
provide information on the time evolution of the system, crit-
ical for many applications, and may be difficult to check for
physical realism. The third approach considers both spatial
and temporal dynamics of flooding (like the 2D hydrody-
namic models). The primary limitation of this approach is
that observations are not, in general, available, so models
are trained in “surrogate” mode on the output of computa-
tionally expensive models (Bates, 2022). This approach is
the focus of our paper.

In this work, we propose ComGNN, a hydraulics-inspired
graph neural network for flood simulation. GNNs have
achieved promising results in predicting physics simulations
(Pfaff et al., 2021; Lino et al., 2022), including fluid dy-
namics problems (Keisler, 2022; Lam et al., 2022). They
support a wide range of PDE discretizations, such as regular
and irregular meshes (Brandstetter et al., 2022). Our pro-
posed model takes as input a directed graph derived from
the flow direction of a region where each mesh cell is a
node with an outgoing edge to its steepest neighbor cell. At
each time step, each node is first considered as an isolated
bucket that accumulates its current water volume and water
from the rain, which is later propagated to the surrounding
nodes using a message-passing inspired by the conservation
of momentum and mass. Extensive experiments show that
these features enable our method to simulate flooding events
much more accurately than existing approaches, including
modern ML models for physics-based simulation. Our work
makes the following contributions to the emerging field of
GNN-based flood simulation:

• We propose ComGNN, a novel graph neural network
for flood modeling given spatially and temporally vary-
ing rainfall that operates in a two-stage paradigm: (1)
retain water where it falls and (2) propagate water to
surrounding areas.

• We propose a message-passing mechanism on the flow
direction graph that is explicitly designed based on
the conservation of momentum and mass for water
propagation. Furthermore, this design handles sparse
data better than competitive baselines, being able to
predict (shallow) water depths at the beginning of a
flooding process when the land is still dry.

• We evaluate our method using 9 watersheds (regions)
and 7 historical floods. Our experiments show that

our approach outperforms current approaches under
multiple settings such as early stage simulation and
unseen regions and/or unseen precipitations.

2. Related Work
Machine learning for spatial and temporal variability of
floods. The focus in ML for flood prediction has been on
modeling either the spatial or temporal variability of floods.
For instance, ML has been used to predict water flow over
time at a single location (Wi & Steinschneider, 2022; 2023;
Nevo et al., 2021). There have been applications of ML to
the prediction of flood inundation, susceptibility, and haz-
ard maps (Wang et al., 2020; Guo et al., 2022; Löwe et al.,
2021; Oliveira Santos et al., 2023; Farahmand et al., 2023).
(Mosavi et al., 2018) provides a comprehensive review of
ML approaches for flood prediction. (Bentivoglio et al.,
2022) review machine learning applications to flood map-
pings. However, the interplay between predictions of spatial
and temporal variabilities is critical for ML to be used as
an alternative to current 2D hydrodynamic models for flood
simulation. There have recently been a few works address-
ing this problem. For instance, (Kazadi et al., 2022; 2024)
proposes a GNN for flood prediction in an auto-regressive
manner but fails to account for the rainfall. (Bentivoglio
et al., 2023) also proposes a GNN architecture inspired by
the shallow-water equations. However, it does not account
for the rainfall either and considers synthetic topographies
based on Perlin noise (Perlin, 2002), which are smoother
and simpler than real-world topographies (see Figure 3).

Machine learning for dynamical systems. Machine
learning methods for modeling physical processes and solv-
ing PDEs can be applied to flood simulation given the sim-
ilarities in tasks performed. The message passing mecha-
nism of Graph Neural Networks (GNNs) has been associ-
ated with approximations to differential operators, suitable
for solving PDEs (Brandstetter et al., 2022; Maddix et al.,
2022). GNNs have been successfully applied to physics-
based simulations (Sanchez-Gonzalez et al., 2019; Kipf
et al., 2018; Fortunato et al., 2022; Cranmer et al., 2020;
Battaglia et al., 2016; Allen et al., 2022). Neural operators
are parametric/learnable approximators of nonlinear opera-
tors that learn a mapping from a parameter function and/or
the initial condition of a PDE to its solution function. Dif-
ferent architectures of neural operators have been proposed.
For instance, based on the universal approximation theorem
of operators, DeepONet (Lu et al., 2021) proposes two sub-
networks, a branch net and a trunk net, to approximate an
operator. More recently, nonlinear operators have been ap-
proximated by combining (linear) kernel integral transforms
and non-linear activation functions. For instance, GNO
(Anandkumar et al., 2019) approximates the integral as a
node update using a graph defined on the domain, FNO (Li
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et al., 2021) regards the integral as a convolution, which is
computed as a simple multiplication in the Fourier domain.
Spatiotemporal Implicit Neural Representations are space-
or/and time-continuous learning models, which, like neural
operators, also learn a mapping between functions to solve
PDEs (e.g., PINNs (Raissi et al., 2019), DINO (Yin et al.,
2023)). These approaches, however, are not scalable as co-
ordinate (in space or time) sampling is intractable on a vast
domain. ML for the simulation of dynamical systems has
shown promising results in solving physical processes, in-
cluding weather forecasting (Lam et al., 2022; Keisler, 2022;
Pathak et al., 2022). Flood simulation, however, poses new
challenges to ML-based simulation due to the nature of real-
world datasets, which cover large and complex topographies
— as opposed to small and smooth domains considered by
existing work. For instance, Sun et al.(2023) applied FNO
for flood prediction, but considered a very small domain and
only predicted a single lead time. Another challenge with
flood simulation is the need to account for precipitation data
(external forcing). Our work addresses these challenges by
proposing a novel Graph Neural Network for pluvial flood
dynamics. Experimental results show that our approach
outperforms competitive baselines, including FNO.

3. Flood Modeling: Mathematical Framework
The theoretical framework for flood modeling is based on
fluid mechanics described by the 3D Navier-Stokes equa-
tion. In practice, however, the characteristic vertical length
scale of the flow is very small with respect to the char-
acteristic horizontal length scale, resulting in a constant
horizontal velocity field throughout the depth of the fluid.
The dynamics of a flooding process are, therefore, derived
by depth integrating the 3D Navier-Stokes equation, leading
to a system of non-linear PDEs called shallow-water equa-
tions (de Almeida et al., 2012), which, without convective
acceleration and negligible friction, are defined as follows.

∂h

∂t
+∇ · q=0 (conservation of mass) (1)

∂q

∂t
+gh∇(h+z)=0 (conservation of momentum) (2)

where h(x, y; t) is the water depth relative to the ground
elevation z(x, y), q = (qx(t), qy(t)) is the discharge (per
unit width), ∇ = ( ∂

∂x ,
∂
∂y ) is the spatial gradient operator.

4. Problem Formulation and Approach
This section introduces our formulation for the flood simu-
lation problem and describes ComGNN, a GNN for flood
simulation based on the retention and dispersion of water.

4.1. Problem Formulation

Given a region R, represented as a graph, and a spatially
distributed rainfall event p1:K over K time steps, our goal
to predict wader depths h1:K over R for these K time steps.

4.2. Method

We propose ComGNN, a GNN model that operates in two
stages, namely, water retention and water dispersion.

In the water retention phase, we consider each node vi as
an isolated bucket with no water exchange with its adjacent
nodes. The water level in vi is represented by the latent
features eti(∈ Rd), solely depending on the rainfall pti(≥ 0)
and previous water level ht−1

i (≥ 0).

eti = MLP([pti∥ht−1
i ]) (3)

where MLP is a multi-layer perceptron, and ∥ is concatena-
tion. The dispersion phase acts as a learning-based spatial
solver of the shallow-water equations. Following the method
of lines (Schiesser, 2012), we first define a scheme for the
spatial domain. The nth-derivative of f of order n can be
approximated using a Taylor expansion as:

∂nf(x)

∂x
=

N∑
i=1

αif(yi) (4)

where αi are coefficients, and yi are points sampled in the
neighborhood of x (yi = x+∆xi). For instance, the first-
order forward finite difference approximation can be recov-
ered from Eq 4 by setting N = 2, ∆x1 = 0, α1 = − 1

∆x2
,

and α2 = 1
∆x2

(See Appendix A.1). When the coefficients
αi are learnable from the sampled points, it gives rise to
an adaptive approximation scheme with different orders of
accuracy for each point x. Eq 4 can be seen as a special case
of the more general message passing ψ and node update
operation ϕ in GNNs (Brandstetter et al., 2022).

∂nf

∂x
(x) = ϕ

(
{ψ(f(yi), f(x))}yi∈N (x)

)
(5)

where N (x) is the neighborhood of x. By setting ψ to a
scaling factor of its first argument f(yi), and ϕ to the sum-
mation of its arguments, we recover Eq 4. Applying the
spatial derivative from Eq 5 to the conservation of momen-
tum (Eq. 2) at each node i gives:

∂qi

∂t
+ gϕ

(
{ψ(hj , zj , hi, zi)}vj∈Nout(i)

)
= 0 (6)

where Nout(i) = {vj |vi → vj}. We define the message
passing ψ as a backward difference to model the ability of
the flow to go from vi to vj .

ψ(hj , zj , hi, zi)=σ(ei)⊙MLP((ei+zi)−(ej+zj)) (7)
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Figure 1: Water retention and dispersion. Each cell in the domain representing a region is considered as an isolated
bucket filled with water eti from rain pti. Water is propagated by computing, with possibly many iterations, discharges qti (by
conserving momentum Eq. 8), and getting the more stable water depth hti (by conserving mass Eq 10).

where σ is the sigmoid function, ⊙ is the element-wise
multiplication, zi/j = MLP(zi/j), and ei/j is the latent
representation of the water retained from the rain (Eq. 3)
which we substitute for the water depth hi/j . There is flow
from vi to vj if there is a difference in water surface, that
is, (ei + zi) − (ej + zj). This flow can only happen if
there is water in vi, hence, the multiplication by σ(ei) as
a gating mechanism. By defining the node update ϕ as a
summation of its arguments and applying the forward Euler
time integrator to Eq 6, we have:

qt
i = qt−1

i (8)

+∆tg
∑

vj∈Nout(i)

σ(eti)⊙MLP((eti+zi)−(etj+zj))

where qt
i can be regarded as the total flow going out of vi.

After obtaining qt
i at each cell vi, the second level message

passing of the water dispersion phase is computed with
the following (implicit) time integration of the equation
capturing the conservation of mass:

hti = ht−1
i +∆tϕ

(
{ψ(qt

i,q
t
j)}vj∈Nin(i)

)
(9)

where Nin(i) = {vj |vj → vi}. By setting ψ as an identity
function and ϕ as a parametric function (MLP) of the in-
coming flows from vj minus outgoing flow of vi, we obtain:

hti = ht−1
i +∆tMLP(

∑
j∈Nin(i)

qt
j − qt

i) (10)

Multiple iterations of this bi-level message-passing
(Eq. 8 & 10) can be performed to simulate dispersion over
long distances. Intermediate states can be interpreted
as latent space forecasting (Migus et al., 2023) and hti
will be the output of the final message-passing—this is
analogous to a multistep time integration of hti. At the

next time step t + 1, pt+1
i and hti are fed back into our

model, in an auto-regressive manner, for the prediction
of ht+1

i . The retention and dispersion processes are
illustrated in Figure 1. Because ∆t and the gravitational
force are fixed—they only appear as constant multiplica-
tive factors—we assume them to be equal to 1 in Eq. 8 & 10.

Region representation as a graph. In practice, re-
gion surfaces are represented in a raster format (digital
elevation model—DEM), where each pixel/grid cell
represents the ground elevation. The first challenge in
developing a GNN for flooding simulation is to design a
graph topology that captures the dynamics of the flooding
process. We convert a given region R into a directed graph
GR(V,E), which remains static. GR is defined as the D8
flow direction map (Jenson & Domingue, 1988) based on
the DEM of R (See Appendix A.2). Each grid cell i is
considered as a node vi, and a single directed outgoing edge
ei→j ∈ E connects vi to its steepest neighbor vj . Each cell
vi has as features a rainfall time series p1:Ki and ground
elevation zi. Thus, Eq 8 can further be reduced to:

qt
i = qt−1

i + σ(eti)⊙MLP((eti + zi)− (etj + zj))

Loss function. At each time t, we propose the following
loss function as the objective to minimize the discrepancy
between predicted water levels hti and the ground truth wt

i :

Ltotal = Ldiff + L+ (11)

Ldiff =

N∑
i

{
|hti − wt

i | , |hti − wt
i | < 1

(hti − wt
i)

2 , otherwise
(12)

L+ =
1

N

N∑
i

max(0,−hti) (13)

whereN is the number of nodes. The loss Ldiff is a combina-
tion of the L1 loss (for very small values) and L2 (for larger
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values). L+ penalizes negative values of hti. In our experi-
ments, Ldiff performs better than L1 or L2 used individually.
This can be explained by the fact that we are dealing with
very sparse data, and the optimization can adapt to different
regimes of the learning process.

5. Experiments
We introduce the dataset and evaluation metrics in Sec-
tion 5.1 and Section 5.2, respectively. We compare our
method, called ComGNN, to state-of-art approaches used
in ML for simulations (Section 5.3). We present the main
results and also investigate how the complexity of the pre-
cipitations (sparsity) and the regions (topography) impact
the performance of the different methods (Section 5.4).

5.1. Dataset

Experiments are based on the simulations from the hydro-
dynamic model LISFLOOD-FP (Shaw et al., 2021). We
consider 9 sub-watershed regions from Harris County, in
Texas (see Figures 4 and 5 and Table 6 in Appendix A.3).
For each of these regions, simulations were run using 7 his-
torical rainfall events (based on the flood history in Harris
County1 collected from NOAA NEXRAD radar precipi-
tation records from the Multi-Radar Multi-Sensor Gauge
Corrected (MRMS-GC) Quantitative Precipitation Estima-
tion (QPE) product (Martinaitis et al., 2020). See Table 7 in
Appendix A.3 for the list of rainfall events.

The Harris County, TX, area, which includes the city of
Houston (the 4th most populous in the United States), is
the ideal case study for the evaluation of flood simulation
methods. The region has experienced multiple severe floods
in the past decades and is investing billions of dollars in
flood mitigation (HCFCD, 2019) and faces broad climate
adaptation challenges representative of those facing urban
watersheds across the U.S. (ASFPM, 2020).

There are 63 combinations coming from the 9 sub-watershed
regions and 7 rainfall events, of which 9 combinations were
used for the training, 3 combinations were used for valida-
tion, and the remainder were used for testing.

Data generation The flood data was generated using
LISFLOOD-FP (Shaw et al., 2021), a two-dimensional hy-
drodynamic model specifically designed to simulate flood-
plain inundation over complex topography by numerically
solving the shallow water equations. It predicts water depths
in each cell of the discretized domain using an adaptive time
stepping. We provided the DEM (ground elevation) of a
region and prediction data as input and collected snapshots
of water depth states as output every 5 minutes of the simu-

1https://www.hcfcd.org/About/
Harris-Countys-Flooding-History

lation process clock-time. It is worth noting that between
output intervals, LISFLOOD-FP internally computes several
smaller time steps for numerical and computation stability.

Data normalization We normalize the Digital Elevation
Model (DEM) of each region independently using standard-
ization. This helps in handling situations where regions
have similar topographies but different altitudes as they are
expected to show similar inundation behaviors. Since the
precipitation and water depth are highly sparse, we log-
transform them using log(1 + x

1e−2 ) (Pathak et al., 2022),
followed by a division by 10.

5.2. Evaluation metrics

We apply the root mean square error (RMSE), the
Nash–Sutcliffe model efficiency coefficient (NSE), and the
Pearson correlation coefficient (r) for accuracy evaluation:

RMSE =

√
1

N
|yi − pi|2 NSE = 1−

∑N
i |yi − pi|22∑N
i |yi − ȳi|22

r =

∑N
i (yi − ȳi)(pi − p̄i)√∑N

i (yi − ȳi)2
∑N

i (pi − p̄i)2

where yi is the true value and pi is the predicted value. We
also consider the critical success index (CSI) that measures
the spatial accuracy of the classification of cells as flooded
or non-flooded areas for a given flooding threshold γ. CSI
is evaluated as follows:

CSI =
TP

TP + FP + FN

where TP are true positives (cells with both the predictions
and ground truths greater than γ), FP are false positives
(cells whose ground truths are less than γ but the model’s
predictions are greater than γ), and FN are false negatives
(cells where the model fail to predict a flooded area). In our
experiments, we consider γ = {0.001 m, 0.01 m} since we
are dealing with very shallow waters.

5.3. Baselines

We compare our model (ComGNN) to the following ap-
proaches (i) U-net (Ronneberger et al., 2015), the most
popular CNN-based method for the simulation of dynamical
systems; (ii) ConvLSTM (SHI et al., 2015), an LSTM for
weather forecasting on 2D space where the LSTM cell’s lin-
ear transformations are replaced with CNNs; (iii) MP-PDE
(Brandstetter et al., 2022), a message passing architecture
proposed as a PDE solver; (iv) FNO (Li et al., 2021), a
neural operator that performs kernel integral in the Fourier
space; and (v) MeshGraphNet (Pfaff et al., 2021) a GNN-
based model for simulating dynamical systems (see Section
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2 for discussion). We also consider simpler methods such
as a multi-layer perceptron (MLP) and, more importantly, a
method we named Rain-Incr, defined as.

hti = ht−1
i + αpti

where α ∈ R is a learnable parameter. Rain-Incr is a one-
parameter method based on the intuition that water depth
increases proportionally with the amount of rain. Simi-
lar to our model (ComGNN), all baselines are used auto-
regressively for emulating a flooding event. We do not
compare our approach against classical numerical methods
such FEM and FVM because the data is generated using
LISFLOOD-FP (Shaw et al., 2021), a hydrodynamic model
that not only solves the relevant PDEs but also accounts
for space- and time-varying rainfall and complex topogra-
phies where classical methods can break. More details about
implementation are given in Appendix A.4.

Ablated methods To assess the effectiveness of different
components of CommGNN, we consider the following ab-
lated variants of our method : (i) GAT replaces the water
dispersion message passing of CommGNN with a graph
attention network (Veličković et al., 2018); (ii) GCN is sim-
ilar to GAT but applies a graph convolution network (Kipf
& Welling, 2017); (iii) ComGNN− applies the precipitation
data directly as a node feature, instead of operating in two
stages (i.e., retention and then propagation), being similar
to the method proposed by (Bentivoglio et al., 2023) but
extended to account for rainfall data and using the D8 graph.

Training setup We conducted a thorough hyperparameter
search on both our model and baselines and selected the
configuration with the lowest RMSE score on the validation
set. The simulation lead time was set to 40, the largest we
could train on a single NVIDIA GPU Ampere A40. For
each sample in the validation set, we trained one model
instance, resulting in an ensemble of 3 models per method.
(See Appendix A.4 for more details on the methods used)

5.4. Results

Our experiments are based on flood emulations over 40
time steps (the largest that could fit in memory). Table 1
shows results aggregated over the space of a region and over
all the regions at time step t = 20 and t = 40. Our pro-
posed method (ComGNN) achieves the best performance
in all the metrics compared to the baselines, with ∼ 20%
improvement in RMSE. Surprisingly, Rain-Incr, the intu-
itive one-parameter method, is competitive with some of the
most sophisticated approaches (e.g., MP-PDE, GCN). This
demonstrates that a simple method with a strong inductive
bias can be a competitive baseline. This observation was
also instrumental in the design of ComGNN, as a two-stage

mechanism—water retention and dispersion—to better pro-
cess the external forcing element (i.e., the precipitation).

The effectiveness of our method is demonstrated by the
improvement in RMSE of 25 % over ComGNN− (vari-
ant without water retention stage), 40% over GAT, and 35%
over GCN, with the last two using different message-passing
mechanisms—degree-normalized for GCN and attention-
based for GAT—compared with our method (Eq. 8 & 10).
Table 1 shows the aggregated results over all the regions
and precipitations. In Appendix A.5 we provide a more
fine-grained analysis by breaking results from Table 1 down
into three categories: (i) unseen regions and unseen pre-
cipitations; (ii) unseen regions and seen precipitations; and
(iii) seen regions and unseen precipitations. Unseen refers
to the data not included in both the training and validation
set—notice that training data for a combination of region
and precipitation is never leaked to the testing phase.

Precipitation complexity The early stages of a flooding
event cover the time from the beginning of the precipitation
until when the water starts rising across the domain.

Predicting the early stage is paramount for fully emulating
the flooding process, especially for early evacuation warning
(Nevo et al., 2021; Piadeh et al., 2022).

In general, it is more challenging to predict the swift change
from dry to wet than the water rise. In Table 2, we reduce
the complexity of the problem by using as initial conditions
the state of the flood at time t = 10 instead of t = 0.
Here again, we can see that our method outperforms all
the baselines and ablated methods. However, it is worth
noting that from Table 1 to Table 2 there is a significant
improvement for convolution-based methods (ConvLSTM,
U-net, FNO) compared to GNN-based ones (GCN, GAT,
MeshgGraphNet, MP-PDE, ComGNN−, ComGNN). This
can be explained by the graph representation adopted in
this work, which is based on the D8 graph. This becomes
a limitation under this setting since water can propagate in
many directions and there is less dependence on the ground
elevation. Learning dynamic graph representations of a
region is a direction we want to investigate as future work.

Figure 2 provides a visualization of the absolute errors of our
method ComGNN and ConvLSTM based on the results of
Table 1. We can see that the predictions made by ComGNN
resulted in smaller absolute errors, with a predicted flood
extent close to the true flooded area. More similar visual-
izations are shown in Appendix A.8. We also provide a
visualization of the correlations between the predictions and
true values as scatter plots in Appendix A.9.

Topography complexity We investigate another dimen-
sion of the complexity in flood emulation: ground topogra-
phy. Our hypothesis is that the complexity of the topography
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Table 1: Accuracy/error of simulations over all the test regions and precipitation events combined. The simulation is run
over 40 time steps. For CSI, we only show results at t = 40 for thresholds γ = {0.001, 0.01}. The results show that our
approach achieves the best results across all evaluation metrics.

Method RMSE ↓ NSE ↑ r ↑ CSI ↑ (t = 40)
t = 20 t = 40 t = 20 t = 40 t = 20 t = 40 0.001m 0.01m

Rain-Incr .1972 .5465 .6766 .6590 .7253 .7013 .7122 .4653
ConvLSTM .1780 .4397 .7199 .7491 .7823 .8181 .7051 .4691
MLP .2119 .5457 .6445 .6597 .6807 .7156 .5306 .4404
GCN .1874 .5482 .6986 .6576 .7859 .7669 .7014 .4993
GAT .2155 .6103 .6366 .6078 .7020 .7042 .6949 .3286
U-net .2329 .4546 .6001 .7364 .7488 .8022 .6581 .4734
MeshGraphNet .1597 .4807 .7615 .7141 .8327 .7968 .6120 .5412
MP-PDE .1824 .5192 .7098 .6817 .7936 .7895 .7158 .5209
FNO .2162 .5802 .6351 .6317 .6541 .6812 .6582 .3272
ComGNN− .1571 .4830 .7674 .7121 .8412 .7782 .6180 .5637
ComGNN .1328 .3615 .8218 .8154 .8866 .8854 .7463 .6486
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(a) True flooded area at t = 40
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(b) ComGNN error at t = 40
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Figure 2: Absolute error of our proposed method ComGNN and the absolute error of ConvLSTM compared to the true
flood area at lead times 40 (row 1) for the region represented in Figure 2e a precipitation Figure 2d. The results show that
ComGNN achieves lower error than the baseline, which is consistent with the results from Table 1.
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Table 2: Similar results to those shown in Table1 but using true water depths at time t = 10 as initial conditions. We note
that at a later stage of the flood—when there is already water in the domain—the baselines perform much better, especially
convolution-based ones (ConvLSTM, U-net, FNO). Our approach (ComGNN) still outperforms the baselines in this setting.

Method RMSE ↓ NSE ↑ r ↑ CSI ↑ (t = 40)
t = 20 t = 40 t = 20 t = 40 t = 20 t = 40 0.001m 0.01m

Rain-Incr .3528 .7205 .6850 .6860 .7409 .7564 .6992 .5978
ConvLSTM .2749 .5302 .7817 .8014 .8494 .8705 .7081 .6729
MLP .3871 .7496 .6437 .6687 .6848 .7199 .5516 .5200
GCN .3461 .7725 .6933 .6552 .7943 .8022 .7086 .5954
GAT .3882 .8497 .6423 .6110 .7346 .7637 .7117 .5150
U-ne t .4000 .6431 .6285 .7328 .7462 .8166 .6192 .6096
MeshGraphNet .3048 .7181 .7444 .6875 .8370 .8142 .7335 .5874
MP-PDE .3291 .7364 .7142 .6765 .8190 .8099 .7569 .5695
FNO .3943 .7362 .6352 .6767 .6719 .7470 .6720 .5916
ComGNN− .2886 .6564 .7647 .7247 .8511 .8131 .6683 .6417
ComGNN .2481 .5235 .8148 .8054 .8896 .8930 .7859 .7580

might be one of the reasons why state-of-the-art methods
such as MeshgraphNet, MP-PDE, and FNO do not per-
form well in Table 1. The experiments considered in these
works often involve smooth simulation domains, such as 2D
planes. In contrast, domains in the real world can present
discontinuities—e.g., cliffs (see Figure 3). We, therefore,
consider a flood emulation over a flat surface with results at
time step t = 20 shown in Table 3. Compared with Table 1
and Table 2, we can see that the performance of MeshGraph-
Net, MP-PDE, and FNO improve with significant margins
of 27%, 14%, and 20% in NSE, respectively. These results
provide strong evidence that non-smooth surfaces pose a
challenge to machine learning-based simulation.

Table 3: Comparison of the methods on a flat surface. All
the methods perform well under these terrain conditions,
which are less complex than real-world terrains.

Method RMSE ↓ NSE ↑ r ↑
MeshGraphNet 0.3246 0.8697 0.9575
MP-PDE 0.3517 0.8601 0.9673
FNO 0.4619 0.8082 0.9049
ComGNN 0.2428 0.9231 0.9868

Generalization We now evaluate the generalization of the
methods to unseen data. Generalization capacity is relevant
for flood simulation, as it enables a trained model to be ap-
plied to different locations where resources are not available
for training a model from scratch. All the methods were
trained on one region and precipitation (rainfall event) and
then tested on a new region and precipitation data. Table 4
shows the results of this experiment. Based on the NSE

Figure 3: Ground elevation with irregular topography

metric at time step t = 20. The performance of GNN-based
methods (MeshGraphnet, MP-PDE, GCN, GAT, and our
method ComGNN) is not significantly affected by the new
setting, which can be attributed to the ability of GNN archi-
tectures to adapt to different inputs (including topologies
and features). On the other hand, CNN-based methods (Con-
vLSTM, U-net, FNO) likely require further data processing
tricks, such as data augmentation, to improve generalization.
Overall, we note that ComGNN still outperforms the base-
lines and ablated methods, achieving better generalization.

Conservation of Mass To assess the ability of our method
and the baselines regarding conservation of mass in Ap-
pendix A.7. We compare the total change of the amount
of water (from a time step to the next one) on the ground
truth data to the total change of the amount of water in the
domain for all models. We show that ComGNN has the
lowest deviation from the ground truth.
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Table 4: Results on the generalization to new regions and new precipitations. In general, GNN-based methods (GCN, GAT,
MeshGraphNet, MP-PDE) generalize better than convolution-based ones (ConvLSTM, U-net, FNO). Our method ComGNN
generalizes better than the baselines in terms of most of the evaluation metrics.

Method RMSE ↓ NSE ↑ r ↑ CSI ↑ (t = 40)
t = 20 t = 40 t = 20 t = 40 t = 20 t = 40 0.001m

Rain-Incr .1260 1.3642 .6742 .4547 .7601 .7277 .9553
ConvLSTM .1251 1.2351 .6772 .5043 .7623 .8038 .9584
MLP .1320 1.4831 .6533 .4137 .6876 .3018 .7612
GCN .1017 1.2582 .7606 .4950 .8358 .7598 .9531
GAT .1241 1.3730 .6807 .4515 .7416 .6447 .9535
U-net .1481 6.8758 .5995 .0318 .5984 .6363 .9091
MeshGraphNet .0931 1.1254 .7912 .5506 .8659 .7278 .9196
MP-PDE .1078 1.2924 .7385 .4816 .8328 .7912 .9525
FNO .1536 1.3376 .5821 .4645 .5432 .6324 .6784
ComGNN− .0968 1.0899 .7780 .5664 .8526 .7367 .8755
ComGNN .0809 1.0538 .8337 .5829 .8968 .7698 .9513

6. Conclusion
We have presented ComGNN, a hydraulics-informed graph
neural network for early-stage flood simulation based on
a given rainfall event. ComGNN operates in two stages:
at each time step, water from the rain is first stored in the
area of the region where it falls (water retention), and it is
then propagated to the surrounding areas (water dispersion)
using a message-passing that mimics the conservation of
momentum and mass of the shallow-water equations. A
region is represented as a directed graph by linking each
cell/node to its steepest neighbor based on the D8 flow
direction of the region’s topography.

Our experiments were based on realistic simulations of 7 his-
torical floods over 9 watershed regions. Results have shown
that ComGNN is effective at simulating flooding events in
different settings (sparse conditions, new regions, new pre-
cipitation data), outperforming existing methods in terms of
multiple evaluation metrics (RMSE, NSE, Pearson’s coef-
ficient of correlation, and CSI). We also show that current
ML methods for dynamical systems and solving PDEs tend
to perform the best for smooth surfaces such as 2D flat sur-
faces, but fail to adapt to the complexity encountered in the
topography of real-world surfaces.

In future work, we will improve the graph representation of
a region. We will investigate how to dynamically change
the graph representation of a region based on the current
water surface elevation (water depth + ground elevation)
and potential energy surface. The Shallow Water Equations,
which are the basis for our model, have multiple applications
beyond flooding, including tsunami (Geyer & Quirchmayr,
2018) and atmospheric modeling (Behrens, 1998). The
framework of flow graphs (Bressan et al., 2014; Silva et al.,

2021; Kocayusufoglu et al., 2022; Smith et al., 2022), which
encompasses several scenarios where a physical quantity is
transmitted through a graph topology (e.g., traffic, power,
water, gas), also provides many potential future generaliza-
tions for our work.

Software and Data
The codebase and datasets used in our experiments can be
accessed via the repository at https://github.com/
kanz76/ComGNN.git

Impact Statement
This paper presents a work that aims to advance the field of
Machine Learning towards effective and data-driven flood
modeling. There are many potential societal consequences
of our work, as flooding impacts many communities world-
wide. We recognize the importance of accounting for equity
considerations in evaluating ML models for flood simulation
and highlight the need for further research in this direction
before these methods are deployed in practical settings.
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A. Appendix
A.1. Derivative approximation with Taylor Series

For simplicity, let us assume a one-dimensional domain. Suppose we want to approximate the derivate of a smooth enough
function f at point xi with l points to the left, and r points to the right, forming a stencil that includes the points xj such that
i− l ≤ j ≤ i+ r. Let us further assume xj are uniformly, that is, ∆xj = j∆x. The Taylor expansion of f at xj centered at
xi is

f(xj) = f(xi) +
j∆x

1!
fx(xi) +

(j∆x)2

2!
fxx(xi) +

(j∆x)3

3!
fxxx(xi) +

(j∆x)4

4!
fxxxx(xi) + . . .

where i− l ≤ j ≤ i+ r. Multiplying each of these expansions by a constant cj and summing them up gives

i+r∑
j=i−l

cjf(xj)−

 i+r∑
j=i−l

cj

 f(xi) =

 i+r∑
j=i−l

jcj

 ∆x

1!
fx(xi) +

 i+r∑
j=i−l

j2cj

 (∆x)2

2!
fxx(xi)

+

 i+r∑
j=i−l

j3cj

 (∆x)3

3!
fxxx(xi)

+

 i+r∑
j=i−l

j4cj

 (∆x)4

4!
fxxxx(xi)

+ . . . (14)

Eq. 14 provides a way to approximate higher order derivatives at any order accuracy of f . For instance, first-order derivative
at third-order accuracy can be obtained by setting

(∑i+r
j=i−l jcj

)
to 1 and

(∑i+r
j=i−l j

2cj

)
to 0.

A.2. D8 Flow direction graph

We used the tool ArcGIS Pro 2 to generate the D8 flow direction graph of a region based on its digital elevation model
(DEM). D8 (eight-direction) indicates that the output direction of a cell is related to its 8 adjacent cells. The direction is
coded as an unsigned 8-bit integer, with 1 denoting east, 2 south-east, 4 south, 8 south-west, 16 west, 32 north-west, 64
north, and 128 north-east. We generate a directed graph by considering a cell as a node, and by adding an outgoing edge to
the adjacent cell corresponding to the direction code.

Comparison between Flow Direction Graph and Grid-based Graph Since our proposed model ComGNN is based on
the flow direction, we instead choose GCN to compare performances when a region is represented as a flow direction and
a grid-based graph (when the mesh is directly used as the graph). In Table 5, the GCN with flow direction is denoted as
plain GCN, and the one with grid-based graph GCN-grid. We can that with flow direction graph, results are relatively good
compared to the grid-based graph.

Table 5: Comparison between D8 flow direction graph and grid-based graph representation.

Method RMSE ↓ NSE ↑ r ↑ CSI ↑ (t = 40)
t = 20 t = 40 t = 20 t = 40 t = 20 t = 40 0.001m 0.01m

GCN .1874 .5482 .6986 .6576 .7859 .7669 .7014 .4993
GCN-grid .2046 .5702 .6603 .6397 .7179 .7282 .7081 .4239

2https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/
how-flow-direction-works.htm
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A.3. Dataset

Here we provide figures and tables (with descriptions) of the watershed considered in our work.

We consider 9 sub-watershed regions from Harris County in Texas, all shown together in Figure 4.

Figure 4: Color-coded watershed regions considered in our work

Figure 5 shows the ground elevations of the 9 watersheds. They are represented in a raster format where each pixel cell
represents a 30m× 30m area. The areas and dimensions (in terms of number of rows and columns) of the watersheds are
given in Table 6. Details about the precipitation data are shown in Table 7.

Table 6: Regions considered in this work with the areas and dimensions in terms of the number of rows and columns in their
raster

Region Area (km2) Rows Columns

White Oak Bayou 288 1083 749
Vince Bayou 41 280 370
Sims Bayou 242 1412 562
San Jacinto River 272 745 406
Hunting Bayou 77 514 417
Greens Bayou 549 1512 1032
Carpenters Bayou 65 331 558
Buffalo Bayou 267 1360 750
Brays Bayou 330 1358 577

A.4. Model Configurations

The learning rate was set to 1e-4 for all the models. We also noticed that all the models considered in our work performed
much better with the loss function proposed in Eq. 11, with a bump in performance of up to 30% in some cases. tanh
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Figure 5: Ground elevations of the 9 watersheds considered in our work

Table 7: Preciptiation data

Rainfall Event Date Intensity (mm/s)
mean max

Pre-Memorial Day Flood May 13, 2015 0.4 33.9
Memorial Day Flood May 25, 2015 2.6 97.7
N/A Oct 31, 2015 6.1 146.5
Tax Day Flood Apr 17, 2016 3.1 73.3
Hurricane Harvey Aug 25, 2017 5.6 122.4
N/A Jul 04, 2018 3.4 85.4
Tropical Storm Imelda Sep 17, 2019 2.7 103.3
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function showed better performance compared to the original activation functions of some of the baselines. All linear
transformations were used without the bias term, this seemed to help to deal with the sparsity of the data. The configurations
with the best performance of individual methods are given below,

• Rain-Incr: simple method we implement as hit = ht−1 + αpt; where ht is the water depth at time t, pt is the
precipitation at time t, and α is a learnable parameter. This method simply increments the current amount of water by
the rain, which also seems to perform well in an area where there is already water in the domain.

• ConvLSTM (SHI et al., 2015): re-implementation with all CNN components with 64 channels and kernel of size 3.

• MLP: implementation with 3 layers with 32 neurons in each layer.

• GAT/GCN with 2 or 3 layers performed about the same. We kept 2 layers to reduce the number of parameters, and
therefore avoid overfitting.

• U-net implementation with 2 down-samplings and 2 up-samplings all with 32 channels. The Swish activation function
implementation from MP-PDE was used here as it increased performance.

• MeshGraphNet: re-implementation following description from the original paper (Pfaff et al., 2021). One layer of the
proposed method seemed to perform the best, with tanh as the activation. For this method in particular the loss function
in Eq. 11, improved the performance by a significant margin compared to L2 loss. Note that no spatial coordinates
were used in this implementation version, given the huge sizes of the domains.

• MP-PDE (Brandstetter et al., 2022): Adapted from the original implementation. One layer performed the best, and the
prediction was conducted for one step ahead to match the configurations of other approaches used in our work. Spatial
coordinates are not used like in the original implementation either. The Swish activation function was left unchanged
since it performed better than tanh and ReLU.

• ComGNN showed better performance with a 3-layer MLP for Eq. 3, one layer of Eq. 8, and 2 layers of Eq. 10). tanh
was used as the activation function and all the layers were implemented with 32 neurons.

• FNO (Li et al., 2021). We re-used the code proposed by the author. The best configurations that worked for us were 2
layers, each with 32 neurons, and 64 frequency modes in both dimensions. We also try fine-tuning a pre-trained version
of FourCastNet (Pathak et al., 2022), FNO for weather forecasting from the same authors, but it did not perform well.

Training setup We conducted a thorough hyperparameter search on both our model and baselines and selected the
configuration with the lowest RMSE score on the validation set (See Appendix A.4 for more details). The dataset has a
total of 63 combinations of (watershed) regions and precipitation data, from which 9 were used as the training set, 3 as the
validation set, and the remaining ones as our test set. The simulation lead time was set to 40, the largest we could train on a
single NVIDIA GPU Ampere A40. For each sample in the validation set, we trained one model instance, resulting in an
ensemble of 3 models per method.

A.5. Fine-grained Results

In this section, we show the breakdown of the results from Table 1 into three categories: (i) unseen regions and unseen
precipitations (Table 8); (ii) unseen regions and seen precipitations (Table 10); and (iii) seen regions and unseen precipitations
(Table 9). Unseen refers to the data not in the training set nor in the validation set, whereas seen means data in either the
training set or validation set. We can see that our method ComGNN still performs better than the baselines.

A.6. Running Time

Machine learning models are more computationally efficient than traditional hydrodynamic models. In Table 11, we compare
the running times of machine learning models (in our work) to the hydrodynamic model LISFLOOD-FP for the White Oak
Bayou watershed, which has an area of 288 km2. We find approximately a 2,000 speedup compared to LISFLOOD-FP, and
small differences relative to other ML models.
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Table 8: Results over both unseen regions and unseen precipitations at time step 20 and 40.

Method RMSE ↓ NSE ↑ r ↑ CSI ↑ (t = 40)
t = 20 t = 40 t = 20 t = 40 t = 20 t = 40 0.001m

Rain-Incr .2202 .5303 .6564 .5454 .7410 .5467 .5159
ConvLSTM .1827 .3851 .7354 .6465 .7982 .6710 .5303
MLP .3113 .6588 .4064 .3217 .5374 .1994 .3928
GCN .1988 .5245 .7216 .6096 .8133 .6751 .5576
GAT .2263 .5749 .6789 .5680 .7428 .5772 .5661
U-net .2717 .4949 .5113 .4954 .5475 .2355 .3485
MeshGraphNet .1736 .4817 .7507 .6512 .8702 .7834 .5838
MP-PDE .1908 .4967 .7425 .6332 .8397 .7639 .6157
FNO .2882 .5172 .5417 .4872 .4963 .1823 .3261
ComGNN− .1718 .5051 .7332 .5108 .8648 .6279 .4707
ComGNN .1539 .3927 .7740 .6810 .8945 .8158 .6847

Table 9: Results over seen regions and unseen precipitations at time step 20 and 40.

Method RMSE ↓ NSE ↑ r ↑ CSI ↑ (t = 40)
t = 20 t = 40 t = 20 t = 40 t = 20 t = 40 0.001m

Rain-Incr .3437 .6968 .6071 .497 .6260 .5417 .5971
ConvLSTM .2523 .4647 .7117 .6422 .7025 .6091 .6084
MLP .4038 .7515 .4218 .3803 .4561 .3450 .4992
GCN .3300 .7331 .6177 .5347 .6994 .6222 .6043
GAT .3629 .7930 .5892 .5104 .6127 .5314 .6100
U-net .4260 .6032 .4515 .4595 .4876 .3126 .4330
MeshGraphNet .2951 .6905 .6534 .5606 .7571 .6841 .6099
MP-PDE .3152 .7051 .6288 .5511 .7191 .6578 .6272
FNO .3736 .6672 .5158 .4699 .4334 .2674 .4072
ComGNN− .2861 .6690 .6235 .4707 .7357 .6103 .5568
ComGNN .2491 .5107 .7204 .6216 .8037 .7363 .6830

Table 10: Results over unseen regions and seen precipitations at time step 20 and 40

Method RMSE ↓ NSE ↑ r ↑ CSI ↑ (t = 40)
t = 20 t = 40 t = 20 t = 40 t = 20 t = 40 0.001m

Rain-Incr .2475 .6352 .5587 .5257 .6719 .5036 .7054
ConvLSTM .2054 .5466 .6684 .6154 .7146 .6030 .7040
MLP .3428 .7187 .3641 .4477 .4850 .3180 .6339
GCN .2144 .5805 .6402 .5830 .7762 .6683 .7046
GAT .2428 .6589 .6065 .5310 .6829 .5186 .7076
U-net .3112 .6723 .4193 .5045 .5223 .3924 .5862
MeshGraphNet .1861 .4884 .6627 .6572 .8283 .7951 .7171
MP-PDE .1954 .5172 .6938 .6423 .7977 .7572 .7525
FNO .2796 .7112 .5319 .4913 .4672 .2524 .5621
ComGNN− .1854 .5041 .6479 .6115 .8350 .7301 .6759
ComGNN .1674 .4120 .6893 .7151 .8619 .8406 .7558
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Table 11: Running time (in seconds) comparison between machine learning methods and LISFLOOD

ConvLSTM ComGNN FNO GCN GAT MeshGraphNet MP-PDE U-net LISFLOOD-FP

3.2503 2.6711 2.7830 2.6590 2.6600 2.9850 3.9243 2.3931 5511

A.7. Conservation of mass

The conservation of mass can be explained by the total change in the amount of water in the domain relative to the amount
of water coming from the rain. To assess the ability of machine learning models for the conservation of mass, we take the
absolute difference (error) between the change of the amount of water from the ground truth data and the change of the
amount of water in the domain of machine learning models. Results are shown in Table 12. We can see that ComGNN has
an absolute error of at least half of other machine learning models’ errors.

Table 12: Absolute difference in total change of amount of water between ground truth data and machine learning models.

ConvLSTM GCN GAT U-net MeshGraphNet MP-PDE FNO ComGNN

103.277 164.808 214.111 189.674 125.258 149.87 225.421 42.161

A.8. Visualization of prediction error

Figure 6 shows the absolute error of our model ComGNN (Figures 6b, 6e, 6h, and 6k) and the absolute error of best-
performing baseline ConvLSTM, (Figures 6c, 6f, 6i, and 6l) at lead times 10, 20, 30, and 40. The first column (Figures
6a, 6d, 6g, 6j) represents the true flood map (water depths) states. We can see that ComGNN achieves lower errors than
ConvLSTM. We provide further visualizations of the correlation between the true and predicted water depth values of all the
methods in Appendix A.9 where we show that ComGNN’s predictions are the most aligned with the true water depths.

A.9. Correlation between predictions and true values

We provide visualizations of the correlation between true and predicted water depth values in Figures 7, 8, 9 and 10 for lead
times 10, 20, 30, and 40, respectively. The results demonstrate that ComGNN’s predictions are the most aligned with the
true water depth values.
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Figure 6: Absolute error of our proposed method (middle column) and the absolute error of ConvLSTM (right column)
compared to the true flood area (left column) at lead times 20 (row 1) and 40 (row 2). The results show that ComGNN
achieves lower error than the baseline, which is consistent with the results from Table 1.
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Figure 7: Scatter Plots at lead time 10 in log-log scale
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Figure 8: Scatter Plots at lead time 20 in log-log scale
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Figure 9: Scatter Plots at lead time 30 in log-log scale
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Figure 10: Scatter Plots at lead time 40 in log-log scale
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