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ABSTRACT

Coalition Formation Games investigate how a group of autonomous agents vol-
untarily organize into subgroups (i.e., coalitions) to achieve common goals or
maximize collective utility. This field has been a subject of long-standing research
within game theory and related disciplines. The core challenge in these games
lies in efficiently exploring the exponentially large space of possible coalition
structures to identify the optimal partition. While existing approaches to solve
coalition formation games either provide exact solutions with limited scalability
or approximate solutions without quality guarantees, we propose a novel scalable
and sample-efficient approximation method based on deep reinforcement learning.
Specifically, we model the coalition formation game as a finite Markov Decision
Process (MDP) and utilize deep neural networks to approximate the optimal value
functions within both the full and abstracted coalition structure spaces, thereby
indirectly deriving optimal coalition structures. Furthermore, our method can be
leveraged for bi-level optimization problems where coalition values are determined
by the policies of individual agents at a lower decision-making level. This way,
our approach can facilitate dynamic, adaptive adjustments to coalition value as-
sessments as they evolve over time. Empirical results demonstrate our algorithm’s
effectiveness in approximating optimal coalition structures in both normal-form
and mixed-motive Markov games.

1 INTRODUCTION

Coalition formation games constitute a pivotal area of research within multi-agent systems, focusing
on enabling groups of agents to collaborate in accomplishing specific tasks (Shehory & Kraus|
1998). These games are crucial for optimizing collaborative efforts and resource allocation among
autonomous entities, exemplified by applications like cooperative social ride-sharing (Bistaffa et al.,
2017), disaster response coordination (Diehl & Adams), 2023} Mouradian et al., 2017 and smart
grid management (Chis & Koivunen, |2017; |Han et al.l 2019). A central challenge in this game is
the Coalition Structure Generation (CSG) problem (Sandholm et al.||1998; Rahwan, [2008; |Dang &
Jennings| 2004; |Aziz & de Keijzer, [2011), which requires partitioning a set of agents into mutually
exclusive and collectively exhaustive coalitions, referred to as a coalition structure, to maximize
social welfare.

Determining the optimal coalition structure poses a significant computational challenge, classified
as NP-complete (Sandholm et al., [1999). Existing approaches have traditionally fallen into two
categories: exact and approximation methodologies. Exact methods (Yun Yeh,|1986}; [Rahwan et al.,
2009) guarantee optimality but are computationally prohibitive beyond small scales, leading to
limitations in scalability and restricting their applicability to small-scale problems (e.g., fewer than
40 agents (Rahwan et al., 2015))). This inherent constraint renders them less viable for real-world
scenarios involving a substantial number of agents. Conversely, approximation methods (Di Mauro
et al.,2010; [Farinelli et al.| 2013)) offer more computationally efficient solutions but typically lack
theoretical guarantees. Critically, both of these established lines of research are primarily designed
for normal-form games, necessitating re-computation for each new problem instance and lacking
mechanisms to address sequential decision-making in Markov games. Importantly, while any
combinatorial problem can theoretically be encoded as an MDP, such naive formulations explode
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exponentially and provide no exploitable structure—computing optimal policies for arbitrary MDPs
is PSPACE-hard (Littman, [1996). Our contribution lies in designing a structured, RL-tractable
formulation with compact representations and interpretable transitions.

In this work, to address the limitations of traditional CSG approaches, we formulate the CSG problem
within the framework of a Markov Decision Process (MDP). To address the complex, sequential
decision-making inherent in Markov games, we propose a novel bi-level reinforcement learning
framework. Our framework is designed with an upper level focused on optimizing coalition formation,
modeled as an episodic MDP where states represent coalition structures and actions involve merging
coalitions. The reward at this upper level is defined by the change in coalition structure value,
a crucial design choice that enables the generalization of learned values to unseen structures by
exploiting the compositional nature of coalition values derived from their constituent sub-coalitions..
Simultaneously, the lower level of our framework addresses the optimization of individual agents
strategies within the coalition structure dictated by the upper level, with agents learning their best
responses to the current coalition structure. This bi-level architecture facilitates a dynamic adaptation
of coalition structures in response to the learning strategies of the lower-level agents, leading to
potentially more robust and flexible collective behavior in dynamic multi-agent environments. The
use of deep neural networks for function approximation in both levels allows our method to achieve
efficient inference for approximating coalition structure values and guiding individual agent policy
determination, ultimately leading to optimal coalition structures.

Our contributions can be summarized as follows: First, a novel MDP formulation with structure-
consistent N x N state representation, O(N)-dimensional action encoding via shared scorer v,
and difference-based rewards enabling generalization; Second, BRIDGE, a bi-level RL framework
with measurable equilibrium selection o : NE(s;) — II + ensuring deterministic transitions; Third,
comprehensive experiments showing generalization from 3 to 100 agents, faster inference than
traditional coalition structure generation baselines at scale, and robustness to follower suboptimality.

2 RELATED WORK

The CSG problem has been addressed by a variety of algorithms, ranging from exact to approximate
solutions. Exact methods, such as Integer Programming (IP) (Rahwan et al., |2009), guarantee
optimality but suffer from high computational complexity. Notable examples include ODP-IP
(Changder et al.| |2019), which employs imperfect dynamic programming, and ODSS (Changder et al.,
2020), which optimizes the search space by integrating IP with Integer Dynamic Programming (IDP)
(Rahwan, 2008)). Hybrid exact algorithms (Michalak et al.,[2016) for complete set partitioning, have
also been adapted for CSG. However, the inherent combinatorial nature of CSG limits the scalability
of these exact approaches. In contrast, approximate algorithms aim to find high-quality solutions
within reasonable time. Fast code based algorithm (FACS) (Taguelmimt et al.l|2021)) utilizes a specific
search space representation and heuristics for efficient exploration. The Parallel Index-based Search
Algorithm (PICS) (Taguelmimt et al.||2022) offers an anytime and more scalable solution for larger
problems. Our paper also contributes an approximation method based on deep reinforcement learning
to tackle large-scale CSG instances.

Furthermore, the principles of CSG find natural extensions to the domain of Markov games, particu-
larly in the context of multi-agent systems. Concepts such as task allocation (Zhao et al., 2019; [Igbal
et al., [2022; |Chen et al., 2017; [Peng et al.,[2017;|Shu & Tian, 2018) and group division (Lhaksmana
et al., 2018 Macarthur et al., 201 1;|Russell & Zimdars| [2003} |Schneider, |1999)), widely studied within
multi-agent reinforcement learning (MARL), exhibit a fundamental resemblance to the challenges
of forming effective coalitions in mixed-motive Markov games. This inherent similarity provides a
strong motivation for adopting a bi-level reinforcement learning approach in this work to address the
complexities of CSG in such settings.

3 PRELIMINARIES AND DEFINITIONS

In this section we first introduce the classic CSG setting then propose its extension to Bi-level Markov
Games.

Coalition Structure Generation A CSG problem is of size n if it is defined on a set of n agents
N = {1,2,...,n}. A coalition C is any non-empty subset of N'. The characteristic function
vi2N SR assigns a real value to each coalition, indicating the value that this coalition could
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obtain if they cooperated. A coalition structure C'S is a partition of the agent set NV into disjoint
coalitions. Formally, a coalition structure C'S consists of a set of non-empty coalitions C'S =
{C1,C4,...,Cy}, where k = |CS] is the cardinality of C'S. C'S satisfies the following properties:
Ul Gy =N.CiNCj =0,¥i#j € {1,2,.... k}. The value of C'S is v(CS) := Y g 0(C).
The goal is to find the optimal C'S* that maximizes the value of coalition structure:

CS* :=arg max v(CS),
CSEI(N)

where TI(A\) denotes the set of coalition structures on . The problem of searching for the optimal
coalition structure is NP-complete.

Bi-level Markov Games Following the definition of the Stackelberg Game (Simaan & Cruz Jr,
1973)), we define the high-level agent as the leader agent and the low-level agents as the follower
agents. The goal of the leader agent is to obtain the optimal coalition structure. To achieve this, we
define the leader’s search process as an episodic MDP M; = (S, T}, Ay, 7, Hy). Here, S; = TI(N)
is the set of coalition structures. For each time step t. € {1,2,--- , H;}, s;1, = {C1,...,Cr} € 5
represents a coalition structure at time step ¢.. The initial state is the singleton partition s; 9 :=
{{1},...,{N}}. An action q,; corresponds to choosing any two coalitions given s; to merge, that
is, a1 € {(C;,C;) | 0 < i < j < |s]} U@ (where the action a; = @ keeps the coalition
structure unchanged). Next, given the current state s; ;, at time step ¢, and action a;,;,, we define
a deterministic transition function 7; as: T (sy¢,,ars,) == (1,6, \ G1,e,) U (UCeaz,tc C). We set
the horizon H; = N — 1. The horizon H; = N — 1 is a natural upper bound: each merge reduces
coalition count by one, so at most N — 1 merges reach the grand coalition. The null action enables
early termination for non-grand-coalition outputs. The reward of leader r; is defined as the difference
between the next coalition structure value of the followers and that of the current step:

r(snanmp) = Y Jf(rpls) = Y IF (x| s), 1)
CeT(s;,a1) Ces;
where the follower agents’ policies are defined as ¢ : Sy x S; — A(Ay), the follower agents’
coalition cumulative reward under such policies is defined as ch(ﬂ‘ ). Given a (stochastic) leader’s
policy m;, we define the expected reward of the leader as
N-1

Ji(m,mp) =K Z Tt (Sttes Qe Tr) | T
te=0

For the low-level cooperative game, we define the cooperative game as M; =
(N,S¢,Tr, Ap,ry,CS,vr). The environment state is given by sy, € Sy. At each episode
k at each timestep {j, each low-level agent ¢ € N receives state s, and chooses an action
az}- e ™ 77}. The instantaneous reward is defined as real-valued functions conditioned on the coalition:
7"? : 8¢ x Ay — R. The actions of all N agents form a joint action @y, := [a},, ,--- ,a}, ]. The
states evolves according to the transition function 7 (s, +1|@f.+,, S, ). Each follower agent ¢
seeks to maximize the expected discounted rewards of its coalition, defined by

o0
IEg) = 3B G (s ara) 7]
tr=0

where ¢ € (0, 1) is the discount factor and r]qtk (sf,ay) is reward for coalition C' € C'S. Due to the
non-additive structure of the reward function (e.g., when collaboration among agents might incur
some cost), the grand coalition A might not be the optimal one.

4 METHODOLOGY

4.1 MDP FORMULATION FOR CSG

The conventional CSG problem centers on the identification of a coalition structure that optimizes
social welfare. This optimization objective can be reformulated from the perspective of a single
leader agent.
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In this work, we employ a deep reinforcement learning methodology to approximate the value of
the optimal coalition structure. We define the state of the leader agent, denoted as s;, as the current
coalition structure. The action space of the leader agent, a;, consists of decisions regarding which pair
of existing coalitions within the current structure should be merged. The reward function for the leader
agent, 7, is defined as the difference in the value of the coalition structure between the subsequent
state, s; 4 41, and the current state, s, ;. To facilitate the application of deep reinforcement learning
techniques, we represent each coalition structure s; as an N x N binary adjacency matrix, flattened
into a vector where (7, j) = 1 if agents ¢ and j are in the same coalition. This compact representation
remains equivariant under consistent permutations of agent indices. Actions are merge decisions of
arbitrary two coalitions or a no-merge option, encoded as an (N + 1)-dimensional two-hot vector.
The encoding dimension thus scales linearly with N, avoiding quadratic growth in network outputs
while uniquely representing each merge, which helps maintain scalability and stable learning. An
illustration is provided in the Appendix [B.T]

This matrix-based state representation facilitates generalization to coalition formation problems with
larger agent populations by encoding coalition structures into a vector that systematically captures
all pairwise relationships among agents. Such representation provides a consistent input format for
deep learning architectures. Crucially, this input format is equivariant under consistent permutations
of agent indices, and by fixing the agent ordering during training and evaluation we ensure stable
performance. The framework enables the model to extract generalizable patterns regarding optimal
agent grouping strategies. For instance, by acquiring these fundamental coalition formation principles
from smaller problem instances, the neural architecture develops transferable knowledge that can be
systematically applied to navigate the combinatorially complex space of possible coalition structures
when scaling to larger agent populations (e.g., the learned {{1, 2}, {3}} coalition structure value
could be transferred to {{1, 2}, {3}, {4,5} }).

4.2 BI-LEVEL MARKOV GAME FOR CSG

The traditional CSG problem focuses on identifying a coalition structure that maximizes social
welfare. This concept is also highly relevant to multi-agent reinforcement learning tasks, where
coalition formation facilitates efficient coordination by minimizing redundant efforts in applications
such as warehouse management. However, in practical scenarios, the value of a coalition structure
is often influenced by learning agents. For example, agents must adapt and optimize their policies
in response to a given coalition structure, making the problem inherently dynamic. This requires
the algorithm to form the coalition structure dynamically. This interdependence between coalition
formation and policy optimization can be naturally framed as a bi-level optimization problem. Our
framework, however, adopts the bi-level optimization concept by redefining the leader’s objective
specifically to maximize the value of the coalition structures. This shift in focus aligns with the
hierarchical nature of the problem, where the leader prioritizes the global optimization of coalition
formation, while the followers engage in local cooperative optimization to realize their individual and
collective goals. In this context, the leader is responsible for dynamically determining the optimal
partition of follower agents into coalitions to maximize the overall value of the coalition structure.
Meanwhile, the agents ¢ € N, acting as followers, aim to optimize the value of their respective
coalitions within the constraints established by the leader’s partitioning.

By balancing these two levels of optimization, our framework provides an efficient framework for
solving the CSG problem. The followers phase can be modeled as a cooperative game, wherein
agents work together to maximize the value of their respective coalitions. In addition, the leader
phase can be formulated as an episodic MDP, reflecting the sequential decision-making with the goal
of generating coalition structures dynamically. Therefore, the optimization objectives for the leader
and followers in the Bi-level MDP can be defined as:

Definition 4.1. In the bi-level optimization problem, the leader and followers aim to solve the
following bi-level optimization problem respectively: Given each state s;, define the set of Nash
equilibrium for set of player C' € s;:

NE(s;) = {r | ch(ﬂ']g,ﬂ';c) > JfC(W}C,WJTC),VC € s}

4
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Where 71';0 represents the policy of all agents not in C'. Given the set of Nash equilibrium of
followers’ policy, define the objective of leader policy as follows:

max J;(m,mp)  s.t.mp = argmax Z ch(wf).
melly erNE(Sl)CEsl

The above constraints on 7 ¢ imply that, given the current coalition structure s;, each coalition C' € s;
acts as a single rational agent. We further assume that the players corresponding to coalitions in s;
will choose the optimal Nash equilibrium if multiple Nash equilibria exist. We adopt a measurable
selection rule o : NE(s;) — II; that selects the equilibrium yielding the highest coalition structure
reward for each s;, which ensures a deterministic upper-level transition reward mapping. In practice,
MADDPG-trained followers provide approximate best responses; Figure [i] demonstrates robustness
to moderate approximation errors.

Bi-level Optimization In this bi-level optimization framework (Figure [I)), the leader and the
followers operate at the upper level and the lower level, respectively. The tree structure is adapted
from (Sandholm et al., [1999).The leader aims to identify the best coalition structure by learning
the optimal policy 7; € I, which maximizes the value of the coalition structure. The upper-level
optimization incorporates the best responses of the followers, represented by their value functions
V; ", The leader’s objective function .J; (m;, m¢) depends on the leader’s action a;, the current coalition
structure s;, and the followers’ policies w}. The constraint ensures that the leader’s optimization
accounts for the followers’ best response 7r}, which maximize their respective objectives. At the
lower level, each follower agent i € C,C' € C'S independently optimizes its own value function J}
based on its coalition value r?t. The goal of each follower is to identify the optimal action aj} €Ay
in the sense of coalition value, given the coalition structure defined by the leader’s state s; and its
current state sy.

Based on the definition of the reward function (Equation E]), we can further define the action value
functions for the leader in the CSG process. In our framework, the leader agent orchestrates the CSG
in high level, while the follower agents operate in the lower-level optimization process, aiming to
maximize their coalition rewards. Let () and (); denote the action-value functions for the followers
and the leader, respectively. Then, the optimal action value function for the leader is defined as:

Definition 4.2. The optimal action value function for the leader agent is:

Qi (st a1, mp) := ri(s1, a1, w5 ) + max Qy (Ti(si, ar), aj, 7).
a

Based on the definition of the action value function and Bellman operator of the leader agent, we
could further define the followers’ optimal action value function as follows:

Definition 4.3. The optimal action value function for the follower agents is defined as:

QY (sp,a5,50) = 1 (s, ag,30) + max QY (Ty (s, ag) ., 50).
f

Due to space constraints, we defer the detailed theoretical analysis in Appendix [D} where we focus
on the planning problem under the MDP formulation of CSG and establish the correctness of our
RL-based approach. In particular, we establish the correctness of our RL-based approach by proving
that it converges to optimal coalition structures under standard assumptions. This analysis offers a
rigorous foundation for applying reinforcement learning to coalition structure generation problems.

Algorithm Overview In Algorithm[I] we introduce Bi-level Reinforcement LearnIng for Dynamic
Group StructurE (BRIDGE) algorithm, a hierarchical framework for optimizing both coalition
structures and agent strategies in multi-agent systems. Following the meta-reinforcement learning
paradigm, the algorithm’s nested optimization structure consists of two levels: the upper level serves
as a meta-policy that learns to propose effective coalition structures, while the lower level learns
the optimal strategies within the proposed structure. By employing neural networks at the meta-
level, our method efficiently adapts the coalition structure based on the performance of lower-level
policies, enabling efficient searching across different group configurations. The ultimate objective is



Under review as a conference paper at ICLR 2026

High-Level

M

{11,421, {81, {41} [remmmm 10

aip = {3} + {4}

{125 {3} {4}} {1}, {3}, {2.4}} {135 {2 {4}} {1}, {23}, {4}} {145 {2} {31}

<—‘({1)v {2} (3,41}

Ja=erp0

{142,341} {121, {3,4}} {2h {1,341} {181, {2,4}} {3h{1,2,4}} {141, {231} {441,231}

.. Si2

ay = {1} +{2,3,4}

{{1,2,3,4}} ..................................................... si3

Figure 1: Bi-level optimization process for the leader agent and follower agents. In the high-level
optimization process, the leader agent determines the coalition structure of the follower agents and it
always starts from singleton coalition (s;,0 = {{1}, {2}, {3}, {4}}). Then the leader will perform the
action a; o which leads to the next leader state. The reward is calculated by the difference between the
value of the coalition structures. This value is achieved by the optimization process in the low-level,
where each follower agent optimizes its coalition reward. The high-level episode lasts for at most
N — 1 merge decisions. Because a null action is permitted at any step, the process may end with a
non—grand coalition partition.

to determine the optimal coalition structure and the optimal coalition strategies for all participating
agents.

The algorithmic process (Algorithm|[I)) is structured around two nested iterative procedures. The
outer loop is indexed by iteration counter c. In each step ¢., the leader agent produces a coalition
structure transition tuple {(s; .., a1, Si,t.+1, 71, )} using the leader agent’s Q-function @;. This
outer loop provides the framework for optimization for the coalition structures. Within each outer
loop iteration, the inner loop (indexed by episode counter ¢;) focuses on optimizing follower agents
behaviors within the given coalition structure. The follower agents’ optimization process adapts
the MADDPG framework (Lowe et al., 2017 by integrating stochastic policies in place of the
original deterministic ones. During each episode, the followers’ actors generate transition tuples
{(05,,,05,,,05, +1,7F,,)- These transitions are then used to update the critic Q, which evaluates
the quality of actions. Subsequently, the actor is updated using the policy gradient, which is informed
by the Critic’s evaluations, to improve the agents’ policies. Following the completion of each
inner loop, the algorithm calculates the leader’s Q network loss L(6;). The leader’s Q function
parameters are subsequently updated using the second learning rate p;. This bi-level approach
enables the joint optimization of both coalition structures and individual agent strategies. The slower
outer loop focuses on coalition formation while the faster inner loop optimizes agent behaviors
within established coalitions. This hierarchical learning structure allows the algorithm to effectively
address the complex interdependencies between coalition formation and agent strategy optimization
in multi-agent systems.

5 NUMERICAL EVALUATION

In the experimental evaluation, we aim to demonstrate three key advantages of the BRIDGE frame-
work when applied to CSG problems:

* Enhanced Generalizability: We investigate the capacity of BRIDGE to effectively gener-
alize learned strategies from problem instances with a smaller number of agents to those
involving larger agent population(Table [T)). We also provide a comparative analysis on our
method and other baselines as well(Table [3).
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Algorithm 1 BRIDGE
Input: followers’ replay buffer 3, leader’s replay buffer G, learning rate p acior, £ f,critic, P
Output: approximate coalition structure C'S*, approximate coalition strategies for each agent
Tf
1: Initialize leader Q-network Q;(s;, a;; 0;).
2: Initialize follower actor 7y: and critic Q} networks for each follower ¢ with random weights.
3: for Iteration c = 0,1,2...,C do
4:  for Coalition time stept. = 0,1,2... N — 1 do
5: Select a random leader action a;; with probability e, otherwise select a;; =
argmax,, Ql(sl,tca Qpt.; 0;).

6: Observe next state s; 4 41 and reward ;.
7: Push transitions {(sl,tc LGl t,y SLt.+1,T1,t,)} into replay buffer G.
8 for Episode t;, = 0,1 .K do
9 For agent: =1: N play ay fﬂ ~ 7 based on current coalition structure C'S..
10: Observe new observation o?f 41> reward 7 f tS
11: Push transitions {(o?fk , a?i ngﬁp T 5<)V into replay buffer B
12: Sample a minibatch of |By;ni| transitions {(of p ,a?f , }(is rf 5 <)} from B.
13: Compute the target actions from the target policy: a’ f p~ ([0 4).
14: Compute the target Q-values: y; = rf » + Q0 (of b,afb,ﬁf) fori € C,C € CS..
15: Compute the critic loss: L(6}) = m Zb (yb - Q?(oﬁb, afyb; 9})) .
16: Update the critic by minimizing the loss: 9} — 9} —p f,c,mcve} L((‘)}).
17: Calculate the policy gradient: Vy; J(0%) = Eay yrr, [V(,} log mp: (a 4107 4) Q% (05, aF; 0%) |
18: Update the actor using the policy gradient: 9} — 93} +p fwactorvw,f J (9})
19: end for ‘
20:  end for

21:  Sample a minibatch of |Guini| transitions {(s g, a4, 8] 4, 71,6) } from G.

22:  Compute the target Q-values: y, = 7,4 + vy maxy Qi(s] 5, a’;01).

23:  Compute the Q-network loss: L(6;) = ﬁ > (g — Qu(s1,9, 1,5 0,))>.

24:  Update the leader Q-network parameters by minimizing the loss: 6; <— 0, — p;Vy, L(6;).
25: end for

+ Efficient Inference: We assess the computational efficiency of BRIDGE by comparing its
inference time to that of established heuristic CSG methods, highlighting its potential for
rapid solution generation(Table [2)).

* Performance improvement in mixed-motive Games: We evaluate the performance of
BRIDGE to address and solve CSG problems characterized by both normal-form(Figure 2]
and Figure[7) and Markov games(Figure [3]and Figure F).

We compared our algorithm with C-Link (Farinelli et al., [2013)), GRASP (D1 Mauro et al.| [2010),
CSG-UCT (Wu & Ramchurn, [2020), SALDAE (Taguelmimt et al., 2024), which are currently the
leading approximate methods for the CSG problem. We provide further ablation studies with respect
to our neural network size in Appendix [B.3.3]

5.1 CoMMON CSG BENCHMARK PROBLEMS

A standard approach to evaluating CSG algorithms involves selecting representative problem in-
stances and comparing various algorithms without providing them with prior knowledge of the
types of utilities they will encounter. While our algorithm is capable of solving CSG problems
across different utility types, we benchmark its performance using three commonly studied util-
ity distributions and three harder utility distributions. The three traditional CSG problems are
defined as: Modified Uniform(Adams et al 2010): v(C) ~ U(0,10 x |C]), and v(C) is in-
creased by a random number r ~ U (0, 50) with probability 0.2. Modified Normal(Rahwan et al.,
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Figure 2: Coalition structure value comparison across six different value distributions: (a) modified
uniform, (b) modified normal, (c) agent-based, (d) hard modified uniform, (¢) hard modified normal,
and (f) combined distribution scenarios. The experiments compare four coalition formation baselines
with varying numbers of agents (30-100), comparing their achieved coalition structure values with
our algorithm. For each baseline, 10 independent experimental runs were conducted to compute the
mean and standard deviation of the resulting coalition structure values,

2012): v(C) ~ N(10 x |C],0.12), and the coalition value v(C) is increased by a random number
r ~ U(0,50) with probability 0.2. Agent-based(Rahwan et al., 2012): v(C') = Y, p; where
ps ~ U(0,2p;) and p; ~ U(0,10) is a random power for agent ;. We also introduce three additional,
more challenging utility distributions(hard modified uniform, hard modified normal, combined distri-
bution) that incorporate increased stochasticity and implement penalties for larger coalition sizes,
thereby providing a more rigorous evaluation framework that better approximates real-world coalition
formation scenarios. Detailed specifications of the value functions of these scenarios are presented in

Appendix

To evaluate the generalization capability of our algorithm, a primary advantage posited in this
work, we present the performance results across varying agent populations instances(5 to 10) under
modified normal distribution in Table[I] Following an initialization of the network architecture to
accommodate the 10-agent scenario, the algorithm was initially trained on instances involving 3
agents and subsequently evaluated in environments with 5 to 10 agents. Optimal coalition structure
values for these scenarios were determined via brute-force search, and the table reports the percentage
of the achieved value relative to these optima. While the few-shot conditions involve continued
training on the target agent instances for 100 and 200 episodes, respectively. As evidenced in Table
[1l our method, demonstrates a substantial improvement in performance compared to a random
policy across all evaluated agent numbers. The few-shot training paradigms yield progressively
higher performance, with the 200-episode fine-tuning achieving the highest value percentages. These
results underscore the robust generalizability of BRIDGE to coalition structure generation problems
with a larger number of agents than those encountered during initial training. We also provide a
comparative analysis on other traditional coalition structure baselines performance with the same
budget in Appendix. BRIDGE trains for 300 outer-loop episodes with early stopping when reward
variance stays below 1% for 20 episodes.

Figures [2a] - 2f] summarize our experimental results on the common benchmark problems with
utilities using the distributions described above. As seen in the figures, our method outperforms
other algorithms with better solution quality in all tested instances. We use the Baseline Gain
metric (Baseline Gain = v(C'S) — 3, - v({i})) to quantify improvement over singleton coalitions
in complex environments where optimal solutions are intractable. In particular, in hard modified
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Table 1: Evaluation of the generalization performance of different training paradigms on coalition
structure generation tasks(modified normal distribution) across varying numbers of agents (5 to 10),
with models pre-trained on instances with 3 agents.

Pretrain on 3 agents Sagents  6agents 7 agents 8agents 9 agents 10 agents

Random Policy 44.42% 36.59% 36.32% 30.97% 25.05% 21.01%
Few-Shot (100 episode) 88.83% 66.17% 59.67% 55.62% 47.18% 41.61%
Few-Shot (200 episode) 97.2% 80.33% 78.68 % 63.52% 58.15% 48.24%

uniform and hard modified normal experiment, our method can find better results than any other
baseline algorithms. This set of experiments demonstrates the advantage of our method compared to
state-of-the-art approximate methods. In order to further study how the leader agent’s ability evolve
over training, we propose visualization results in Appendix [B.3|Figure

5.2 MIXED-MOTIVE MARKOV GAMES

In the LBF (Level-Based Formation) LBF  Singleton C-Link GRASP  SALDAE  CSG-UCT  BRIDGE

environment (Figure EI), tasks are T€p- T 2820515 2770512 917408 2500413 3100416 3417414

1 1 1 6aSt 31.01+£1.4  32.08+1.1 11.90+£0.7  27.50£1.5  34.75+1.8  33.11%1.2
resented by apples with varying sizes 8adt 3295+1.7  3258+1.4 1244409  2743+13  3476+1.5  38.57+1.6

that correspond to different resource  8ast  43.8£18  40.68+15 23.33+1.0 31.33+L6  4533E£19 5217421
: 10040 70.62420  6623+1.8 207112  4133+17 7333423  77.43+24
requirements, where apples randomly g5 7523522 7371510 3310413 6383220 8283125  89.29+26

spawn across the map. The leader
agent must strategically select fol- Figure 3: Mixed-motive Markov game (LBF) across six dif-
lower agents to complete tasks while  ferent scenarios. Values are reported as mean =+ standard
maximizing rewards and each fol- deviation over multiple runs. *a’ represents agents, ’t’ rep-
lower agent recruitment incurs a cost. resents tasks (apples). The value is defined as the baseline
Our empirical evaluation compares

our framework against traditional CSG basehnes across multiple configurations. Since traditional
CSG baselines are not originally designed for the mixed-motive Markov games. We adopt the same
training paradigm as BRIDGE by calculating the coalition structures value using low-level agents. In
the Singleton baseline, each agent operates independently as a self-interested decision maker. Overall,
this ablation verifies that although our theory assumes an optimal follower for clarity of exposition,
the practical system is robust to moderate follower suboptimality and only fails when the follower is
so under-trained that it no longer provides reliable local value signals.

To assess our leader agent’s robustness to fol-

. . . LBF 15 epochs 10 epochs 7 epochs 5 epochs
lower policy quality, we conducted an ablation

study by pairing a leader with follower policies 4t 32.11 3417 26.73 2.82
; LS . 6ast 36.87 33.11 34.51 2.47

of varying training epochs. The findings demon- g4 37.05 38.57 21.46 984
strate that the leader’s performance remains high 8ast 51.24 52.17 47.44 11.49
and stable with well-converged followers (10-15 10a4t 77.54 7743 69.78 5.38
10a5t 91.28 89.29 88.35 29.97

epochs) and degrades accordingly with moder-
ately trained ones (7 epochs), showcasing re-
silience to approximation errors. As expected,
performance drops sharply when paired with
poorly trained followers (5 epochs) that provide unreliable reward signals. This study confirms that
while our framework theoretically assumes follower optimality, it is practically robust to moderate
errors.

Figure 4: Comparative performance of the leader
to follower approximation errors.

6 CONCLUSION

This paper introduces BRIDGE, a bi-level reinforcement learning framework that jointly optimizes
coalition structures and agent policies. The framework dynamically adapts to changing conditions,
and its theoretical formulation aligns the RL objective with optimal coalition formation. Empirically,
BRIDGE performs well across both classic CSG problems and mixed-motive Markov games. These
results highlight the promise of bi-level reinforcement learning for multi-agent optimization tasks
involving hierarchical decision-making, opening new opportunities for research in coalition formation
and multi-agent systems.
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A DECLARATION OF THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilized large language model (LLM) to assist in proofreading and improving the language,
grammar, and clarity of this manuscript. The authors retain full responsibility for all intellectual
content and claims presented.

B DETAILS ON EXPERIMENT SETTINGS

B.1 ILLUSTRATION FOR Q-NETWORK AND TRANSITION PROCESS

- 17 Ql(sh')
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Figure 5: Illustration of the architecture of the Q-network used by the leader agent.

Figure [5] illustrates the Q-network architecture employed by the leader agent for making coali-
tion formation decisions. The process begins with the initial coalition structure state, such as
{{1},{2},{3},{4}}. This state is transformed into an N x N binary adjacency matrix, where
an entry (7, j) of 1 denotes that agents ¢ and j belong to the same coalition. This matrix is then
flattened into an N2 x 1 vector, creating a structured input that captures all coalition relationships
while remaining equivariant to consistent permutations of agent indices. The vector feeds into the
Q-network (parameterized by 6;), which processes this information to evaluate potential merge
actions. The network’s output, visualized as the yellow vector, is a fixed-size (N + 1) x 1 array. This
vector represents latent values used to compute the Q-values for all valid actions, rather than directly
representing the Q-values themselves. Let z(s) € RV*1! denote the output of the leader Q-network
at state s. For any legal merge a = (C;, C;) with 4 < j, we compute action values by composition

Ql(saa) :¢(zi(5)azj(5))a QZ(S,@) :ZN+1(S)7
where v is a shared pairwise scorer (e.g., additive). We enforce legality via masking and operate only
over the legal set in both selection and backup:

a* = arg max s, a), =r+~ max Q,(s,a).
gaeA(s)Qz( ,a) y va,eA(s,)Qz( ,a)
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The leader agent selects the pair (4, j) that maximizes this computed Q-value, after masking any
illegal or unused indices. The final element of the output vector represents the Q-value for the null
action (to not merge). This architecture enables the leader agent to make informed decisions through
an O(N)-dimensional encoding of actions, which avoids quadratic growth in network outputs even
though the number of feasible merge pairs is O(NN?). This design keeps the framework scalable while
effectively guiding the coalition formation process toward arrangements that maximize collective
utility.

(=R L
©C O+ K O
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Coalition Coalition Coalition Coalition
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Figure 6: Illustration of the architecture of the transition of the leader agent.

Figure[6]illustrates the transition process employed by the leader agent in dynamic coalition formation,
depicting the generated process from an initial coalition structure towards the final coalition structure.
Beginning with the fully singleton coalition {{1}, {2}, {3}, {4} } at the leftmost position, the system
employs dual representational components: blue adjacency matrices that encode coalition membership
relationships (with 1s indicating agents in the same coalition), and corresponding yellow action vectors
a; that guide action selection. Notably, in the second state after the first merger ({{1, 2}, {3}, {4} }),
the system contains only three coalitions, making the fourth dimension of action vector a; illegal and
therefore unavailable for selection—this constraint guides the agent toward valid coalitional structures
only. The sequence proceeds with subsequent mergers joining agent 3 with the {1, 2} coalition to
form {{1,2, 3}, {4}} and finally incorporating agent 4 to achieve grand coalition in {{1, 2, 3,4}},
where the adjacency matrix contains all 1s indicating universal coalition membership. Throughout
this evolution, the architecture demonstrates how reinforcement learning enables the leader agent to
navigate complex coalition spaces within operational constraints, making sequential decisions that
optimize toward the system’s collective objectives.

B.2 DETAILS ON CSG PROBLEMS

Below we detail the coalition value functions used in Section Throughout, let C' C {1,...,N}
denote a coalition and k := |C| its size. We write U (a,b) for the uniform distribution on [a, b].
For normal draws, we use the “scale” parameterization N'(u, <) where the second argument ¢ > 0
denotes the scale (not variance). Global parameters are: baseline factor o > 0, boost probability
p € [0, 1], interaction factor v > 0, and size penalty § > 0. The history factor is h ~ ¢/(0.8,1.2).
For compactness, we define

Pinc(k) == YE%,  Dsie(k) =0 (k —4)?1[k > 4], peou(k) ~ U(0,2k) 1[k > 6].

Hard Modified Uniform Distribution. Draw a base value b ~ U/(0, ak). With probability p, draw
a boost 7™ ~ U(0, 40) (otherwise r;™ = 0). The coalition value is

V(C) = max(o, B [b+ 78 = pioc(k) — Puize (k) — Peont(K)] )

Hard Modified Normal Distribution. Draw a base value b ~ N (0, 2k) (scale 2k). With prob-
ability p, draw a boost 7™ ~ N(0, 40) (scale 40; otherwise r;°™ = 0). The coalition value

1S
V(C) = max(O, h [b + Tﬂorm - Pim(k) - psize(k) - pcoal(k)] ) .
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Combined Distribution. Draw two base values by, ~ U(0, ak) and bporm ~ N(0, 2k). With
probability p, add independent boosts 7™ ~ 1/(0,40) and r°™ ~ N(0, 40) (otherwise each is 0).
The coalition value is

V(C) = max(O, h [buni + bnorm + rzmi + Tzcrm - pint(k) - psize(k) - pcoal(k)} ) .

B.3 ADDITIONAL EXPERIMENT RESULTS

In order to further evaluate the learning dynamics of the BRIDGE framework, we provide additional
results on evaluating the optimal gain across outer iterations. The optimal gain(maxv(C'S)) is
defined as the best coalition structure value algorithm could get under the present agent number.
The results demonstrate the achievable optimal gain scales positively with the number of agents, as
expected in a system with increasing resources. This learning process appears to converge around 300
steps; the mean gain plot, box plot distributions, and heatmap all show that performance gains become
marginal after this point, with the results for steps 300, 400, and 500 being nearly indistinguishable.
While the average performance stabilizes, the standard deviation plots and the widening distributions
in the box plot reveal that the variability of the optimal gain increases in larger systems, indicating a
more complex and diverse solution landscape as the problem scales.
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Figure 7: This set of visualizations illustrates the variation in optimal gain across different training
steps and agent numbers. Subfigure (a) shows the mean optimal gain with standard deviation,
indicating a gradual increase in gain as the number of agents grows. Subfigure (b) compares the
standard deviation across different training steps, revealing fluctuations in multi-agent systems of
varying sizes. Subfigure (c) presents a box plot of optimal gain distributions, showing an increasing
spread as the agent number rises. Finally, subfigure (d) provides a heatmap representation of optimal
gain evolution, where darker colors indicate higher gains. Together, these visualizations highlight the
impact of training steps and agent numbers on optimal gain.
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B.3.1 INFERENCE SPEED

The efficiency of inference following the training phase is another notable advantage of our framework.
Table 2] presents a comparative analysis of the inference times, measured in seconds, for BRIDGE
and several baseline coalition structure generation algorithms under the modified normal distribution
setting. While our method’s inference speed is comparable to or slightly slower than other heuristic
methods for lower agent counts (30-50), it exhibits significantly improved performance as the
number of agents increases (60-100). Notably, the inference time of our method demonstrates a
considerably less pronounced scaling trend with the number of agents compared to the heuristic
baselines, particularly CSG-UCT. This characteristic suggests a greater potential for BRIDGE to be
effectively applied to coalition structure generation problems involving larger agent populations.

Table 2: Comparative analysis of inference times (in seconds) for coalition structure genera-
tion(modified normal distribution) using baseline algorithms and the proposed BRIDGE framework
across varying numbers of agents (30 to 100).

Time(s) 30 agents  40agents  50agents 60 agents 70 agents 80 agents 90 agents 100 agents
C-Link 3.44 4.49 7.11 10.60 14.28 18.77 24.42 30.44
GRASP 0.37 0.88 2.93 5.81 8.19 10.95 19.86 26.47
SALDAE 0.56 1.57 2.54 5.30 8.61 14.13 19.74 28.31
CSG-UCT 2.24 7.10 17.19 35.90 68.15 116.18 194.01 303.79
BRIDGE 1.09 1.98 2.83 3.62 4.90 5.67 6.84 8.72

B.3.2 ADDITIONAL GENERALIZATION ABILITY ANALYSIS

Traditional Coalition Structure Generation (CSG) baselines, such as C-Link, GRASP, and CSG-UCT,
are typically search-based or heuristic algorithms. Their methodologies are inherently designed
for a fixed number of agents, requiring the problem size to be predefined to construct the search
space. Consequently, these methods do not possess an intrinsic mechanism to be trained on a 3-agent
instance and then tested on a 10-agent instance; the knowledge or heuristics from one problem size is
not transferable to another. In contrast, our BRIDGE framework formulates the CSG problem as a
Markov Decision Process (MDP) and employs a neural network to approximate the optimal coalition
structures. By representing the coalition structure as a consistent vector capturing agent-to-agent
coalition membership, our model learns generalizable patterns of agent interactions that remain
relevant even as the number of agents changes. In the following table, we present baseline results
trained under the same sample budget for comparison in Appendix

Table 3: Performance comparison with a limited training budget (200 episodes) under modified
normal distribution. The values represent the percentage of the optimal value achieved by each
algorithm when trained from scratch on different problem sizes.

Algorithms Sagents 6agents 7agents 8agents 9 agents 10 agents
C-Link (200 episodes) 24.65% 22.85% 25.65% 32.41% 29.00% 34.70%
GRASP (200 episodes) 25.53% 29.55% 27.58% 29.46% 32.83% 36.72%

SALDAE (200 episodes) 25.54% 25.59% 30.84% 36.80% 36.27% 37.58%
CSG-UCT (200 episodes) 23.38% 21.13% 26.77% 38.72% 37.65% 40.81%
BRIDGE (200 episodes) 97.20% 80.33% 78.68 % 63.52% 58.12% 48.24%

We calculated the approximate number of samples and let the baseline algorithms train from scratch
on 5 to 10-agent instances. The table reports the percentage of the achieved value relative to the
optima. All baseline algorithms perform poorly under this limited budget. Their performance
generally ranges from only 20% to 41% of the optimal value. For instance, in the 10-agent scenario,
the best-performing baseline, CSG-UCT, only reached 40.81% of the optimum. This result is intended
to demonstrate that, unlike the BRIDGE algorithm which can leverage pre-training to adapt quickly,
these traditional algorithms require a much larger computational budget to find high-quality solutions
when starting from scratch.
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B.3.3 ABLATION STUDY ON NETWORK STRUCTURE

We provide an ablation study on the effect that the neural network size might have on the performance.

Table 4: Ablation study on neural network architecture under modified normal distribution experiment.
Performance is measured across different numbers of agents. Values are reported as mean =+ standard
deviation.

Network Structure 30 agents 40 agents 50 agents 60 agents 70 agents 80 agents 90 agents 100 agents
3 layers(64,64) 44528+ 6824  ST771 47576 75302+ 8361  889.18+£9465  1031.99 £ 9364 120749+ 10539 131624 +£9579 150142 & 131.94
3layers(128,128)  449.39 £ 64.82 59221 +£72.60 74658 + 8579  893.14 £ 8630 104634+ 101.86  1204.90 £+ 89.60 145838 & 10593  1596.20 + 115.41

4 layers(128,128) 45232+ 69.19  614.04 £72.57  742.28 £ 87.43 901.25 + 89.95 1048.36 + 84.43 1204.25 4 98.57 1358.12 4+ 100.44  1467.32 4 110.82
5 layers(128,128) 441.14 £ 6045  603.98 7376 73472 £83.09  903.46 +100.30  1043.60 & 104.09 1288.92 + 104.45 1434.10 + 10552 1492.39 £ 108.97

The results indicate that increasing the network width from 64 to 128 neurons (3 layers) provides a
modest but consistent performance improvement, particularly in scenarios with more agents. However,
further increasing the network’s depth to 4 or 5 layers does not yield additional significant gains and
can lead to less stable performance across different agent counts. This suggests that the 3 layers
(128,128) architecture provides sufficient representational capacity for this problem, striking an
effective balance between model expressiveness and the risk of overfitting or increased optimization
difficulty.

We also provide an ablation study on the effect of the neural network size that might have on the
inference speed(Appendix Table [5). We could see that the inference speed does not scale up
appreciably with respect to the parameters, showing our method is efficient compared to other CSG
baselines.

Time(s) 30 agents 40 agents 50 agents 60 agents 70 agents 80 agents 90 agents 100 agents
3 layers(64,64) 1.09 1.92 2.78 3.55 4.53 5.54 6.84 8.39
3 layers(128,128) 1.09 1.98 2.83 3.62 4.71 5.67 7.02 8.72
4 layers(128,128) 1.10 1.98 2.85 3.63 4.90 5.82 7.10 9.14
5 layers(128,128) 1.12 2.01 2.85 3.67 5.12 6.02 7.12 9.86

Table 5: Comparative analysis of inference times (in seconds) for coalition structure genera-
tion(modified normal distribution) using different network size of BRIDGE’s leader agent across
varying numbers of agents (30 to 100).

B.4 HYPERPARAMETERS SETTING AND COMPUTATIONAL RESOURCES
We use an actor—critic algorithm for follower policies. Followers within the same coalition share
critic parameters.

The hyper-parameters for Actor-Critic training are as follows.

* Actor Learning Rate is 1 x 1074

» Critic Learning Rate is 1 x 104
 Target Network Update Rate is 0.005
* Discount Factor () is 0.99

* Replay Buffer Size (1) is 1 x 106

* Minibatch Size is 256

For leader agent, we adopt the DQN algorithm to approximate the coalition structures’ value.
The hyper-parameters for DQN training are as follows.

+ The learning rate is 1 x 1073,

* The replay buffer size is 10000.

¢ The minibatch size is 128.
* The target Network update frequency is 100 steps.
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» The exploration Strategy is e-greedy:
— Initial €: 1.0,
— Final e: 0.01,
— Decay Steps: 10000 time steps.

* The loss function is mean Squared Error (MSE).
* The gradient clipping is 40.

* The optimizer is Adam.

All experiments were conducted on an HPC system equipped with 128 Intel Xeon processors operating
at a clock speed of 2.2 GHz and 40 gigabytes of memory.

B.5 PoLICY AND VALUE NETWORK REUSE

In our implementation, the follower’s policy network (the actor) is reinitialized at the start of each
outer-loop optimization, whereas the follower’s value network (the Q-network/critic) is persistent
and its parameters are reused across coalition structures.

Why We Do Not Reuse the Policy Network. This design choice is made to avoid policy inertia.
When the coalition structure changes fundamentally (e.g., an agent transitions from a large cooperative
group to a solo role), the previously learned policy may be entirely suboptimal or even harmful in
the new context. Re-initializing the policy network ensures that the agent can freely explore without
being constrained by outdated behaviors, which allows it to more effectively converge to the true
optimal behavior under the new structure.

Why We Reuse the Critic-Network. By contrast, the Critic-network captures more generalizable
value information across diverse coalition configurations. This knowledge is transferable: when a
newly initialized policy network begins to explore, the persistent Critic-network provides immediate
and informed evaluation of actions. Such guidance accelerates policy learning and stabilizes training
in the presence of dynamic coalition changes.

Table 6: Value/Policy reuse ablation (LBF). V=Value network, m=Policy network.

Configuration 6a4dt 6asSt 8adt 8aSt 10a4t 10a5t

Reuse V / Init w 34.2+1.4 33.1+1.2 38.6+1.6 52.2+2.1 77.4+24 89.3+2.6
Reuse V/Reuse m  30.2+1.3 29.5+1.1 353+1.6 474+19 69.8+2.3 81.9+2.7
Init V / Init 7 17.2+1.6  18.8+1.6 26.3+1.8 353#2.1 55.5+22 60.9+2.5
Init V / Reuse m 28.6+x1.5 30.9+1.2 33.1x1.7 45.5+#2.0 65.7#2.4 78.6+2.6

C HORIZON ABLATION STUDIES

Table [7)reports performance across horizons H € {N/2, N — 10, N — 5, N — 1} on the modified
normal distribution. Shortened horizons (IN/2) underperform at larger scales due to insufficient search
depth. The full horizon N — 1 yields the strongest values; intermediate horizons offer compute-quality
tradeoffs.

Table 7: Horizon sensitivity (Modified Normal). Format: Coalition Value =+ std.

H 30 agents 50 agents 70 agents 100 agents

N/2 445.3+£65.7 693.9£79.1  956.1+106.5  1187.4£117.5
N—-10 447.9+65.8 726.3£80.2 994.6+83.1 1344.7£105.7
N-5 44794624 7439491.6 1025.6+£104.8 1481.9+110.3
N-1 449.4+64.8 746.6+85.8 1046.3£101.9 1596.2+115.4
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D DETAILS ON THE PROOFS

In this section, we detail the rigorous convergence analysis of the proposed bi-level optimization
framework for coalition formation. First, we establishes a critical correspondence between the
reinforcement learning objective function and the target objective of finding the optimal coalition
structure. Then, we move to provide definitions and proofs for the monotonicity and additive
homogeneity of the leader agent’s Bellman operator, and a central theorem providing the dynamic
programming equations for the finite-horizon Bi-level MDP. This theorem guarantees the existence
and uniqueness of optimal policies for both leader and follower agents, where the follower’s policy
maximizes collective value within Nash equilibrium constraints and the leader’s policy optimizes
based on a modified Bellman equation incorporating follower responses. Finally, we leverage existing
results to assert the global convergence of policy gradient descent for this framework, demonstrating
that the problem can be simplified to a single MDP under optimal Nash equilibrium selection in the
inner loop.

D.1 OBIJECTIVE CONSISTENCY

Our theoretical investigation examines the relationship between the optimized objective function and
the target objective function, where the latter is defined as finding the optimal coalition structure.
Another key focus of our analysis is understanding the optimal form of the leader agent’s policy and
the follower agents’ policies under the Bi-level MDP. A critical aspect of our analysis is the formal
development of a correspondence between the objective function of our reinforcement learning and
its target counterpart. This correspondence serves as the basis for deriving rigorous optimal form of
the leader and follower agents’ policies.

Lemma D.1. The objective function in Algorithm 1 is equal to the target objective function.

max Jy(m, m¢) = max VE* (st0).
TTf l( ! f) CSGH(N)C;S f ( f’O)

Proof. Considering the LHS. Fixing 7, we have that

N-1 N-1
donna) =3, >, Jim) - > Jf(m)
te=0 te=0 CeT (s1,t.,a1,t,) Cesy e,

telescoping sum (2)

= > Jf(my).

Cesi,N-1

Note that, given CS, Y ccg Vfc’*(sﬁo) = > ceogMaxy, Jp(my). Moreover, thanks to con-
struction of a;, for any given C'S € II(N), one can construct a policy 7; that terminates at C'S.
Therefore,

max Jj (7, 7w max VEOr(s 3
T, f l( ! f) CSell N)CZCS fO )

O

A cornerstone of our theoretical analysis is the establishment of a precise mathematical correspon-
dence between our reinforcement learning objective function and its target counterpart in coalition
formation. This lemma establishes the equivalence between two critical quantities: the expected sum
of rewards J; for leader policy m; and follower agents’ policies 7 across N steps under different
system states o (left-hand side), and the maximum coalition structure value VfCS of final actions
ay given the selected configurations C' (right-hand side). We establish a mapping from policies
to coalition structures that yields a telescoping identity (Lemma [D.I)), aligning the RL objective
with the target coalition value and enabling standard convergence arguments under our assumptions.
Through this mapping, we demonstrate that the value function Vg (7, 7¢) converges to the optimal
coalition value Vlarget(CS*). This correspondence enables us to establish a practical form of the
optimal policies of the leader agent and follower agents. Before moving to the proof of the form of
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optimal policies for leader agent and follower agents, first we define the bellman operator of value
function of the leader agent to be:

Definition D.2. The leader agent’s Bellman operator of value function is:

(BiVi)(se, mp) o= max | mi(suee, Qe ) + TSt at,e ) VilStter, ) |

D.2 CONVERGENCE ANALYSIS

Based on the definition of the value function of the leader agent. We could further establish the proof
for leader agent’s monotonicity and additively homogeneity.

Lemma D.3. (Monotonicity for Leader Agent) For V' < V2, BlV,' < BV

Proof. Based on the previous definition of Bellman operator of value function(Equation[d). We have:
Vi <w?
Ti(stter a1t )V (St TF) < Ti(S1005 a1, )V (S1teer s TF) )

max (Ti(st00 a16.)Vi (St,t040,75)] < max (Ti(st00 a1 )V (Sttyn s 7r)] -

The reward max,, (s, ar,, 7r) is identical for BlVl1 and BZVIQ. Therefore, we have:

H}gxr(suc, are,,mf) + max AR A CTRN )

< maxr(sit,, ai,t,, 7f) + max [Ti(st,t05 a6 )V (S0, 78)]

max [ (81t rtes 7p) + Ti(S1005 @t Vi (81,0040 7F)] )
< max [r(str., atee, 7)) + Tilsee Lt )V (81t 7r)]

BV, <BV?.
This concludes the proof. O

As for the additive homogeneity for leader agent, we have:

Lemma D.4. (Additive homogeneity for Leader Agent) For any constant c, the Bellman operator
satisfies:

Bi(Vi+c¢)=Bi(V) +c.

Proof. Based on Equation |4} the Bellman operator of leader agent is defined as:

(BiVi)(s1, mg) = max {T(Sz,tc’al,tc’ﬂf)+ D Tilstte ) Vilstten s my) | (6)

Sl,te+1

In order to prove the additively homogeneous property of our Bellman operator, we could further
denote our Bellman operator as:

(Bu(Vi + 0))(s1,7p)

= max |r(spe, e, 7p) + > TS0 aie)(Vilsiit1,7f) +0)

aj
Sl,te+1

= max T(Sl;tc7 a‘lytc’ 7Tf) + Z T(sl;tc7 a'latc)‘/l(slvtc+17 7Tf) + C- Z T(Slytc’ alvtc) (7)

Sl,te+1 Sl,te+1

= max (s, arpes78) + D T(S10s a6 )Vilstaer1,7g) | +c

ay
Sl,te+1

= (BlVl)(Sl,ﬂ'f) +c,
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which concludes the proof. O

Finally, based on the previous proof, we could move to the proof of the optimal form of the leader
agent and follower agents when the algorithm converge.

Theorem D.5 (Dynamic Programming Equation for Markov Decision Process with Finite Horizon).
Given a leader state s;, define the optimal follower policy 7y as:

Tp = argmax Z J]?(wf).
71 ENE(s1) (g,
Let Vf* be the followers’ value function corresponding to optimal policy 71'32. Let V}* be the optimal
value function of the leader agent’s Markov decision problem, for all time-step t. € {0,...,N — 1}:

Vi (si,m5) = max (71, (s1, a0, 7F)

+ Vi (Ti(st, @), 73],

where the maximum is taken over all strategies starting at time i. The optimal leader policy 7} is
defined as:
te te te
7/ (1) = argmax [r(sy, a, 7F) + V' (Ti(s)°, ap°), 75)] -

ap

Proof. We denote (w;, )o<i<n as a sequence with final condition w = . Based on Deﬁnition
wy, = By, (wi,+1). We need to show that w,, =V, forall ¢, € {0,..., N} and thatw = V.

1. Proof of w;, > V;; and w > V;. For V;,; , we use policy starting at time ¢, the inequality
wy, > Vi, is of same type as wy, > V; ;.. Therefore, we only show wy > V}O.

Let (s;¢.,a1,) be the process associated to the strategy m;, and let 7, =
(81,0,01,0, 811,011, - -, S1t,), for all £, > 0, be the history trajectory. For all 0 < t. < N,
and all histories 7 We could denote the value function as:

N-1

Vit (1e,) = Bayy om, KZ T1(St, s al,tc)) + ¢(si,1.)

t=t,

TtC] ) (8)

where V; ;_(7:,) represents the expected total value starting from time step ¢, and conditioning on
history 7 . Therefore, V; ;_ satifies the Kolmogorov equation for an additive functional:

Vi (7t,) = Baypomomy [11(S0005 a1,0,) + Vit o1 (T, S1t0415 75|72, ©)
We could further rewrite the sequence wy, (s;¢.) as:

we (st.) = max [ri(see., ave.) +Efwee 1 (spe+1)]] - (10)

Let’s show wy, (s,¢,) > Vi1, (71, ) by backward induction on t.. This inequality is true for ¢, = N,
since Vi 1. (T1,) = ¢(si.1.) = wr, (s 1,). If the inequality is true for ¢, + 1, then from the upper
Equation 0]and Equation[I0], we deduce:

E[ri(sie., ae.) + we,+1(80,6,+41)|7e.]
=E[ri(sie.,ane.) + Elwe,11(s06,+1) 8000, ane.] | 7e.]

= Y meam) (s, ane) + B [we (sneen) s ave -

ALt T te

(1D

Based on Equation 10} we could deduce Vi, (7¢,) < E[wy, (s1,¢,)|7e, = 7¢.] = wy, (s1,¢,), which
proves the induction. Since V; o(s1,0) = 71(s1,0, @1,0) = Ji,0(m, 7¢), taking the maximum over all
strategies, we deduce that V; o(s;,0) < wy,0(81,0). Since Jy(m, 7f) = E[Ti(s1,4,, a1, )Vi0(s1,0)] <
E [Ti(s1,t., a1,e. )wi0(s1,0)], taking again the maximum over all strategies, we deduce V; < w.
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2. Proof of w;, > V; ;. and w > V; when the maximum inis attained. The bellman operator
related to policy is defined as Bf% Assume the maximum in

wy. = max B (w 12
be = MAX It (Weet1), (12)

is attained for some policy m; € II;. Denote m; = (7.4, )+, >0. Then,
We,, :Bﬂc(wtc+1), i:O,...,N, (13)

which means that (wy, ), >0 satisfies the same Kolmogorov equation (Puterman, 2014) as J; ;,
with same final condition wr, = ¢ = J[”T Hence, w;, = Jl”t’ ,forall t. > 0. So w;, <
Vi.t.» where the value V;_ is obtained as the maximum over any set of strategies. Similarly, w =
E[Ti(s1,t.r are)wio(si0)] < I < Vig,-

3. Proof of w;, <V;; and w < V] in general. Assume now the maximum in is not attained.
We only assume that the r; are bounded from above, for all ¢, < N. This condition ensures that the
operators 3; ;, are well defined as operators from R to itself. Foralle > 0,¢, < N and V; € R, there
exists 7m; € II; such that

(BT, ()] (50) > Bre (W] (s0) = e, Vst € . (14)
The inequality could be extended to all possible states:
B (Vi) = B, (Vi) — €l (15)
Let m; ¢, € II; 4, such that
Bl (wio1) 2 Bug, (we,41) — €l (16)
Therefore, we could have
Bl’fltc(wtcﬂ) > wy, — €l (17)

Denote z;, = w;, + (t. — Tc)el. We have zy = wy = @ and

Bl (zt.41) = Bl (wi1) + (te + 1= To)el > wy, + (te — To)el = 2", (18)
Based on Lemma|D.4} B . is additively homogeneous. Then, we shall show the inequality 2, <

l,mi

J/'t, by backward induction on t.. Since 27, = ¢ = J|'} , the inequality holds for t. = T.. If it
holds for ¢, + 1, then

zt, < B (zte+1) < B (G 1) = Jh < Vi, (19)

where the first inequality follows from Equation [I8] the second one follows Lemma[D.3] This shows
20 < ,]]9,77r < V9. Therefore, we could deduce:

wy, =z, + (Te —te)el < Vi, + (Te — te)el, (20)

forallt, € {1,..., N}. Since we have shown this inequality for all ¢ > 0, we deduce that w;_, < Vj 4,
forallt. € {1,..., N}. Similarly w = T;,wo = Ty, 20 + Tee < Vi, + Tee, and since this holds for
all e > 0, we get w <V}, which concludes the proof.

O

This theorem establishes three fundamental results for hierarchical decision-making in coalition
formation. First, it guarantees the existence and uniqueness of optimal policies for both leader and
follower agents through a nested optimization structure. The follower’s optimal policy 7} maximizes
the collective value across all coalitions while maintaining Nash equilibrium constraints, ensuring
strategic stability within each coalition. Second, the leader’s value function follows a modified
Bellman equation that incorporates the followers’ optimal responses, creating a dynamic group
structure that accounts for the hierarchical nature of decision-making. The leader’s rewards and
state transitions are explicitly conditioned on the followers’ optimal policy, capturing the bi-level
interaction between agents. Third, the optimal leader policy emerges from maximizing the sum of
immediate rewards and future values, where future values reflect both the direct consequences of
leader actions and the induced changes in follower behavior through the state transition function
T,. Atlast, we can apply the global convergence result of policy gradient descent for finite-horizon
MDPs (Klein et al., [2024) as follows:
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Theorem D.6 ((Klein et al., [2024)’s Theorem 3.5). Let the number of iterations ep
5 2
O ((Nfg”A’> ) and let the step size be py = ==

5N2,/ep’

Then,

7T9l
P (V- Vi <) 21

2D

As a result of Theorem [D.5] given that the agent chooses the optimal Nash equilibrium in the
inner loop, the problem of finding the optimal coalition can be viewed as a single MDP M; =

(SlaAlu’]L Tl*aN - 1)

E NOTATION TABLE

Table 8: Summary of Notation

Symbol

Name

Description

Coalition Structure Generation

N
N={1,...,N}
CCN
CS ={Cy,...
TI(\)
v:2V SR
v(C8) =3 cees v(0)

7Ck}

Agent count

Agent set

Coalition

Coalition structure
Structure space
Characteristic function
Structure value

Number of agents
Set of all agents
Non-empty subset of agents

Partition of NV into & disjoint coalitions
Set of all possible coalition structures

Maps coalitions to values
Total value of coalition structure

Leader (Upper-Level) MDP

My = (S, T1, Ay, i, Hy)
S; =T(N)
sio={{1},...,{N}}
ar = (C;,C;) or @

T : Sl X Al — Sl
ri(si, i, my)

H =N-1
T, T
Qi(s1,a1;61)
Ji(m,my)

Leader MDP
State space
Initial state
Action
Transition
Reward
Horizon
Policy
Q-function
Objective

Episodic MDP for coalition formation

Coalition structures
Singleton partition

Merge two coalitions or do nothing

Deterministic merge operation

Coalition structure value difference (Eq. 1)

Maximum number of merge steps
Leader policy and optimal policy
Leader action-value function
Expected cumulative reward

Follower (Lower-Level) Game

Mf:<N75fva7Afvrfa’Yf>
Sf ESf
af:[a},...,aizv]

Ty (s'|s, ar)
rf (s5,az)
vr €(0,1)

Tf, Ty
I (mg)

QY (sr,ar;0%)

Follower game
State

Joint action
Transition
Reward
Discount factor
Policy

Return
Q-function

Cooperative Markov game
Environment state

Actions of all follower agents
Environment dynamics

Instantaneous reward for coalition C'

Follower discount factor

Follower joint policy and optimal policy

Expected discounted return for coalition C'

Follower i’s action-value function
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