

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BRIDGE: BI-LEVEL REINFORCEMENT LEARNING FOR DYNAMIC GROUP STRUCTURE IN COALITION FORMA- TION GAMES

Anonymous authors

Paper under double-blind review

ABSTRACT

Coalition Formation Games investigate how a group of autonomous agents voluntarily organize into subgroups (i.e., coalitions) to achieve common goals or maximize collective utility. This field has been a subject of long-standing research within game theory and related disciplines. The core challenge in these games lies in efficiently exploring the exponentially large space of possible coalition structures to identify the optimal partition. While existing approaches to solve coalition formation games either provide exact solutions with limited scalability or approximate solutions without quality guarantees, we propose a novel scalable and sample-efficient approximation method based on deep reinforcement learning. Specifically, we model the coalition formation game as a finite Markov Decision Process (MDP) and utilize deep neural networks to approximate the optimal value functions within both the full and abstracted coalition structure spaces, thereby indirectly deriving optimal coalition structures. Furthermore, our method can be leveraged for bi-level optimization problems where coalition values are determined by the policies of individual agents at a lower decision-making level. This way, our approach can facilitate dynamic, adaptive adjustments to coalition value assessments as they evolve over time. Empirical results demonstrate our algorithm's effectiveness in approximating optimal coalition structures in both normal-form and mixed-motive Markov games.

1 INTRODUCTION

Coalition formation games constitute a pivotal area of research within multi-agent systems, focusing on enabling groups of agents to collaborate in accomplishing specific tasks (Shehory & Kraus, 1998). These games are crucial for optimizing collaborative efforts and resource allocation among autonomous entities, exemplified by applications like cooperative social ride-sharing (Bistaffa et al., 2017), disaster response coordination (Diehl & Adams, 2023; Mouradian et al., 2017) and smart grid management (Chiş & Koivunen, 2017; Han et al., 2019). A central challenge in this game is the *Coalition Structure Generation (CSG)* problem (Sandholm et al., 1998; Rahwan, 2008; Dang & Jennings, 2004; Aziz & de Keijzer, 2011), which requires partitioning a set of agents into mutually exclusive and collectively exhaustive coalitions, referred to as a *coalition structure*, to maximize social welfare.

Determining the optimal coalition structure poses a significant computational challenge, classified as NP-complete (Sandholm et al., 1999). Existing approaches have traditionally fallen into two categories: exact and approximation methodologies. Exact methods (Yun Yeh, 1986; Rahwan et al., 2009) guarantee optimality but are computationally prohibitive beyond small scales, leading to limitations in scalability and restricting their applicability to small-scale problems (e.g., fewer than 40 agents (Rahwan et al., 2015)). This inherent constraint renders them less viable for real-world scenarios involving a substantial number of agents. Conversely, approximation methods (Di Mauro et al., 2010; Farinelli et al., 2013) offer more computationally efficient solutions but typically lack theoretical guarantees. Critically, both of these established lines of research are primarily designed for normal-form games, necessitating re-computation for each new problem instance and lacking mechanisms to address sequential decision-making in Markov games. **Importantly, while any combinatorial problem can theoretically be encoded as an MDP, such naive formulations explode**

054 exponentially and provide no exploitable structure—computing optimal policies for arbitrary MDPs
 055 is PSPACE-hard (Littman, 1996). Our contribution lies in designing a structured, RL-tractable
 056 formulation with compact representations and interpretable transitions.

057 In this work, to address the limitations of traditional CSG approaches, we formulate the CSG problem
 058 within the framework of a Markov Decision Process (MDP). To address the complex, sequential
 059 decision-making inherent in Markov games, we propose a novel bi-level reinforcement learning
 060 framework. Our framework is designed with an upper level focused on optimizing coalition formation,
 061 modeled as an episodic MDP where states represent coalition structures and actions involve merging
 062 coalitions. The reward at this upper level is defined by the change in coalition structure value,
 063 a crucial design choice that enables the generalization of learned values to unseen structures by
 064 exploiting the compositional nature of coalition values derived from their constituent sub-coalitions..
 065 Simultaneously, the lower level of our framework addresses the optimization of individual agents
 066 strategies within the coalition structure dictated by the upper level, with agents learning their best
 067 responses to the current coalition structure. This bi-level architecture facilitates a dynamic adaptation
 068 of coalition structures in response to the learning strategies of the lower-level agents, leading to
 069 potentially more robust and flexible collective behavior in dynamic multi-agent environments. The
 070 use of deep neural networks for function approximation in both levels allows our method to achieve
 071 efficient inference for approximating coalition structure values and guiding individual agent policy
 072 determination, ultimately leading to optimal coalition structures.

073 Our contributions can be summarized as follows: First, a novel MDP formulation with structure-
 074 consistent $N \times N$ state representation, $O(N)$ -dimensional action encoding via shared scorer ψ ,
 075 and difference-based rewards enabling generalization; Second, BRIDGE, a bi-level RL framework
 076 with measurable equilibrium selection $\sigma : \text{NE}(s_l) \rightarrow \Pi_f$ ensuring deterministic transitions; Third,
 077 comprehensive experiments showing generalization from 3 to 100 agents, faster inference than
 078 traditional coalition structure generation baselines at scale, and robustness to follower suboptimality.

079 2 RELATED WORK

080 The CSG problem has been addressed by a variety of algorithms, ranging from exact to approximate
 081 solutions. Exact methods, such as Integer Programming (IP) (Rahwan et al., 2009), guarantee
 082 optimality but suffer from high computational complexity. Notable examples include ODP-IP
 083 (Changder et al., 2019), which employs imperfect dynamic programming, and ODSS (Changder et al.,
 084 2020), which optimizes the search space by integrating IP with Integer Dynamic Programming (IDP)
 085 (Rahwan, 2008). Hybrid exact algorithms (Michalak et al., 2016) for complete set partitioning, have
 086 also been adapted for CSG. However, the inherent combinatorial nature of CSG limits the scalability
 087 of these exact approaches. In contrast, approximate algorithms aim to find high-quality solutions
 088 within reasonable time. Fast code based algorithm (FACS) (Taguelmimt et al., 2021) utilizes a specific
 089 search space representation and heuristics for efficient exploration. The Parallel Index-based Search
 090 Algorithm (PICS) (Taguelmimt et al., 2022) offers an anytime and more scalable solution for larger
 091 problems. Our paper also contributes an approximation method based on deep reinforcement learning
 092 to tackle large-scale CSG instances.

093 Furthermore, the principles of CSG find natural extensions to the domain of Markov games, partic-
 094 ularly in the context of multi-agent systems. Concepts such as task allocation (Zhao et al., 2019; Iqbal
 095 et al., 2022; Chen et al., 2017; Peng et al., 2017; Shu & Tian, 2018) and group division (Lhaksmana
 096 et al., 2018; Macarthur et al., 2011; Russell & Zimdars, 2003; Schneider, 1999), widely studied within
 097 multi-agent reinforcement learning (MARL), exhibit a fundamental resemblance to the challenges
 098 of forming effective coalitions in mixed-motive Markov games. This inherent similarity provides a
 099 strong motivation for adopting a bi-level reinforcement learning approach in this work to address the
 100 complexities of CSG in such settings.

101 3 PRELIMINARIES AND DEFINITIONS

102 In this section we first introduce the classic CSG setting then propose its extension to Bi-level Markov
 103 Games.

104 **Coalition Structure Generation** A CSG problem is of size n if it is defined on a set of n agents
 105 $\mathcal{N} := \{1, 2, \dots, n\}$. A coalition C is any non-empty subset of \mathcal{N} . The characteristic function
 106 $v : 2^{\mathcal{N}} \rightarrow \mathbb{R}$ assigns a real value to each coalition, indicating the value that this coalition could

108 obtain if they cooperated. A coalition structure CS is a partition of the agent set \mathcal{N} into disjoint
 109 coalitions. Formally, a coalition structure CS consists of a set of non-empty coalitions $CS =$
 110 $\{C_1, C_2, \dots, C_k\}$, where $k = |CS|$ is the cardinality of CS . CS satisfies the following properties:
 111 $\bigcup_{j=1}^k C_j = \mathcal{N}, C_i \cap C_j = \emptyset, \forall i \neq j \in \{1, 2, \dots, k\}$. The value of CS is $v(CS) := \sum_{C \in CS} v(C)$.
 112 The goal is to find the optimal CS^* that maximizes the value of coalition structure:
 113

$$CS^* := \arg \max_{CS \in \Pi(\mathcal{N})} v(CS),$$

115 where $\Pi(\mathcal{N})$ denotes the set of coalition structures on \mathcal{N} . The problem of searching for the optimal
 116 coalition structure is NP-complete.
 117

118 **Bi-level Markov Games** Following the definition of the Stackelberg Game (Simaan & Cruz Jr,
 119 1973), we define the high-level agent as the *leader agent* and the low-level agents as the *follower
 120 agents*. The goal of the *leader* agent is to obtain the optimal coalition structure. To achieve this, we
 121 define the leader’s search process as an episodic MDP $\mathcal{M}_l = \langle S_l, \mathcal{T}_l, A_l, r_l, H_l \rangle$. Here, $S_l = \Pi(\mathcal{N})$
 122 is the set of coalition structures. For each time step $t_c \in \{1, 2, \dots, H_l\}$, $s_{l,t_c} = \{C_1, \dots, C_k\} \in S_l$
 123 represents a coalition structure at time step t_c . The initial state is the singleton partition $s_{l,0} :=$
 124 $\{\{1\}, \dots, \{N\}\}$. An action a_l corresponds to choosing any two coalitions given s_l to merge, that
 125 is, $a_l \in \{(C_i, C_j) \mid 0 \leq i < j \leq |s_l|\} \cup \emptyset$ (where the action $a_l = \emptyset$ keeps the coalition
 126 structure unchanged). Next, given the current state s_{l,t_c} at time step t_c and action a_{l,t_c} , we define
 127 a deterministic transition function \mathcal{T}_l as: $\mathcal{T}(s_{l,t_c}, a_{l,t_c}) := (s_{l,t_c} \setminus a_{l,t_c}) \cup (\bigcup_{C \in a_{l,t_c}} C)$. We set
 128 the horizon $H_l = N - 1$. **The horizon $H_l = N - 1$ is a natural upper bound: each merge reduces
 129 coalition count by one, so at most $N - 1$ merges reach the grand coalition. The null action enables
 130 early termination for non-grand-coalition outputs.** The reward of leader r_l is defined as the difference
 131 between the next coalition structure value of the followers and that of the current step:
 132

$$r_l(s_l, a_l, \pi_f) := \sum_{C \in T(s_l, a_l)} J_f^C(\pi_f \mid s_l) - \sum_{C \in s_l} J_f^C(\pi_f \mid s_l), \quad (1)$$

133 where the follower agents’ policies are defined as $\pi_f : S_f \times S_l \rightarrow \Delta(A_f)$, the follower agents’
 134 coalition cumulative reward under such policies is defined as $J_f^C(\pi_f)$. Given a (stochastic) leader’s
 135 policy π_l , we define the expected reward of the leader as
 136

$$J_l(\pi_l, \pi_f) := \mathbb{E} \left[\sum_{t_c=0}^{N-1} r_{l,t_c}(s_{l,t_c}, a_{l,t_c}, \pi_f) \mid \pi_l \right].$$

137 For the low-level cooperative game, we define the cooperative game as $\mathcal{M}_f :=$
 138 $\langle N, S_f, \mathcal{T}_f, A_f, r_f, CS, \gamma_f \rangle$. The environment state is given by $s_{f,t_k} \in S_f$. At each episode
 139 k at each timestep t_k , each low-level agent $i \in N$ receives state s_{f,t_k}^i and chooses an action
 140 $a_{f,t_k}^i \sim \pi_f^i$. The instantaneous reward is defined as real-valued functions conditioned on the coalition:
 141 $r_f^C : S_f \times A_f \rightarrow \mathbb{R}$. The actions of all N agents form a joint action $a_{f,t_k} := [a_{f,t_k}^1, \dots, a_{f,t_k}^N]$. The
 142 states evolves according to the transition function $\mathcal{T}_f(s_{f,t_k+1} \mid a_{f,t_k}, s_{f,t_k})$. Each follower agent i
 143 seeks to maximize the expected discounted rewards of its coalition, defined by
 144

$$J_f^C(\pi_f) := \sum_{t_k=0}^{\infty} \mathbb{E} \left[\gamma_f^{t_k} r_{f,t_k}^C(s_{f,t_k}, a_{f,t_k}) \mid \pi_f \right],$$

145 where $\gamma_f \in (0, 1)$ is the discount factor and $r_{f,t_k}^C(s_f, a_f)$ is reward for coalition $C \in CS$. Due to the
 146 non-additive structure of the reward function (e.g., when collaboration among agents might incur
 147 some cost), the grand coalition \mathcal{N} might not be the optimal one.
 148

4 METHODOLOGY

4.1 MDP FORMULATION FOR CSG

149 The conventional CSG problem centers on the identification of a coalition structure that optimizes
 150 social welfare. This optimization objective can be reformulated from the perspective of a single
 151 leader agent.
 152

In this work, we employ a deep reinforcement learning methodology to approximate the value of the optimal coalition structure. We define the state of the leader agent, denoted as s_l , as the current coalition structure. The action space of the leader agent, a_l , consists of decisions regarding which pair of existing coalitions within the current structure should be merged. The reward function for the leader agent, r_l , is defined as the difference in the value of the coalition structure between the subsequent state, s_{l,t_c+1} , and the current state, s_{l,t_c} . To facilitate the application of deep reinforcement learning techniques, we represent each coalition structure s_l as an $N \times N$ binary adjacency matrix, flattened into a vector where $(i, j) = 1$ if agents i and j are in the same coalition. This compact representation remains equivariant under consistent permutations of agent indices. Actions are merge decisions of arbitrary two coalitions or a no-merge option, encoded as an $(N + 1)$ -dimensional two-hot vector. The encoding dimension thus scales linearly with N , avoiding quadratic growth in network outputs while uniquely representing each merge, which helps maintain scalability and stable learning. An illustration is provided in the Appendix B.1.

This matrix-based state representation facilitates generalization to coalition formation problems with larger agent populations by encoding coalition structures into a vector that systematically captures all pairwise relationships among agents. Such representation provides a consistent input format for deep learning architectures. Crucially, this input format is equivariant under consistent permutations of agent indices, and by fixing the agent ordering during training and evaluation we ensure stable performance. The framework enables the model to extract generalizable patterns regarding optimal agent grouping strategies. For instance, by acquiring these fundamental coalition formation principles from smaller problem instances, the neural architecture develops transferable knowledge that can be systematically applied to navigate the combinatorially complex space of possible coalition structures when scaling to larger agent populations (e.g., the learned $\{\{1, 2\}, \{3\}\}$ coalition structure value could be transferred to $\{\{1, 2\}, \{3\}, \{4, 5\}\}$).

4.2 BI-LEVEL MARKOV GAME FOR CSG

The traditional CSG problem focuses on identifying a coalition structure that maximizes social welfare. This concept is also highly relevant to multi-agent reinforcement learning tasks, where coalition formation facilitates efficient coordination by minimizing redundant efforts in applications such as warehouse management. However, in practical scenarios, the value of a coalition structure is often influenced by learning agents. For example, agents must adapt and optimize their policies in response to a given coalition structure, making the problem inherently dynamic. This requires the algorithm to form the coalition structure dynamically. This interdependence between coalition formation and policy optimization can be naturally framed as a bi-level optimization problem. Our framework, however, adopts the bi-level optimization concept by redefining the leader's objective specifically to maximize the value of the coalition structures. This shift in focus aligns with the hierarchical nature of the problem, where the leader prioritizes the global optimization of coalition formation, while the followers engage in local cooperative optimization to realize their individual and collective goals. In this context, the leader is responsible for dynamically determining the optimal partition of follower agents into coalitions to maximize the overall value of the coalition structure. Meanwhile, the agents $i \in N$, acting as followers, aim to optimize the value of their respective coalitions within the constraints established by the leader's partitioning.

By balancing these two levels of optimization, our framework provides an efficient framework for solving the CSG problem. The followers phase can be modeled as a **cooperative game**, wherein agents work together to maximize the value of their respective coalitions. In addition, the leader phase can be formulated as an episodic MDP, reflecting the sequential decision-making with the goal of generating coalition structures dynamically. Therefore, the optimization objectives for the leader and followers in the Bi-level MDP can be defined as:

Definition 4.1. In the bi-level optimization problem, the leader and followers aim to solve the following bi-level optimization problem respectively: Given each state s_l , define the set of Nash equilibrium for set of player $C \in s_l$:

$$\text{NE}(s_l) = \{\pi_f \mid J_f^C(\pi_f^C, \pi_f^{-C}) \geq J_f^C(\pi_f'^C, \pi_f^{-C}), \forall C \in s_l\}.$$

216 Where π_f^{-C} represents the policy of all agents not in C . Given the set of Nash equilibrium of
 217 followers' policy, define the objective of leader policy as follows:
 218

$$219 \max_{\pi_l \in \Pi_L} J_l(\pi_l, \pi_f) \quad \text{s.t. } \pi_f = \arg \max_{\pi_f \in \text{NE}(s_l)} \sum_{C \in s_l} J_f^C(\pi_f).$$

220

222 The above constraints on π_f imply that, given the current coalition structure s_l , each coalition $C \in s_l$
 223 acts as a single rational agent. We further assume that the players corresponding to coalitions in s_l
 224 will choose the optimal Nash equilibrium if multiple Nash equilibria exist. We adopt a measurable
 225 selection rule $\sigma : \text{NE}(s_l) \rightarrow \Pi_f$ that selects the equilibrium yielding the highest coalition structure
 226 reward for each s_l , which ensures a deterministic upper-level transition reward mapping. **In practice,**
 227 **MADDPG-trained followers provide approximate best responses; Figure 4 demonstrates robustness**
 228 **to moderate approximation errors.**

229 **Bi-level Optimization** In this bi-level optimization framework (Figure 1), the leader and the
 230 followers operate at the upper level and the lower level, respectively. The tree structure is adapted
 231 from (Sandholm et al., 1999). The leader aims to identify the best coalition structure by learning
 232 the optimal policy $\pi_l \in \Pi_L$, which maximizes the value of the coalition structure. The upper-level
 233 optimization incorporates the best responses of the followers, represented by their value functions
 234 $V_f^{i,*}$. The leader's objective function $J_l(\pi_l, \pi_f)$ depends on the leader's action a_l , the current coalition
 235 structure s_l , and the followers' policies π_f^i . The constraint ensures that the leader's optimization
 236 accounts for the followers' best response π_f^i , which maximize their respective objectives. At the
 237 lower level, each follower agent $i \in C, C \in CS$ independently optimizes its own value function J_f^i
 238 based on its coalition value $r_{f,t}^C$. The goal of each follower is to identify the optimal action $a_f^i \in A_f$
 239 in the sense of coalition value, given the coalition structure defined by the leader's state s_l and its
 240 current state s_f .
 241

242 Based on the definition of the reward function (Equation 1), we can further define the action value
 243 functions for the leader in the CSG process. In our framework, the leader agent orchestrates the CSG
 244 in high level, while the follower agents operate in the lower-level optimization process, aiming to
 245 maximize their coalition rewards. Let Q_f and Q_l denote the action-value functions for the followers
 246 and the leader, respectively. Then, the optimal action value function for the leader is defined as:

247 **Definition 4.2.** The optimal action value function for the leader agent is:

$$248 \quad Q_l^*(s_l, a_l, \pi_f) := r_l(s_l, a_l, \pi_f) + \max_{a'_l} Q_l^*(\mathcal{T}_l(s_l, a_l), a'_l, \pi_f).$$

250

251 Based on the definition of the action value function and Bellman operator of the leader agent, we
 252 could further define the followers' optimal action value function as follows:

253 **Definition 4.3.** The optimal action value function for the follower agents is defined as:

$$255 \quad Q_f^{i,*}(s_f, a_f, s_l) := r_f^C(s_f, a_f, s_l) + \max_{a'_f} Q_f^{i,*}(\mathcal{T}_f(s_f, a_f), a'_f, s_l).$$

256

257 Due to space constraints, we defer the detailed theoretical analysis in Appendix D, where we focus
 258 on the planning problem under the MDP formulation of CSG and establish the correctness of our
 259 RL-based approach. In particular, we establish the correctness of our RL-based approach by proving
 260 that it converges to optimal coalition structures under standard assumptions. This analysis offers a
 261 rigorous foundation for applying reinforcement learning to coalition structure generation problems.
 262

263 **Algorithm Overview** In Algorithm 1, we introduce **Bi-level Reinforcement LearnIng for Dynamic**
 264 **Group StructurE** (BRIDGE) algorithm, a hierarchical framework for optimizing both coalition
 265 structures and agent strategies in multi-agent systems. Following the meta-reinforcement learning
 266 paradigm, the algorithm's nested optimization structure consists of two levels: the upper level serves
 267 as a meta-policy that learns to propose effective coalition structures, while the lower level learns
 268 the optimal strategies within the proposed structure. By employing neural networks at the meta-
 269 level, our method efficiently adapts the coalition structure based on the performance of lower-level
 policies, enabling efficient searching across different group configurations. The ultimate objective is

Figure 1: Bi-level optimization process for the leader agent and follower agents. In the high-level optimization process, the leader agent determines the coalition structure of the follower agents and it always starts from singleton coalition ($s_{l,0} = \{\{1\}, \{2\}, \{3\}, \{4\}\}$). Then the leader will perform the action $a_{l,0}$ which leads to the next leader state. The reward is calculated by the difference between the value of the coalition structures. This value is achieved by the optimization process in the low-level, where each follower agent optimizes its coalition reward. The high-level episode lasts for at most $N - 1$ merge decisions. Because a null action is permitted at any step, the process may end with a non-grand coalition partition.

to determine the optimal coalition structure and the optimal coalition strategies for all participating agents.

The algorithmic process (Algorithm 1) is structured around two nested iterative procedures. The outer loop is indexed by iteration counter c . In each step t_c , the leader agent produces a coalition structure transition tuple $\{(s_{l,t_c}, a_{l,t_c}, s_{l,t_c+1}, r_{l,t_c})\}$ using the leader agent's Q-function Q_l . This outer loop provides the framework for optimization for the coalition structures. Within each outer loop iteration, the inner loop (indexed by episode counter t_k) focuses on optimizing follower agents behaviors within the given coalition structure. The follower agents' optimization process adapts the MADDPG framework (Lowe et al., 2017) by integrating stochastic policies in place of the original deterministic ones. During each episode, the followers' actors generate transition tuples $\{(o_{f,t_k}^C, a_{f,t_k}^C, o_{f,t_k+1}^C, r_{f,t_k}^C)\}$. These transitions are then used to update the critic Q_f^i , which evaluates the quality of actions. Subsequently, the actor is updated using the policy gradient, which is informed by the Critic's evaluations, to improve the agents' policies. Following the completion of each inner loop, the algorithm calculates the leader's Q network loss $L(\theta_l)$. The leader's Q function parameters are subsequently updated using the second learning rate ρ_l . This bi-level approach enables the joint optimization of both coalition structures and individual agent strategies. The slower outer loop focuses on coalition formation while the faster inner loop optimizes agent behaviors within established coalitions. This hierarchical learning structure allows the algorithm to effectively address the complex interdependencies between coalition formation and agent strategy optimization in multi-agent systems.

5 NUMERICAL EVALUATION

In the experimental evaluation, we aim to demonstrate three key advantages of the BRIDGE framework when applied to CSG problems:

- **Enhanced Generalizability:** We investigate the capacity of BRIDGE to effectively generalize learned strategies from problem instances with a smaller number of agents to those involving larger agent population (Table 1). We also provide a comparative analysis on our method and other baselines as well (Table 3).

324 **Algorithm 1** BRIDGE

325 **Input:** followers’ replay buffer \mathcal{B} , leader’s replay buffer \mathcal{G} , learning rate $\rho_{f,\text{actor}}$, $\rho_{f,\text{critic}}$, ρ_l ,

326 **Output:** approximate coalition structure CS^* , approximate coalition strategies for each agent

327 π_f

328 1: Initialize leader Q-network $Q_l(s_l, a_l; \theta_l)$.

329 2: Initialize follower actor $\pi_{\theta_f^i}$ and critic Q_f^i networks for each follower i with random weights.

330 3: **for** Iteration $c = 0, 1, 2, \dots, C$ **do**

331 4: **for** Coalition time step $t_c = 0, 1, 2, \dots, N - 1$ **do**

332 5: Select a random leader action a_{l,t_c} with probability ϵ , otherwise select $a_{l,t_c} = \arg \max_{a_{l,t_c}} Q_l(s_{l,t_c}, a_{l,t_c}; \theta_l)$.

333 6: Observe next state s_{l,t_c+1} and reward r_{l,t_c} .

334 7: Push transitions $\{(s_{l,t_c}, a_{l,t_c}, s_{l,t_c+1}, r_{l,t_c})\}$ into replay buffer \mathcal{G} .

335 8: **for** Episode $t_k = 0, 1, 2, \dots, K$ **do**

336 9: For agent $i = 1 : N$, play $a_{f,t_k}^{CS_c} \sim \pi_f$ based on current coalition structure CS_c .

337 10: Observe new observation $o_{f,t_k+1}^{CS_c}$, reward $r_{f,t_k}^{CS_c}$.

338 11: Push transitions $\{(o_{f,t_k}^{CS_c}, a_{f,t_k}^{CS_c}, o_{f,t_k+1}^{CS_c}, r_{f,t_k}^{CS_c})\}$ into replay buffer \mathcal{B} .

339 12: Sample a minibatch of $|\mathcal{B}_{\text{mini}}|$ transitions $\{(o_{f,b}^{CS_c}, a_{f,b}^{CS_c}, o_{f,b}^{'CS_c}, r_{f,b}^{CS_c})\}$ from \mathcal{B} .

340 13: Compute the target actions from the target policy: $a_{f,b}^{'CS_c} \sim \pi_f(\cdot | o_{f,b}^{'CS_c})$.

341 14: Compute the target Q-values: $y_b^i = r_{f,b}^C + \gamma Q_f^i(o_{f,b}^{'C}, a_{f,b}^{'C}; \theta_f^i)$, for $i \in C, C \in CS_c$.

342 15: Compute the critic loss: $L(\theta_f^i) = \frac{1}{|\mathcal{B}_{\text{mini}}|} \sum_b (y_b^i - Q_f^i(o_{f,b}^{'C}, a_{f,b}^{'C}; \theta_f^i))^2$.

343 16: Update the critic by minimizing the loss: $\theta_f^i \leftarrow \theta_f^i - \rho_{f,\text{critic}} \nabla_{\theta_f^i} L(\theta_f^i)$.

344 17: Calculate the policy gradient: $\nabla_{\theta_f^i} J(\theta_f^i) = \mathbb{E}_{a_{f,b} \sim \pi_f} \left[\nabla_{\theta_f^i} \log \pi_{\theta_f^i}(a_{f,b}^i | o_{f,b}^i) Q_f^i(o_{f,b}^C, a_{f,b}^C; \theta_f^i) \right]$.

345 18: Update the actor using the policy gradient: $\theta_f^i \leftarrow \theta_f^i + \rho_{f,\text{actor}} \nabla_{\theta_f^i} J(\theta_f^i)$.

346 19: **end for**

347 20: **end for**

348 21: Sample a minibatch of $|\mathcal{G}_{\text{mini}}|$ transitions $\{(s_{l,g}, a_{l,g}, s'_{l,g}, r_{l,g})\}$ from \mathcal{G} .

349 22: Compute the target Q-values: $y_g = r_{l,g} + \gamma \max_{a'} Q_l(s'_{l,g}, a'; \theta_l)$.

350 23: Compute the Q-network loss: $L(\theta_l) = \frac{1}{|\mathcal{G}_{\text{mini}}|} \sum_g (y_g - Q_l(s_{l,g}, a_{l,g}; \theta_l))^2$.

351 24: Update the leader Q-network parameters by minimizing the loss: $\theta_l \leftarrow \theta_l - \rho_l \nabla_{\theta_l} L(\theta_l)$.

352 25: **end for**

353

- **Efficient Inference:** We assess the computational efficiency of BRIDGE by comparing its inference time to that of established heuristic CSG methods, highlighting its potential for rapid solution generation (Table 2).
- **Performance improvement in mixed-motive Games:** We evaluate the performance of BRIDGE to address and solve CSG problems characterized by both normal-form (Figure 2 and Figure 7) and Markov games (Figure 3 and Figure 4).

354

355 We compared our algorithm with C-Link (Farinelli et al., 2013), GRASP (Di Mauro et al., 2010),

356 CSG-UCT (Wu & Ramchurn, 2020), SALDAE (Taguelmimt et al., 2024), which are currently the

357 leading approximate methods for the CSG problem. We provide further ablation studies with respect

358 to our neural network size in Appendix B.3.3.

359

360 5.1 COMMON CSG BENCHMARK PROBLEMS

361 A standard approach to evaluating CSG algorithms involves selecting representative problem instances and comparing various algorithms without providing them with prior knowledge of the types of utilities they will encounter. While our algorithm is capable of solving CSG problems across different utility types, we benchmark its performance using three commonly studied utility distributions and three harder utility distributions. The three traditional CSG problems are defined as: **Modified Uniform** (Adams et al., 2010): $v(C) \sim U(0, 10 \times |C|)$, and $v(C)$ is increased by a random number $r \sim U(0, 50)$ with probability 0.2. **Modified Normal** (Rahwan et al.,

Figure 2: Coalition structure value comparison across six different value distributions: (a) modified uniform, (b) modified normal, (c) agent-based, (d) hard modified uniform, (e) hard modified normal, and (f) combined distribution scenarios. The experiments compare four coalition formation baselines with varying numbers of agents (30-100), comparing their achieved coalition structure values with our algorithm. For each baseline, 10 independent experimental runs were conducted to compute the mean and standard deviation of the resulting coalition structure values,

2012): $v(C) \sim N(10 \times |C|, 0.1^2)$, and the coalition value $v(C)$ is increased by a random number $r \sim U(0, 50)$ with probability 0.2. **Agent-based**(Rahwan et al., 2012): $v(C) = \sum_{i \in C} p_C^i$ where $p_C^i \sim U(0, 2p_i)$ and $p_i \sim U(0, 10)$ is a random power for agent i . We also introduce three additional, more challenging utility distributions(hard modified uniform, hard modified normal, combined distribution) that incorporate increased stochasticity and implement penalties for larger coalition sizes, thereby providing a more rigorous evaluation framework that better approximates real-world coalition formation scenarios. Detailed specifications of the value functions of these scenarios are presented in Appendix B.2.

To evaluate the generalization capability of our algorithm, a primary advantage posited in this work, we present the performance results across varying agent populations instances(5 to 10) under modified normal distribution in Table 1. Following an initialization of the network architecture to accommodate the 10-agent scenario, the algorithm was initially trained on instances involving 3 agents and subsequently evaluated in environments with 5 to 10 agents. Optimal coalition structure values for these scenarios were determined via brute-force search, and the table reports the percentage of the achieved value relative to these optima. While the few-shot conditions involve continued training on the target agent instances for 100 and 200 episodes, respectively. As evidenced in Table 1, our method, demonstrates a substantial improvement in performance compared to a random policy across all evaluated agent numbers. The few-shot training paradigms yield progressively higher performance, with the 200-episode fine-tuning achieving the highest value percentages. These results underscore the robust generalizability of BRIDGE to coalition structure generation problems with a larger number of agents than those encountered during initial training. We also provide a comparative analysis on other traditional coalition structure baselines performance with the same budget in Appendix. BRIDGE trains for 300 outer-loop episodes with early stopping when reward variance stays below 1% for 20 episodes.

Figures 2a - 2f summarize our experimental results on the common benchmark problems with utilities using the distributions described above. As seen in the figures, our method outperforms other algorithms with better solution quality in all tested instances. We use the Baseline Gain metric (Baseline Gain = $v(CS) - \sum_{i \in N} v(\{i\})$) to quantify improvement over singleton coalitions in complex environments where optimal solutions are intractable. In particular, in hard modified

432
 433 Table 1: Evaluation of the generalization performance of different training paradigms on coalition
 434 structure generation tasks(modified normal distribution) across varying numbers of agents (5 to 10),
 435 with models pre-trained on instances with 3 agents.

436 Pretrain on 3 agents	5 agents	6 agents	7 agents	8 agents	9 agents	10 agents
437 Random Policy	44.42%	36.59%	36.32%	30.97%	25.05%	21.01%
438 Few-Shot (100 episode)	88.83%	66.17%	59.67%	55.62%	47.18%	41.61%
439 Few-Shot (200 episode)	97.2%	80.33%	78.68%	63.52%	58.15%	48.24%

441
 442 uniform and hard modified normal experiment, our method can find better results than any other
 443 baseline algorithms. This set of experiments demonstrates the advantage of our method compared to
 444 state-of-the-art approximate methods. In order to further study how the leader agent’s ability evolve
 445 over training, we propose visualization results in Appendix B.3 Figure 7.

447 5.2 MIXED-MOTIVE MARKOV GAMES

448
 449 In the LBF (Level-Based Formation) environment (Figure 3), tasks are rep-
 450 resented by apples with varying sizes that correspond to different resource
 451 requirements, where apples randomly
 452 spawn across the map. The leader
 453 agent must strategically select fol-
 454 lower agents to complete tasks while
 455 maximizing rewards and each fol-
 456 lower agent recruitment incurs a cost.
 457 Our empirical evaluation compares
 458 our framework against traditional CSG
 459 baselines across multiple configura-
 460 tions. Since traditional CSG
 461 baselines are not originally designed
 462 for the mixed-motive Markov games.
 463 We adopt the same training paradigm
 464 as BRIDGE by calculating the coalition
 465 structures value using low-level agents.
 466 In the Singleton baseline, each agent
 467 operates independently as a self-interested
 468 decision maker. Overall, this ablation
 469 verifies that although our theory
 470 assumes an optimal follower for clarity
 471 of exposition, the practical system is
 472 robust to moderate follower suboptimal-
 473 ity and only fails when the follower is
 474 so under-trained that it no longer provides
 475 reliable local value signals.

LBF	Singleton	C-Link	GRASP	SALDAE	CSG-UCT	BRIDGE
6a4t	28.20±1.5	27.70±1.2	9.17±0.8	25.00±1.3	31.00±1.6	34.17±1.4
6a5t	31.01±1.4	32.08±1.1	11.90±0.7	27.50±1.5	34.75±1.8	33.11±1.2
8a4t	32.95±1.7	32.58±1.4	12.44±0.9	27.43±1.3	34.76±1.5	38.57±1.6
8a5t	43.18±1.8	40.68±1.5	23.33±1.0	31.33±1.6	45.33±1.9	52.17±2.1
10a4t	70.62±2.0	66.23±1.8	29.71±1.2	41.33±1.7	73.33±2.3	77.43±2.4
10a5t	75.23±2.2	73.71±1.9	33.10±1.3	63.83±2.0	82.83±2.5	89.29±2.6

442 Figure 3: Mixed-motive Markov game (LBF) across six dif-
 443 ferent scenarios. Values are reported as mean \pm standard
 444 deviation over multiple runs. ‘a’ represents agents, ‘t’ rep-
 445 presents tasks (apples). The value is defined as the baseline
 446 gain.

447
 448 Since traditional CSG baselines are not originally designed
 449 for the mixed-motive Markov games. We adopt the same
 450 training paradigm as BRIDGE by calculating the coalition
 451 structures value using low-level agents. In
 452 the Singleton baseline, each agent operates
 453 independently as a self-interested decision
 454 maker. Overall, this ablation verifies that
 455 although our theory assumes an optimal
 456 follower for clarity of exposition, the
 457 practical system is robust to moderate
 458 follower suboptimality and only fails when
 459 the follower is so under-trained that it no
 460 longer provides reliable local value signals.

461
 462 To assess our leader agent’s robustness to fol-
 463 lower policy quality, we conducted an ablation
 464 study by pairing a leader with follower policies
 465 of varying training epochs. The findings demon-
 466 strate that the leader’s performance remains high
 467 and stable with well-converged followers (10-15
 468 epochs) and degrades accordingly with moder-
 469 ately trained ones (7 epochs), showcasing res-
 470 ilience to approximation errors. As expected,
 471 performance drops sharply when paired with
 472 poorly trained followers (5 epochs) that provide un-
 473 reliable reward signals. This study confirms that
 474 while our framework theoretically assumes follower
 475 optimality, it is practically robust to moderate
 476 errors.

477 6 CONCLUSION

478
 479 This paper introduces BRIDGE, a bi-level reinforcement learning framework that jointly optimizes
 480 coalition structures and agent policies. The framework dynamically adapts to changing conditions,
 481 and its theoretical formulation aligns the RL objective with optimal coalition formation. Empirically,
 482 BRIDGE performs well across both classic CSG problems and mixed-motive Markov games. These
 483 results highlight the promise of bi-level reinforcement learning for multi-agent optimization tasks
 484 involving hierarchical decision-making, opening new opportunities for research in coalition formation
 485 and multi-agent systems.

486 REFERENCES
487

488 Julie Adams et al. Approximate coalition structure generation. In *Proceedings of the AAAI Conference*
489 *on Artificial Intelligence*, volume 24, pp. 854–859, 2010.

490 Haris Aziz and Bart de Keijzer. Complexity of coalition structure generation. In *Adaptive Agents and*
491 *Multi-Agent Systems*, 2011. URL <https://api.semanticscholar.org/CorpusID:1543721>.

492

493 Filippo Bistaffa, Alessandro Farinelli, Georgios Chalkiadakis, and Sarvapali D Ramchurn. A
494 cooperative game-theoretic approach to the social ridesharing problem. *Artificial Intelligence*, 246:
495 86–117, 2017.

496

497 Narayan Changder, Samir Aknine, and Animesh Dutta. An imperfect algorithm for coalition structure
498 generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pp.
499 9923–9924, 2019.

500

501 Narayan Changder, Samir Aknine, Sarvapali Ramchurn, and Animesh Dutta. Odss: Efficient
502 hybridization for optimal coalition structure generation. In *Proceedings of the AAAI Conference*
503 *on Artificial Intelligence*, volume 34, pp. 7079–7086, 2020.

504

505 Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. Decentralized non-communicating
506 multiagent collision avoidance with deep reinforcement learning. In *2017 IEEE international*
507 *conference on robotics and automation (ICRA)*, pp. 285–292. IEEE, 2017.

508

509 Adriana Chiş and Visa Koivunen. Coalitional game-based cost optimization of energy portfolio
510 in smart grid communities. *IEEE Transactions on Smart Grid*, 10:1960–1970, 2017. URL
511 <https://api.semanticscholar.org/CorpusID:10421988>.

512

513 Viet Dung Dang and Nicholas R. Jennings. Generating coalition structures with finite bound from
514 the optimal guarantees. *Proceedings of the Third International Joint Conference on Autonomous*
515 *Agents and Multiagent Systems*, 2004. AAMAS 2004., pp. 564–571, 2004. URL <https://api.semanticscholar.org/CorpusID:1866361>.

516

517 Nicola Di Mauro, Teresa MA Basile, Stefano Ferilli, and Floriana Esposito. Coalition structure
518 generation with grasp. In *International Conference on Artificial Intelligence: Methodology,*
519 *Systems, and Applications*, pp. 111–120. Springer, 2010.

520

521 Grace Diehl and Julie A. Adams. The viability of domain constrained coalition formation for robotic
522 collectives. *ArXiv*, abs/2306.05590, 2023. URL <https://api.semanticscholar.org/CorpusID:259129796>.

523

524 Alessandro Farinelli, Manuele Bicego, Sarvapali Ramchurn, and Mauro Zucchini. C-link: a hierar-
525 chical clustering approach to large-scale near-optimal coalition formation. In *Proceedings of the*
526 *Twenty-Third international joint conference on Artificial Intelligence*, pp. 106–112, 2013.

527

528 Liyang Han, Thomas Morstyn, and Malcolm D. Mcculloch. Incentivizing prosumer coalitions with
529 energy management using cooperative game theory. *IEEE Transactions on Power Systems*, 34:
530 303–313, 2019. URL <https://api.semanticscholar.org/CorpusID:56597913>.

531

532 Shariq Iqbal, Robby Costales, and Fei Sha. Alma: Hierarchical learning for composite multi-agent
533 tasks. *Advances in Neural Information Processing Systems*, 35:7155–7166, 2022.

534

535 Sara Klein, Simon Weissmann, and Leif Döring. Beyond stationarity: Convergence analysis of
536 stochastic softmax policy gradient methods. In *The Twelfth International Conference on Learning*
537 *Representations*, 2024.

538

539 Kemas M Lhaksmana, Yohei Murakami, and Toru Ishida. Role-based modeling for designing agent
540 behavior in self-organizing multi-agent systems. *International Journal of Software Engineering*
541 *and Knowledge Engineering*, 28(01):79–96, 2018.

542

543 Michael Lederman Littman. *Algorithms for sequential decision-making*. Brown University, 1996.

540 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
 541 actor-critic for mixed cooperative-competitive environments. *Advances in neural information*
 542 *processing systems*, 30, 2017.

543 Kathryn Macarthur, Ruben Stranders, Sarvapali Ramchurn, and Nicholas Jennings. A distributed
 544 anytime algorithm for dynamic task allocation in multi-agent systems. In *Proceedings of the AAAI*
 545 *Conference on Artificial Intelligence*, volume 25, pp. 701–706, 2011.

546 Tomasz Michalak, Talal Rahwan, Edith Elkind, Michael Wooldridge, and Nicholas R Jennings. A
 547 hybrid exact algorithm for complete set partitioning. *Artificial Intelligence*, 230:14–50, 2016.

548 Carla Mouradian, Jagruti Sahoo, Roch H. Glitho, Monique J. Morrow, and Paul A. Polakos. A coalition
 549 formation algorithm for multi-robot task allocation in large-scale natural disasters. *2017 13th*
 550 *International Wireless Communications and Mobile Computing Conference (IWCMC)*, pp. 1909–
 551 1914, 2017. URL <https://api.semanticscholar.org/CorpusID:17253553>.

552 Peng Peng, Ying Wen, Yaodong Yang, Quan Yuan, Zhenkun Tang, Haitao Long, and Jun Wang.
 553 Multiagent bidirectionally-coordinated nets: Emergence of human-level coordination in learning
 554 to play starcraft combat games. *arXiv preprint arXiv:1703.10069*, 2017.

555 Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John
 556 Wiley & Sons, 2014.

557 T Rahwan. An improved dynamic programming algorithm for coalition structure generation. In
 558 *Proceedings of the Seventh International Conference on Autonomous Agents and Multiagent*
 559 *Systems (AAMAS)*, 2008, pp. 1417–1420, 2008.

560 Talal Rahwan, Sarvapali D Ramchurn, Nicholas R Jennings, and Andrea Giovannucci. An anytime
 561 algorithm for optimal coalition structure generation. *Journal of artificial intelligence research*, 34:
 562 521–567, 2009.

563 Talal Rahwan, Tomasz Michalak, and Nicholas Jennings. A hybrid algorithm for coalition structure
 564 generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 26, pp.
 565 1443–1449, 2012.

566 Talal Rahwan, Tomasz P Michalak, Michael Wooldridge, and Nicholas R Jennings. Coalition
 567 structure generation: A survey. *Artificial Intelligence*, 229:139–174, 2015.

568 Stuart J Russell and Andrew Zimdars. Q-decomposition for reinforcement learning agents. In
 569 *Proceedings of the 20th international conference on machine learning (ICML-03)*, pp. 656–663,
 2003.

570 Tuomas Sandholm, K. Larson, Martin Andersson, Onn Shehory, and Fernando A. Tohmé. Anytime
 571 coalition structure generation with worst case guarantees. In *AAAI/IAAI*, 1998. URL <https://api.semanticscholar.org/CorpusID:1515588>.

572 Tuomas Sandholm, Kate Larson, Martin Andersson, Onn Shehory, and Fernando Tohmé. Coalition
 573 structure generation with worst case guarantees. *Artificial intelligence*, 111(1-2):209–238, 1999.

574 J Schneider. Distributed value functions. In *Proceedings of the Sixteenth International Conference*
 575 *on Machine Learning*, 1999, 1999.

576 Onn Shehory and Sarit Kraus. Methods for task allocation via agent coalition formation. *Artificial*
 577 *intelligence*, 101(1-2):165–200, 1998.

578 Tianmin Shu and Yuandong Tian. M³ rl: Mind-aware multi-agent management reinforcement
 579 learning. *arXiv preprint arXiv:1810.00147*, 2018.

580 Marwaan Simaan and Jose B Cruz Jr. On the stackelberg strategy in nonzero-sum games. *Journal of*
 581 *Optimization Theory and Applications*, 11(5):533–555, 1973.

582 Redha Taguelmimt, Samir Aknine, Djamilia Boukredera, and Narayan Changder. Code-based
 583 algorithm for coalition structure generation. In *2021 IEEE 33rd International Conference on Tools*
 584 *with Artificial Intelligence (ICTAI)*, pp. 1075–1082. IEEE, 2021.

594 Redha Taguelmimt, Samir Aknine, Djamil Boukreder, and Narayan Changder. Pics: Parallel
 595 index-based search algorithm for coalition structure generation. In *2022 IEEE 34th International*
 596 *Conference on Tools with Artificial Intelligence (ICTAI)*, pp. 739–746. IEEE, 2022.

597 Redha Taguelmimt, Samir Aknine, Djamil Boukreder, Narayan Changder, and Tuomas Sandholm.
 598 A multiagent path search algorithm for large-scale coalition structure generation. In *Proceedings of*
 599 *the 23rd International Conference on Autonomous Agents and Multiagent Systems*, pp. 2489–2491,
 600 2024.

601 Feng Wu and Sarvapali D Ramchurn. Monte-carlo tree search for scalable coalition formation.
 602 In *Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI)*, pp.
 603 407–413, 2020.

604 D Yun Yeh. A dynamic programming approach to the complete set partitioning problem. *BIT Numerical Mathematics*, 26:467–474, 1986.

605 Xinyi Zhao, Qun Zong, Bailing Tian, Boyuan Zhang, and Ming You. Fast task allocation for
 606 heterogeneous unmanned aerial vehicles through reinforcement learning. *Aerospace Science and*
 607 *Technology*, 92:588–594, 2019.

612 A DECLARATION OF THE USE OF LARGE LANGUAGE MODELS (LLMs)

613 We utilized large language model (LLM) to assist in proofreading and improving the language,
 614 grammar, and clarity of this manuscript. The authors retain full responsibility for all intellectual
 615 content and claims presented.

618 B DETAILS ON EXPERIMENT SETTINGS

620 B.1 ILLUSTRATION FOR Q-NETWORK AND TRANSITION PROCESS

Figure 5: Illustration of the architecture of the Q-network used by the leader agent.

Figure 5 illustrates the Q-network architecture employed by the leader agent for making coalition formation decisions. The process begins with the initial coalition structure state, such as $\{\{1\}, \{2\}, \{3\}, \{4\}\}$. This state is transformed into an $N \times N$ binary adjacency matrix, where an entry (i, j) of 1 denotes that agents i and j belong to the same coalition. This matrix is then flattened into an $N^2 \times 1$ vector, creating a structured input that captures all coalition relationships while remaining equivariant to consistent permutations of agent indices. The vector feeds into the Q-network (parameterized by θ_l), which processes this information to evaluate potential merge actions. The network's output, visualized as the yellow vector, is a fixed-size $(N + 1) \times 1$ array. This vector represents latent values used to compute the Q-values for all valid actions, rather than directly representing the Q-values themselves. Let $z(s) \in \mathbb{R}^{N+1}$ denote the output of the leader Q-network at state s . For any legal merge $a = (C_i, C_j)$ with $i < j$, we compute action values by composition

$$Q_l(s, a) = \psi(z_i(s), z_j(s)), \quad Q_l(s, \emptyset) = z_{N+1}(s),$$

where ψ is a shared pairwise scorer (e.g., additive). We enforce legality via masking and operate only over the legal set in both selection and backup:

$$a^* = \arg \max_{a \in \mathcal{A}(s)} Q_l(s, a), \quad y = r + \gamma \max_{a' \in \mathcal{A}(s')} \bar{Q}_l(s', a').$$

648 The leader agent selects the pair (i, j) that maximizes this computed Q-value, after masking any
 649 illegal or unused indices. The final element of the output vector represents the Q-value for the null
 650 action (to not merge). This architecture enables the leader agent to make informed decisions through
 651 an $O(N)$ -dimensional encoding of actions, which avoids quadratic growth in network outputs even
 652 though the number of feasible merge pairs is $O(N^2)$. This design keeps the framework scalable while
 653 effectively guiding the coalition formation process toward arrangements that maximize collective
 654 utility.

Figure 6: Illustration of the architecture of the transition of the leader agent.

670 Figure 6 illustrates the transition process employed by the leader agent in dynamic coalition formation,
 671 depicting the generated process from an initial coalition structure towards the final coalition structure.
 672 Beginning with the fully singleton coalition $\{\{1\}, \{2\}, \{3\}, \{4\}\}$ at the leftmost position, the system
 673 employs dual representational components: blue adjacency matrices that encode coalition membership
 674 relationships (with 1s indicating agents in the same coalition), and corresponding yellow action vectors
 675 a_i that guide action selection. Notably, in the second state after the first merger ($\{\{1, 2\}, \{3\}, \{4\}\}$),
 676 the system contains only three coalitions, making the fourth dimension of action vector a_1 illegal and
 677 therefore unavailable for selection—this constraint guides the agent toward valid coalitional structures
 678 only. The sequence proceeds with subsequent mergers joining agent 3 with the $\{1, 2\}$ coalition to
 679 form $\{\{1, 2, 3\}, \{4\}\}$ and finally incorporating agent 4 to achieve grand coalition in $\{\{1, 2, 3, 4\}\}$,
 680 where the adjacency matrix contains all 1s indicating universal coalition membership. Throughout
 681 this evolution, the architecture demonstrates how reinforcement learning enables the leader agent to
 682 navigate complex coalition spaces within operational constraints, making sequential decisions that
 683 optimize toward the system’s collective objectives.

B.2 DETAILS ON CSG PROBLEMS

684 Below we detail the coalition value functions used in Section 5.1. Throughout, let $C \subseteq \{1, \dots, N\}$
 685 denote a coalition and $k := |C|$ its size. We write $\mathcal{U}(a, b)$ for the uniform distribution on $[a, b]$.
 686 For normal draws, we use the “scale” parameterization $\mathcal{N}(\mu, \varsigma)$ where the second argument $\varsigma > 0$
 687 denotes the scale (not variance). Global parameters are: baseline factor $\alpha > 0$, boost probability
 688 $p \in [0, 1]$, interaction factor $\gamma \geq 0$, and size penalty $\delta \geq 0$. The history factor is $h \sim \mathcal{U}(0.8, 1.2)$.
 689 For compactness, we define
 690

$$p_{\text{int}}(k) := \gamma k^2, \quad p_{\text{size}}(k) := \delta (k - 4)^2 \mathbf{1}[k > 4], \quad p_{\text{coal}}(k) \sim \mathcal{U}(0, 2k) \mathbf{1}[k > 6].$$

691 **Hard Modified Uniform Distribution.** Draw a base value $b \sim \mathcal{U}(0, \alpha k)$. With probability p , draw
 692 a boost $r_b^{\text{uni}} \sim \mathcal{U}(0, 40)$ (otherwise $r_b^{\text{uni}} = 0$). The coalition value is
 693

$$V(C) = \max\left(0, h \left[b + r_b^{\text{uni}} - p_{\text{int}}(k) - p_{\text{size}}(k) - p_{\text{coal}}(k) \right]\right).$$

694 **Hard Modified Normal Distribution.** Draw a base value $b \sim \mathcal{N}(0, 2k)$ (scale $2k$). With prob-
 695 ability p , draw a boost $r_b^{\text{norm}} \sim \mathcal{N}(0, 40)$ (scale 40; otherwise $r_b^{\text{norm}} = 0$). The coalition value
 696 is
 697

$$V(C) = \max\left(0, h \left[b + r_b^{\text{norm}} - p_{\text{int}}(k) - p_{\text{size}}(k) - p_{\text{coal}}(k) \right]\right).$$

702 **Combined Distribution.** Draw two base values $b_{\text{uni}} \sim \mathcal{U}(0, \alpha k)$ and $b_{\text{norm}} \sim \mathcal{N}(0, 2k)$. With
 703 probability p , add independent boosts $r_b^{\text{uni}} \sim \mathcal{U}(0, 40)$ and $r_b^{\text{norm}} \sim \mathcal{N}(0, 40)$ (otherwise each is 0).
 704 The coalition value is

705
$$V(C) = \max\left(0, h \left[b_{\text{uni}} + b_{\text{norm}} + r_b^{\text{uni}} + r_b^{\text{norm}} - p_{\text{int}}(k) - p_{\text{size}}(k) - p_{\text{coal}}(k) \right]\right).$$

708 **B.3 ADDITIONAL EXPERIMENT RESULTS**

710 In order to further evaluate the learning dynamics of the BRIDGE framework, we provide additional
 711 results on evaluating the optimal gain across outer iterations. The optimal gain($\max v(CS)$) is
 712 defined as the best coalition structure value algorithm could get under the present agent number.
 713 The results demonstrate the achievable optimal gain scales positively with the number of agents, as
 714 expected in a system with increasing resources. This learning process appears to converge around 300
 715 steps; the mean gain plot, box plot distributions, and heatmap all show that performance gains become
 716 marginal after this point, with the results for steps 300, 400, and 500 being nearly indistinguishable.
 717 While the average performance stabilizes, the standard deviation plots and the widening distributions
 718 in the box plot reveal that the variability of the optimal gain increases in larger systems, indicating a
 719 more complex and diverse solution landscape as the problem scales.

731 (a) mean values with std

731 (b) std values comparison

731 (c) value distribution

731 (d) value heatmap

748 Figure 7: This set of visualizations illustrates the variation in optimal gain across different training
 749 steps and agent numbers. Subfigure (a) shows the mean optimal gain with standard deviation,
 750 indicating a gradual increase in gain as the number of agents grows. Subfigure (b) compares the
 751 standard deviation across different training steps, revealing fluctuations in multi-agent systems of
 752 varying sizes. Subfigure (c) presents a box plot of optimal gain distributions, showing an increasing
 753 spread as the agent number rises. Finally, subfigure (d) provides a heatmap representation of optimal
 754 gain evolution, where darker colors indicate higher gains. Together, these visualizations highlight the
 755 impact of training steps and agent numbers on optimal gain.

756 B.3.1 INFERENCE SPEED
757

758 The efficiency of inference following the training phase is another notable advantage of our framework.
759 Table 2 presents a comparative analysis of the inference times, measured in seconds, for BRIDGE
760 and several baseline coalition structure generation algorithms under the modified normal distribution
761 setting. While our method’s inference speed is comparable to or slightly slower than other heuristic
762 methods for lower agent counts (30-50), it exhibits significantly improved performance as the
763 number of agents increases (60-100). Notably, the inference time of our method demonstrates a
764 considerably less pronounced scaling trend with the number of agents compared to the heuristic
765 baselines, particularly CSG-UCT. This characteristic suggests a greater potential for BRIDGE to be
766 effectively applied to coalition structure generation problems involving larger agent populations.
767

768 Table 2: Comparative analysis of inference times (in seconds) for coalition structure genera-
769 tion(modified normal distribution) using baseline algorithms and the proposed BRIDGE framework
770 across varying numbers of agents (30 to 100).

771 Time(s)	772 30 agents	773 40 agents	774 50 agents	775 60 agents	776 70 agents	777 80 agents	778 90 agents	779 100 agents
C-Link	3.44	4.49	7.11	10.60	14.28	18.77	24.42	30.44
GRASP	0.37	0.88	2.93	5.81	8.19	10.95	19.86	26.47
SALDAE	0.56	1.57	2.54	5.30	8.61	14.13	19.74	28.31
CSG-UCT	2.24	7.10	17.19	35.90	68.15	116.18	194.01	303.79
BRIDGE	1.09	1.98	2.83	3.62	4.90	5.67	6.84	8.72

780 B.3.2 ADDITIONAL GENERALIZATION ABILITY ANALYSIS
781

782 Traditional Coalition Structure Generation (CSG) baselines, such as C-Link, GRASP, and CSG-UCT,
783 are typically search-based or heuristic algorithms. Their methodologies are inherently designed
784 for a fixed number of agents, requiring the problem size to be predefined to construct the search
785 space. Consequently, these methods do not possess an intrinsic mechanism to be trained on a 3-agent
786 instance and then tested on a 10-agent instance; the knowledge or heuristics from one problem size is
787 not transferable to another. In contrast, our BRIDGE framework formulates the CSG problem as a
788 Markov Decision Process (MDP) and employs a neural network to approximate the optimal coalition
789 structures. By representing the coalition structure as a consistent vector capturing agent-to-agent
790 coalition membership, our model learns generalizable patterns of agent interactions that remain
791 relevant even as the number of agents changes. In the following table, we present baseline results
792 trained under the same sample budget for comparison in Appendix B.3.2.
793

794 Table 3: Performance comparison with a limited training budget (200 episodes) under modified
795 normal distribution. The values represent the percentage of the optimal value achieved by each
796 algorithm when trained from scratch on different problem sizes.

797 Algorithms	798 5 agents	799 6 agents	800 7 agents	801 8 agents	802 9 agents	803 10 agents
C-Link (200 episodes)	24.65%	22.85%	25.65%	32.41%	29.00%	34.70%
GRASP (200 episodes)	25.53%	29.55%	27.58%	29.46%	32.83%	36.72%
SALDAE (200 episodes)	25.54%	25.59%	30.84%	36.80%	36.27%	37.58%
CSG-UCT (200 episodes)	23.38%	21.13%	26.77%	38.72%	37.65%	40.81%
BRIDGE (200 episodes)	97.20%	80.33%	78.68%	63.52%	58.12%	48.24%

804 We calculated the approximate number of samples and let the baseline algorithms train from scratch
805 on 5 to 10-agent instances. The table reports the percentage of the achieved value relative to the
806 optima. All baseline algorithms perform poorly under this limited budget. Their performance
807 generally ranges from only 20% to 41% of the optimal value. For instance, in the 10-agent scenario,
808 the best-performing baseline, CSG-UCT, only reached 40.81% of the optimum. This result is intended
809 to demonstrate that, unlike the BRIDGE algorithm which can leverage pre-training to adapt quickly,
810 these traditional algorithms require a much larger computational budget to find high-quality solutions
811 when starting from scratch.

810 B.3.3 ABLATION STUDY ON NETWORK STRUCTURE
811812 We provide an ablation study on the effect that the neural network size might have on the performance.
813814 Table 4: Ablation study on neural network architecture under modified normal distribution experiment.
815 Performance is measured across different numbers of agents. Values are reported as mean \pm standard
816 deviation.
817

Network Structure	30 agents	40 agents	50 agents	60 agents	70 agents	80 agents	90 agents	100 agents
3 layers(64,64)	445.28 \pm 68.24	577.71 \pm 75.76	753.02 \pm 83.61	889.18 \pm 94.65	1031.99 \pm 93.64	1207.49 \pm 105.39	1316.24 \pm 95.79	1501.42 \pm 131.94
3 layers(128,128)	449.39 \pm 64.82	592.21 \pm 72.60	746.58 \pm 85.79	893.14 \pm 86.30	1046.34 \pm 101.86	1204.90 \pm 89.69	1458.38 \pm 105.93	1596.20 \pm 115.41
4 layers(128,128)	452.32 \pm 69.19	614.04 \pm 72.57	742.28 \pm 87.43	901.25 \pm 89.95	1048.36 \pm 84.43	1204.25 \pm 98.57	1358.12 \pm 100.44	1467.32 \pm 110.82
5 layers(128,128)	441.14 \pm 60.45	603.98 \pm 73.76	734.72 \pm 83.09	903.46 \pm 100.30	1043.60 \pm 104.09	1288.92 \pm 104.45	1434.10 \pm 105.52	1492.39 \pm 108.97

818 The results indicate that increasing the network width from 64 to 128 neurons (3 layers) provides a
819 modest but consistent performance improvement, particularly in scenarios with more agents. However,
820 further increasing the network’s depth to 4 or 5 layers does not yield additional significant gains and
821 can lead to less stable performance across different agent counts. This suggests that the 3 layers
822 (128,128) architecture provides sufficient representational capacity for this problem, striking an
823 effective balance between model expressiveness and the risk of overfitting or increased optimization
824 difficulty.
825826 We also provide an ablation study on the effect of the neural network size that might have on the
827 inference speed(Appendix B.3 Table 5). We could see that the inference speed does not scale up
828 appreciably with respect to the parameters, showing our method is efficient compared to other CSG
829 baselines.
830

Time(s)	30 agents	40 agents	50 agents	60 agents	70 agents	80 agents	90 agents	100 agents
3 layers(64,64)	1.09	1.92	2.78	3.55	4.53	5.54	6.84	8.39
3 layers(128,128)	1.09	1.98	2.83	3.62	4.71	5.67	7.02	8.72
4 layers(128,128)	1.10	1.98	2.85	3.63	4.90	5.82	7.10	9.14
5 layers(128,128)	1.12	2.01	2.85	3.67	5.12	6.02	7.12	9.86

831 Table 5: Comparative analysis of inference times (in seconds) for coalition structure genera-
832 tion(modified normal distribution) using different network size of BRIDGE’s leader agent across
833 varying numbers of agents (30 to 100).
834835 B.4 HYPERPARAMETERS SETTING AND COMPUTATIONAL RESOURCES
836837 We use an actor–critic algorithm for follower policies. Followers within the same coalition share
838 critic parameters.
839840 The hyper-parameters for Actor-Critic training are as follows.
841842

- 843 • Actor Learning Rate is 1×10^{-4}
- 844 • Critic Learning Rate is 1×10^{-4}
- 845 • Target Network Update Rate is 0.005
- 846 • Discount Factor (γ) is 0.99
- 847 • Replay Buffer Size (\mathcal{B}) is 1×10^6
- 848 • Minibatch Size is 256

849 For leader agent, we adopt the DQN algorithm to approximate the coalition structures’ value.
850851 The hyper-parameters for DQN training are as follows.
852853

- 854 • The learning rate is 1×10^{-3} .
- 855 • The replay buffer size is 10000.
- 856 • The minibatch size is 128.
- 857 • The target Network update frequency is 100 steps.

864 • The exploration Strategy is ϵ -greedy:
 865 – Initial ϵ : 1.0,
 866 – Final ϵ : 0.01,
 867 – Decay Steps: 10000 time steps.
 868
 869 • The loss function is mean Squared Error (MSE).
 870 • The gradient clipping is 40.
 871 • The optimizer is Adam.
 872

873 All experiments were conducted on an HPC system equipped with 128 Intel Xeon processors operating
 874 at a clock speed of 2.2 GHz and 40 gigabytes of memory.
 875

876 B.5 POLICY AND VALUE NETWORK REUSE

878 In our implementation, the follower’s policy network (the actor) is reinitialized at the start of each
 879 outer-loop optimization, whereas the follower’s value network (the Q-network/critic) is persistent
 880 and its parameters are reused across coalition structures.
 881

882 **Why We Do Not Reuse the Policy Network.** This design choice is made to avoid policy inertia.
 883 When the coalition structure changes fundamentally (e.g., an agent transitions from a large cooperative
 884 group to a solo role), the previously learned policy may be entirely suboptimal or even harmful in
 885 the new context. Re-initializing the policy network ensures that the agent can freely explore without
 886 being constrained by outdated behaviors, which allows it to more effectively converge to the true
 887 optimal behavior under the new structure.
 888

889 **Why We Reuse the Critic-Network.** By contrast, the Critic-network captures more generalizable
 890 value information across diverse coalition configurations. This knowledge is transferable: when a
 891 newly initialized policy network begins to explore, the persistent Critic-network provides immediate
 892 and informed evaluation of actions. Such guidance accelerates policy learning and stabilizes training
 893 in the presence of dynamic coalition changes.
 894

895 Table 6: Value/Policy reuse ablation (LBF). V=Value network, π =Policy network.

Configuration	6a4t	6a5t	8a4t	8a5t	10a4t	10a5t
Reuse V / Init π	34.2±1.4	33.1±1.2	38.6±1.6	52.2±2.1	77.4±2.4	89.3±2.6
Reuse V / Reuse π	30.2±1.3	29.5±1.1	35.3±1.6	47.4±1.9	69.8±2.3	81.9±2.7
Init V / Init π	17.2±1.6	18.8±1.6	26.3±1.8	35.3±2.1	55.5±2.2	60.9±2.5
Init V / Reuse π	28.6±1.5	30.9±1.2	33.1±1.7	45.5±2.0	65.7±2.4	78.6±2.6

901 C HORIZON ABLATION STUDIES

902 Table 7 reports performance across horizons $H \in \{N/2, N - 10, N - 5, N - 1\}$ on the modified
 903 normal distribution. Shortened horizons ($N/2$) underperform at larger scales due to insufficient search
 904 depth. The full horizon $N - 1$ yields the strongest values; intermediate horizons offer compute-quality
 905 tradeoffs.
 906

907 Table 7: Horizon sensitivity (Modified Normal). Format: Coalition Value \pm std.
 908

H	30 agents	50 agents	70 agents	100 agents
$N/2$	445.3±65.7	693.9±79.1	956.1±106.5	1187.4±117.5
$N-10$	447.9±65.8	726.3±80.2	994.6±83.1	1344.7±105.7
$N-5$	447.9±62.4	743.9±91.6	1025.6±104.8	1481.9±110.3
$N-1$	449.4±64.8	746.6±85.8	1046.3±101.9	1596.2±115.4

918 **D DETAILS ON THE PROOFS**
919

920 In this section, we detail the rigorous convergence analysis of the proposed bi-level optimization
921 framework for coalition formation. First, we establish a critical correspondence between the
922 reinforcement learning objective function and the target objective of finding the optimal coalition
923 structure. Then, we move to provide definitions and proofs for the monotonicity and additive
924 homogeneity of the leader agent’s Bellman operator, and a central theorem providing the dynamic
925 programming equations for the finite-horizon Bi-level MDP. This theorem guarantees the existence
926 and uniqueness of optimal policies for both leader and follower agents, where the follower’s policy
927 maximizes collective value within Nash equilibrium constraints and the leader’s policy optimizes
928 based on a modified Bellman equation incorporating follower responses. Finally, we leverage existing
929 results to assert the global convergence of policy gradient descent for this framework, demonstrating
930 that the problem can be simplified to a single MDP under optimal Nash equilibrium selection in the
931 inner loop.

932 **D.1 OBJECTIVE CONSISTENCY**
933

934 Our theoretical investigation examines the relationship between the optimized objective function and
935 the target objective function, where the latter is defined as finding the optimal coalition structure.
936 Another key focus of our analysis is understanding the optimal form of the leader agent’s policy and
937 the follower agents’ policies under the Bi-level MDP. A critical aspect of our analysis is the formal
938 development of a correspondence between the objective function of our reinforcement learning and
939 its target counterpart. This correspondence serves as the basis for deriving rigorous optimal form of
940 the leader and follower agents’ policies.

941 **Lemma D.1.** *The objective function in Algorithm 1 is equal to the target objective function.*

942

$$\max_{\pi_l, \pi_f} J_l(\pi_l, \pi_f) = \max_{CS \in \Pi(\mathcal{N})} \sum_{C \in CS} V_f^{C,*}(s_{f,0}).$$

943

944 *Proof.* Considering the LHS. Fixing π_f , we have that

945

$$\begin{aligned} 946 \sum_{t_c=0}^{N-1} r_l(s_l, a_l) &= \underbrace{\sum_{t_c=0}^{N-1} \sum_{C \in \mathcal{T}(s_l, t_c, a_l, t_c)} J_f^C(\pi_f) - \sum_{C \in s_l, t_c} J_f^C(\pi_f)}_{\text{telescoping sum}} \\ 947 &= \sum_{C \in s_l, N-1} J_f^C(\pi_f). \end{aligned} \tag{2}$$

948

949 Note that, given CS , $\sum_{C \in CS} V_f^{C,*}(s_{f,0}) = \sum_{C \in CS} \max_{\pi_f} J_f(\pi_f)$. Moreover, thanks to
950 construction of a_l , for any given $CS \in \Pi(\mathcal{N})$, one can construct a policy π_l that terminates at CS .
951 Therefore,

952

$$\max_{\pi_l, \pi_f} J_l(\pi_l, \pi_f) = \max_{CS \in \Pi(\mathcal{N})} \sum_{C \in CS} V_f^{C,*}(s_{f,0}). \tag{3}$$

953

954 \square

955 A cornerstone of our theoretical analysis is the establishment of a precise mathematical correspon-
956 dence between our reinforcement learning objective function and its target counterpart in coalition
957 formation. This lemma establishes the equivalence between two critical quantities: the expected sum
958 of rewards J_l for leader policy π_l and follower agents’ policies π_f across N steps under different
959 system states σ (left-hand side), and the maximum coalition structure value V_f^{CS} of final actions
960 a_f given the selected configurations C (right-hand side). We establish a mapping from policies
961 to coalition structures that yields a telescoping identity (Lemma D.1), aligning the RL objective
962 with the target coalition value and enabling standard convergence arguments under our assumptions.
963 Through this mapping, we demonstrate that the value function $V_{RL}(\pi_l, \pi_f)$ converges to the optimal
964 coalition value $V_{\text{target}}(CS^*)$. This correspondence enables us to establish a practical form of the
965 optimal policies of the leader agent and follower agents. Before moving to the proof of the form of
966

972 optimal policies for leader agent and follower agents, first we define the bellman operator of value
 973 function of the leader agent to be:

974 **Definition D.2.** The leader agent's Bellman operator of value function is:

$$976 \quad (\mathcal{B}_l V_l)(s_l, \pi_f) := \max_{a_l} \left[r_l(s_{l,t_c}, a_{l,t_c}, \pi_f) + \mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_l(s_{l,t_{c+1}}, \pi_f) \right].$$

978 D.2 CONVERGENCE ANALYSIS

980 Based on the definition of the value function of the leader agent. We could further establish the proof
 981 for leader agent's monotonicity and additively homogeneity.

982 **Lemma D.3.** (Monotonicity for Leader Agent) For $V_l^1 \leq V_l^2$, $\mathcal{B}_l V_l^1 \leq \mathcal{B}_l V_l^2$

984 *Proof.* Based on the previous definition of Bellman operator of value function(Equation 4). We have:

$$986 \quad V_l^1 \leq V_l^2$$

$$987 \quad \mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_l^1(s_{l,t_{c+1}}, \pi_f) \leq \mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_l^2(s_{l,t_{c+1}}, \pi_f) \quad (4)$$

$$988 \quad \max_{a_l} [\mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_l^1(s_{l,t_{c+1}}, \pi_f)] \leq \max_{a_l} [\mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_l^2(s_{l,t_{c+1}}, \pi_f)].$$

990 The reward $\max_{a_l} r(s_{l,t_c}, a_{l,t_c}, \pi_f)$ is identical for $\mathcal{B}_l V_l^1$ and $\mathcal{B}_l V_l^2$. Therefore, we have:

$$992 \quad \max_{a_l} r(s_{l,t_c}, a_{l,t_c}, \pi_f) + \max_{a_l} [\mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_l^1(s_{l,t_{c+1}}, \pi_f)]$$

$$993 \quad \leq \max_{a_l} r(s_{l,t_c}, a_{l,t_c}, \pi_f) + \max_{a_l} [\mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_l^2(s_{l,t_{c+1}}, \pi_f)]$$

$$994 \quad \max_{a_l} [r(s_{l,t_c}, a_{l,t_c}, \pi_f) + \mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_l^1(s_{l,t_{c+1}}, \pi_f)] \quad (5)$$

$$995 \quad \leq \max_{a_l} [r(s_{l,t_c}, a_{l,t_c}, \pi_f) + \mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_l^2(s_{l,t_{c+1}}, \pi_f)]$$

$$996 \quad \mathcal{B}_l V_l^1 \leq \mathcal{B}_l V_l^2.$$

1000 This concludes the proof. \square

1001 As for the additive homogeneity for leader agent, we have:

1002 **Lemma D.4.** (Additive homogeneity for Leader Agent) For any constant c , the Bellman operator
 1003 satisfies:

$$1004 \quad \mathcal{B}_l(V_l + c) = \mathcal{B}_l(V_l) + c.$$

1007 *Proof.* Based on Equation 4, the Bellman operator of leader agent is defined as:

$$1009 \quad (\mathcal{B}_l V_l)(s_l, \pi_f) := \max_{a_l} \left[r(s_{l,t_c}, a_{l,t_c}, \pi_f) + \sum_{s_{l,t_{c+1}}} \mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_l(s_{l,t_{c+1}}, \pi_f) \right]. \quad (6)$$

1012 In order to prove the additively homogeneous property of our Bellman operator, we could further
 1013 denote our Bellman operator as:

$$1015 \quad (\mathcal{B}_l(V_l + c))(s_l, \pi_f)$$

$$1016 \quad = \max_{a_l} \left[r(s_{l,t_c}, a_{l,t_c}, \pi_f) + \sum_{s_{l,t_{c+1}}} \mathcal{T}_l(s_{l,t_c}, a_{l,t_c})(V_l(s_{l,t_{c+1}}, \pi_f) + c) \right]$$

$$1017 \quad = \max_{a_l} \left[r(s_{l,t_c}, a_{l,t_c}, \pi_f) + \sum_{s_{l,t_{c+1}}} \mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_l(s_{l,t_{c+1}}, \pi_f) + c \cdot \sum_{s_{l,t_{c+1}}} \mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) \right] \quad (7)$$

$$1018 \quad = \max_{a_l} \left[r(s_{l,t_c}, a_{l,t_c}, \pi_f) + \sum_{s_{l,t_{c+1}}} \mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_l(s_{l,t_{c+1}}, \pi_f) \right] + c$$

$$1019 \quad = (\mathcal{B}_l V_l)(s_l, \pi_f) + c,$$

1026 which concludes the proof. □
 1027

1028 Finally, based on the previous proof, we could move to the proof of the optimal form of the leader
 1029 agent and follower agents when the algorithm converge.
 1030

1031 **Theorem D.5** (Dynamic Programming Equation for Markov Decision Process with Finite Horizon).
 1032 *Given a leader state s_l , define the optimal follower policy π_f as:*

$$1033 \quad \pi_f^* = \arg \max_{\pi_f \in \text{NE}(s_l)} \sum_{C \in s_l} J_f^C(\pi_f).$$

1036 Let V_f^* be the followers' value function corresponding to optimal policy π_f^* . Let V_l^* be the optimal
 1037 value function of the leader agent's Markov decision problem, for all time-step $t_c \in \{0, \dots, N-1\}$:

$$1038 \quad V_{l,t_c}^*(s_l, \pi_f^*) = \max_{a_l} [r_{l,t_c}(s_l, a_l, \pi_f^*) + V_{l,t_c+1}^*(\mathcal{T}_l(s_l, a_l), \pi_f^*)],$$

1041 where the maximum is taken over all strategies starting at time i . The optimal leader policy π_l^* is
 1042 defined as:

$$1044 \quad \pi_l^*(s_l) = \arg \max_{a_l} [r_l^{t_c}(s_l, a_l, \pi_f^*) + V_l^*(\mathcal{T}_l(s_l^{t_c}, a_l^{t_c}), \pi_f^*)].$$

1046 *Proof.* We denote $(w_{t_c})_{0 \leq t_c \leq N}$ as a sequence with final condition $w^N = \varphi$. Based on Definition 4:
 1047 $w_{t_c} = \mathcal{B}_{l,t_c}(w_{t_c+1})$. We need to show that $w_{t_c} = V_{l,t_c}$ for all $t_c \in \{0, \dots, N\}$ and that $w = V_l$.
 1048

1049 **1. Proof of $w_{t_c} \geq V_{l,t_c}$ and $w \geq V_l$.** For V_{l,t_c} , we use policy starting at time t_c , the inequality
 1050 $w_{t_c} \geq V_{l,t_c}$ is of same type as $w_{t_c} \geq V_{l,t_c}$. Therefore, we only show $w_0 \geq V_l^0$.
 1051

1052 Let (s_{l,t_c}, a_{l,t_c}) be the process associated to the strategy π_l , and let $\tau_{t_c} = (s_{l,0}, a_{l,0}, s_{l,1}, a_{l,1}, \dots, s_{l,t_c})$, for all $t_c \geq 0$, be the history trajectory. For all $0 \leq t_c \leq N$,
 1053 and all histories τ We could denote the value function as:
 1054

$$1056 \quad V_{l,t_c}(\tau_{t_c}) = \mathbb{E}_{a_{l,t_c} \sim \pi_l} \left[\left(\sum_{t=t_c}^{N-1} r_l(s_{l,t_c}, a_{l,t_c}) \right) + \varphi(s_{l,T_c}) \mid \tau_{t_c} \right], \quad (8)$$

1059 where $V_{l,t_c}(\tau_{t_c})$ represents the expected total value starting from time step t_c and conditioning on
 1060 history τ_{t_c} . Therefore, V_{l,t_c} satisfies the Kolmogorov equation for an additive functional:
 1061

$$1062 \quad V_{l,t_c}(\tau_{t_c}) = \mathbb{E}_{a_{l,t_c} \sim \pi_l} [r_l(s_{l,t_c}, a_{l,t_c}) + V_{l,t_c+1}(\tau_{t_c}, s_{l,t_c+1}, \pi_f^* \mid \tau_{t_c})]. \quad (9)$$

1063 We could further rewrite the sequence $w_{t_c}(s_{l,t_c})$ as:

$$1065 \quad w_{t_c}(s_{l,t_c}) = \max_{a_l \sim \pi_l} [r_l(s_{l,t_c}, a_{l,t_c}) + \mathbb{E}[w_{t_c+1}(s_{l,t_c+1})]]. \quad (10)$$

1067 Let's show $w_{t_c}(s_{l,t_c}) \geq V_{l,t_c}(\tau_{t_c})$ by backward induction on t_c . This inequality is true for $t_c = N$,
 1068 since $V_{l,T_c}(\tau_{T_c}) = \varphi(s_{l,T_c}) = w_{T_c}(s_{l,T_c})$. If the inequality is true for $t_c + 1$, then from the upper
 1069 Equation 9 and Equation 10 , we deduce:

$$1072 \quad \begin{aligned} V_{l,t_c}(\tau_{t_c}) &\leq \mathbb{E}[r_l(s_{l,t_c}, a_{l,t_c}) + w_{t_c+1}(s_{l,t_c+1}) \mid \tau_{t_c}] \\ &= \mathbb{E}[r_l(s_{l,t_c}, a_{l,t_c}) + \mathbb{E}[w_{t_c+1}(s_{l,t_c+1}) \mid s_{l,t_c}, a_{l,t_c}] \mid \tau_{t_c}] \\ &= \sum_{a_{l,t_c} \sim \pi_{l,t_c}} \pi_{l,t_c}(a_{l,t_c} \mid \tau_{t_c}) \{r_l(s_{l,t_c}, a_{l,t_c}) + \mathbb{E}[w_{t_c+1}(s_{l,t_c+1}) \mid s_{l,t_c}, a_{l,t_c}]\}. \end{aligned} \quad (11)$$

1077 Based on Equation 10, we could deduce $V_{l,t_c}(\tau_{t_c}) \leq \mathbb{E}[w_{t_c}(s_{l,t_c}) \mid \tau_{t_c} = \tau_{t_c}] = w_{t_c}(s_{l,t_c})$, which
 1078 proves the induction. Since $V_{l,0}(s_{l,0}) = r_l(s_{l,0}, a_{l,0}) = J_{l,0}(\pi_l, \pi_f)$, taking the maximum over all
 1079 strategies, we deduce that $V_{l,0}(s_{l,0}) \leq w_{l,0}(s_{l,0})$. Since $J_l(\pi_l, \pi_f) = \mathbb{E}[\mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) V_{l,0}(s_{l,0})] \leq$
 $\mathbb{E}[\mathcal{T}_l(s_{l,t_c}, a_{l,t_c}) w_{l,0}(s_{l,0})]$, taking again the maximum over all strategies, we deduce $V_l \leq w$.

1080 **2. Proof of $w_{t_c} \geq V_{l,t_c}$ and $w \geq V_l$ when the maximum in D.5 is attained.** The bellman operator
 1081 related to policy is defined as $\mathcal{B}_{l,t_c}^{\pi_l}$. Assume the maximum in
 1082

$$w_{t_c} = \max_{\pi_l \in \Pi_l} \mathcal{B}_{l,t_c}^{\pi_l}(w_{t_c+1}), \quad (12)$$

1083 is attained for some policy $\pi_l \in \Pi_l$. Denote $\pi_l = (\pi_{l,t_c})_{t_c \geq 0}$. Then,
 1084

$$w_{t_c} = \mathcal{B}_{l,t_c}^{\pi_l}(w_{t_c+1}), \quad i = 0, \dots, N, \quad (13)$$

1085 which means that $(w_{t_c})_{t_c \geq 0}$ satisfies the same Kolmogorov equation (Puterman, 2014) as J_{l,t_c}
 1086 with same final condition $w_{T_c} = \varphi = J_{l,T_c}^{\pi_l}$. Hence, $w_{t_c} = J_{l,t_c}^{\pi_l}$, for all $t_c \geq 0$. So $w_{t_c} \leq$
 1087 V_{l,t_c} , where the value V_{l,t_c} is obtained as the maximum over any set of strategies. Similarly, $w =$
 1088 $\mathbb{E}[T_l(s_{l,t_c}, a_{l,t_c})w_{l,0}(s_{l,0})] \leq J_{l,T_c}^{\pi_l} \leq V_{l,t_c}$.
 1089

1090 **3. Proof of $w_{t_c} \leq V_{l,t_c}$ and $w \leq V_l$ in general.** Assume now the maximum in 12 is not attained.
 1091 We only assume that the r_l are bounded from above, for all $t_c \leq N$. This condition ensures that the
 1092 operators \mathcal{B}_{l,t_c} are well defined as operators from \mathbb{R} to itself. For all $\epsilon > 0$, $t_c \leq N$ and $V_l \in \mathbb{R}$, there
 1093 exists $\pi_l \in \Pi_l$ such that
 1094

$$\left[\mathcal{B}_{l,t_c}^{\pi_l}(V_l) \right] (s_l) \geq [\mathcal{B}_{l,t_c}(V_l)] (s_l) - \epsilon, \quad \forall s_l \in S_l. \quad (14)$$

1095 The inequality could be extended to all possible states:
 1096

$$\mathcal{B}_{l,t_c}^{\pi_l}(V_l) \geq \mathcal{B}_{l,t_c}(V_l) - \epsilon \mathbb{1}. \quad (15)$$

1097 Let $\pi_{l,t_c} \in \Pi_{l,t_c}$ such that
 1098

$$\mathcal{B}_{l,t_c}^{\pi_{l,t_c}}(w_{t_c+1}) \geq \mathcal{B}_{l,t_c}(w_{t_c+1}) - \epsilon \mathbb{1}. \quad (16)$$

1099 Therefore, we could have
 1100

$$\mathcal{B}_{l,t_c}^{\pi_l}(w_{t_c+1}) \geq w_{t_c} - \epsilon \mathbb{1}. \quad (17)$$

1101 Denote $z_{t_c} = w_{t_c} + (t_c - T_c)\epsilon \mathbb{1}$. We have $z_N = w_N = \varphi$ and
 1102

$$\mathcal{B}_{l,t_c}^{\pi_l}(z_{t_c+1}) = \mathcal{B}_{l,t_c}^{\pi_l}(w_{t_c+1}) + (t_c + 1 - T_c)\epsilon \mathbb{1} \geq w_{t_c} + (t_c - T_c)\epsilon \mathbb{1} = z^i. \quad (18)$$

1103 Based on Lemma D.4, \mathcal{B}_{l,π^i}^i is additively homogeneous. Then, we shall show the inequality $z_{t_c} \leq$
 1104 $J_{l,t_c}^{\pi_l}$ by backward induction on t_c . Since $z_{T_c} = \varphi = J_{l,T_c}^{\pi_l}$, the inequality holds for $t_c = T_c$. If it
 1105 holds for $t_c + 1$, then
 1106

$$z_{t_c} \leq \mathcal{B}_{l,t_c}^{\pi_l}(z_{t_c+1}) \leq \mathcal{B}_{l,t_c}^{\pi_l}(J_{l,t_c+1}^{\pi_l}) = J_{l,t_c}^{\pi_l} \leq V_{l,t_c}, \quad (19)$$

1107 where the first inequality follows from Equation 18, the second one follows Lemma D.3. This shows
 1108 $z^0 \leq J_{N,\pi}^0 \leq V^0$. Therefore, we could deduce:
 1109

$$w_{t_c} = z_{t_c} + (T_c - t_c)\epsilon \mathbb{1} \leq V_{l,t_c} + (T_c - t_c)\epsilon \mathbb{1}, \quad (20)$$

1110 for all $t_c \in \{1, \dots, N\}$. Since we have shown this inequality for all $\epsilon > 0$, we deduce that $w_{t_c} \leq V_{l,t_c}$
 1111 for all $t_c \in \{1, \dots, N\}$. Similarly $w = \mathcal{T}_{t_c} w_0 = T_{t_c} z_0 + T_c \epsilon \leq V_{l,t_c} + T_c \epsilon$, and since this holds for
 1112 all $\epsilon > 0$, we get $w \leq V_l$, which concludes the proof.
 1113 \square

1114 This theorem establishes three fundamental results for hierarchical decision-making in coalition
 1115 formation. First, it guarantees the existence and uniqueness of optimal policies for both leader and
 1116 follower agents through a nested optimization structure. The follower's optimal policy π_f^* maximizes
 1117 the collective value across all coalitions while maintaining Nash equilibrium constraints, ensuring
 1118 strategic stability within each coalition. Second, the leader's value function follows a modified
 1119 Bellman equation that incorporates the followers' optimal responses, creating a dynamic group
 1120 structure that accounts for the hierarchical nature of decision-making. The leader's rewards and
 1121 state transitions are explicitly conditioned on the followers' optimal policy, capturing the bi-level
 1122 interaction between agents. Third, the optimal leader policy emerges from maximizing the sum of
 1123 immediate rewards and future values, where future values reflect both the direct consequences of
 1124 leader actions and the induced changes in follower behavior through the state transition function
 1125 \mathcal{T}_l . At last, we can apply the global convergence result of policy gradient descent for finite-horizon
 1126 MDPs (Klein et al., 2024) as follows:
 1127

1134
 1135 **Theorem D.6** ((Klein et al., 2024)'s Theorem 3.5). *Let the number of iterations $\text{ep} =$*
 1136 *$O\left(\left(\frac{N^5|S_l||A_l|}{\epsilon\delta}\right)^2\right)$, and let the step size be $\rho_2 = \frac{1}{5N^2\sqrt{\text{ep}}}$. Then,*
 1137

1138
$$\mathbb{P}\left(V_{l,0}^* - V_{l,0}^{\pi_l^{\theta_l}} \leq \epsilon\right) \geq 1 - \delta. \quad (21)$$

 1139

1140
 1141 As a result of Theorem D.5, given that the agent chooses the optimal Nash equilibrium in the
 1142 inner loop, the problem of finding the optimal coalition can be viewed as a single MDP $M_l =$
 1143 $(S_l, A_l, \mathcal{T}_l, r_l^*, N - 1)$.
 1144

1145 **E NOTATION TABLE**
 1146

1147 Table 8: Summary of Notation
 1148

Symbol	Name	Description
Coalition Structure Generation		
N	Agent count	Number of agents
$\mathcal{N} = \{1, \dots, N\}$	Agent set	Set of all agents
$C \subseteq \mathcal{N}$	Coalition	Non-empty subset of agents
$CS = \{C_1, \dots, C_k\}$	Coalition structure	Partition of \mathcal{N} into k disjoint coalitions
$\Pi(\mathcal{N})$	Structure space	Set of all possible coalition structures
$v : 2^{\mathcal{N}} \rightarrow \mathbb{R}$	Characteristic function	Maps coalitions to values
$v(CS) = \sum_{C \in CS} v(C)$	Structure value	Total value of coalition structure
Leader (Upper-Level) MDP		
$\mathcal{M}_l = \langle S_l, T_l, A_l, r_l, H_l \rangle$	Leader MDP	Episodic MDP for coalition formation
$S_l = \Pi(\mathcal{N})$	State space	Coalition structures
$s_{l,0} = \{\{1\}, \dots, \{N\}\}$	Initial state	Singleton partition
$a_l = (C_i, C_j) \text{ or } \emptyset$	Action	Merge two coalitions or do nothing
$T_l : S_l \times A_l \rightarrow S_l$	Transition	Deterministic merge operation
$r_l(s_l, a_l, \pi_f)$	Reward	Coalition structure value difference (Eq. 1)
$H_l = N - 1$	Horizon	Maximum number of merge steps
π_l, π_l^*	Policy	Leader policy and optimal policy
$Q_l(s_l, a_l; \theta_l)$	Q-function	Leader action-value function
$J_l(\pi_l, \pi_f)$	Objective	Expected cumulative reward
Follower (Lower-Level) Game		
$\mathcal{M}_f = \langle \mathcal{N}, S_f, T_f, A_f, r_f, \gamma_f \rangle$	Follower game	Cooperative Markov game
$s_f \in S_f$	State	Environment state
$\mathbf{a}_f = [a_f^1, \dots, a_f^N]$	Joint action	Actions of all follower agents
$T_f(s' s, \mathbf{a}_f)$	Transition	Environment dynamics
$r_f^C(s_f, \mathbf{a}_f)$	Reward	Instantaneous reward for coalition C
$\gamma_f \in (0, 1)$	Discount factor	Follower discount factor
π_f, π_f^*	Policy	Follower joint policy and optimal policy
$J_f^C(\pi_f)$	Return	Expected discounted return for coalition C
$Q_f^i(s_f, a_f; \theta_f^i)$	Q-function	Follower i 's action-value function

1181
 1182
 1183
 1184
 1185
 1186
 1187