
Published as a conference paper at ICLR 2024

REVERSE DIFFUSION MONTE CARLO

Xunpeng Huang∗† Hanze Dong∗†§ Yifan Hao† Yi-An Ma‡ Tong Zhang¶

† The Hong Kong University of Science and Technology
§ Salesforce AI Research
‡ University of California, San Diego
¶ University of Illinois Urbana-Champaign

ABSTRACT

We propose a Monte Carlo sampler from the reverse diffusion process. Un-
like the practice of diffusion models, where the intermediary updates—the score
functions—are learned with a neural network, we transform the score matching
problem into a mean estimation one. By estimating the means of the regularized
posterior distributions, we derive a novel Monte Carlo sampling algorithm called
reverse diffusion Monte Carlo (rdMC), which is distinct from the Markov chain
Monte Carlo (MCMC) methods. We determine the sample size from the error
tolerance and the properties of the posterior distribution to yield an algorithm that
can approximately sample the target distribution with any desired accuracy. Ad-
ditionally, we demonstrate and prove under suitable conditions that sampling with
rdMC can be significantly faster than that with MCMC. For multi-modal target
distributions such as those in Gaussian mixture models, rdMC greatly improves
over the Langevin-style MCMC sampling methods both theoretically and in prac-
tice. The proposed rdMC method offers a new perspective and solution beyond
classical MCMC algorithms for the challenging complex distributions.

1 INTRODUCTION

Recent success of diffusion models has shown great promise for the the reverse diffusion processes
in generating samples from a complex distribution (Song et al., 2020; Rombach et al., 2022). In
the existing line of works, one is given samples from the target distribution and aims to generate
more samples from the same target. One would diffuse the target distribution into a standard normal
one, and use score matching to learn the transitions between the consecutive intermediary distribu-
tions (Ho et al., 2020; Song et al., 2020). Reversing the learned diffusion process leads us back to
the target distribution. The benefit of the reverse diffusion process lies in the efficiency of conver-
gence from any complex distribution to a normal one (Chen et al., 2022a; Lee et al., 2023). For
example, diffusing a target multi-modal distribution into a normal one is not harder than diffusing
a single mode. Backtracking the process from the normal distribution directly yields the desired
multi-modal target. If one instead adopts the forward diffusion process from a normal distribution
to the multi-modal one, there is the classical challenge of mixing among the modes, as illustrated in
Figure 1. This observation motivates us to ask:

Can we create an efficient, general purpose Monte Carlo sampler from reverse diffusion processes?

For Monte Carlo sampling, while we have access to an unnormalized density function p∗(x) ∝
exp(−f∗(x)), samples from the target distribution are unavailable (Neal, 1993; Jerrum & Sinclair,
1996; Robert et al., 1999). As a result, we need a different and yet efficient method of score esti-
mation to perform the reverse SDE. This leads to the first contribution of this paper. We leverage
the fact that the diffusion process from our target distribution p∗ towards a standard normal one p∞
is an Ornstein-Uhlenbeck (OU) process, which admits explicit solutions. We thereby transform the
score matching problem into a non-parametric mean estimation one, without training a parameter-
ized diffusion model. We name this new algorithm as reverse diffusion Monte Carlo (RDMC).

∗Equal contribution. Random order.
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Figure 1: Langevin dynamics (first row) versus reverse SDE (second row). The first and second
rows depict the intermediate states of the Langevin algorithm and the reverse SDE, respectively,
illustrating the transition from a standard normal p0 to a Gaussian mixture p∗. It can be observed
that due to the local nature of the information contained in ∇ ln p∗, the Langevin algorithm tends
to get stuck in modes close to the initializations. In contrast, the reverse SDE excels at transporting
particles to different modes proportional to the target densities.

To implement RDMC and solve the aforementioned mean estimation problem, we propose two
approaches. One is to sample from a normal distribution ρt—determined at each time t by the tran-
sition kernel of the OU process—then compute the mean estimates weighted by the target p∗. This
approach translates all the computational challenge to the sample complexity in the importance sam-
pling estimator. The iteration complexity required to achieve an overall ϵ TV accuracy is O(ϵ−2),
under minimal assumptions. Another approach is to use Unadjusted Langevin Algorithm (ULA) to
generate samples from the product distribution of the target density p∗ and the normal one ρt. This
approach greatly reduces sample complexity in high dimensions, and yet is a better conditioned al-
gorithm than ULA over p∗ due to the multiplication of the normal distribution. In our experiments,
we find that a combination of the two approaches excels at distributions with multiple modes.

We then analyze the efficacy and efficiency of our RDMC method. We study the benefits of the re-
verse diffusion approach for both multi-modal distributions and high dimensional heavy-tail distri-
butions that breaks the isoperimetric properties (Gross, 1975; Poincaré, 1890; Vempala & Wibisono,
2019). In multi-modal distributions, the Langevin algorithm based MCMC approaches suffer from
an exponential cost for the need of barrier crossing, which makes mixing time extremely long. The
RDMC approach can circumvent the hurdle and solve the problem. For high-dimensional heavy-
tail distributions, our RDMC method circumvents the often-required isoperimetric properties of the
target distributions, thereby avoiding the curse of dimensionality.

Contributions. We propose a non-parametric sampling algorithm that leverages the reverse SDE of
the OU process. Our proposed approach involves estimating the score function by a mean estimation
sub-problem for posteriors, enabling the efficient generation of samples through the reverse SDE.
We focus on the complexity of the sub-problems and establish the convergence of our algorithm.
We found that our approach effectively tackles sampling tasks with ill-conditioned log-Sobolev con-
stants. For example, it excels in challenging scenarios characterized by multi-modal and long-tailed
distributions. Our analysis sheds light on the varying complexity of the sub-problems at different
time points, providing a fresh perspective for revisiting score estimation in diffusion-based models.

2 PRELIMINARIES

In this section, we begin by introducing related work from the perspectives of Markov Chain Monte
Carlo (MCMC) and diffusion models, and we discuss the connection between these works and
the present paper. Next, we provide a notation for the reverse process of diffusion models, which
specifies the stochastic differential equation (SDE) that particles follow in RDMC.

We first introduce the related works as below.

Langevin-based MCMC. The mainstream gradient-based sampling algorithms are mainly based
on the continuous Langevin dynamics (LD) for sampling from a target distribution p∗ ∝ exp(−f∗).
The Unadjusted Langevin Algorithm (ULA) discretizes LD using the Euler-Maruyama scheme and
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obtains a biased stationary distribution. Due to its simplicity, ULA is widely used in machine learn-
ing. Its convergence has been investigated for different criteria, including Total Variation (TV)
distance, Wasserstein distances (Durmus & Moulines, 2019), and Kullback-Leibler (KL) divergence
(Dalalyan, 2017; Cheng & Bartlett, 2018; Ma et al., 2019; Freund et al., 2022), in different set-
tings, such as strongly log-concave, log-Sobolev inequality (LSI) (Vempala & Wibisono, 2019), and
Poincaré inequality (PI) (Chewi et al., 2021). Several works have achieved acceleration convergence
for ULA by decreasing the discretization error with higher-order SDE, e.g., underdamped Langevin
dynamics (Cheng et al., 2018; Ma et al., 2021; Mou et al., 2021), and aligning the discretized sta-
tionary distribution to the target p∗, e.g., Metropolis-adjusted Langevin algorithm (Dwivedi et al.,
2018) and proximal samplers (Lee et al., 2021b; Chen et al., 2022b;b; Altschuler & Chewi, 2023).
Liu & Wang (2016); Dong et al. (2023) also attempt to perform sampling tasks with deterministic
algorithms whose limiting ODE is derived from the Langevin dynamics.

Regarding the convergence guarantees, most of these works have landscape assumptions for the
target distribution p∗, e.g., strong log-concavity, LSI, or PI. For more general distributions, Erdogdu
& Hosseinzadeh (2021) and Mousavi-Hosseini et al. (2023) consider KL convergence in modified
LSI and weak PI. These extensions allow for slower tail-growth of negative log-density f∗, compared
to the quadratic or even linear case. Although these works extend ULA to more general distributions,
the computational burden of ill-conditioned isoperimetry still exists, e.g., exponentially dependent
on the dimension (Raginsky et al., 2017). In this paper, we introduce another SDE to guide the
sampling algorithm, which is non-Markovian and time-inhomogeneous. Our algorithm discretizes
such an SDE and can reduce the isoperimetric and dimension dependence wrt TV convergence.

Diffusion Models and Stochastic Localization. In recent years, diffusion models have gained sig-
nificant attention due to their ability to generate high-quality samples (Ho et al., 2020; Rombach
et al., 2022). The core idea of diffusion models is to parameterize the score, i.e., the gradient of the
log-density, during the entire forward OU process from the target distribution p∗. In this condition,
the reverse SDE is associated with the inference process in diffusion models to perform unnormal-
ized sampling for intricate target distributions. Apart from conventional MCMC trajectories, the
most desirable property of this process is that, if the score function can be well approximated, it can
sample from a general distribution Chen et al. (2022a); Lee et al. (2022; 2023). This implies the
reverse SDE has a lower dependency on the isoperimetric requirement for the target distribution,
which inspires the designs of new sampling algorithms. On the other hand, stochastic localiza-
tion framework (Eldan, 2013; 2020; 2022; El Alaoui et al., 2022; Montanari, 2023) formalizes the
general reverse diffusion and discusses the relationship with current diffusion models. Along this
line, Montanari & Wu (2023) consider the unnormalized sampling for the symmetric spiked model.
However, for the properties of the general unnormalized sampling, the investigation is limited.

This work employs the backward path of diffusion models to design a sampling strategy which we
can prove to be more effective than the forward path of Langevin algorithm under suitable condi-
tions. Several other recent studies (Vargas et al., 2023a; Berner et al., 2022; Zhang et al., 2023;
Vargas et al., 2023c;b) have also utilized the diffusion path in their posterior samplers. Instead of
the closed form MC sampling approach, the above works learns an approximate score function via a
parametrized model, following the standard practice of the diffusion generative models. The result-
ing approximate distribution following the backward diffusion path is akin to the ones obtained from
variational inference, and contains errors that depend on the expressiveness of the parametric models
for the score functions. In addition, the convergence of the sampling process using such an approach
depends on the generalization error of learned score functions (Tzen & Raginsky, 2019) (See Ap-
pendix for more details). It remains open how to bound sample complexity of such approaches, due
to the need for bounding the error of the learned score function along the entire trajectory.

In contrast, RDMC proposed in this paper can be directly analyzed. Specifically, our algorithm draws
samples from the unnormalized distribution without training data and the algorithm is designed
to avoid learning based score function estimation. We are interested in the comparisons between
RDMC and conventional MCMC algorithms. Thus, we analyze the complexity to estimate the score
by drawing samples from the posterior distribution and found that our proposed algorithm is much
more efficient in certain cases when the log-Sobolev constant of the target distribution is small.

Reverse SDE in Diffusion Models. In this part, we introduce the notations and formulation of the
reverse SDE associated with the inference process in diffusion models, which will also be commonly
used in the following sections. We begin with an OU process starting from p∗ formulated as
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dxt = −xtdt+
√
2dBt, x0 ∼ p0 ∝ e−f∗ , (1)

where (Bt)t≥0 is Brownian motion and p0 is assigned as p∗. This is similar to the forward process
of diffusion models (Song et al., 2020) whose stationary distribution is N (0, I) and we can track
the random variable x at time t with density function pt.

According to Cattiaux et al. (2021), under mild conditions in the following forward process dxt =
bt(xt)dt +

√
2dBt, the reverse process also admits an SDE description. If we fix the terminal

time T > 0 and set x̃t = xT−t, for t ∈ [0, T ], the process (x̃t)t∈[0,T ] satisfies the SDE dx̃t =

b̃t(x̃t)dt+
√
2dBt,where the reverse drift satisfies the relation bt+b̃T−t = 2∇ ln pt,xt ∼ pt. In this

condition, the reverse process of Eq. (1) is as dx̃t = (x̃t + 2∇ ln pT−t(x̃t)) dt+
√
2dBt, x̃t ∼ p̃t.

Thus, once the score function ∇ ln pT−t is obtained, the reverse SDE induce a sampling algorithm.

Discretization and realization of the reverse process. To numerically solve the previous SDE,
suppose k := ⌊t/η⌋ for any t ∈ [0, T ], we approximate the score function ∇ ln pT−t with vk for
t ∈ [kη, (k + 1)η]. This modification results in a new SDE, given by

dx̃t = (x̃t + vk(x̃kη)) dt+
√
2dBt, t ∈ [kη, (k + 1)η] . (2)

Specifically, when k = 0, we set x̃0 to be sampled from p̃0, which can approximate pT .To find the
closed form of the solution by setting an auxiliary random variable as ri (x̃t, t) := x̃t,ie

−t, we have

dri(x̃t, t) =

(
∂ri
∂t

+
∂ri
∂x̃t,i

· [vk,i + x̃t,i] + Tr

(
∂2ri
∂x̃2

t,i

))
dt+

∂ri
∂x̃t,i

·
√
2dBt

=vk,ie
−tdt+

√
2e−tdBt,

where the equalities are derived by the Itô’s Lemma. Then, we set the initial value r0(x̃t, 0) = x̃t,i,
and integral on both sides of the equation. We have

x̃t+s = esx̃t + (es − 1)vk +N
(
0,
(
e2s − 1

)
Id
)
. (3)

For the specific construction of vk to approximate the score, we defer it to Section 3.

3 THE REVERSE DIFFUSION MONTE CARLO APPROACH

As shown in SDE (2), we introduce an estimator vk ≈ ∇x ln pT−t(x) to implement the reverse
diffusion. This section is dedicated to exploring viable estimators and the benefits of the reverse
diffusion process. We found that we can reformulate the score as an expectation with the transition
kernel of the forward OU process. We also derive the intuition that RDMC can reduce the isoperimet-
ric dependence of the target distribution compared with conventional Langevin algorithm. Lastly,
we introduce the detailed implementation of RDMC in real practice with different score estimators.

3.1 SCORE FUNCTION IS THE EXPECTATION OF THE POSTERIOR

We start with the formulation of ∇x ln pt(x). In general SDEs, the score functions ∇ ln pt do
not have an analytic form. However, our forward process is an OU process (SDE (1)) whose

transition kernel is given as pt|0(x|x0) =
(
2π

(
1− e−2t

))−d/2 · exp
[

−∥x−e−tx0∥2

2(1−e−2t)

]
. Such condi-

tional density presents the probability of obtaining xt = x given x0 in SDE (1). Note that
pt(x) = Ep0(x0)pt|0(x|x0), we can use the property to derive other score formulations. Bayes’
theorem demonstrates that the score can be reformulated as an expectation by the following Lemma.
Lemma 1. Assume that Eq. (1) defines the forward process. The score function can be rewritten as

∇x ln pT−t(x) = Ex0∼qT−t(·|x)
e−(T−t)x0 − x

(1− e−2(T−t))
,

qT−t(x0|x) ∝ exp

−f∗(x0)−

∥∥∥x− e−(T−t)x0

∥∥∥2

2 (1− e−2(T−t))

 .

(4)
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Algorithm 1 RDMC: reverse diffusion Monte Carlo
1: Input: Initial particle x̃0 sampled from p̃0, Terminal time T , Step size η, η′, Sample size n.
2: for k = 0 to ⌊T/η⌋ − 1 do
3: Set vk = 0;
4: Create n Monte Carlo samples to estimate

vk ≈ Ex∼qT−t

[
− x̃kη−e−(T−kη)x

(1−e−2(T−kη))

]
, where qT−t(x|x̃kη) ∝ exp

(
−f∗(x)− ∥x̃kη−e−(T−kη)x∥2

2(1−e−2(T−kη))

)
.

5: x̃(k+1)η = eηx̃kη + (eη − 1)vk + ξ where ξ is sampled from N
(
0,
(
e2η − 1

)
Id
)
.

6: end for
7: Return: x̃⌊T/η⌋η .
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Figure 2: Illustrations of pt, qt, and their log-Sobolev (LSI) constants. The target distribution p∗ is
a Gaussian mixture. We choose qt(·|x = 0) for illustration. As t increases, the modes of pt collapse
to zero rapidly, corresponding to an improving LSI constant. For qt, the barrier height of qt remains
small, resulting in a relatively large LSI constant as long as T = O(1). Thus initializing with pT
and performing RDMC reduces computation complexity for multi-modal p∗.

The proof of Lemma 1 is presented in Appendix C.1. For any t > 0, we observe that − log qT−t

incorporates an additional quadratic term. In scenarios where p∗ adheres to the log-Sobolev inequal-
ity (LSI), this term enhances qT−t’s log-Sobolev (LSI) constant, thereby accelerating convergence.
Conversely, with heavy-tailed p∗ (where f∗’s growth is slower than a quadratic function), the extra
term retains quadratic growth, yielding sub-Gaussian tails and log-Sobolev properties. Notably, as t
approaches T , the quadratic component becomes predominant, rendering qT−t strongly log-concave
and facilitating sampling. In summary, every qT−t exhibits a larger LSI constant than p∗. As t in-
creases, this constant grows, ultimately leading qT−t towards strong convexity. Consequently, this
provides a sequence of distributions with LSI constants surpassing those of p∗, enabling efficient
score estimation for ∇ ln pT−t.

From Lemma 1, the expectation formula of qT−t(·|x) can be obtained by empirical mean estima-
tor with sufficient samples from qT−t(·|x). Thus, the gradient complexity required in this sam-
pling subproblem becomes the bottleneck of our algorithm. Suppose {x(i)

k } is samples drawn from
qT−kη(·|x) when x̃kη = x for any x ∈ Rd, the construction of vk(x) in Eq. (2) can be presented as

vk(x) =
1
nk

∑nk

i=1 v
(i)
k (x) where v

(i)
k (x) = 2

(
1− e−2(T−kη)

)−1 ·
(
e−(T−kη)x

(i)
k − x

)
. (5)

3.2 REVERSE SDE VS LANGEVIN DYNAMICS: INTUITION

From Figure 1, we observe that the RDMC method deviates significantly from the conventional
gradient-based MCMC techniques, such as Langevin dynamics. It visualizes the paths from a Gaus-
sian distribution to a mixture of Gaussian distributions. It can be observed that Langevin dynamics,
being solely driven by the gradient information of the target density p∗, tends to get trapped in lo-
cal regions, resulting in uneven sampling of the mixture of Gaussian distribution. More precisely,
p∗ admits a small LSI constant due to the separation of the modes (Ma et al., 2019; Schlichting,
2019; Menz & Schlichting, 2014). Consequently, the convergence of conventional MCMC methods
becomes notably challenging in such scenarios (Tosh & Dasgupta, 2014).

To better demonstrate the effect of our proposed SDE, we compute the LSI constant estimates for
1-d case in Figure 2. Due to the shrinkage property of the forward process, the LSI constant of pt
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can be exponentially better than the original one. Meanwhile, for a T = O(1), the LSI constant of qt
is also well-behaved. In our algorithm, a well-conditioned LSI constant for both pT and qT reduces
the computation overhead. Thus, we can choose a intermediate T to connect those local modes and
perform reverse SDE towards p∗. RDMC can distribute samples more evenly across different modes
and enjoy faster convergence in those challenging cases. Moreover, if the growth rate of − log p∗ is
slower than the quadratic function (heavy tail), we can choose a large T and use p∞ to estimate pT .
Then, all − log qt have quadratic growth, which implies log-Sobolev property. These intuitions also
explain why diffusion models excel in modeling complex distributions in high-dimensional spaces.
We will provide the quantitative explanation in Section 4.

3.3 ALGORITHMS FOR SCORE ESTIMATION WITH qT−t(·|x)

According to the expectation form of scores shown in Lemma 1, a detailed reverse sampling algo-
rithm can be naturally proposed in Algorithm 1. Specifically, it can be summarized as the following
steps: (1) choose proper T and p̃0 such that pT ≈ p̃0. This step can be done by either p̃0 = p∞ for
large T or performing the ULA for pT (Algorithm 3 in Appendix); (2) sample from a distribution
that approximate qT−t (Step 4 of Algorithm 1); (3) follow p̃t with the approximated qT−t samples
(Step 5 of Algorithm 1); (4) repeat until t ≈ T . After (4), we can also perform Langevin algorithm
to fine-tune the steps when the gradient complexity limit is not reached.

The key of implementing Algorithm 1 is to estimate the scores ∇ ln pT−t via Step 4 with samples
from qT−t. In what follows, we discuss the implementation that combines the importance weight
sampling with the adjusted Langevin algorithm (ULA).

Importance weighted score estimator. We first consider importance sampling approach for esti-
mating the score ∇ ln pT−t. From Eq. (4), we know that the key is to estimate:

∇x ln pT−t(x) = Ex0∼qT−t(·|x)

[
e−(T−t)x0 − x

(1− e−2(T−t))

]
=

1

Z∗
Ex0∼ρT−t(·|x)

[
e−(T−t)x0 − x

(1− e−2(T−t))
· e−f∗(x0)

]
,

and Z∗ = Ex0∼ρT−t(·|x) [exp(−f∗(x0))] , where ρT−t(·|x) ∝ exp

(
−∥x−e−(T−t)x0∥2

2(1−e−2(T−t))

)
. Note

that sampling from ρT−t takes negligible computation resource. The main challenge is the sample
complexity of estimating the two expectations.

Since ρT−t(x0|x) is Gaussian with variance σ2
t = 1−e−2(T−t)

e−2(T−t) , we know that as long as

− x−e−(T−t)x0

(1−e−2(T−t))
· exp(−f∗(x0)) is G-Lipschitz, the sample complexity scales as N = Õ

(
σ2
t
G2

ϵ2

)
for the resulting errors of the two mean estimators to be less than ϵ (Wainwright, 2019). However,
the sample size required of the importance sampling method to achieve an overall small error is
known to scale exponentially with the KL divergence between ρT−t and qT−t (Chatterjee & Diaco-
nis, 2018), which can depend on the dimension. In our current formulation, this is due to the fact
that the true denominator Z∗ = Ex0∼ρT−t(·|x)[e

−f∗(x0)] can be as little as exp(−d). As a result, to
make the overall score estimation error small, the error tolerance and in turn the sample size required
for estimating Z∗ can scale exponentially with the dimension.

ULA score estimator. An alternative score estimator considers that the mean of the underly-
ing distribution q′T−t(·|x) of these samples needs to sufficiently approach qT−t(·|x), which can
be achieved by closing the gap of KL divergence or Wasserstein distance between q′T−t(·|x) and
qT−t(·|x). Since the additional quadratic term shown in Eq. (4) helps improve a quadratic tail
growth for qT−t(·|x), which implies the establishment of the isoperimetric condition. We expect
the convergence can be achieved by performing the ULA on a sampling subproblem whose target
distribution is qT−t(·|x). We provide the detailed implementation in Algorithm 2.

ULA score estimator with importance sampling initialization. Inspired by the previous esti-
mators, we can combine the importance sampling approach with the ULA. In particular, we first
implement the importance sampling method to form a rough score estimator. We then perform ULA
at the mean estimator and obtain a refined accurate score estimate. Via this combination, we are
able to efficiently obtain accurate score estimation by virtue of the ULA algorithm when t is close
to T . When t is close to 0, we are able to quickly obtain rough score estimates via the importance
sampling approach. We discover empirically that this combination generally perform well when t
interpolates the two regimes (Figure 3 in Section 4).
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Algorithm 2 ULA inner-loop for the qt(·|x) sampler (Step 4 of Algorithm 1)

1: Input: Condition x and time t, Sample size n, Initial particles {xi
0}ni=1, Iters K, Step size η.

2: for k = 1 to K do
3: for i = 1 to n do
4: xi

k = xi
k−1 − η

(
∇f∗(x

i
k−1) +

e−t(e−txi
k−1−x)

1−e−2t

)
+

√
2ηξk, where ξk ∼ N (0, Id)

5: end for
6: end for
7: Return: {xi

K}ni=1 .

4 ANALYSES AND EXAMPLES OF THE RDMC APPROACH

In this section, we analyze the overall complexity of the RDMC via ULA inner loop estimation.
Since the complexity of the importance sampling estimate is discussed in Section 3.3, we only
consider Algorithm 1 with direct ULA sampling of qT−t(·|x) rather than the smart importance
sampling initialization to make our analysis clear.

To provide the analysis of the convergence of RDMC, we make the following assumptions.
[A1] For all t ≥ 0, the score ∇ ln pt is L-Lipschitz.

[A2] The second moment of the target distribution p∗ is upper bounded, i.e., Ep∗

[
∥·∥2

]
= m2

2.

These assumptions are standard in diffusion analysis to guarantee the convergence to the target dis-
tribution (Chen et al., 2022a). Specifically, Assumption [A1] governs the smoothness characteristics
of the forward process, which ensure the feasibility of numerical discretization methods used for
approximating the solution of continuous SDE. In addition, Assumption [A2] introduces essential
constraints on the moments of the target distribution. These constraints effectively prevent an ex-
cessive accumulation of probability mass in the tail region, thereby ensuring a more balanced and
well-distributed target distribution.

4.1 OUTER LOOP COMPLEXITY

According to Algorithm 1, the overall gradient complexity depends on the number of outer loops
k, as well as the complexity to achieve accurate score estimations (Line 5 in Algorithm 1). When
the score is well-approximated and satisfies EpT−kη

[
∥vk −∇ ln pT−kη∥2

]
≤ ϵ2, the overall error

in TV distance, DTV(p∗, p̃T ), can be made Õ(ϵ) by choosing a small η. Under this condition, the
number of outer loops satisfies k = Ω(L2dϵ−2), which shares the same complexity as that in diffu-
sion analysis (Chen et al., 2022a; Lee et al., 2022; 2023). Such a complexity of the score estimation
oracles is independent of the log-Sobolev (LSI) constant of the target density p∗, which means that
the isoperimetric dependence of RDMC is dominated by the subproblem of sampling from qT−t.
Specifically, the following theorem demonstrates the conditions for achievingDTV(p∗, p̃T ) = Õ(ϵ).
Theorem 1. For any ϵ > 0, assume that DKL(pT ∥p̃0) < ϵ for some T > 0, p̂ as suggested in
Algorithm 1, η = C1(d + m2

2)
−1ϵ2. If the OU process induced by p∗ satisfies Assumption [A1],

[A2], and qT−kη satisfies the log-Sobolev inequality (LSI) with constant µk (kη ≤ T ). We set

nk = 64Tdµ−1
k η−3ϵ−2δ−1, Ek = 2−13 · T−4d−2µ2

kη
8ϵ4δ4 (6)

where nk is the number of samples to estimate the score, and Ek is the KL error tolerence for the
inner loop. With probability at least 1− δ, Algorithm 1 converges in TV distance with Õ(ϵ) error.
Therefore, the key points for the convergence of RDMC can be summarized as

• The LSI of target distributions of sampling subproblems, i.e., qT−kη is maintained.
• The initialization of the reverse process p̃0 is sufficiently close to pT .

4.2 OVERALL COMPUTATION COMPLEXITY

In this section, we consider the overall computation complexity of RDMC. Note that the LSI con-
stants of qT−kη depend on the properties of p∗. As a result we consider more specific assumptions
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that bound the LSI constants for qT−kη . In particular, we demonstrate the benefits of using qT−kη for
targets p∗ with infinite or exponentially large LSI constants. Compared with ULA, RDMC improves
the gradient complexity, due to the improved LSI constant of qT−kη over that of p∗ in finite T . Even
for heavy-tailed p∗ that does not satisfy the Poincaré inequality, target distributions of sampling
subproblems, i.e., qT−kη , can still preserve the LSI property, which helps RDMC to alleviate the
exponential dimension dependence of gradient complexity for achieving TV distance convergence.

Specifically, Section 4.2.1 consider the case that the LSI constant of p∗ depend on the radius R
exponentially, which can usually be found in mixture models. Our proposed RDMC can reduce the
exponent by a factor. Section 4.2.2 consider the case that p∗ is not LSI, but RDMC can create an
LSI subproblem sequence which makes the dimension dependency polynomial.

We first provide an estimate for the LSI constant of qt under general Lipschitzness assumption [A1].
Lemma 2. Under [A1], the LSI constant for qt in the forward OU process is e−2t

2(1−e−2t) when 0 ≤
t ≤ 1

2 ln
(
1 + 1

2L

)
. This estimation indicate that when quadratic term dominate the log-density of

qt, the log-Sobolev property is well-guaranteed.

4.2.1 IMPROVING THE LSI CONSTANT DEPENDENCE FOR MIXTURE MODELS

Apart from Assumption [A1], [A2], we study the case where p∗ satisfies the following assumption:
[A3] There exists R > 0, such that f∗(x) is m-strongly convex when ∥x∥ ≥ R.

In this case, the target density p∗ admits an LSI constant which scales exponentially with the radius
of the region of nonconvexity R, i.e., m

2 exp(−16LR2), as shown in (Ma et al., 2019). This implies
that if we draw samples from p∗ with ULA, the gradient complexity will have exponential depen-
dency with respect to R2. However, in RDMC with suitable choices of T = O(logR) and p̃0, the
exponential dependency on R is removed, which is a bottleneck for mixture models.

In the Proposition 1 below, we select values of T and p̃0 to achieve the desired level of accuracy.
Notably, Lemma 2 suggest that we can choose a O(1) termination time to make the LSI constant
of qt well-behehaved and pT is much simpler than p0. That is to say, RDMC can exhibit lower
isoperimetric dependency compared to conventional MCMC techniques. Thus, We find that the
overall computation complexity of RDMC reduces the dependency on R.
Proposition 1. Assume that the OU process induced by p∗ satisfies [A1], [A2], [A3]. We estimate
pT with p̃0 by ULA, where the iterations wrt LSI constant is Ω

(
m−1 exp(16LR2e−2T − 2T )

)
. For

any ϵ > 0 and T ≤ 1
2 ln

(
1 + 1

2L

)
, the Algorithm 1 from p̃0 to target distribution convergence with

a probability at least 1− δ and total gradient complexity Ω (poly(ϵ, δ)) independent of R.
Example: Gaussian Mixture Model. We consider an example that

p∗(x) ∝ exp

(
−1

2
∥x∥2

)
+ exp

(
−1

2
∥x− y∥2

)
, y ≫ 1.

The LSI constant is Θ(e−C0∥y∥2

) (Ma et al., 2019; Schlichting, 2019; Menz & Schlichting, 2014),
corresponding to the complexity of the target distribution. Tosh & Dasgupta (2014) prove that the
lower bound iteration complexity by MCMC-based algorithm to sample from the Gaussian mixture
scales exponentially with the squared distance ∥y∥2 between the two modes: Ω(exp(∥y∥2/8)).
Note that RDMC is not a type of conventional MCMC. With importance sampling score estimator,
the Õ(ϵ−2) iteration complexity and Õ(ϵ−2) samples at each step, the TV distance converges with
Õ(ϵ) error (Appendix B).

The computation overhead of the outer-loop process does not depend on y. For the inner-loop score
estimation we can choose T = 1

2 log
3
2 to make the LSI constant of qt to be O(1). We can perform

ULA to initialize pT , which reduces the barrier between modes significantly. Specifically, the LSI
constant of pT is Θ(e−C0∥e−T y∥2

), which improves the dependence on ∥y∥2 by a e−2T = 2
3 factor.

Since this factor is on the exponent, the reduction is exponential.

Figure 3 is a demonstration for this example. We choose different r to represent the change of R in
[A3]. We compare the convergence of Langevin Monte Carlo (LMC), Underdamped LMC (ULMC)
and RDMC in terms of gradient complexity. As r increases, we find that LMC fails to converge
within a limited time. ULMC, with the introduction of velocity, can alleviate this situation. Notably,
our algorithm can still ensure fast mixing for large r. The inner loop is initialized with importance
sampling mean estimator. Hyper-parameters and more results are provided in Appendix F.
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Figure 3: Maximum Mean Discrepancy (MMD) convergence of LMC, ULMC, RDMC. First row
shows different target distributions, with increasing mode separation r and barrier heights, leading
to reduced log-Sobolev (LSI) constants. Second row displays the algorithms’ convergence, revealing
RDMC’s pronounced advantage convergence compared to ULMC/LMC, especially for large r.

4.2.2 IMPROVING THE DIMENSION DEPENDENCE IN HEAVY-TAILED TARGET DISTRIBUTIONS

In this subsection, we study the case where p∗ satisfies Assumption [A1], [A2], and

[A4] For any r > 0, we can find someR(r) satisfying f∗(x)+r ∥x∥2 is convex for ∥x∥ ≥ R(r).
Without loss of generality, we suppose R(r) = cR/r

n for some n > 0, cR > 0.
Assumption [A4] can be considered as a soft version of [A3]. Specifically, it permits the tail growth
of the negative log-density f∗ to be slower than quadratic functions. This encompasses certain target
distributions that fall outside the constraints of LSI and PI. Furthermore, given that the additional
quadratic term present in Eq. (4) dominates the tail, qT−kη satisfies LSI for all t > 0.

Lemma 3. Under [A1], [A4], the LSI constant for qt in the forward OU process is e−2t

6(1−e−2t) ·

e
−16·3L·R2

(
e−2t

6(1−e−2t)

)
for any t ≥ 0. The tail property guarantees a uniform LSI constant.

The uniform bound on the LSI constant enables us to estimate the score for any pt. We can consider
cases that are free from the constraints on the properties of pT and let T be sufficiently large. By
setting T at Õ(ln 1/ϵ) level, we can approximate pT with p∞ — the stationary distribution of the
forward process. Furthermore, since qt are log-Sobolev, we can perform RDMC to sample from
heavy-tailed p∗ in the absence of a log-Sobolev inequality. The explicit computational complexity
of RDMC, needed to converge to any specified accuracy, is detailed in the subsequent proposition.
Proposition 2. Assume that the target distribution p∗ satisfies Assumption [A1], [A2], and [A4].
We take p∞ to be p̃0. For any ϵ > 0, by performing Algorithm 1 with ULA inner loop and hyper-
parameters in Theorem 1, with a probability at least 1 − δ, we have DTV (p̃t, p∗) ≤ Õ(ϵ) with
Ω
(
d18ϵ−16n−83δ−6 exp

(
ϵ−16n

))
gradient complexity.

Example: Potentials with Sub-Linear Tails. We consider an example that

p∗(x) ∝ exp
(
−
(
∥x∥2 + 1

)a)
where a ∈ (0, 0.5).

Lemma 5 demonstrates that this p∗ satisfies Assumption [A4] with n = (2− 2a)−1 ≤ 1. Moreover,
these target distributions with sub-linear tails also satisfy weak Poincare inequality (wPI) introduced
in Mousavi-Hosseini et al. (2023), in which the dimension dependence of ULA to achieve the con-
vergence in TV distance is proven to be Ω̃(d4a

−1+3). Compared with this result, the complexity of
RDMC shown in Proposition 2 has a lower dimension dependence when a ≤ 4/15.

Conclusion. This paper presents a novel sampling algorithm based on the reverse SDE of the OU
process. The algorithm efficiently generates samples by utilizing the mean estimation of a sub-
problem to estimate the score function. It demonstrates convergence in terms of total variation
distance and proves efficacy in general sampling tasks with or without isoperimetric conditions. The
algorithm exhibits lower isoperimetric dependency compared to conventional MCMC techniques,
making it well-suited for multi-modal and high-dimensional challenging sampling. The analysis
provides insights into the complexity of score estimation within the OU process, given the condi-
tional posterior distribution.
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A PROOF SKETCH

For better understanding for our paper, we provide a proof sketch as below.

Lemma 1 is a direct result of Bayes theorem (Appendix C.1), which is the main motivation of our
algorithm, that estimate the score with samples from q.

Our main contribution is to prove the convergence and evaluate the complexity of Algorithm 1,
where the inner loop is performed by Algorithm 2.

Our analysis is based on the TV distance1, where we use data-processing inequality, triangle in-
equality, and Pinsker’s inequality (refer to Eq. (19) for details) to provide the upper bound as below

DTV (p̃T , p∗) ≤
√

1

2
DKL (p̃0∥pT )︸ ︷︷ ︸
Term 1

+

√
1

2
DKL

(
P̂T

∥∥P̃ pT

T

)
︸ ︷︷ ︸

Term 2

,

where Term 1 is the error between p̃0 and pT and Team 2 is the score estimation loss of the whole
trajectory.

Theorem 1 considers the case that all qT−kη is log-Sobolev with constant µk (kη ≤ T ), where the
log-Sobolev constants can further be estimated with additional assumptions on p∗.

By definition,

2(Term 2)2 =

N−1∑
k=0

∫ (k+1)η

kη

EP̂T

[
1

4
· ∥vk(xkη)− 2∇ ln pT−t(xt)∥2

]
dt,

where Term 2 is defined by an integration.

To bound the error between integration and discretized algorithm, we have Lemma 7 that when
η = O(ϵ2)

1

4
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−t(xt)∥2

]
≤ 4ϵ2 +

1

2
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
︸ ︷︷ ︸

ϵscore

(7)
Note that the ϵscore can be controlled by

2

∥∥∥∥∥vk(x)− 2Ex′
0∼q′T−kη(·|x)

[
−x− e−(T−kη)x′

0(
1− e−2(T−kη)

)]∥∥∥∥∥
2

︸ ︷︷ ︸
Term 2.1

and

2

∥∥∥∥ 2e−(T−kη)

1− e−2(T−kη)

[
Ex′

0∼q′T−kη(·|x)[x
′
0]− Ex0∼qT−kη(·|x)[x0]

]∥∥∥∥2︸ ︷︷ ︸
Term 2.2

,

where q′ is the estimated inner loop distribution by ULA.

Lemma 8 provide the concentration for Term 2.1.

We also have
Term 2.2 ≤ 8η−2C−1

LSI,kDKL

(
q′T−kη(·|x)∥qT−kη(·|x)

)
,

where the KL divergence is controlled by the convergence of ULA (Lemma 9). Thus, the desired
convergence can be obtained.

Note that Theorem 1 is based on the fact that all qT−kη are log-Sobolev. So we aim to estimate the
log-Sobolev constants for every qT−kη .

Lemma 2 and 3 provide two approaches to estimate the log-Sobolev constant for different time steps.

1Please refer to Table 1 for the notation definitions.
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When p∗ is strongly convex outside a ball with radius R, we can derive that pT can reduce the
radius so that improve the log-Sobolev constant. Thus, we can choose proper T where pT has larger
log-Sobolev constant than p0 and qt are strongly convexity so that the log-Sobolev constants are
independent of R, which makes the algorithm mix fast.

For more general distributions without log-Sobolev constant, Lemma 10 provide the log-Sobolev
constant the whole trajectory, so that the computation complexity can be obtained.

B NOTATIONS AND DISCUSSIONS

B.1 ALGORITHM

Algorithm 3 Initialization of p̂ if p̂ ̸= p∞
1: Input: Initial particle x0, OU process terminate time T , Iters T0, Step size η0, Sample size n.
2: for k = 1 to T0 do
3: Create nk Monte Carlo samples to estimate

Ex∼qt

[
−xk−1 − e−Tx

(1− e−2T )

]
, s.t. qt(x|xk−1) ∝ exp

(
−f∗(x)−

∥∥xk−1 − e−Tx
∥∥2

2 (1− e−2T )

)
.

4: Compute the corresponding estimator vk.
5: xk = xk−1 + η0vk +

√
2η0ξ where ξ is sampled from N (0, Id).

6: end for
7: Return: xT0

.

B.2 NOTATIONS

According to Cattiaux et al. (2021), under mild conditions in the following forward process dxt =
bt(xt)dt +

√
2dBt, the reverse process also admits an SDE description. If we fix the terminal

time T > 0 and set x̂t = xT−t, for t ∈ [0, T ], the process (x̂t)t∈[0,T ] satisfies the SDE dx̂t =

b̂t(x̂t)dt +
√
2dBt, where the reverse drift satisfies the relation bt + b̂T−t = 2∇ ln pt,xt ∼ pt. In

this condition, the reverse process of SDE (1) is as follows

dx̂t = (x̂t + 2∇ ln pT−t(x̂t)) dt+
√
2dBt. (8)

Thus, once the score function ∇ ln pT−t is obtained, the reverse SDE induce a sampling algorithm.
To obtain the particles along SDE (8), the first step is to initialize the particle with a tractable starting
distribution. In real practice, it is usually hard to sample from the ideal initialization pT directly due
to its unknown properties. Instead, we sample from an approximated distribution p̂. For large T ,
p∞ is chosen for approximating pT as their gap can be controlled. For the iteration, we utilize the
numerical discretization method, i.e., DDPM Ho et al. (2020), widely used in diffusion models’
literature. Different from ULA, DDPM divides SDE (8) by different time segments, and consider
the following SDE for each segment

dx̄t = (x̄t + 2∇ ln pT−kη(x̄kη)) dt+
√
2dBt, t ∈ [kη, (k + 1)η] , x̄0 ∼ pT (9)

to discretize SDE (8). Suppose we obtain vk to approximate 2∇ ln pT−kη at each iteration. Then,
we obtain the SDE 2 for practical updates of particles.

Reiterate of Algorithm 1 Once the score function can be estimated, the sampling algorithm can
be presented. The detailed algorithm is described in Algorithm 1. By following these steps, our
proposed algorithm efficiently addresses the given problem and demonstrates its effectiveness in
practical applications. Specifically, we summarize our algorithm as below: (1) choose proper T and
proper p̂ such that pT ≈ p̂. This step can be done by either p̂ = p∞ for large T or performing the
Langevin Monte Carlo for pT ; (2) sample from p̂; (3) sample from a distribution that approximate
qT−t; (4) update p̃t with the approximated qT−t samples. This step can be done by Langevin Monte
Carlo inner loop, as ∇ log qT−t is explicit; (5) repeat (3) and (4) until t ≈ T . After (5), we can also
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Constant Value Constant Value

C0 DKL (p0∥p∞) C1 2−16 · L−2

C2 48L · 62n · 2−8n · C8n
0 C3 64 · C0C

−3
1 C6

C4 2−13 · C−4
0 C8

1C
−2
6 C5 28 · 34 · 52L2 · C2C

−1
4 C2

6 ln
(
2−4L2C4

0C
−1
4 C6

)
C6 6 · 2−4 · C4

0 C′
5 222 · 34 · 5 · L−2C4

0C
−8
1 ln

(
28

L
· C8

0C
−8
1

)
C′

3 64L−1 · C0C
−3
1

Table 2: Constant List

perform Langevin algorithm to fine-tune the steps when the gradient complexity limit is not reached.
The main algorithm as Algorithm 1.

Here, we reiterate our notation in Table 1 and the definition of log-Sobolev inequality as follows.

Definition 1. (Logarithmic Sobolev inequality) A distribution with density function p satisfies the
log-Sobolev inequality with a constant µ > 0 if for all smooth function g : Rd → R with Ep[g

2] <
∞,

Ep∗

[
g2 ln g2

]
− Ep∗

[
g2
]
lnEp∗

[
g2
]
≤ 2

µ
Ep∗

[
∥∇g∥2

]
. (10)

Table 1: Notation List
Symbols Description

φσ2 The density function of the centered Gaussian distribution, i.e., N
(
0, σ2I

)
.

p∗, p0 The target density function (initial distribution of the forward process)

(xt)t∈[0,T ] The forward process, i.e., SDE (1)
pt The density function of xt, i.e., xt ∼ pt
p∞ The density function of stationary distribution of the forward process.

(x̂t)t∈[0,T ] The ideal reverse process, i.e., SDE (8)
p̂t The density function of x̂t, i.e., x̂t ∼ p̂t and pt = p̂T−t

P̂T The law of the ideal reverse process SDE (8) over the path space C
(
[0, T ];Rd

)
.

(x̄t)t∈[0,T ] The reverse process following from SDE (9)
p̄t The density function of x̄t, i.e., x̄t ∼ p̄t

(x̃t)t∈[0,T ] The practical reverse process following from SDE (2) with initial distribution q
p̃t The density function of x̃t, i.e., x̃t ∼ p̃t
P̃T The law of the reverse process (x̃t)t∈[0,T ] over the path space C

(
[0, T ];Rd

)
.

(x̃pT

t )t∈[0,T ] The reverse process following from SDE (2) with initial distribution pT
p̃pT

t The density function of x̃t, i.e., x̃pT

t ∼ p̃pT

t

P̃ pT

T The law of the reverse process (x̃pT

t )t∈[0,T ] over the path space C
(
[0, T ];Rd

)
.

Besides, there are many constants used in our proof. We provide notations here to prevent confusion.

B.3 EXAMPLES

Lemma 4. (Proof of the Gaussian Mixture example) The iteration and sample complexity of rdMC
with importance sampling estimator is O(ϵ−2).
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Proof. Similar to Eq. (19) in Theorem 1, we have

DTV (p̃T , p∗) ≤
√

1

2
DKL (p̃0∥pT )︸ ︷︷ ︸
Term 1

+

√
1

2
DKL

(
P̂T

∥∥P̃ pT

T

)
︸ ︷︷ ︸

Term 2

. (11)

by using data-processing inequality, triangle inequality, and Pinsker’s inequality.

To ensure Term 1 controllable, we choose T = 2 ln DKL(p∗∥p∞)
2ϵ2 .

For Term 2,

DKL

(
P̂T

∥∥P̃ pT

T

)
= EP̂T

[
ln

dP̂T

dP̃ pT

T

]
=
1

4

N−1∑
k=0

EP̂T

[∫ (k+1)η

kη

∥vk(xkη)− 2∇ ln pT−t(xt)∥2 dt

]

=

N−1∑
k=0

∫ (k+1)η

kη

EP̂T

[
1

4
· ∥vk(xkη)− 2∇ ln pT−t(xt)∥2

]
dt,

By Lemma 7,
1

4
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−t(xt)∥2

]
≤ 4ϵ2 +

1

2
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
︸ ︷︷ ︸

ϵscore

(12)

Thus, the iteration complexity of the RDS algorithm is Õ(ϵ−2) when the score estimator L2 error is
Õ(ϵ), which is controlled by concentration inequalities.

For time t, since we have DKL(p̃T−t∥pT−t) ≤ ϵ and pT−t is sub-Gaussian, the density p̃T−t is also
sub-Gaussian with variance σ′2

t .

We have
P(|x− Ex| >

√
2σ′

t ln(3/δ)) ≤
δ

3

For Gaussian mixture model, exp(−f∗(x0)) is 2-Lipschitz and function f∗ is 1-Lipschitz smooth,
− x−e−(T−t)x0

(1−e−2(T−t))
· exp(−f∗(x0)) is Gx,t-Lipschitz.

For time t, the variance is σ2
t = 1−e−2(T−t)

e−2(T−t) .

Assume that the expectation and the estimator of − x−e−(T−t)x0

(1−e−2(T−t))
· exp(−f∗(x0)) is µX and X . The

expectation and the estimator of exp(−f∗(x0)) is µY and Y

P(|X − µX | > ϵ) ≤ exp

(
− nϵ2

2σ2
tG

2
x,t

)

P(|Y − µY | > ϵ) ≤ exp

(
−nϵ2

8σ2
t

)
We choose x+ = Ex+

√
2σ′

t ln(3/δ), G = Gx+,t.

If n = max(G2, 4)σ2
t ϵ

−2 ln(3δ−1), with probability 1− δ, the error of the estimator is at most ϵ.

Moreover, if we choose the inner loop iteration to estimate the posterior. We can start from some
T > 0, and estimate pT initially.

Specifically, for the Gaussian mixture, we can get a tighter log-Sobolev bound. For time t, we
have pt ∝ e−

1
2∥x∥

2

+ e−
1
2∥x−e−ty∥2

, which indicate the log-Sobolev constant, C−1
LSI,y,t ≤ 1 +

1
4 (e

∥e−ty∥2

+ 1). Considering the smoothness, we have∣∣∣∣ d2dx2
log p(x)

∣∣∣∣ =
∣∣∣∣∣−1 +

(
− ex

2

(ex2/2 + e1/2(x−y)2)2
+

ex
2/2

(ex2/2 + e1/2(x−y)2)

)
y2

∣∣∣∣∣ ≤ 1.
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When we choose T = − 1
2 log

2L
2L+1 = 1

2 log
3
2 , The estimation of pT needs O(e

2
3y

2

) iterations,

which improves the original O(ey
2

).

Lemma 5. Suppose the negative log density of target distribution f∗ = − ln p∗ satisfies

f∗(x) =
(
∥x∥2 + 1

)a
where a ∈ [0, 0.5].

Proof. Consider the Hessian of f∗, we have

∇2f∗(x) = 2a · (x2 + 1)a−2 ·
(
(2a− 1)x2 + 1

)
.

If we require |x| ≥ r−1/(2−2a), it has

|x| ≥ r−1/(2−2a) ⇒ |x|2−2a ≥ r−1 ⇔ r ≥ |x|2

|x|4−2a

⇒ r

a
≥ (1− 2a)|x|2 − 1

(|x|2 + 1)2−a
⇒ 2a · (x2 + 1)a−2 ·

(
(2a− 1)x2 + 1

)
+ 2r = ∇2(f∗(x) + r|x|2) ≥ 0.

It means if we choose CR = 1 and n = 1/(2− 2a)

B.4 MORE DISCUSSION ABOUT PREVIOUS WORKS

Recent studies have underscored the potential of diffusion models, exploring their integration across
various domains, including approximate Bayesian computation methods. One line of research (Var-
gas et al., 2023a; Berner et al., 2022; Zhang et al., 2023; Vargas et al., 2023c;b) involves applying
reverse diffusion in the VI framework to create posterior samplers by neural networks. These stud-
ies have examined the conditional expected form of the score function, similar to Lemma 1. Such
score-based VI algorithms have shown to offer improvements over traditional VI. However, upon
adopting a neural network estimator, VI-based algorithms are subject to an inherent unknown error.

Other research (Tzen & Raginsky, 2019; Chen et al., 2022a) has also delved into the characteristics
of parameterized diffusion-like processes under assumed error conditions. Yet, the comparative ad-
vantages of diffusion models against MCMC methods and the computational complexity involved in
learning the score function are not well-investigated. This gap hinders a straightforward comparison
with Langevin-based dynamics.

Another related work is the Schrödinger-Föllmer Sampler (SFS) (Huang et al., 2021), which also
tend to estimate the drift term with non-parametric estimators. The main difference of the proposed
algorithm is that SFS leverages Schrödinger-Föllmer process. In this process, the target distribution
p∗ is transformed into a Dirac delta distribution. This transformation often results in the gradient
∇ log pt becoming problematic when pt closely resembles a delta distribution, posing challenges for
maintaining the Lipschitz continuity of the drift term. Huang et al. (2021); Tzen & Raginsky (2019)
note that the assumption holds when both p∗ exp(∥x∥2/2) and its gradient are Lipschitz continuous,
and the former is bounded below by a positive value. However, this condition may not be met
when the variance of p∗ exceeds 1, limiting its general applicability in the Schrödinger-Föllmer
process. The comparison of SFS with traditional MCMC methods under general conditions remains
an open question. However, given that the p∞ of the OU process represents a smooth distribution
– a standard Gaussian, the requirement for the Lipschitz continuity of ∇pt is much weaker, as
diffusion analysis suggested (Chen et al., 2022a; 2023). Additionally, Lee et al. (2021a) indicated
that L-smoothness in log-concave p∗ implies the smoothness in pt. Moreover, the SFS algorithm
considers the importance sampling estimator and the error analysis is mainly based on the Gaussian
mixture model. As we mentioned in our Section 3.3, importance sampling estimator would suffer
from curse of dimensionality in real practice. Our ULA-based analysis can be adapted to more
general distributions for both ill-behaved LSI and non-LSI distributions. In a word, our proposed
RDMC provide the complexity for general distributions and SFS is more task specific. It remains
open to further investigate the complexity for SFS-like algorithm, which can be interesting future
work. Moreover, it is also possible to adapt the ULA estimator idea to SFS.

Our approach, stands as an asymptotically exact sampling algorithm, akin to traditional MCMC
methods. It allows us to determine an overall convergence rate that diminishes with increasing
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computational complexity, enabling a direct comparison of complexity with MCMC approaches.
The main technique of our algorithm is to analyze the complexity of the score estimation with non-
parametric algorithm and we found the merits of the proposed one compared with MCMC. Our
theory can also support the diffusion-based VI against Langevin-based ones.
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C MAIN PROOFS

C.1 PROOF OF LEMMA 1

Proof. When the OU process, i.e., Eq. 1, is selected as our forward path, the transition kernel of
(xt)t≥0 has a closed form, i.e.,

p(x, t|x0, 0) =
(
2π
(
1− e−2t

))−d/2 · exp

[
−∥x− e−tx0∥

2

2 (1− e−2t)

]
, ∀ 0 ≤ t ≤ T.

In this condition, we have

pT−t(x) =

∫
Rd

p0(x0) · pT−t|0(x|x0)dx0

=

∫
Rd

p0(x0) ·
(
2π
(
1− e−2(T−t)

))−d/2

· exp

[
−
∥∥x− e−(T−t)x0

∥∥2
2
(
1− e−2(T−t)

) ]
dx0

Plugging this formulation into the following equation

∇x ln pT−t(x) =
∇pT−t(x)

pT−t(x)
,

we have

∇x ln pT−t(x) =

∇
∫
Rd p0(x0) ·

(
2π
(
1− e−2(T−t)

))−d/2 · exp
[
−∥x−e−(T−t)x0∥2

2(1−e−2(T−t))

]
dx0∫

Rd p0(x0) ·
(
2π
(
1− e−2(T−t)

))−d/2 · exp
[
−∥x−e−(T−t)x0∥2

2(1−e−2(T−t))

]
dx0

=

∫
Rd p0(x0) · exp

(
−∥x−eT−tx0∥2

2(1−e−2(T−t))

)
·
(
− x−e−(T−t)x0

(1−e−2(T−t))

)
dx0∫

Rd p0(x0) · exp
(

−∥x−e−(T−t)x0∥2

2(1−e−2(T−t))

)
dx0

=Ex0∼qT−t(·|x)

[
−x− e−(T−t)x0(

1− e−2(T−t)
)]

(13)

where the density function qT−t(·|x) is defined as

qT−t(x0|x) =
p0(x0) · exp

(
−∥x−eT−tx0∥2

2(1−e−2(T−t))

)
∫
Rd p0(x0) · exp

(
−∥x−eT−tx0∥2

2(1−e−2(T−t))

)
dx0

∝ exp

(
−f∗(x0)−

∥∥x− e−(T−t)x0

∥∥2
2
(
1− e−2(T−t)

) ) .
Hence, the proof is completed.

C.2 PROOF OF LEMMA 2 AND 3

Lemma 6. (Proposition 1 in Ma et al. (2019)) For p∗ ∝ e−U , where U ism-strongly convex outside
of a region of radius R and L-Lipschitz smooth, the log-Sobolev constant of p∗

ρU ≥ m

2
e−16LR2

.

Proof. By Lemma 6, for any t = T − kη, we have the LSI constant of qT−kη satisfies

CLSI,k ≥ e−2(T−kη)

6(1− e−2(T−kη))
exp

(
−16 · 3L ·R2

(
e−2(T−kη)

6(1− e−2(T−kη))

))
.

When 2L
1+2L ≤ e−2(T−kη) ≤ 1. We have

−L+
e−2(T−kη)

2
(
1− e−2(T−kη)

) ≥ 0,
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which implies

Σk,maxI :=
3e−2(T−kη)

2
(
1− e−2(T−kη)

) · I ⪰ ∇2gT−kη(x) ⪰
e−2(T−kη)

2
(
1− e−2(T−kη)

) · I := Σk,minI.

(14)
Due to the fact that gT−kη is Σk,min-strongly convex, Σk,max-smooth and Lemma 20, we have
CLSI,k ≥ Σk,min.

C.3 PROOF OF MAIN THEOREM

Proof. We have

DTV (p̃T , p∗) ≤DTV

(
P̃T , P̂T

)
≤ DTV

(
P̃T , P̃

pT

T

)
+DTV

(
P̃ pT

T , P̂T

)
≤DTV (p̃0, pT ) +DTV

(
P̃ pT

T , P̂T

)
≤
√

1

2
DKL (p̃0∥pT )︸ ︷︷ ︸
Term 1

+

√
1

2
DKL

(
P̂T

∥∥P̃ pT

T

)
︸ ︷︷ ︸

Term 2

,

(15)
where the first and the third inequalities follow from data-processing inequality, the second inequal-
ity follows from the triangle inequality, and the last inequality follows from Pinsker’s inequality.

For Term 2,

DKL

(
P̂T

∥∥P̃ pT

T

)
= EP̂T

[
ln

dP̂T

dP̃ pT

T

]
=
1

4

N−1∑
k=0

EP̂T

[∫ (k+1)η

kη

∥vk(xkη)− 2∇ ln pT−t(xt)∥2 dt

]

=

N−1∑
k=0

∫ (k+1)η

kη

EP̂T

[
1

4
· ∥vk(xkη)− 2∇ ln pT−t(xt)∥2

]
dt,

By Lemma 7,

1

4
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−t(xt)∥2

]
≤ 4ϵ2 +

1

2
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
︸ ︷︷ ︸

ϵscore

(16)

According to Eq. 4, for each term of the summation, we have

EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
=EP̂T

∥∥∥∥∥vk(xkη)− 2Ex0∼qT−kη(·|xkη)

[
−xkη − e−(T−kη)x0(

1− e−2(T−kη)
) ]∥∥∥∥∥

2
 .
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For each xkη = x, we have∥∥∥∥∥vk(x)− 2Ex0∼qT−kη(·|x)

[
−x− e−(T−kη)x0(

1− e−2(T−kη)
)]∥∥∥∥∥

2

=

∥∥∥∥∥vk(x)− 2Ex′
0∼q′T−kη(·|x)

[
−x− e−(T−kη)x′

0(
1− e−2(T−kη)

)]

+
2e−(T−kη)

1− e−2(T−kη)

[
Ex′

0∼q′T−kη(·|x)[x
′
0]− Ex0∼qT−kη(·|x)[x0]

]∥∥∥∥2
≤2

∥∥∥∥∥vk(x)− 2Ex′
0∼q′T−kη(·|x)

[
−x− e−(T−kη)x′

0(
1− e−2(T−kη)

)]∥∥∥∥∥
2

︸ ︷︷ ︸
Term 2.1

+ 2

∥∥∥∥ 2e−(T−kη)

1− e−2(T−kη)

[
Ex′

0∼q′T−kη(·|x)[x
′
0]− Ex0∼qT−kη(·|x)[x0]

]∥∥∥∥2︸ ︷︷ ︸
Term 2.2

,

(17)

where we denote q′T−kη(·|x) denote the underlying distribution of output particles of the auxiliary
sampling task.

For Term 2.2, we denote an optimal coupling between qT−kη(·|x) and q′T−kη(·|x) to be

γ ∈ Γopt(qT−kη(·|x), q′T−kη(·|x)).

Hence, we have∥∥∥∥ 2e−(T−kη)

1− e−2(T−kη)

[
Ex′

0∼q′T−kη(·|x)[x
′
0]− Ex0∼qT−kη(·|x)[x0]

]∥∥∥∥2
=

∥∥∥∥E(x0,x′
0)∼γ

[
2e−(T−kη)

1− e−2(T−kη)
· (x0 − x′

0)

]∥∥∥∥2 ≤ 4e−2(T−kη)

(1− e−2(T−kη))2
· E(x0,x′

0)∼γ

[
∥x0 − x′

0∥
2
]

=
4e−2(T−kη)

(1− e−2(T−kη))2
W 2

2

(
qT−kη(·|x), q′T−kη(·|x)

)
≤ 4e−2(T−kη)(

1− e−2(T−kη)
)2 · 2

CLSI,k
DKL

(
q′T−kη(·|x)∥qT−kη(·|x)

)
≤8η−2C−1

LSI,kDKL

(
q′T−kη(·|x)∥qT−kη(·|x)

)
,

(18)
where the first inequality follows from Jensen’s inequality, the second inequality follows from the
Talagrand inequality and the last inequality follows from

e−2(T−kη) ≤ e−2η ≤ 1− η ⇒ e−2(T−kη)

(1− e−2(T−kη))2
≤ η−2,

when η ≤ 1/2.

By Lemma 8 and 9, the desired convergence can be obtained.
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C.4 PROOF OF THE MAIN PROPOSITIONS

Proof. By Eq. (19), we have the upper bound for√
1

2
DKL (p̃0∥pT )︸ ︷︷ ︸
Term 1

+

√
1

2
DKL

(
P̂T

∥∥P̃ pT

T

)
︸ ︷︷ ︸

Term 2

. (19)

We aim to upper bound these two terms in our analysis.

Errors from the forward process For Term 1 of Eq. 19, we can either choose DKL (p̂∥pT ) or
choose large T with p̂ = p∞.

If we choose p̂ = p∞, we have

DKL (p̃0∥p∞) = DKL (pT ∥p∞) ≤ C0 exp

(
−T

2

)
,

where the inequality follows from Lemma 21. By requiring

C0 · exp
(
−T

2

)
≤ 2ϵ2 ⇐⇒ T ≥ 2 ln

C0

2ϵ2
,

we have Term 1 ≤ ϵ. To simplify the proof, we choose T as its lower bound.

If we choose p̂, then the iteration complexity depend on the log-Sobolev constant of pT . In (Ma
et al., 2019), it is demonstrated that any distribution satisfying Assumptions [A1] and [A3] has a
log-Sobolev constant of m

2 exp(−16LR2), which scales exponentially with the radius R.

Considering the pT , we have
XT = e−TX0 +

√
1− e−2T ε.

Assume that the density of e−TX0 is h,

log h(e−Tx) + log |e−T I| = log p0(x)

log h(e−Tx) = log p0(x) + dT.

Assume that y = e−Tx and Assumption [A3] holds,

−∇2h(y) = −e2T∇2p0(e
T y) ≥ e2TmI.

We have outside a ball with e−TR, the negative log-density is e2Tm strongly convex. By Lemma
16, the final log-Sobolev constant is

1
2

m exp(−16LR2e−T+2T )
+ 1

1−e−2T

= O(m exp(−16LR2e−T + 2T )).

Errors from the backward process Without loss of generality, we consider the Assumption [A4]
case, where t has been split to two intervals. The Assumption [A3] case can be recognized as
the first interval of Assumption [A4]. For Term 2, we first consider the proof when Novikov’s
condition holds for simplification. A more rigorous analysis without Novikov’s condition can be
easily extended with the tricks shown in (Chen et al., 2022a). Considering Corollary 2, we have

DKL

(
P̂T

∥∥P̃ pT

T

)
= EP̂T

[
ln

dP̂T

dP̃ pT

T

]
=
1

4

N−1∑
k=0

EP̂T

[∫ (k+1)η

kη

∥vk(xkη)− 2∇ ln pT−t(xt)∥2 dt

]

=

N−1∑
k=0

∫ (k+1)η

kη

EP̂T

[
1

4
· ∥vk(xkη)− 2∇ ln pT−t(xt)∥2

]
dt,

(20)
where N = ⌊T/η⌋.
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We also have
1

4
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−t(xt)∥2

]
≤ 4ϵ2 +

1

2
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
︸ ︷︷ ︸

ϵscore

(21)
following Lemma 7 by choosing the step size of the backward path satisfying

η ≤ C1

(
d+m2

2

)−1
ϵ2. (22)

To simplify the proof, we choose η as its upper bound. Plugging Eq. 32 into Eq. 20, we have

DKL

(
P̂T

∥∥P̃ pT

T

)
≤ 8ϵ2 ln

C0

2ϵ2
+

1

2
·
N−1∑
k=0

η · EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
.

Besides, due to Lemma 10, we have
N−1∑
k=0

η · EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
≤ 20ϵ2 ln

C0

2ϵ2

with a probability at least 1− ϵ by requiring an
O
(
max (C3C5, C

′
3C

′
5) · C−1

1 C0 · (d+m2
2)

18ϵ−16n−88 exp
(
5C2ϵ

−16n
))

gradient complexity. Hence, we have

Term 2 ≤
√

1

2
· (4ϵ2 + 5ϵ2) · T ≤ 3ϵ

√
ln

(
C

2ϵ2

)
,

which implies

DTV (p̃t, p∗) ≤ ϵ+ 3ϵ

√
ln

(
C

2ϵ2

)
= Õ(ϵ). (23)

Hence, the proof is completed.

D IMPORTANT LEMMAS

Lemma 7. (Errors from the discretization) With Algorithm 1 and notation list 1, if we choose the
step size of outer loop satisfying

η ≤ C1

(
d+m2

2

)−1
ϵ2,

then for t ∈ [kη, (k + 1)η] we have

EP̂T

[∥∥∥∥∇ ln
pT−kη(xkη)

pT−t(xkη)

∥∥∥∥2
]
+ L2 · EP̂T

[
∥xkη − xt∥2

]
≤ ϵ2.

1

4
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−t(xt)∥2

]
≤ 4ϵ2 +

1

2
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
︸ ︷︷ ︸

ϵscore

.

Proof. According to the choice of t, we have T − kη ≥ T − t. With the transition kernel of the
forward process, we have the following connection

pT−kη(x) =

∫
pT−t(y) · P (x, T − kη|y, T − t) dy

=

∫
pT−t(y)

[
2π
(
1− e−2(t−kη)

)]− d
2 · exp

[
−
∥∥x− e−(t−kη)y

∥∥2
2
(
1− e−2(t−kη)

) ]
dy

=

∫
e(t−kη)dpT−t

(
e(t−kη)z

) [
2π
(
1− e−2(t−kη)

)]− d
2 · exp

[
− ∥x− z∥2

2
(
1− e−2(t−kη)

)] dz,
(24)
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where the last equation follows from setting z = e−(t−kη)y. We should note that

p′T−t(z) := e(t−kη)dpT−t(e
(t−kη)z)

is also a density function. For each element xkη = x, we have∥∥∥∥∇ ln
pT−t(x)

pT−kη(x)

∥∥∥∥2 =

∥∥∥∥∥∇ ln
pT−t(x)

e(t−kη)dpT−t

(
e(t−kη)x

) +∇ ln
e(t−kη)dpT−t

(
e(t−kη)x

)
pT−kη(x)

∥∥∥∥∥
2

≤2

∥∥∥∥∥∇ ln
pT−t(x)

e(t−kη)dpT−t

(
e(t−kη)x

)∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥∇ ln
e(t−kη)dpT−t

(
e(t−kη)x

)(
p′T−t ∗ φ(1−e−2(t−kη))

)
(x)

∥∥∥∥∥∥
2

,

where the inequality follows from the triangle inequality and Eq. 24. For the first term, we have∥∥∥∥∥∇ ln
pT−t(x)

e(t−kη)dpT−t

(
e(t−kη)x

)∥∥∥∥∥ =
∥∥∥∇ ln pT−t(x)− e(t−kη) · ∇ ln pT−t

(
e(t−kη)x

)∥∥∥
≤
∥∥∥∇ ln pT−t(x)− e(t−kη) · ∇ ln pT−t(x)

∥∥∥+ e(t−kη) ·
∥∥∥∇ ln pT−t(x)−∇ ln pT−t

(
e(t−kη)x

)∥∥∥
≤
(
e(t−kη) − 1

)
∥∇ ln pT−t(x)∥+ e(t−kη) ·

(
e(t−kη) − 1

)
L ∥x∥ .

(25)
For the second term, the score −∇ ln p′T−t is

(
e2(t−kη)L

)
-smooth. Therefore, with Lemma 13 and

the requirement

2 · e2(t−kη) ·
(
1− e−2(t−kη)

)
≤ 1

L
⇐


4(t− kη) ≤ 1

2L

t− kη ≤ 1

2

⇐ η ≤ min

{
1

8L
,
1

2

}
,

we have∥∥∥∇ ln p′T−t(x)−∇ ln
(
p′T−t ∗ φ(1−e−2(t−kη))

)
(x)
∥∥∥

≤6e2(t−kη)L
√(

1− e−2(t−kη)
)
d1/2 + 2e3(t−kη)L

(
1− e−2(t−kη)

)∥∥∥∇ ln pT−t

(
e(t−kη)x

)∥∥∥
≤6e2(t−kη)L

√(
1− e−2(t−kη)

)
d1/2

+ 2Le(t−kη) ·
(
e2(t−kη) − 1

)∥∥∥∇ ln pT−t

(
e(t−kη)x

)
−∇ ln pT−t(x) +∇ ln pT−t(x)

∥∥∥
≤6e2(t−kη)L

√(
1− e−2(t−kη)

)
d1/2 + 2L2e(t−kη) ·

(
e2(t−kη) − 1

)(
e(t−kη) − 1

)
∥x∥

+ 2Le(t−kη) ·
(
e2(t−kη) − 1

)
∥∇ ln pT−t(x)∥ .

(26)
Due to the range η ≤ 1/2, we have the following inequalities

e2(t−kη) ≤ e2η ≤ 1 + 4η, 1− e−2(t−kη) ≤ 2(t− kη) ≤ 2η and e(t−kη) ≤ eη ≤ 1 + 2η.

Thus, Eq. 25 and Eq. 26 can be reformulated as∥∥∥∥∥∇ ln
pT−t(x)

e(t−kη)dpT−t

(
e(t−kη)x

)∥∥∥∥∥ ≤ 2η ∥∇ ln pT−t(x)∥+ 4ηL ∥x∥

⇒

∥∥∥∥∥∇ ln
pT−t(x)

e(t−kη)dpT−t

(
e(t−kη)x

)∥∥∥∥∥
2

≤ 8η2 ∥∇ ln pT−t(x)∥2 + 32η2L2 ∥x∥2
(27)

and ∥∥∥∇ ln p′T−t(x)−∇ ln
(
p′T−t ∗ φ(1−e−2(t−kη))

)
(x)
∥∥∥

≤6 (4η + 1)L
√

2ηd+ 2L2 · (2η + 1) · 4η · 2η · ∥x∥+ 2L · (2η + 1) · 4η · ∥∇ ln pT−t(x)∥

≤18L
√
2ηd+ 32L2η2 · ∥x∥+ 16Lη · ∥∇ ln pT−t(x)∥ ,
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which is equivalent to∥∥∥∇ ln p′T−t(x)−∇ ln
(
p′T−t ∗ φ(1−e−2(t−kη))

)
(x)
∥∥∥2

≤3 ·
(
211 · L2ηd+ 210 · L4η4 ∥x∥2 + 28 · L2η2 ∥∇ ln pT−t(x)∥2

)
≤213 · L2ηd+ 212 · L4η4 ∥x∥2 + 210 · L2η2 ∥∇ ln pT−t(x)∥2 .

(28)

Without loss of generality, we suppose L ≥ 1, combining Eq. 27 and Eq. 28, we have the following
bound

EP̂T

[∥∥∥∥∇ ln
pT−t(xkη)

pT−kη(xkη)

∥∥∥∥2
]
≤214 · Lηd+ 28 · L2η2EP̂

[
∥xkη∥2

]
+ 212 · L2η2EP̂

[
∥∇ ln pT−t(xkη)∥2

]
≤214 · Lηd+ 28 · L2η2EP̂

[
∥xkη∥2

]
+ 213 · L2η2EP̂

[
∥∇ ln pT−t(xt)∥2

]
+ 213 · L4η2EP̂

[
∥xkη − xt∥2

]
.

(29)
Besides, we have

4

[
EP̂T

[∥∥∥∥∇ ln
pT−kη(xkη)

pT−t(xkη)

∥∥∥∥2
]
+ L2EP̂T

[
∥xkη − xt∥2

]]
≤4
[
214 · Lηd+ 28 · L2η2EP̂T

[
∥xkη∥2

]
+ 213 · L2η2EP̂T

[
∥∇ ln pT−t(xt)∥2

]
+
(
213 · L2η2 + 1

)
L2EP̂T

[
∥xkη − xt∥2

]]
≤216 · Lηd+ 210 · L2η2(d+m2

2) + 215 · L3η2d+ 28 · L2
(
2(m2

2 + d)η2 + 4dη
)
,

(30)

where the last inequality with Lemma 14 and Lemma 15. To diminish the discretization error, we
require the step size of backward sampling, i.e., η satisfies

216 · Lηd ≤ ϵ2

210 · L2η2(d+m2
2) ≤ ϵ2

215 · L3η2d ≤ ϵ2

28 · L2
(
2(m2

2 + d)η2 + 4dη
)
≤ ϵ2

⇐



η ≤ 2−16 · L−1d−1ϵ2

η ≤ 2−5 · L−1
(
d+m2

2

)−0.5
ϵ

η ≤ 2−7.5 · L−1.5d−0.5ϵ

η ≤ 2−5L−0.5
(
d+m2

2

)−0.5
ϵ

η ≤ 2−10L−2d−1ϵ2

Specifically, if we choose

η ≤ 2−16 · L−2
(
d+m2

2

)−1
ϵ2 = C1(d+m2

2)
−1ϵ2,

we have

EP̂T

[∥∥∥∥∇ ln
pT−kη(xkη)

pT−t(xkη)

∥∥∥∥2
]
+ L2EP̂T

[
∥xkη − xt∥2

]
≤ ϵ2. (31)

Hence, the proof is completed.

Thus, for t ∈ [kη, (k + 1)η], it has
1

4
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−t(xt)∥2

]
≤2EP̂T

[
∥∇ ln pT−kη(xkη)−∇ ln pT−t(xt)∥2

]
+

1

2
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
≤4EP̂T

[∥∥∥∥∇ ln
pT−kη(xkη)

pT−t(xkη)

∥∥∥∥2
]
+ 4L2 · EP̂T

[
∥xkη − xt∥2

]
+

1

2
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
≤4ϵ2 +

1

2
· EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
︸ ︷︷ ︸

ϵscore

.

(32)
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where the second inequality follows from Assumption [A1].

Lemma 8. For each inner loop, we denote qz(·|x) and q(·|x) to be the underlying distribution of
output particles and the target distribution, respectively, where q satisfies LSI with constant µ. When
we set the step size of outer loops to be η, by requiring

n ≥ 64Tdµ−1η−3ϵ−2δ−1 and DKL (qz∥q) ≤ 2−13 · T−4d−2µ2η8ϵ4δ4,

we have

P{
x
(i)
0

}n

i=1
∼q

(n)
z (·|x)

[∥∥∥∥∥ 1n
n∑

i=1

vi(x)−
1

n
E

[
n∑

i=1

vi(x)

]∥∥∥∥∥ ≥ 2ϵ

]
≤ exp

(
− 1

δ/(2⌊T/η⌋)

)
+

δ

2⌊T/η⌋
,

where

vi(x) := −2 · x− e−(T−kη)x
(i)
0

1− e−2(T−kη)
i ∈ {1, . . . , n} .

Proof. For each inner loop, we abbreviate the target distribution as q̃, the initial distribution as q0.
Then the iteration of the inner loop is presented as

xz+1 = xz + τ∇ ln q(xz|x) +
√
2τN (0, I).

We suppose the underlying distribution of the z-th iteration to be qz(·|x). Hence, we expect the
following inequality

P

[∥∥∥∥v(x)− ∫ qz(x0)(−2) · x− eT−kηx0

1− e−2(T−kη)

∥∥∥∥2 ≤ ϵ2

]
≥ 1− δ

is established, where v(x) = 1/n
∑n

i=1 vi(x). In this condition, we have

P{
x
(i)
0

}n

i=1
∼q

(n)
z (·|x)

[∥∥∥∥∥ 1n
n∑

i=1

vi(x)−
1

n
E

[
n∑

i=1

vi(x)

]∥∥∥∥∥ ≥ E

∥∥∥∥∥ 1n
n∑

i=1

vi(x)− Ev1(x)

∥∥∥∥∥+ ϵ

]

=P{
x
(i)
0

}n

i=1
∼q

(n)
z (·|x)

[∥∥∥∥∥
n∑

i=1

x
(i)
0 − E

[
n∑

i=1

x
(i)
0

]∥∥∥∥∥ ≥ E

∥∥∥∥∥
n∑

i=1

xi − E

[
n∑

i=1

x
(i)
0

]∥∥∥∥∥+ 1− e−2(T−kη)

2e−(T−kη)
· nϵ

]
.

(33)
To simplify the notations, we set

bz := Eqz(·|x)[x0], vz := E{
x
(i)
0

}n

i=1
∼qnz (·|x)

∥∥∥∥∥
n∑

i=1

xi − E

[
n∑

i=1

x
(i)
0

]∥∥∥∥∥ ,
b := Eq(·|x)[x0], and v := E{

x
(i)
0

}n

i=1
∼qn(·|x)

∥∥∥∥∥
n∑

i=1

xi − E

[
n∑

i=1

x
(i)
0

]∥∥∥∥∥ .
Then, we have

P{
x
(i)
0

}n

i=1
∼q

(n)
z (·|x)

[∥∥∥∥∥
n∑

i=1

x
(i)
0 − nbz

∥∥∥∥∥ ≥ vz +
1− e−2(T−kη)

2e−(T−kη)
· nϵ

]

≤P{
x
(i)
0

}n

i=1
∼q(n)(·|x)

[∥∥∥∥∥
n∑

i=1

x
(i)
0 − nbz

∥∥∥∥∥ ≥ vz +
1− e−2(T−kη)

2e−(T−kη)
· nϵ

]
+DTV(q

(n)(·|x), q(n)z (·|x))

≤P{
x
(i)
0

}Nk

i=1
∼q(n)(·|x)

[∥∥∥∥∥
n∑

i=1

x
(i)
0 − nbz

∥∥∥∥∥ ≥ vz +
1− e−2(T−kη)

2e−(T−kη)
· nϵ

]
+ n ·DTV(q(·|x), qz(·|x)).

(34)
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Consider the first term, we have the following relation∥∥∥∥∥
n∑

i=1

x
(i)
0 − nbz

∥∥∥∥∥ ≥ vz +
1− e−(T−kη)

2e−2(T−kη)
· nϵ

⇒

∥∥∥∥∥
n∑

i=1

x
(i)
0 − nb

∥∥∥∥∥ ≥

∥∥∥∥∥
n∑

i=1

x
(i)
0 − nbz

∥∥∥∥∥− n ∥b− bz∥

≥ vz +
1− e−2(T−kη)

2e−(T−kη)
· nϵ− n ∥b− bz∥

= v +
1− e−2(T−kη)

2e−(T−kη)
· nϵ− n ∥b− bz∥+ (vz − v)

≥ v +
1− e−2(T−kη)

2e−(T−kη)
· nϵ− n ·W2(q(·|x), qz(·|x))−

√
ndµ−1,

(35)

where the last inequality follows from

∥b− bz∥ =

∥∥∥∥∫ (q(x0|x)− qz(x0|x))x0dx0

∥∥∥∥ =

∥∥∥∥∫ (x0 − xz) γ(x0,xz)d(x0,xz)

∥∥∥∥
≤
(∫

γ(x0,xz)d(x0,xz)

)1/2

·
(∫

γ(x0,xz) · ∥x0 − xz∥2 d(x0,xz)

)1/2

≤W2(q(·|x), qz(·|x)),

(36)

and

v =n · E{
x
(i)
0

}n

i=1
∼q(n)(·|x)

∥∥∥∥∥ 1n
n∑

i=1

x
(i)
0 − b

∥∥∥∥∥ ≤ n ·

√√√√var

(
1

n

n∑
i=1

x
(i)
0

)

=

√
nvar

(
x
(1)
0

)
≤
√
ndµ−1

deduced by Lemma 23. By requiring

W2(q(·|x), qz(·|x)) ≤
1− e−2(T−kη)

8e−(T−kη)
· ϵ and n ≥ 64e−2(T−kη)d(

1− e−2(T−kη)
)2
µϵ2

(37)

in Eq. 35, we have

P{
x
(i)
0

}n

i=1
∼q(n)(·|x)

[∥∥∥∥∥
n∑

i=1

x
(i)
0 − nbz

∥∥∥∥∥ ≥ vz +
1− e−2(T−kη)

2e−(T−kη)
· nϵ

]

≤P{
x
(i)
0

}n

i=1
∼q(n)(·|x)

[∥∥∥∥∥
n∑

i=1

x
(i)
0 − nb

∥∥∥∥∥ ≥ v +
1− e−2(T−kη)

4e−(T−kη)
· nϵ

] (38)

According to Lemma 16, the LSI constant of
n∑

i=1

x
(i)
0 ∼ q ∗ q · · · ∗ q︸ ︷︷ ︸

n

is µ/n. Besides, considering the function F (x) = ∥x∥ : Rd → R is 1-Lipschitz because

∥F∥Lip = sup
x̸=y

|F (x)− F (y)|
∥x− y∥

= sup
x ̸=y

|∥x∥ − ∥y∥|
∥(x− y)∥

= 1,

we have

P{
x
(i)
0

}n

i=1
∼q(n)(·|x)

[∥∥∥∥∥
n∑

i=1

x
(i)
0 − nb

∥∥∥∥∥ ≥ v +
1− e−2(T−kη)

4e−(T−kη)
· nϵ

]

≤exp
{
− (1− e−(T−kη))2nϵ2µ

32e−2(T−kη)

} (39)
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due to Lemma 18. Plugging Eq. 39 and Eq. 38 into Eq. 34 and Eq. 33, we have

P{
x
(i)
0

}n

i=1
∼q

(n)
z (·|x)

[∥∥∥∥∥ 1n
n∑

i=1

vi(x)−
1

n
E

[
n∑

i=1

vi(x)

]∥∥∥∥∥ ≥ E

∥∥∥∥∥ 1n
n∑

i=1

vi(x)− Ev1(x)

∥∥∥∥∥+ ϵ

]

≤ exp

{
− (1− e−(T−kη))2nϵ2µ

32e−2(T−kη)

}
+ n ·DTV(q(·|x), qz(·|x)).

(40)
Besides, we have

E{
x
(i)
0

}n

i=1
∼qnz (·|x)

∥∥∥∥∥ 1n
n∑

i=1

vi(x)− Ev1(x)

∥∥∥∥∥ ≤

√√√√var

(
1

n

n∑
i=1

vi

)

=

√
var(v1)

n
=

2e−(T−kη)

1− e−2(T−kη)

√
var(x0)

n
.

Suppose the optimal coupling of qz(·|x) and q(·|x) is γz ∈ Γopt (qz(·|x), q(·|x)), then we have

varqz(·|x) (x0) =

∫
qz(xz|x) ∥xz − bz∥2 dxz =

∫
∥xz − bz∥2 dγ(xz,x0)

=

∫
∥xz − x0 + x0 − b+ b− bz∥2 dγ(xz,x0)

≤3

∫
∥xz − x0∥2 dγ(xz,x0) + 3

∫
∥x0 − b∥2 dγ(xz,x0) + 3 ∥b− bz∥2

≤6W 2
2 (q̃, qz) + 3dµ−1

where the last inequality follows from Eq. 36 and Lemma 23. By requiring W 2
2 (q̃, qz) ≤ d

6µ , we
have

2e−(T−kη)

1− e−2(T−kη)

√
varqz (x0)

n
≤ 4√

n
· e−(T−kη)

1− e−2(T−kη)
·

√
d

µ
.

Combining this result with Eq. 40, we have

P{
x
(i)
0

}n

i=1
∼qnz (·|x)

[∥∥∥∥∥ 1n
n∑

i=1

vi(x)−
1

n
E

[
Nk∑
i=1

vi(x)

]∥∥∥∥∥ ≥ 4√
n
· e−(T−kη)

1− e−2(T−kη)
·

√
d

µ
+ ϵ

]

≤ exp

{
− (1− e−(T−kη))2nϵ2µ

32e−2(T−kη)

}
+ n ·DTV(q(·|x), qz(·|x)).

By requiring

4√
n
· e−(T−kη)

1− e−2(T−kη)
·

√
d

µ
≤ ϵ ⇒ n ≥ 16e−2(T−kη)d(

1− e−2(T−kη)
)2
µϵ2

,

− (1− e−(T−kη))2nϵ2µ

32e−2(T−kη)
≤ −⌊T/η⌋ · 2

δ
⇒ n ≥ ⌊T/η⌋ · 64e−2(T−kη)

(1− e−(T−kη))2µϵ2δ

and DTV(q̃, qz) ≤
δ

2n · ⌊T/η⌋
.

(41)

we have

P{
x
(i)
0

}n

i=1
∼q

(n)
z (·|x)

[∥∥∥∥∥ 1n
n∑

i=1

vi(x)−
1

n
E

[
n∑

i=1

vi(x)

]∥∥∥∥∥ ≥ 2ϵ

]
≤ exp

(
− 1

δ/(2⌊T/η⌋)

)
+

δ

2⌊T/η⌋
.
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Combining the choice of n and the gap between q(·|x) and qz(·|x) in Eq. 37 and Eq. 41, we have

n ≥ 64e−2(T−kη)d(
1− e−2(T−kη)

)2
µϵ2

n ≥⌊T/η⌋ · 64e−2(T−kη)

(1− e−(T−kη))2µϵ2δ

n ≥ 16e−2(T−kη)d(
1− e−2(T−kη)

)2
µϵ2

and


W2(q(·|x), qz(·|x)) ≤

1− e−2(T−kη)

8e−(T−kη)
· ϵ

W 2
2 (q(·|x), qz(·|x)) ≤d/(6µ)

DTV(q(·|x), qz(·|x)) ≤
δ

2n · ⌊T/η⌋

.

(42)
Without loss of generality, we suppose η ≤ 1/2, due to the range of e−2(T−kη) as follows

e−2(T−kη) ≤ e−2η ≤ 1− η ⇒ e−2(T−kη)

(1− e−2(T−kη))2
≤ η−2,

we obtain the sufficient condition for achieving Eq. 42 is

n ≥ 64Tdµ−1η−3ϵ−2δ−1 ≥ max
{
64dµ−1η−2ϵ−2, 64Tη−3µ−1ϵ−2δ−1, 16dµ−1η−2ϵ−2

}
and DTV(q̃, qz) ≤

1

2
· δηn−1T−1 ⇐ DKL (qz∥q̃) ≤

1

2
· δ2η2n−2T−2 ≤ 2−13 · T−4d−2µ2η8ϵ4δ4.

Hence, the proof is completed.

Lemma 9. With Algorithm 1 and notation list 1, if we choose the initial distribution of the k-th inner
loop to be

q′T−kη(x0|x) ∝ exp

(
−
∥∥x− e−(T−kη)x0

∥∥2
2
(
1− e−2(T−kη)

) ) ,
then suppose the the LSI constant of qT−kη is CLSI,k, their KL divergence can be upper bounded as

DKL

(
q′T−kη(·|x)∥qT−kη(·|x)

)
≤ L2

2CLSI,k
· e2(T−kη)

(
d+ ∥x∥2

)
.

Proof. According to the fact that the LSI constant of qT−kη is CLSI,k, then we have

DKL

(
q′T−kη(·|x)∥qT−kη(·|x)

)
≤ (2CLSI,k)

−1 ·
∫
q′T−kη(x0|x) ∥∇f(x0)∥2 dx0

≤L2(2CLSI,k)
−1 · Ex0∼q′T−kη(·|x)

[
∥x0∥2

]
= L2(2CLSI,k)

−1 ·
(
var(x0) + ∥E [x0]∥2

)
.

Because q′T−kη(·|x) is a high-dimensional Gaussian, its mean value satisfies E[x0] = e(T−kη)x.
Besides, we have

−∇2 ln q′T−kη(x0) =
e−2(T−kη)

1− e−2(T−kη)
· I.

According to Lemma 20, q′T−kη(·|x) satisfies the log-Sobolev inequality (and the Poincaré inequal-
ity). Follows from Lemma 23, we have

varx0∼q′T−kη(·|x) [x0] ≤ d · (1− e−2(T−kη)) · e2(T−kη) ≤ de2(T−kη).

Hence, we have

DKL

(
q′T−kη(·|x)∥qT−kη(·|x)

)
≤ L2

2CLSI,k
· e2(T−kη)

(
d+ ∥x∥2

)
and the proof is completed.

Lemma 10. (Errors from the inner loop sampling task) Suppose Assumption [A1],[A2],[A4] hold.
With Algorithm 1 notation list 1 and suitable η = C1

(
d+m2

2

)−1
ϵ2, there is

N−1∑
k=0

η · EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
≤ 20ϵ2 ln

C0

2ϵ2
,
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with a probability at least 1− δ. The gradient complexity of achieving this result is

max (C3C5, C
′
3C

′
5) · C−1

1 C0 · (d+m2
2)

18ϵ−16n−83 exp
(
5C2ϵ

−16n
)
δ−6

where constants Ci and C ′
i are independent with d and ϵ.

Proof. To upper bound it more precisely, we divide the backward process into two stages.

Stage 1: when e−2(T−kη) ≤ 2L/(1 + 2L). It implies the iteration k satisfies

k ≤ 1

2η

(
2T − ln

1 + 2L

2L

)
:= N1. (43)

In this condition, we set

qT−kη(x0|x) ∝ exp(−gT−kη(x0|x)) := exp

(
−f∗(x0)−

∥∥x− e−(T−kη)x0

∥∥2
2
(
1− e−2(T−kη)

) ) . (44)

Hence, we can reformulate gT−kη(x0|x) as

gT−kη(x0|x) = f∗(x0) +
e−2(T−kη)

3(1− e−2(T−kη))
∥x0∥2︸ ︷︷ ︸

part 1

+
e−2(T−kη)

6(1− e−2(T−kη))
∥x0∥2 −

e−(T−kη)

(1− e−2(T−kη))
x⊤
0 x+

∥x∥2

2(1− e−2(T−kη))︸ ︷︷ ︸
part 2

.

According to Assumption [A4], we know part 1 and part 2 are both strongly convex outside the
ball with radius R(e−2(T−kη)/(6(1 − e−2(T−kη)))). With Lemma 22, the function gT−kη(·|x) is
e−2(T−kη)/(3(1 − e−2(T−kη)))-strongly convex outside the ball. Besides, the gradient Lipschitz
constant of gT−kη(·|x) can be upper bounded as

∇2gT−kη(x0|x) ⪯ ∇2f∗(x0) +
e−2(T−kη)

1− e−2(T−kη)
· I ⪯

(
L+

e−2(T−kη)

1− e−2(T−kη)

)
· I ⪯ 3LI

where the last inequality follows from the choice of e−2(T−kη) in the stage.

When the total time satisfies exp(−T/2) = 2ϵ2/C0, we have

C−1
LSI,k ≤6(1− e−2(T−kη))e2(T−kη) · exp

(
48L ·R2

(
e−2(T−kη)

6(1− e−2(T−kη))

))
≤6 exp

(
2(T − kη) + 48L ·

(
6(1− e−2(T−kη))e2(T−kη)

)2n)
≤6 exp

(
2(T − kη) + 48L · 62n · e4n(T−kη)

)
.

The second inequality follows from Assumption [A4], and the last inequality follows from the setting
n,L ≥ 1 without loss of generality.

C−1
LSI,k ≤ 6 · 2−4 · C4

0ϵ
−8 exp

(
48L · 62n · 2−8n · C8n

0 · ϵ−16n
)
= C6ϵ

−8 exp
(
C2 · ϵ−16n

)
(45)

For Term 1, due to Lemma 8, if we set the step size of outer loop to be

η = C1

(
d+m2

2

)−1
ϵ2,

the sample number of each iteration k satisfies

nk =C3 ·
(
d+m2

2

)4
ϵ−18 exp

(
C2 · ϵ−16n

)
δ−1 = 64 · C0C

−3
1 C6

(
d+m2

2

)4
ϵ−18 exp

(
C2 · ϵ−16n

)
δ−1

≥64 · 2 ln C0

2ϵ2
· d ·

(
C1(d+m2

2)
−1ϵ2

)−3 · ϵ−2 · C6ϵ
−8 exp

(
C2 · ϵ−16n

)
· δ ≥ 64Tdη−3ϵ−2δ−1C−1

LSI,k
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and the accuracy of the inner loop meets

DKL

(
q′T−kη(·|x)∥qT−kη(·|x)

)
≤ C4

(
d+m2

2

)−10
ϵ44 exp

(
−2C2 · ϵ−16n

)
δ4

=2−13 · C−4
0 · C8

1

(
d+m2

2

)−10
ϵ28δ4 · C−2

6 ϵ16 exp
(
−2C2 · ϵ−16n

)
≤2−13 ·

(
2 ln

C0

2ϵ2

)−4

· d−2 · ϵ4 · δ4 · C8
1

(
d+m2

2

)−8
ϵ16 · C2

LSI,k ≤ 2−13 · T−4d−2ϵ4δ4η8C2
LSI,k

(46)
when ϵ2 ≤ 1/2. In this condition, we have

P

∥∥∥∥∥vk(x)− 2Ex′
0∼q′T−kη(·|x)

[
−x− e−(T−kη)x0(

1− e−2(T−kη)
)]∥∥∥∥∥

2

≤ 4ϵ2


≥1− exp

(
− 1

δ/(2⌊T/η⌋)

)
− δ

2⌊T/η⌋
≥ 1− δ

⌊T/η⌋
,

(47)

where q′T−kη(·|x) denotes the underlying distribution of output particles of the k-th inner loop. To
achieve

DKL

(
q′T−kη(·|xkη)∥qT−kη(·|xkη)

)
≤ C4

(
d+m2

2

)−10
ϵ44 exp

(
−2C2 · ϵ−16n

)
δ4 := δKL,

Lemma 19 requires the step size to satisfy

τk ≤2−4 · 3−2 · L−2C4C
−1
6

(
d+m2

2

)−11
ϵ52 exp

(
−3C2ϵ

−16n
)
δ4

≤C−1
6 ϵ8 exp

(
−C2ϵ

−16n
)
· 1

4(3L)2
· 1

4d
· C4

(
d+m2

2

)−10
ϵ44 exp

(
−2C2 · ϵ−16n

)
δ4

≤ CLSI,k

4∥∇2gT−kη(·|x)∥22
· 1

4d
· δKL

and the iteration number Zk meets

Zk ≥ 1

CLSI,kτk
· ln

2DKL

(
q′T−kη,0(·|x)∥qT−kη(·|x)

)
δKL

where q′T−kη,0(·|x) denotes the initial distribution of the k-th inner loop. By choosing τk to be its
upper bound and the initial distribution of k-th inner loop to be

q′T−kη,0(x0|x) ∝ exp

(
−
∥∥x− e−(T−kη)x0

∥∥2
2
(
1− e−2(T−kη)

) ) ,
we have

DKL

(
q′T−kη,0(·|x)∥qT−kη(·|x)

)
≤ L2

2CLSI,k
· e2(T−kη)

(
d+ ∥x∥2

)
≤2−1L2C6ϵ

−8 exp
(
C2 · ϵ−16n

)
· e2(T−kη)

(
d+ ∥x∥2

)
with Lemma 9 and Eq. 45. It implies the iteration number Zk of inner loops to be required as

Zk ≥C5 · (d+m2
2)

12ϵ−16n−61 exp
(
4C2ϵ

−16n
)
·
(
d+ ∥x∥2

)
δ−5

=28 · 34 · 52L2 · C2C
−1
4 C2

6 ln
(
2−4L2C4

0C
−1
4 C6

)
· (d+m2

2)
12ϵ−16n−61 exp

(
4C2ϵ

−16n
)
·
(
d+ ∥x∥2

)
δ−5

=C6ϵ
−8 exp

(
C2 · ϵ−16n

)
·
(
24 · 32L2C−1

4 C6 ·
(
d+m2

2

)11
ϵ−52 exp

(
3C2ϵ

−16n
)
δ−4
)

·
(
ln
(
2−4L2C4

0C
−1
4 C6

)
+ 3C2ϵ

−16n + 60 ln
1

ϵ
+ 4 ln

1

δ
+ 10 ln(d+m2

2) + ln(d+ ∥x∥2)
)

≥ 1

CLSI,kτk
· ln

2DKL

(
q′T−kη,0(·|x)∥qT−kη(·|x)

)
δKL

.

when ln(1/ϵ) ≥ 2 and ln d ≥ 2 without loss of generality.

31



Published as a conference paper at ICLR 2024

A sufficient condition to obtain Term 2 ≤ ϵ2 is to make the following inequality establish

DKL

(
q′T−kη(·|x)∥qT−kη(·|x)

)
≤ 2−3 · η2ϵ2 · C−1

6 ϵ8 exp
(
−C2ϵ

−16n
)

which will be dominated by Eq. 46 in almost cases obviously.

Hence, combining Eq. 17, Eq. 47 and Eq. 18, there is
N1∑
k=0

η · EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
≤ 10N1η · ϵ2 (48)

with a probability at least 1 − N1 · δ/(⌊T/η⌋) which is obtained by uniformed bound. We require
the gradient complexity in this stage will be

cost =

N1∑
k=0

nkEP̂T
(Zk) =

N1∑
k=0

C3 ·
(
d+m2

2

)4
ϵ−18 exp

(
C2 · ϵ−16n

)
δ−1

· EP̂T

[
C5 · (d+m2

2)
12ϵ−16n−61 exp

(
4C2ϵ

−16n
)
·
(
d+ ∥xkη∥2

)
δ−5
]

≤N1 · C3C5(d+m2
2)

17ϵ−16n−79 exp
(
5C2ϵ

−16n
)
δ−6

(49)
where the last inequality follows from Lemma 14.

Stage 2: when 2L
1+2L ≤ e−2(T−kη) ≤ 1. We have the LSI constant for this stage. It is a constant

level LSI constant, which mean we should choose the sample and the iteration number similar to
Stage 1. Therefore, for Term 1, by requiring

nk =
64

L
· C0C

−3
1 ·

(
d+m2

2

)4
ϵ−10δ−1

≥64 · 2 ln C0

2ϵ2
· d ·

(
C1(d+m2

2)
−1ϵ2

)−3 · ϵ−2δ−1 · L−1 ≥ 64Tdη−3ϵ−2δ−1C−1
LSI,k

and
DKL

(
q′T−kη(·|x)∥qT−kη(·|x)

)
≤ 2−13L2 · C−4

0 C8
1 · (d+m2

2)
−10ϵ28δ4

≤2−13 ·
(
2 ln

C0

2ϵ2

)−4

· d−2 · ϵ4δ4 · C8
1

(
d+m2

2

)−8
ϵ16 · C2

LSI,k ≤ 2−13 · T−4d−2ϵ4δ4η8C2
LSI,k.

(50)
In this condition, we have

P

∥∥∥∥∥vk(x)− 2Ex′
0∼q′T−kη(·|x)

[
−x− e−(T−kη)x0(

1− e−2(T−kη)
)]∥∥∥∥∥

2

≤ 4ϵ2


≥1− exp

(
− 1

δ/(2⌊T/η⌋)

)
− δ

2⌊T/η⌋
≥ 1− δ

⌊T/η⌋
,

(51)

where q′T−kη(·|x) denotes the underlying distribution of output particles of the k-th inner loop. To
achieve

DKL

(
q′T−kη(·|xkη)∥qT−kη(·|xkη)

)
≤ 2−13L2 · C−4

0 C8
1 · (d+m2

2)
−10ϵ28δ4 := δKL,

Lemma 19 requires the step size to satisfy

τk ≤2−17 · 3−1Σ−1
k,max · L

2C−4
0 C8

1

(
d+m2

2

)−11
ϵ28δ4

≤Σk,min

Σk,max
· 1

4Σk,max
· 1

4d
· 2−13L2 · C−4

0 C8
1 · (d+m2

2)
−10ϵ28δ4

≤ CLSI,k

4∥∇2gT−kη(·|x)∥22
· 1

4d
· δKL

and the iteration number Zk meets

Zk ≥ 1

CLSI,kτk
· ln

2DKL

(
q′T−kη,0(·|x)∥qT−kη(·|x)

)
δKL
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where q′T−kη,0(·|x) denotes the initial distribution of the k-th inner loop. By choosing τk to be its
upper bound and the initial distribution of k-th inner loop to be

q′T−kη,0(x0|x) ∝ exp

(
−
∥∥x− e−(T−kη)x0

∥∥2
2
(
1− e−2(T−kη)

) ) ,
we have

DKL

(
q′T−kη,0(·|x)∥qT−kη(·|x)

)
≤ L2

2CLSI,k
· e2(T−kη)

(
d+ ∥x∥2

)
≤ L

2
· e2(T−kη)

(
d+ ∥x∥2

)
with Lemma 9 and Eq. 14. It implies the iteration number Zk of inner loops to be required as

Zk ≥C ′
5 · (d+m2

2)
12ϵ−29 ·

(
d+ ∥x∥2

)
δ−5

=222 · 34 · 5 · L−2C4
0C

−8
1 ln

(
28

L
· C8

0C
−8
1

)
· (d+m2

2)
12ϵ−29δ−5

(
d+ ∥x∥2

)
=

1

Σk,min
·
(
2−17 · 3−1Σ−1

k,max · L
2C−4

0 C8
1

(
d+m2

2

)−11
ϵ28δ4

)−1

·
(
ln

(
28

L
· C8

0C
−8
1

)
+ 36 ln

1

ϵ
+ 4 ln

1

δ
+ 10 ln(d+m2

2) + ln(d+ ∥x∥2)
)

≥ 1

CLSI,kτk
· ln

2DKL

(
q′T−kη,0(·|x)∥qT−kη(·|x)

)
δKL

.

when ln(1/ϵ) ≥ 2 and ln d ≥ 2 without loss of generality.

For Term 2, we denote an optimal coupling between qT−kη(·|x) and q′T−kη(·|x) to be

γ ∈ Γopt(qT−kη(·|x), q′T−kη(·|x)).
Hence, we have∥∥∥∥ 2e−(T−kη)

1− e−2(T−kη)

[
Ex′

0∼q′T−kη(·|x)[x
′
0]− Ex0∼qT−kη(·|x)[x0]

]∥∥∥∥2
=

∥∥∥∥E(x0,x′
0)∼γ

[
2e−(T−kη)

1− e−2(T−kη)
· (x0 − x′

0)

]∥∥∥∥2 ≤ 4e−2(T−kη)

(1− e−2(T−kη))2
· E(x0,x′

0)∼γ

[
∥x0 − x′

0∥
2
]

=
4e−2(T−kη)

(1− e−2(T−kη))2
W 2

2

(
qT−kη(·|x), q′T−kη(·|x)

)
≤ 4e−2(T−kη)(

1− e−2(T−kη)
)2 · 2

CLSI,k
DKL

(
q′T−kη(·|x)∥qT−kη(·|x)

)
≤8η−2C−1

LSI,kDKL

(
q′T−kη(·|x)∥qT−kη(·|x)

)
,

(52)
where the first inequality follows from Jensen’s inequality, the second inequality follows from the
Talagrand inequality and the last inequality follows from

e−2(T−kη) ≤ e−2η ≤ 1− η ⇒ e−2(T−kη)

(1− e−2(T−kη))2
≤ η−2,

when η ≤ 1/2. Therefore, a sufficient condition to obtain Term 2 ≤ ϵ2 is to make the following
inequality establish

DKL

(
q′T−kη(·|x)∥qT−kη(·|x)

)
≤ 2−3 · η2ϵ2 · L−1

which will be dominated by Eq. 50 in almost cases obviously.

Hence, combining Eq. 17, Eq. 51 and Eq. 52, there is

⌊T/η⌋∑
k=N1+1

η · EP̂T

[
∥vk(xkη)− 2∇ ln pT−kη(xkη)∥2

]
≤ 10(⌊T/η⌋ −N1)η · ϵ2 (53)
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with a probability at least 1 − (⌊T/η⌋ −N1) · δ/(⌊T/η⌋) which is obtained by uniformed bound.
We require the gradient complexity in this stage will be

cost =

⌊T/η⌋∑
k=N1+1

nkEP̂T
(Zk) =

⌊T/η⌋∑
k=N1+1

64

L
· C0C

−3
1 ·

(
d+m2

2

)4
ϵ−10δ−1

· EP̂T

[
C ′

5 · (d+m2
2)

12ϵ−29 ·
(
d+ ∥xkη∥2

)
δ−5
]

≤(⌊T/η⌋ −N1) · C ′
3C

′
5(d+m2

2)
17ϵ−39δ−6

(54)

where the last inequality follows from Lemma 14. Combining Eq. 49 and Eq. 54, we know the total
gradient complexity will be less than

max (C3C5, C
′
3C

′
5) · C−1

1 C0 · (d+m2
2)

18ϵ−16n−83 exp
(
5C2ϵ

−16n
)
δ−6.

Hence the proof is completed.

E AUXILIARY LEMMAS

Lemma 11. (Lemma 11 of Vempala & Wibisono (2019)) Assume ν = exp(−f) is L-smooth. Then
Eν∥∇f∥2 ≤ dL.
Lemma 12. (Girsanov’s theorem, Theorem 5.22 in Le Gall (2016)) Let PT and QT be two proba-
bility measures on path space C

(
[0, T ],Rd

)
. Suppose under PT , the process (x̃t)t∈[0,T ] follows

dx̃t = b̃tdt+ σtdB̃t.

Under QT , the process (x̂t)t∈[0,T ] follows

dx̂t = b̂tdt+ σtdB̂t and x̂0 = x̃0.

We assume that for each t ≥ 0, σt ∈ Rd×d is a non-singular diffusion matrix. Then, provided that
Novikov’s condition holds

EQT

[
exp

(
1

2

∫ T

0

∥∥∥σ−1
t

(
b̃t − b̂t

)∥∥∥2)] <∞,

we have
dPT

dQT
= exp

(∫ T

0

σ−1
t

(
b̃t − b̂t

)
dBt −

1

2

∫ T

0

∥∥∥σ−1
t

(
b̃t − b̂t

)∥∥∥2 dt) .
Corollary 2. Plugging following settings

PT := P̃ pT

T , QT := P̂T , b̃t := xt+vk(xkη), b̂t := xt+2σ2∇ ln pT−t(xt), σt =
√
2σ, and t ∈ [kη, (k+1)η],

into Lemma 12 and assuming Novikov’s condition holds, then we have

DKL

(
P̂T

∥∥P̃ pT

T

)
= EP̂T

[
ln

dP̂T

dP̃ pT

T

]
=

1

4

N−1∑
k=0

EP̂T

[∫ (k+1)η

kη

∥vk(xkη)− 2∇ ln pT−t(xt)∥2 dt

]
.

Lemma 13. (Lemma C.11 in Lee et al. (2022)) Suppose that p(x) ∝ e−f(x) is a probability density
function on Rd, where f(x) is L-smooth, and let φσ2(x) be the density function of N (0, σ2Id).
Then for L ≤ 1

2σ2 , it has∥∥∥∥∇ ln
p(x)

(p ∗ φσ2) (x)

∥∥∥∥ ≤ 6Lσd1/2 + 2Lσ2 ∥∇f(x)∥ .

Lemma 14. (Lemma 9 in Chen et al. (2022a)) Suppose that Assumption [A1] and [A2] hold. Let
(x)t∈[0,T ] denote the forward process 1.

1. (moment bound) For all t ≥ 0,

E
[
∥xt∥2

]
≤ d ∨m2

2.
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2. (score function bound) For all t ≥ 0,

E
[
∥∇ ln pt(xt)∥2

]
≤ Ld.

Lemma 15. (Variant of Lemma 10 in Chen et al. (2022a)) Suppose that Assumption [A2] holds. Let
(x)t∈[0,T ] denote the forward process 1. For 0 ≤ s < t, if t− s ≤ 1, then

E
[
∥xt − xs∥2

]
≤ 2

(
m2

2 + d
)
· (t− s)

2
+ 4d · (t− s)

Proof. According to the forward process, we have

E
[
∥xt − xs∥2

]
=E

[∥∥∥∥∫ t

s

−xrdr +
√
2 (Bt −Bs)

∥∥∥∥2
]
≤ E

[
2

∥∥∥∥∫ t

s

xrdr

∥∥∥∥2 + 4 ∥Bt −Bs∥2
]

≤2E

[(∫ t

s

∥xr∥dr
)2
]
+ 4d · (t− s) ≤ 2

∫ t

s

E
[
∥xr∥2

]
dr · (t− s) + 4d · (t− s)

≤2
(
m2

2 + d
)
· (t− s)

2
+ 4d · (t− s) ,

where the third inequality follows from Holder’s inequality and the last one follows from Lemma 14.
Hence, the proof is completed.

Lemma 16. (Corollary 3.1 in Chafaı̈ (2004)) If ν, ν̃ satisfy LSI with constants α, α̃ > 0, respectively,
then ν ∗ ν̃ satisfies LSI with constant ( 1

α + 1
α̃ )

−1.

Lemma 17. Let x be a real random variable. If there exist constantsC,A <∞ such that E
[
eλx
]
≤

CeAλ2

for all λ > 0 then

P {x ≥ t} ≤ C exp

(
− t2

4A

)

Proof. According to the non-decreasing property of exponential function eλx, we have

P {x ≥ t} = P
{
eλx ≥ eλt

}
≤

E
[
eλx
]

eλt
≤ C exp

(
Aλ2 − λt

)
,

The first inequality follows from Markov inequality and the second follows from the given condi-
tions. By minimizing the RHS, i.e., choosing λ = t/(2A), the proof is completed.

Lemma 18. If ν satisfies a log-Sobolev inequality with log-Sobolev constant µ then every 1-
Lipschitz function f is integrable with respect to ν and satisfies the concentration inequality

ν {f ≥ Eν [f ] + t} ≤ exp

(
−µt

2

2

)
.

Proof. According to Lemma 17, it suffices to prove that for any 1-Lipschitz function f with expec-
tation Eν [f ] = 0,

E
[
eλf
]
≤ eλ

2/(2µ).

To prove this, it suffices, by a routine truncation and smoothing argument, to prove it for bounded,
smooth, compactly supported functions f such that ∥∇f∥ ≤ 1. Assume that f is such a function.
Then for every λ ≥ 0 the log-Sobolev inequality implies

Entν
(
eλf
)
≤ 2

µ
Eν

[∥∥∥∇eλf/2∥∥∥2] ,
which is written as

Eν

[
λfeλf

]
− Eν

[
eλf
]
logE

[
eλf
]
≤ λ2

2µ
Eν

[
∥∇f∥2 eλf

]
.
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With the notation φ(λ) = E
[
eλf
]

and ψ(λ) = logφ(λ), the above inequality can be reformulated
as

λφ′(λ) ≤φ(λ) logφ(λ) + λ2

2µ
Eν

[
∥∇f∥2 eλf

]
≤φ(λ) logφ(λ) + λ2

2µ
φ(λ),

where the last step follows from the fact ∥∇f∥ ≤ 1. Dividing both sides by λ2φ(λ) gives( log(φ(λ))
λ

)′ ≤ 1

2µ
.

Denoting that the limiting value log(φ(λ))
λ |λ=0= limλ→0+

log(φ(λ))
λ = Eν [f ] = 0, we have

log(φ(λ))

λ
=

∫ λ

0

( log(φ(t))
t

)′
dt ≤ λ

2µ
,

which implies that

ψ(λ) ≤ λ2

2µ
=⇒ φ(λ) ≤ exp

(
λ2

2µ

)
Then the proof can be completed by a trivial argument of Lemma 17.

Lemma 19. (Theorem 1 in Vempala & Wibisono (2019)) Suppose p∗ satisfies LSI with constant
µ > 0 and is L-smooth. For any x0 ∼ p0 with DKL(p0∥p∞) < ∞, the iterates xk ∼ pk of ULA
with step size 0 < τ ≤ µ

4L2 satisfy

DKL (pt∥p∞) ≤ e−µτkDKL (p0∥p∞) +
8τdL2

µ
.

Thus, for any δ > 0, to achieve DKL (pt∥p∞) ≤ δ, it suffices to run ULA with step size

0 < τ ≤ µ

4L2
min

{
1,

δ

4d

}
for

k ≥ 1

µτ
log

2DKL (p0∥p∞)

δ
.

Lemma 20. (Variant of Lemma 10 in Cheng & Bartlett (2018)) Suppose − ln p∞ is m-strongly
convex function, for any distribution with density function p, we have

DKL (p∥p∞) ≤ 1

2m

∫
p(x)

∥∥∥∥∇ ln
p(x)

p∗(x)

∥∥∥∥2 dx.
By choosing p(x) = g2(x)p∗(x)/Ep∗

[
g2(x)

]
for the test function g : Rd → R and Ep∗

[
g2(x)

]
<

∞, we have

Ep∗

[
g2 ln g2

]
− Ep∗

[
g2
]
lnEp∗

[
g2
]
≤ 2

m
Ep∗

[
∥∇g∥2

]
,

which implies p∗ satisfies m-log-Sobolev inequality.
Lemma 21. Using the notation in Table. 1, for each t ∈ [0,∞), the underlying distribution pt of
the forward process satisfies

DKL (pt∥p∞) ≤ 4(dL+m2
2) · exp

(
− t

2

)
Proof. Consider the Fokker–Planck equation of the forward process, i.e.,

dxt = −xtdt+
√
2dBt, x0 ∼ p0 ∝ e−f∗ ,

we have

∂tpt(x) = ∇ · (pt(x)x) + ∆pt(x) = ∇ ·
(
pt(x)∇ ln

pt(x)

e−
1
2∥x∥2

)
.
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It implies that the stationary distribution is

p∞ ∝ exp

(
−1

2
· ∥x∥2

)
. (55)

Then, we consider the KL convergence of (xt)t≥0, and have

dDKL(pt∥p∞)

dt
=

d

dt

∫
pt(x) ln

pt(x)

p∞(x)
dx =

∫
∂tpt(x) ln

pt(x)

p∞(x)
dx

=

∫
∇ ·
(
pt(x)∇ ln

pt(x)

p∞(x)

)
· ln pt(x)

p∞(x)
dx

=−
∫
pt(x)

∥∥∥∥∇ ln
pt(x)

p∞(x)

∥∥∥∥2 dx.
(56)

According to Proposition 5.5.1 of Bakry et al. (2014), if p∞ is a centered Gaussian measure on Rd

with covariance matrix Σ, for every smooth function f on Rd, we have

Ep∞

[
f2 log f2

]
− Ep∞

[
f2
]
logEp∞

[
f2
]
≤ 2Ep∞ [Σ∇f · ∇f ]

For the forward stationary distribution Eq. 55, we have Σ = I . Hence, by choosing f2(x) =
pt(x)/p∞(x), we have

DKL (pt∥p∞) ≤ 2

∫
pt(x)

∥∥∥∥∇ ln
pt(x)

p∞(x)

∥∥∥∥2 dx
Plugging this inequality into Eq. 56, we have

dDKL(pt∥p∞)

dt
= −

∫
pt(x)

∥∥∥∥∇ ln
pt(x)

p∞(x)

∥∥∥∥2 dx ≤ −1

2
DKL(pt∥p∞).

Integrating implies the desired bound,i.e.,

DKL(pt∥p∞) ≤ exp

(
− t

2

)
DKL(p0∥p∞) = C0 exp

(
− t

2

)
.

Lemma 22. Suppose f1 : Rd → R and f2 : Rd → R is µ-strongly convex for ∥x∥ ≥ R. That means
v1(x) := f1(x)− µ/2 · ∥x∥2 (and v2(x) := f2(x)− µ/2 · ∥x∥2) is convex on Ω = Rd \B(0, R).
Specifically, we require that x ∈ Ω, any convex combination of x =

∑k
i=1 λixi with x1, . . . ,xk ∈

Ω satisfies

v1(x) ≤
k∑

i=1

λkv1(xi).

Then, we have f1 + f2 is 2µ-strongly convex for ∥x∥ ≥ R.

Proof. We define v(x) = f(x)−µ ∥x∥2. Hence, by considering x ∈ Ω and its convex combination
of x =

∑k
i=1 λixi with x1, . . . ,xk ∈ Ω, we have

v(x) = v1(x) + v2(x) ≤
k∑

i=1

λiv1(xi) +

k∑
i=1

λiv2(xi) =

k∑
i=1

λiv(xi).

Hence, the proof is completed.

Lemma 23. Suppose q is a distribution which satisfies LSI with constant µ, then its variance satisfies∫
q(x) ∥x− Eq̃ [x]∥2 dx ≤ d

µ
.
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Proof. It is known that LSI implies Poincaré inequality with the same constant (Rothaus, 1981;
Villani, 2021; Vempala & Wibisono, 2019), which can be derived by taking ρ → (1 + ηg)ν in
Eq. (10). Thus, for µ-LSI distribution q, we have

varq (g(x)) ≤
1

µ
Eq

[
∥∇g(x)∥2

]
.

for all smooth function g : Rd → R.

In this condition, we suppose b = Eq[x], and have the following equation∫
q(x) ∥x− Eq [x]∥2 dx =

∫
q(x) ∥x− b∥2 dx

=

∫ d∑
i=1

q(x) (xi − bi)
2
dx =

d∑
i=1

∫
q(x) (⟨x, ei⟩ − ⟨b, ei⟩)2 dx

=

d∑
i=1

∫
q(x) (⟨x, ei⟩ − Eq [⟨x, ei⟩])2 dx =

d∑
i=1

varq (gi(x))

where gi(x) is defined as gi(x) := ⟨x, ei⟩ and ei is a one-hot vector ( the i-th element of ei is 1
others are 0).

Combining this equation and Poincaré inequality, for each i, we have

varq (gi(x)) ≤
1

µ
Eq

[
∥ei∥2

]
=

1

µ
.

By combining the equation and inequality above, we have∫
q(x) ∥x− Eq [x]∥2 dx =

d∑
i=1

varq (gi(x)) ≤
d

µ

Hence, the proof is completed.
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F EMPIRICAL RESULTS

F.1 EXPERIMENT SETTINGS AND MORE EMPIRICAL RESULTS

We choose 1, 000 particles in the experiments and use MMD (with RBF kernel) as the metric. We
choose T ∈ {− ln 0.99,− ln 0.95,− ln 0.9,− ln 0.8,− ln 0.7}. We use 10, 50, or 100 iterations to
approximate p̂ chosen by the corresponding problem. The inner loop is initialized with importance
sampling mean estimator by 100 particles. The inner iteration and inner loop sample-size are cho-
sen from {1, 5, 10, 100}. The outer learning rate is chosen from {T/20, T/10, T/5}. When the
algorithm converges, we further perform LMC until the limit of gradient complexity. Note that the
gradient complexity is evaluated by the product of outer loop and inner loop.
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Figure 4: Maximum Mean Discrepancy (MMD) convergence of LMC, ULMC, RDMC.
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Figure 5: Maximum Mean Discrepancy (MMD) convergence of LMC, ULMC, RDMC.

F.2 MORE INVESTIGATION ON ILL-BEHAVED GAUSSIAN CASE

Figure 6 demonstrate the differences between Langevin dynamics and the OU process in terms of
their trajectories. The former utilizes the gradient information of the target distribution ∇ ln p∗,
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to facilitate optimization. However, it converges slowly in directions with small gradients. On the
other hand, the OU process constructs paths with equal velocities in each direction, thereby avoiding
the influence of gradient vanishing directions. Consequently, leveraging the reverse process of the
OU process is advantageous for addressing the issue of uneven gradient sampling across different
directions.
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Figure 6: Langevin dynamics vs (reverse) OU process. We consider the sampling path between
the 2-dimensional normal distributions N (0, I2) and N ((20, 20),diag(400, 1)). The mean µt of
Langevin dynamics show varying convergence speeds in different directions, while the OU process
demonstrates more uniform changes.

In order to further demonstrate the effectiveness of our algorithm, we conducted additional exper-
iments comparing the Langevin dynamics with our proposed method in our sample scenarios. To
better highlight the impacts of different components, we chose the 2-dimensional ill-conditioned

Gaussian distribution N
(
(20, 20),

(
400 0
0 1

))
(shown in Figure 7) as the target distribution to

showcase this aspect. In this setting, we obtained an oracle sampler for qt, enabling us to conduct a
more precise experimental analysis of the sample complexity.
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Figure 7: Initial and Target distribution sample illustration.

Figure 8 illustrates the distributions of samples generated by the LMC algorithm at iterations 10, 100,
1000, and 10000. It can be observed that these distributions deviate from the target distribution.
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Figure 8: Illustration of LMC with different iterations.

Figure 9 demonstrates the performance of the RDMC algorithm in the scenario of infinite samples,
revealing its significantly superior convergence compared to the LMC algorithm.
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Figure 9: Illustration of RDMC (oracle sampler, infinite samples) with different iterations.

Figure 10 showcases the convergence of the RDMC algorithm in estimating the score under dif-
ferent sample sizes. It can be observed that our algorithm is not sensitive to the sample quantity,
demonstrating its robustness in practical applications.
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Figure 10: Illustration of RDMC (oracle sampler, finite samples, T
kη = 100).

Figure 11 illustrates the convergence behavior of the RDMC algorithm with an inexact solver. It can
be observed that even when employing LMC as the solver for the inner loop, the final convergence
of our algorithm surpasses that of the original LMC. This is attributed to the insensitivity of the
algorithm to the precision of the inner loop when t is large. Additionally, when t is small, the log-
Sobolev constant of the inner problem is relatively large, simplifying the problem as a whole and
guiding the samples towards the target distribution through the diffusion path.
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Figure 11: Illustration of RDMC (inexact sampler, finite samples, T
kη = 100).

F.3 SAMPLING FROM HIGH-DIMENSIONAL DISTRIBUTIONS

To validate the dimensional dependency of RDMC algorithm, we consider to extend our Gaussian
mixture model experiments.

In the log-Sobolev distribution context (see Section 4.2.1), both the Langevin-based algorithm and
our proposed method exhibit polynomial dependence on dimensionality. However, the log-Sobolev
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constant grows exponentially with radius R, which is the primary influencing factor. This leads
to behavior akin to the 2-D example presented earlier. A significant limitation of the Langevin-
based algorithm is its inability to converge within finite time for large R values, in contrast to the
robustness of our algorithm. In higher-dimensional scenarios (e.g., r = 2 for d = 50 and d = 100),
we observe a notable decrease in rdMC performance after approximately 100 computations. This
decline may stem from the kernel-based computation of MMD, which tends to be less sensitive in
higher dimensions. For these large r cases, LMC and ULMC fails to converge in finite time. Overall,
Figure 12 exhibits trends consistent with Figure 3, corroborating our theoretical findings.
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Figure 12: Illustration of RDMC and MCMC for high-dimensional Gaussian Mixture model (6
modes). The first row shows the case of r = 1. The second row shows the case of r = 2.

For heavy-tail distribution (refer to Section 4.2.2), the complexity of both RDMC and MCMC are
quite high, so it is not feasible to sample from them in limited time. Nonetheless, as our algorithm
only has the polynomial dependency of d, but the Langevin-based algorithms have exponential de-
pendency with respect to d, we may have more advantages. For example, we can use the nth moment
demonstrate the similarity of different distributions. To illustrate the phenomenon, we consider the
extreme case – Cauchy distribution2. According to Figure 13, RDMC has better approximation for
the true distribution and the approximation gap increases with respect to dimension.
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Figure 13: Moment estimators for Cauchy distribution when n = 1000. It reflects the closeness
between different distributions. For high dimensional moments, we computes the sum across all
dimensions (trace) for proper plotting. The algorithm are evaluated with 1K gradient complexity.

F.4 DISCUSSION ON THE CHOICE OF p̃0

Note that different p̃0 may have impacts on the algorithm. In this subsection, we discuss the impact
of choice of p̃0 and try to make a clear demonstration for the influence in real practice.

Practically, selecting T determines the initial distribution for reverse diffusion. While any T choice
can achieve convergence, the computational complexity varies with different T values. According to
Figure 14, we can notice that with the increase of T , the modes of pT tend to merge to a single mode,
and the speed is exponentially fast (Lemma 21). Even with T = − ln 0.95, the dis-connectivity of
modes can be alleviated significantly. Thus, the choice of T is not sensitive when choosing T from
− ln 0.95 to − ln 0.7.

2The mean of Cauchy distribution does not exist. We use the case for better heavy-tail demonstration.
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Figure 14: Choice of pT and the approximation by p̃0. For T from − ln 0.95 to − ln 0.7, p̃0 can
approximate pT properly, where each modes are connected to make the approximated distribution
well-mixed. Then the RDMC can be performed properly.

However, when choosing too small or too large T , there would be some consequence:

• If T is too small, the approximation of p̃0 would be extremely hard. For example, if T → 0,
the algorithm would be similar to Langevin algorithm;

• If T is too large, it would be wasteful to transport from T to − ln 0.7 since the distribution
in this interval is highly homogeneous3.

In summary, aside from the T → 0 scenario, our algorithm exhibits insensitivity to the choice of T
(or p̃0). Selecting an appropriate T can reduce computational demands when using a constant step
size schedule.

F.5 NEAL’S FUNNEL

Neal’s Funnel is a classic demonstration of how traditional MCMC methods struggle with conver-
gence unless specific parameterization strategies are employed. We further investigate the perfor-
mance of our algorithm for this scenario. As indicated in Figure 15, our method demonstrates more
rapid convergence compared to Langevin-based MCMC approaches. Additionally, Figure 16 reveals
that while LMC lacks efficient exploration capabilities, ULMC fails to accurately represent density.
This discrepancy stems from incorporating momentum/velocity. Our algorithm strikes an improved
balance between exploration and precision, primarily due to the efficacy of the reverse diffusion
path, thereby enhancing convergence speed.
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Figure 15: Convergence of Neal’s Funnel for RDMC, LMC, and ULMC.
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Figure 16: Samples from Neal’s Funnel.

3It is possible to consider varied step size scheduling, which can be interesting future work.
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