
Published as a conference paper at ICLR 2023

A MINIMALIST DATASET FOR SYSTEMATIC GENERAL-
IZATION OF PERCEPTION, SYNTAX, AND SEMANTICS

Qing Li1, Siyuan Huang1, Yining Hong2, Yixin Zhu3, Ying Nian Wu2, Song-Chun Zhu1,2,3

1National Key Laboratory of General Artificial Intelligence, BIGAI
2Center for Vision, Cognition, Learning, and Autonomy (VCLA), UCLA
3Institute for Artificial Intelligence, Peking University
https://liqing-ustc.github.io/HINT

ABSTRACT

Inspired by humans’ exceptional ability to master arithmetic and generalize to
new problems, we present a new dataset, Handwritten arithmetic with INTegers
(HINT), to examine machines’ capability of learning generalizable concepts at
three levels: perception, syntax, and semantics. In HINT, machines are tasked with
learning how concepts are perceived from raw signals such as images (i.e., percep-
tion), how multiple concepts are structurally combined to form a valid expression
(i.e., syntax), and how concepts are realized to afford various reasoning tasks (i.e.,
semantics), all in a weakly supervised manner. Focusing on systematic generaliza-
tion, we carefully design a five-fold test set to evaluate both the interpolation and
the extrapolation of learned concepts w.r.t. the three levels. Further, we design a
few-shot learning split to determine whether or not models can rapidly learn new
concepts and generalize them to more complex scenarios. To comprehend existing
models’ limitations, we undertake extensive experiments with various sequence-
to-sequence models, including RNNs, Transformers, and GPT-3 (with the chain
of thought prompting). The results indicate that current models struggle to extrap-
olate to long-range syntactic dependency and semantics. Models exhibit a consid-
erable gap toward human-level generalization when evaluated with new concepts
in a few-shot setting. Moreover, we discover that it is infeasible to solve HINT by
merely scaling up the dataset and the model size; this strategy contributes little
to the extrapolation of syntax and semantics. Finally, in zero-shot GPT-3 experi-
ments, the chain of thought prompting exhibits impressive results and significantly
boosts the test accuracy. We believe the HINT dataset and the experimental find-
ings are of great interest to the learning community on systematic generalization.

1 INTRODUCTION

Humans possess a versatile mechanism for learning concepts from data (Firestone & Scholl, 2016).
Suppose, for example, that we were tasked with deciphering ancient Egyptian signs based on the
examples in Table 1. Given sufficient time, we may comprehend these signs by how to recog-
nize them—what each sign looks like at the perceptual level, by how to compose them into valid
sequence—at the syntactic level, and how to predict the results—at the semantic level. Learning
concepts heavily rely on these three-level interweaving meanings. Such observation is also con-
sistent with the classic view of human cognition, which postulates at least three distinct levels of
organizations in computation systems (Pylyshyn, 1984).

Train Test

Ñ 60 Ñ 18 Ñ ?
Ñ 100 Ñ 16 Ñ ?

Ñ 12 Ñ 41 Ñ ?
Ñ 4 Ñ 4 Ñ ?

Ñ 26 Ñ 17 Ñ ?

Table 1: Can you decipher these ancient Egyptian signs from training examples and apply them to
test cases? Interested readers can refer to the website, https://liqing-ustc.github.io/HINT/
Egyptian, for more training and test samples with the ground-truth meaning for each sign. We strongly en-
courage the readers to play this game prior to reviewing the answers.

1

https://liqing-ustc.github.io/HINT
https://liqing-ustc.github.io/HINT/Egyptian
https://liqing-ustc.github.io/HINT/Egyptian

Published as a conference paper at ICLR 2023

Another appealing characteristic of human concept learning is its systematic compositionality
(Chomsky, 1957; Montague, 1970): the algebraic capacity to understand and construct an endless
number of novel combinations from a finite set of known components, i.e., “infinite use of finite
means” (Chomsky, 1965). As illustrated in Table 1, this form of compositionality is essential to the
human ability to make strong generalizations from simple examples to complex ones.

Various benchmarks (Lake & Baroni, 2018; Hupkes et al., 2020; Keysers et al., 2020) and methods
(Lake, 2019; Gordon et al., 2019; Csordás et al., 2021) have been introduced by the emerging com-
munity of learning models that capture human-like systematic compositionality. As it is difficult to
collect real data with systematic compositionality, the majority of existing benchmarks are derived
from artificial domains using synthetic data and tasks, covering only a subset of the concept learn-
ing spectrum; see Table 2 for a detailed comparison. When evaluating systematic compositionality,
prior datasets frequently conflate syntax and semantics. For instance, the SCAN dataset (Lake & Ba-
roni, 2018) is a semantic parsing task from natural language commands to action sequences; when
a model fails on a longer command than the ones in the training set, the root cause could stem from
misinterpreting the complex syntactic relations in a long input sequence (command) or its inability
to generate a long output sequence (actions) (e.g., as a result of the EOS decision problem (New-
man et al., 2020). In addition, previous benchmarks frequently incorporated simple semantics (e.g.,
a simple mapping or repetition), resulting in an undesired bias toward syntactic generalization.

To expand systematic compositionality to a full-spectrum systematic generalization w.r.t. percep-
tion, syntax, and semantics, we draw inspiration from arithmetic and present a new benchmark
called HINT, Handwritten arithmetic with INTegers. The HINT task is intuitive: Machines accept as
input images of handwritten expressions and predict the final results of expressions, restricted in the
integers. Since there is no intermediary supervision, the three-level meanings are apparently inter-
twined during learning, and models are expected to simultaneously acquire the three-level meanings
to make correct predictions. To provide a comprehensive and rigorous test of how models generalize
the learned concepts, we introduce a carefully structured evaluation scheme with five subsets, focus-
ing on generalization patterns (i.e., interpolation and extrapolation) at various levels (i.e., perception,
syntax, and semantics). In addition, we build a few-shot learning split to determine if models can
rapidly learn new concepts from few examples and generalize them to more complicated scenar-
ios. Being minimal yet comprehensive in terms of systematic generalization, HINT is fundamentally
more difficult than earlier datasets because: (i) The images are of actual handwriting with consid-
erable visual variation; (ii) The syntactic relations between the tokens in the expressions are more
complex with long-range dependency. (iii) The semantics of arithmetic concepts are more complex
than the simple mappings in prior datasets.

To facilitate future research in this direction, we conduct extensive experiments of various sequence-
to-sequence (seq2seq) models, including Recurrent Neural Networks (Hochreiter & Schmidhuber,
1997; Chung et al., 2014), Transformers (Vaswani et al., 2017), and GPT-3 (Brown et al., 2020)
(with chain of thought prompting Wei et al. (2022)). Our experiments indicate that all models still
struggle on HINT; even the state-of-the-art model, Universal Transformer (Dehghani et al., 2018)
with relative positional encoding (Shaw et al., 2018; Dai et al., 2019), achieves just 54% accuracy
on HINT, although it achieves virtually perfect accuracy on prior datasets such as SCAN (Csordás
et al., 2021). An in-depth analysis of the results on each test subset reveals that current models
still struggle with extrapolation to long-range syntactic dependency and semantics. In the GPT-3
experiments, the chain of thought prompting significantly increases the zero-shot test accuracy from
8.6% to 27.6%. By examining the scaling trends of the test accuracy w.r.t. the size of the model and
the dataset, we find that it is impractical to solve HINT by simply scaling up the size of the dataset or
the model, as is typically done in NLP tasks (Kaplan et al., 2020; Henighan et al., 2020); more data
and parameters do not significantly improve the extrapolation over syntax and semantics. The few-
shot learning experiments demonstrate that, despite the fact that the top-performing models exhibit
decent capabilities for learning new concepts, they are still far from the human-level generalization
that only requires the learning examples of a new concept in a primitive form and readily generalizes
to more complex compositions of the learned concept.

In short, we introduce the HINT dataset for investigating the systematic generalization across three
levels—perception, syntax, and semantics. By benchmarking various seq2seq models on HINT, we
uncover their primary weaknesses in systematic generalization. We hope the HINT dataset and our
experimental findings will stimulate future developments of systematic generalization.

2

Published as a conference paper at ICLR 2023

Table 2: Dataset categorization and comparison. SP: semantic parsing, IC: image classification, QA: question
answering, i&t: image & text. Perception/Syntax/Semantics: whether the task requires models to learn percep-
tion/syntax/semantics. Generalization: the type of generalization required for test examples. *: the generated
images in these datasets have little variance.

Dataset Domain Task Modality Perception Syntax Semantics Generalization Size
SCAN (Lake & Baroni, 2018) synthetic SP text ✓ ✓ systematic 100K

gSCAN (Ruis et al., 2020) synthetic SP i&t ✓* ✓ ✓ systematic 300K
PCFG (Hupkes et al., 2020) synthetic SP text ✓ ✓ systematic 100K
CFQ (Keysers et al., 2020) real SP text ✓ ✓ systematic 239K

CURI (Vedantam et al., 2021) synthetic IC image ✓ ✓ systematic 15K
COGS (Kim & Linzen, 2020) real SP text ✓ ✓ systematic 30K

Mathematics (Saxton et al., 2018) real QA text ✓ ✓ systematic 2M
PGM (Barrett et al., 2018) synthetic IC image ✓ ✓ systematic 1.4M

CLOSURE (Bahdanau et al., 2019) synthetic QA i&t ✓ ✓ systematic 7K
CLEVR (Johnson et al., 2017) synthetic QA i&t ✓ ✓ i.i.d 865K

HWF (Li et al., 2020) real IC image ✓ i.i.d 12K
MNIST-Add (Manhaeve et al., 2018) real IC image ✓ i.i.d -

HINT (ours) real QA image ✓ ✓ ✓ systematic 1M

2 RELATED WORK

Benchmarks on Systematic Generalization Although several benchmarks (Lake & Baroni,
2018; Hupkes et al., 2020; Barrett et al., 2018; Zhang et al., 2019; Teney et al., 2020; Keysers
et al., 2020; Bahdanau et al., 2019; Ruis et al., 2020; Kim & Linzen, 2020; Keysers et al., 2020)
have advanced systematic generalization, the majority of them are based on artificial domains with
synthetic tasks, involve just one or two aspects of concept learning and often mixing the generaliza-
tion over syntax and semantics. SCAN (Lake & Baroni, 2018) is tasked with translating a natural
language command into a sequence of operations in a simplified navigation domain using only syn-
tax and semantics. CLEVR (Johnson et al., 2017) requires parsing questions (syntax) and grounding
visual objects (perception), although objects themselves lack functional semantics. We refer readers
to Table 2 for detailed comparisons of related datasets.

In contrast, the proposed HINT benchmark stems from the area of arithmetic reasoning with real
handwriting images (at the primitive level, rather than the expression level) and requires joint learn-
ing of perception, syntax, and semantics. The precise definitions and boundaries of these meanings
in HINT permit to build test splits to evaluate the specific generalizations. Notably, HINT possesses
more complex semantics, which eliminates the undesirable bias towards syntactic generalization
present in earlier datasets. The task of the HINT benchmark is inspired by the HWF dataset (Li
et al., 2020) but requires full-spectrum learning of perception, syntax, and semantics. By going be-
yond an i.i.d train/test split in Li et al. (2020), HINT focuses on examining systematic generalization
across many aspects of concepts.

Methods on Systematic Generalization To capture systematic generalization, new training
regimes (Lake, 2019; Andreas, 2020; Akyürek et al., 2020; Zhang et al., 2022) and model architec-
tures (Dessı̀ & Baroni, 2019; Russin et al., 2019; Csordás et al., 2021; Gordon et al., 2019; Bergen
et al., 2021) have been developed. Russin et al. (2019), for instance, expand a seq2seq model by
segregating syntactic and semantic information. Csordás et al. (2021) investigate a variety of Trans-
former configurations to enhance its systematic compositionality. Andreas (2020) and Akyürek et al.
(2020) investigate data enhancement for compositional generalization.

In particular, several neural-symbolic methods with domain-specific designs (Chen et al., 2020;
Nye et al., 2020; Liu et al., 2020) achieve near-perfect accuracy on prior systematic generalization
datasets like SCAN (Lake & Baroni, 2018). However, these neural-symbolic methods introduce
certain non-trivial domain-specific symbolic components, making it difficult to transfer to other
domains; their flexibility and transferability are unclear. In this paper, we benchmark on HINT with
prevailing seq2seq frameworks, including RNNs, Transformers, and GPT-3, which require minimal
domain-specific design and may be of broad interest to the learning community. We reserve for
future research the investigation of more sophisticated methods, such as data augmentation and
neural-symbolic approaches.

3 THE HINT DATASET

In this section, we present the specifics of the HINT benchmark, devised to evaluate models’ capa-
bility of learning generalizable concepts at three distinct levels: perception, syntax, and semantics.

3

Published as a conference paper at ICLR 2023

3.1 THE DEFINITIONS OF PERCEPTION, SYNTAX, AND SEMANTICS

We first define the perception, syntax, and semantics in the domain of HINT, as shown in Table 3.
Perception refers to the mapping from image pixels into meaningful patterns, such as mapping an
image of handwritten expression to a symbolic sequence. Syntax refers to the mechanism of how
the concepts in one sample are structurally organized e.g., parsing the symbolic sequence into a
tree, and the syntax in Table A2 is expressed by a phrase-structure grammar. Semantics refers to the
functional meanings of these arithmetic concepts, e.g., what value ‘5’ represents and what value ‘+’
produces when given two arguments 1 and 1.

Table 3: The definitions of perception, syntax, and semantics In syntax, number, op1, and op2 are the HINT
grammar’s pre-terminals in Table A2. In semantics, i and j are the operator’s inputs. ´ is defined as maxp0, i´

jq to prevent negative results, and ˜ is defined as ceilpi ˜ jq to remove the decimal portions of the results.

(a) main concepts

concept perception syntax semantics

0..5..9 number 0..5..9
p q parenthesis none
` op1 i ` j
´ op1 maxp0, i ´ jq

ˆ op2 i ˆ j
˜ op2 ceilpi ˜ jq

(b) new concepts in the few-shot learning split

concept perception syntax semantics

x number 11
y number 12
a op1 maxpi, jq

b op1 minpi, jq

c op2 pi ` jq ˜ 2
d op2 2i ˆ j ˜ pi ` jq

Notably, although these three levels have a clear boundary by their definitions, a model need not nec-
essarily represent them by separate and individual modules. An end-to-end neural network trained
on this domain, for instance, will likely contain neurons and parameters from all three layers. The
notion of perception, syntax, and semantics simply requires the models to capture these meanings
during evaluation, regardless of how the models finish the tasks, implicitly or explicitly.

Task The task of HINT is intuitive: predict the final results of handwritten arithmetic expressions
in a weakly-supervised manner. That is, only the final results are given as supervision; all the sym-
bolic expressions, parse trees, and intermediate values are latent. In such a setting, any model must
simultaneously master perception, syntax, and semantics to solve this task successfully.

3.2 DATA GENERATION

Table 4: Examples from the training set and the test subsets of HINT.

Train

Test

I
SS
LS

SL

LL 174
1
620

18
6
2

192 135
438

2 66 4

1 0 15

2 0
32 41

The data generation process consists of three steps. First, we extract handwritten images for each
concept from CROHME (Mahdavi et al., 2019), including digits 0 through 9, operators `,´,ˆ,˜,
and parentheses p, q. Second, we randomly sample prefix expressions and convert them to infix ex-
pressions with necessary parentheses based on the operator precedence; only single-digit numbers
are permitted. The symbolic expressions are fed into a solver to calculate the final results. Third, we
randomly sample handwritten images for symbols in an expression and concatenate them to con-
struct the final handwritten expression. We only retain the handwritten expressions as input and the
corresponding final results as supervision; all intermediate results are discarded.

Full-Spectrum Systematic Generalization To rigorously evaluate the systematic generalization
of the learned concepts, we substitute the standard i.i.d. split with a meticulously crafted evaluation

4

Published as a conference paper at ICLR 2023

scheme. We randomly divide all handwritten images into three splits: training (75%), validation
(5%), and test (20%). First, we limit the maximum number of operators in the training set to 10 and
the maximum intermediate values to 100:

Dtrain Ă Ttrain “ tpx, yq : |x| ď 10,maxpvq ď 100u, (1)

where x is the expression, |x| its number of operators, y the final result, and v all the intermediate
values and the final results. To ensure diversity in the training set, we sample a maximum of 100,000
distinct expressions with the same number of operators. To prevent bias in the final results, we cap
the percentage of a certain result at less than 5%. Next, we carefully curate the test set to evalu-
ate different generalization capabilities (i.e., interpolation and extrapolation) on different levels of
meaning (i.e., perception, syntax, and semantics). Specifically, the test set comprises five subsets,
formally defined as:

Dtest “ I Y SS Y LS Y SL Y LL,where (2)
I Ă Dtrain, generalization on perception only
SS Ă TtrainzDtrain, interpolation on both syntax and semantics
LS Ă tpx, yq : |x| ą 10,maxpvq ď 100u, extrapolation on syntax and interpolation on semantics
SL Ă tpx, yq : |x| ď 10,maxpvq ą 100u, interpolation on syntax and extrapolation on semantics
LL Ă tpx, yq : |x| ą 10,maxpvq ą 100u. extrapolation on both syntax and semantics

All subsets of the test set require generalization on perception since all images in the test set are
unseen during training. For the test set, we sample no more than 1,000 unique expressions with the
same number of operators, and the final results are also balanced. The maximum number of operators
is set up to 20, and the maximum intermediate value to 10,000. We also build a small validation set
for hyperparameter tuning. See Table 4 for training and test examples and refer to Appendix A for
further dataset statistics.

Few-shot Learning and Generalization To determine if models can rapidly learn new concepts,
we constructed a few-shot learning split to learn six new concepts, as shown in Table 3. These six
concepts have different meanings in terms of perception, syntax, and semantics: two new numbers
(x and y , representing 11 and 12, respectively), two operators of precedence 1 (a and b

, representing max and min), and two operators of precedence 2 (c and d , representing
arithmetic mean and harmonic mean). The train, validation, and test splits are constructed using the
same strategy as in the full-spectrum generalization. Expressions are sampled to guarantee that the
corresponding new concept appears at least once in the expression. This few-shot learning split is
used to determine whether the models pre-trained on the training set can rapidly learn a new concept
by fine-tuning on only a handful of examples involving the new concept. In this context, “few-shot”
implies that the examples used to acquire a new concept are significantly fewer than those of the
training set, but still exceed the number of examples required by humans to learn a new concept.

4 DEEP SEQUENCE-TO-SEQUENCE BASELINES

The task of HINT can be naturally formulated as a sequence-to-sequence (seq2seq) problem: The
input is a handwritten expression, segmented into a sequence of images by a sliding window, and the
output is an integer, converted into a sequence of digits. We benchmark deep seq2seq frameworks
on HINT; see Figure 1 for an illustration using a detailed example.

4.1 IMAGE TOKENIZING AND EMBEDDING

Existing seq2seq frameworks typically accept a sequence of tokens as input. To tokenize a hand-
written expression, its height is first resized to 32, and a 32-pixel sliding window is applied along
the horizontal axis to render a sequence of images. Next, each image in the sequence is encoded by
ResNet-18 (He et al., 2016), sufficient to handle the visual variance in handwriting.

4.2 ENCODER-DECODER ARCHITECTURES

RNNs Recurrent neural networks (RNNs) have long been a dominant choice for sequence model-
ing tasks. We test two popular RNNs in the literature: long short-term memory (LSTM) (Hochreiter
& Schmidhuber, 1997) and gated recurrent units (GRU) (Chung et al., 2014). Each model is evalu-
ated both with and without attention (Bahdanau et al., 2015).

5

Published as a conference paper at ICLR 2023

Encoder Decoder

ResNet-18 <SOS> 4

4 1

<SOS> <EOS>

Figure 1: The seq2seq framework applied to an example in HINT. ¡SOS¿: start-of-sentence tokens. ¡EOS¿:
end-of-sentence tokens. A sliding window segments the handwritten expression into a sequence of images,
which are then separately encoded by ResNet-18. The expected output is a sequence of digits in reverse order.

Transformers Since its inception (Vaswani et al., 2017), Transformers have gradually supplanted
recurrent or convolutional neural networks as the de facto choice for various sequence modeling
tasks (Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020). Nevertheless, prior work (De-
hghani et al., 2018; Hupkes et al., 2020; Kim & Linzen, 2020) suggests that the vanilla Transformer
fails substantially in many tasks requiring systematic generalization when the sequence lengths ex-
ceed those observed during training. Recently, several simple tricks have been proposed (Csordás
et al., 2021) to improve the generalization capability of Transformers; two of them work particularly
well: (i) using relative positional encoding (Shaw et al., 2018; Dai et al., 2019), and (ii) sharing
weights across the blocks in the Transformer, a.k.a.., Universal Transformer (Dehghani et al., 2018).
Therefore, we benchmark Transformer variants: the vanilla Transformer, Transformer with relative
positional encoding, and Universal Transformer with relative positional encoding.

GPT-3 Since the commencement of GPT-3 (Brown et al., 2020), there have been intense debates
and different perspectives regarding the mathematical reasoning capacity of pre-trained large lan-
guage models.1 To systematically and comprehensively evaluate GPT-3’s competence of arithmetic
reasoning, we test it on the proposed HINT benchmark using symbolic expressions as input. Since all
tokens of HINT are in the vocabulary of GPT-3, we directly evaluate GPT-3 via zero-shot prompting
using the OpenAI API. 2 We construct the prompt in the following form: “Q: What is Expression?
A: The answer is”, similar to the practice in Brown et al. (2020), but with more complex expressions.

Recently, chain of thought (CoT) prompting (Wei et al., 2022) has been extended to the zero-shot
setting (Kojima et al., 2022) by adding a simple prompt, “Let’s think step by step,” to facilitate step-
by-step thinking prior to answering each question. Zero-shot CoT surpasses the standard zero-shot
prompting by a significant margin in various reasoning tasks. Therefore, we also apply zero-shot
CoT prompting to evaluate GPT-3 on HINT; we refer the readers to Appendix B.2 for the details of
zero-shot CoT.

4.3 TRAINING AND EVALUATION

Training All models are trained using the Adam optimizer (Kingma & Ba, 2014); the gradients ex-
ceeding 5.0 are clipped. Dropout (Srivastava et al., 2014) is applied to each recurrent layer of RNNs
and each sub-layer of Transformers, including both the multi-head attention layers and the feedfor-
ward layers. No training is required for zero-shot experiments on GPT-3; instead, 100 samples from
each test subset are selected and fed to GPT-3 through zero-shot or zero-shot-CoT prompting.

Hyperparameter Tuning To produce reliable results, a thorough hyperparameter tuning is per-
formed w.r.t. the number of layers in the encoder and the decoder, the dimension of the token em-
bedding, the number of hidden units per layer, the number of attention heads in Transformers, the
dropout ratio, and the learning rate. We refer the readers to Table A3 for further information.

Evaluation Metric We report the accuracy of the final results. A predicted result is considered
correct only when it exactly matches the ground-truth answer.

1Can GPT-3 do math? https://www.youtube.com/watch?v=TMxAbNAVrzI
2https://openai.com/api/

6

https://www.youtube.com/watch?v=TMxAbNAVrzI
https://openai.com/api/

Published as a conference paper at ICLR 2023

Table 5: The accuracy on the test set using image inputs. All models are jointly trained with a randomly
initialized ResNet-18. Reported accuracy (%) is the median and standard deviation of 5 runs. “rel.” denotes
Transformer with relative positional encoding, and “uni.” denotes Universal Transformer.

Model Variant I SS LS SL LL Avg.

GRU w/o att 61.3˘1.4 53.3˘1.7 30.5˘1.2 9.2˘0.2 11.9˘0.5 33.2˘0.9
w/ att 66.7˘2.0 58.7˘2.2 33.1˘2.7 9.4˘0.3 12.8˘1.0 35.9˘1.6

LSTM w/o att 80.0˘5.7 76.2˘7.4 55.7˘8.2 10.9˘0.6 19.8˘2.6 48.6˘4.9
w/ att 83.9˘0.9 79.7˘0.8 62.0˘2.5 11.2˘0.1 21.0˘0.8 51.5˘1.0

Transformer
vanilla 20.9˘0.4 9.3˘0.2 5.7˘0.3 1.5˘0.3 2.9˘0.5 8.3˘0.3

rel. 86.2˘0.9 83.1˘1.3 60.1˘2.3 10.9˘0.2 19.4˘0.5 51.7˘1.0
rel. uni. 88.4˘1.3 86.0˘1.3 62.5˘4.1 10.9˘0.2 19.0˘1.0 53.1˘1.6

Table 6: The accuracy on the test set using symbol inputs.

Model Variant I SS LS SL LL Avg.

GRU w/o att 74.9˘1.6 68.1˘0.5 42.1˘1.9 10.5˘0.2 14.0˘0.8 41.3˘0.6
w/ att 76.2˘0.6 69.5˘0.6 42.8˘1.5 10.5˘0.2 15.1˘1.2 42.5˘0.7

LSTM w/o att 84.3˘5.2 79.6˘6.0 63.7˘6.1 11.7˘0.3 22.1˘1.4 52.3˘3.8
w/ att 92.9˘1.4 90.9˘1.1 74.9˘1.5 12.1˘0.2 24.3˘0.3 58.9˘0.7

Transformer
vanilla 93.9˘0.3 91.0˘0.5 33.2˘1.2 11.5˘0.1 11.5˘0.7 47.4˘0.4

rel. 96.6˘0.3 95.1˘0.4 72.1˘1.5 11.8˘0.2 22.3˘0.6 59.4˘0.5
rel. uni. 98.0˘0.3 96.8˘0.6 78.2˘2.9 11.7˘0.3 22.4˘1.1 61.5˘0.9

GPT-3 0-shot 19.0 9.0 3.0 10.0 2.0 8.6
0-CoT 42.0 36.0 5.0 49.0 6.0 27.6

5 RESULTS

5.1 JOINT LEARNING OF PERCEPTION, SYNTAX, AND SEMANTICS

Tables 5 and 6 summarize the results of all models on HINT using image inputs and symbol in-
puts, respectively. Among all models, the Universal Transformer with relative positional encoding
(“Transformer rel. uni.”) has the highest average accuracy on the test set. Upon careful examination
of the results, the following observations and insights can be made:

• Models attains high accuracy on the subset I. Particularly, Transformer rel. uni. using image
inputs achieves an accuracy of 88.4%. The test subset I shares the symbolic expressions with
training and has different handwritten images for symbols. This indicates that Transformers and
RNNs, jointly trained with ResNet-18, have strong generalization over perception. As depicted in
Figure 2, the model forms meaningful clusters for each concept and captures syntactic roles to
some extent without direct supervision on perception.

7

1

0

6
4

3

9
2

5

8

*

/-

+

(

)

Figure 2: The t-SNE visualization of the embeddings (the outputs of ResNet-18) of handwritten images
using the Transformer rel. univ. model. The image embeddings form clear clusters for each concept based
on visual appearance. In addition, these clusters reflect the concepts’ syntactic roles: The majority of digits are
towards the bottom, operators are around the center, and parentheses are near the top.

7

Published as a conference paper at ICLR 2023

• Transformers achieve high accuracy on the subset SS. The expressions in SS share the same
length and value distribution as training. This result indicates that Transformers exhibit robust
interpolation over syntax and semantics.

• The accuracy of Transformer rel. uni. on LS is substantially lower than its accuracy on SS
or I (see Table 6). Note that the identical model yields perfect accuracy on the length cutoff splits
of SCAN (Csordás et al., 2021). This result, however rather unexpected, may be explained by the
syntax difference between HINT and SCAN shown in Table A2: The expressions in HINT may
have a longer-range dependency and greater tree depth than the commands in SCAN. This obser-
vation suggests that present Transformers, which have finite depth, are incapable of adequately
capturing the syntax with long dependencies and large depth.

• Transformer with relative positional encoding achieves similar performance on I and SS as
the vanilla Transformer with absolute positional encoding, yet relative positional encoding
doubles the Transformer’s accuracy on LS (see Table 6). This contradiction implies that relative
positional encoding is essential for Transformer to generalize to long expressions. Sharing weights
between the layers using the Universal Transformer can further enhance performance.

• Models behave clumsily on the subsets SL and LL. The accuracy on SL and LL is significantly
lower than that on I and SS. All models exhibit near-zero accuracy on samples whose answers are
over 100 (the maximum final result in the training set). This finding suggests that neither RNNs
nor Transformers are able to extrapolate to larger numbers beyond those in the training set.

• While GPT-3 with zero-shot prompting performs poorly, chain of thought (CoT) prompting
significantly improves the accuracy. Notably, GPT-3 with zero-shot CoT achieves an accuracy
of 49.0% on SL, which is superior to other fine-tuned models. We believe this is due to the fact
that GPT-3 has been pre-trained on data with larger numbers, and CoT improves the reasoning
process. Despite CoT prompting, GPT-3 performs poorly on long expressions in LS and LL.

Summary We observe a significant room for improvement on HINT. Even the best model, Univer-
sal Transformer with relative positional encoding, can only achieve an accuracy of 54.3% on HINT,
while the same model achieves virtually perfect accuracy on earlier datasets of systematic gener-
alization, such as SCAN. The challenges of HINT stem from the fact that it requires joint learning
and generalization of perception, syntax, and semantics: The perception has a large variance in real
handwriting, the syntax supports long dependency between symbols, and the semantic complexity
is well beyond the capability of the state-of-the-art models.

Scaling Laws Since HINT can generate an endless amount of data for training, one may wonder
if merely increasing the dataset and the model size can solve the problem, akin to certain NLP tasks
(Kaplan et al., 2020; Henighan et al., 2020). Empirically, Figure 3 depicts the test accuracy’s scaling
trend w.r.t. the model size and the number of training samples. By altering the hidden dimensions,
the embedding dimension, and the number of attention heads, various-sized models are constructed.
Similarly, various-sized training sets are generated by randomly sampling the original training set.
Assuming a log-linear scaling trend, we need to train a model of 1033 parameters on 1015 examples
to attain 90% accuracy on the test subset LL, which is impractical. Hence, efficient architectures and
training algorithms are still in need to improve extrapolation over syntax and semantics.

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Data Size

5

10

15

20

Te
st

 A
cc

ur
ac

y
(L

L)

0M 5M 10M 15M 20M 25M 30M 35M
Model Size

Y = 7.42 * log D - 20.91
Y = 2.64 * log M + 2.86

Figure 3: Scaling trends w.r.t. model size and
dataset size when training Transformer rel. uni. on
the test subset LL with symbol inputs.

0 2 4 6 8 10
Operators

20

25

30

35

40

45

50

Te
st

 A
cc

ur
ac

y
(A

vg
.)

(0, 26.5)
(2, 24.1)

xy
abcd

Figure 4: The few-shot learning performance when
training Transformer rel. uni. with varied maxi-
mum operators.

8

Published as a conference paper at ICLR 2023

5.2 FEW-SHOT LEARNING AND GENERALIZATION

In this section, we fine-tune the top two models on six new concepts; Table 7 summarizes the results.
Transformer rel. uni. outperforms LSTM w/ attn across all concepts by a significant margin, which is
greater than six times their performance gap in Table 5. This discrepancy suggests that with limited
data, Transformer is superior to LSTM at learning new concepts.

Table 7: The few-shot learning performance of the top two models: LSTM w/ attn (left) and Transformer
rel. uni. (right). Reported results are the median of 5 runs. See Table 3 for the meanings of these concepts.
*Please refer to Appendix C for the details regarding the human study.

Concept I SS LS SL LL Avg. Human*
x 87.8/89.2 47.3/80.2 42.8/58.6 10.8/12.2 16.4/19.3 42.8/52.8 95.0
y 64.5/83.8 39.1/74.8 38.5/54.0 11.6/13.8 18.9/22.4 35.4/50.7 100.0
a 71.8/84.4 44.2/72.0 29.7/48.9 7.9/8.4 11.1/12.3 33.8/46.4 97.5
b 73.4/77.1 29.9/59.1 27.4/39.4 7.4/16.8 12.7/17.1 31.1/42.6 77.5
c 61.5/59.2 19.6/34.0 15.2/24.4 4.5/6.1 6.5/9.4 21.9/27.3 90.0
d 59.2/62.8 22.7/39.0 20.2/27.0 7.2/9.2 8.9/10.7 24.7/30.4 60.0

Overall 69.7/76.1 33.8/59.9 29.0/42.0 8.2/11.1 12.4/15.2 31.6/41.7 86.7

Figure 4 depicts the test accuracy of Transformer rel. uni. while using varied maximum operators for
training. In general, the more data and longer expressions used for training, the higher the model’s
performance. One test case for learning new numbers (“xy”) is p0, 26.5q, where the model is only ex-
posed to the primitive concept during training and is expected to generalize to complex compositions
during testing. The classic thought experiments (Fodor, 1975) indicate that this is straightforward
for humans: If you grasp the meanings of “1,” “1 ` 1,” and “x,” you should also comprehend the
meaning of “1 ` x”. A similar test case for learning new operators (“abcd”) is p2, 24.1q since ex-
pressions comprising at least two operators are required to capture the syntax of a new operator.
Transformer performs poorly on both of these tasks, demonstrating that it is still far from human-
level generalization.

6 DISCUSSIONS: CONCLUSIONS AND LIMITATIONS

In this paper, we took inspiration from arithmetic and introduced a new challenge for the learning
community, Handwritten arithmetic with INTegers (HINT), which serves as a minimal yet com-
prehensive benchmark for examining the full-spectrum systematic generalization of concept learn-
ing w.r.t. perception, syntax, and semantics. HINT is intrinsically more challenging than previous
datasets on systematic generalization due to its substantial perceptual diversity in real handwrit-
ing, complex syntax, and sophisticated semantics. We benchmark on HINT with the state-of-the-art
seq2seq models, including RNNs, Transformers, and GPT-3; the results point out their inability to
extrapolate over syntax and semantics. The scaling trends of test accuracy w.r.t. dataset size and
model size indicate that it is impractical to solve HINT by only increasing the size of the dataset and
model. We believe that the HINT dataset and our experimental findings will inspire new advances in
systematic generalization, particularly extrapolation over syntax and semantics.

Limitations and Future Work Despite a large visual variance, the handwritten expressions are
rather basic in terms of spatial locations and visual complexity. It would be more intriguing if we
could further increase the perceptual complexity w.r.t. spatial relations like natural images (Lin
et al., 2014). Although syntax and semantics in HINT are already more complex than those of prior
datasets, they remain context-free. Extending our findings to context-dependent syntax and seman-
tics would be of practical value given their prevalence in natural languages; e.g., a word might have
different syntactic roles or semantic meanings in different contexts.

Regarding model development on HINT, our findings reveal that current seq2seq models, including
Transformers, are unable to extract the systematic rules for both syntax and semantics from the
training data. Improving the systematic generalization of Transformers, particularly extrapolation
over semantics, is a crucial future direction. We also intend to investigate more advanced methods,
such as meta-learning (Lake, 2019), data augmentation (Andreas, 2020; Akyürek et al., 2020), Edge
Transformer (Bergen et al., 2021), and Neural-Symbolic Stack Machines (Chen et al., 2020). In
addition, understanding the systematic generalization of large language models by evaluating them
in few-shot or fine-tuning settings will be beneficial.

9

Published as a conference paper at ICLR 2023

Acknowledgements. The authors would like to thank four anonymous reviews for construc-
tive feedback. This work is supported in part by the National Key R&D Program of China
(2021ZD0150200) and the Beijing Nova Program.

REFERENCES

Ekin Akyürek, Afra Feyza Akyürek, and Jacob Andreas. Learning to recombine and resample data for compo-
sitional generalization. In International Conference on Learning Representations (ICLR), 2020.

Jacob Andreas. Good-enough compositional data augmentation. In Annual Meeting of the Association for
Computational Linguistics (ACL), 2020.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to
align and translate. In International Conference on Learning Representations (ICLR), 2015.

Dzmitry Bahdanau, Harm de Vries, Timothy J O’Donnell, Shikhar Murty, Philippe Beaudoin, Yoshua Bengio,
and Aaron Courville. Closure: Assessing systematic generalization of clevr models. In Visually Grounded
Interaction and Language (ViGIL) Workshop in NAACL, 2019.

David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. Measuring abstract reasoning in
neural networks. In International Conference on Machine Learning (ICML), 2018.

Leon Bergen, Timothy O’Donnell, and Dzmitry Bahdanau. Systematic generalization with edge transformers.
In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song, and Denny Zhou. Compositional generalization via
neural-symbolic stack machines. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Noam Chomsky. Syntactic structures. In Syntactic Structures. De Gruyter Mouton, 1957.

Noam Chomsky. Aspects of the Theory of Syntax. MIT press, 1965.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of gated recur-
rent neural networks on sequence modeling. In NIPS Workshop on Deep Learning, 2014.

Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber. The devil is in the detail: Simple tricks improve
systematic generalization of transformers. In Annual Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov. Transformer-
xl: Attentive language models beyond a fixed-length context. In Annual Meeting of the Association for
Computational Linguistics (ACL), 2019.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal transform-
ers. In International Conference on Learning Representations (ICLR), 2018.

Roberto Dessı̀ and Marco Baroni. Cnns found to jump around more skillfully than rnns: Compositional gen-
eralization in seq2seq convolutional networks. In Annual Meeting of the Association for Computational
Linguistics (ACL), 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT), 2019.

Chaz Firestone and Brian J Scholl. Cognition does not affect perception: Evaluating the evidence for “top-
down” effects. Behavioral and Brain Sciences, 39, 2016.

Jerry A Fodor. The language of thought. Harvard university press, 1975.

Jonathan Gordon, David Lopez-Paz, Marco Baroni, and Diane Bouchacourt. Permutation equivariant models
for compositional generalization in language. In International Conference on Learning Representations
(ICLR), 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

10

Published as a conference paper at ICLR 2023

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B
Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative modeling. arXiv
preprint arXiv:2010.14701, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: how do neural
networks generalise? Journal of Artificial Intelligence Research (JAIR), 67:757–795, 2020.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick.
Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin, Nikola
Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, et al. Measuring compositional generaliza-
tion: A comprehensive method on realistic data. In International Conference on Learning Representations
(ICLR), 2020.

Najoung Kim and Tal Linzen. Cogs: A compositional generalization challenge based on semantic interpretation.
In Annual Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Brenden M Lake. Compositional generalization through meta sequence-to-sequence learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. In International Conference on Machine Learning (ICML), 2018.

Qing Li, Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu. Closed loop neural-
symbolic learning via integrating neural perception, grammar parsing, and symbolic reasoning. In Interna-
tional Conference on Machine Learning (ICML), 2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in context. In European Conference on Computer
Vision (ECCV), 2014.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen, Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng, and Dong-
mei Zhang. Compositional generalization by learning analytical expressions. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Mahshad Mahdavi, Richard Zanibbi, Harold Mouchere, Christian Viard-Gaudin, and Utpal Garain. Icdar 2019
crohme+ tfd: Competition on recognition of handwritten mathematical expressions and typeset formula de-
tection. In International Conference on Document Analysis and Recognition (ICDAR), 2019.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt. Deep-
problog: Neural probabilistic logic programming. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

Richard Montague. Universal grammar. Theoria, 36(3):373–398, 1970.

Benjamin Newman, John Hewitt, Percy Liang, and Christopher D Manning. The eos decision and length
extrapolation. In BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, 2020.

Maxwell Nye, Armando Solar-Lezama, Josh Tenenbaum, and Brenden M Lake. Learning compositional rules
via neural program synthesis. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

11

Published as a conference paper at ICLR 2023

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Zenon W Pylyshyn. Computation and cognition: Towards a foundation for cognitive science. Cambridge, Ma:
MIT Press, 1984.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI Blog, 2019.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides,
Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models: Methods, analysis &
insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane Bouchacourt, and Brenden M Lake. A benchmark for sys-
tematic generalization in grounded language understanding. Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Jake Russin, Jason Jo, Randall C O’Reilly, and Yoshua Bengio. Compositional generalization in a deep seq2seq
model by separating syntax and semantics. arXiv preprint arXiv:1904.09708, 2019.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical reasoning abili-
ties of neural models. In International Conference on Learning Representations (ICLR), 2018.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations. In
North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research (JMLR), 15
(1):1929–1958, 2014.

Damien Teney, Peng Wang, Jiewei Cao, Lingqiao Liu, Chunhua Shen, and Anton van den Hengel. V-prom:
A benchmark for visual reasoning using visual progressive matrices. In AAAI Conference on Artificial
Intelligence (AAAI), 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Ramakrishna Vedantam, Arthur Szlam, Maximillian Nickel, Ari Morcos, and Brenden M Lake. Curi: A bench-
mark for productive concept learning under uncertainty. In International Conference on Machine Learning
(ICML), 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of
thought prompting elicits reasoning in large language models. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for relational and
analogical visual reasoning. In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

Chi Zhang, Sirui Xie, Baoxiong Jia, Ying Nian Wu, Song-Chun Zhu, and Yixin Zhu. Learning algebraic
representation for systematic generalization in abstract reasoning. In European Conference on Computer
Vision (ECCV), 2022.

A DATASET STATISTICS

The handwritten images for each arithmetic concept originate from the handwritten math symbols
dataset1 hosted on Kaggle under the “CC0: Public Domain” license, parsed and extracted from the
Competition on Recognition of Online Handwritten Mathematical Expressions (CROHME) (Mah-
davi et al., 2019)2. We further clean the dataset by removing duplicate images, resulting in statistics
shown in Figure A1.

We conduct a detailed analysis of the collected data to demonstrate the validity of the HINT dataset
as a benchmark for systematic generalization. Table A1 shows the size of each split in HINT, and
Table A2 shows a comparison between the grammars of HINT and SCAN.

1https://www.kaggle.com/datasets/xainano/handwrittenmathsymbols
2https://www.cs.rit.edu/˜crohme2019/

A1

https://www.kaggle.com/datasets/xainano/handwrittenmathsymbols
https://www.cs.rit.edu/~crohme2019/

Published as a conference paper at ICLR 2023

Table A1: Dataset size. The first row is the main split of HINT, and the rest are the few-shot learning split.
As advocated by Csordás et al. (2021), the validation set also contains five generalization subsets for model
selection.

Split Train Validation Test
Total I SS LS SL LL

main 998000 4698 46620 9980 8000 10000 8640 10000
x 1100 491 4900 1100 900 1000 900 1000
y 1100 493 4900 1100 900 1000 900 1000
a 1000 470 4700 1000 900 1000 800 1000
b 1000 470 4700 1000 900 1000 800 1000
c 1000 470 4700 1000 900 1000 800 1000
d 1000 470 4700 1000 900 1000 800 1000

Table A2: The phrase-structure grammars for HINT and SCAN. While the grammars of both HINT and
SCAN can generate infinite examples, HINT produces examples with larger depth and longer dependency due
to the parentheses; the expression inside parentheses can be arbitrarily long. Specifically, the maximum depth
and dependency range in SCAN are 6 and 4, respectively; the maximum length generated by the non-terminal
“S” in the grammar of SCAN is 4.

HINT

T = {Expression, Term, Factor, Number}
Start symbol: Expression
Σ “ t`,´,ˆ,˜, 0, 1, ..., 9, p, qu

R = {
Expression Ñ Term
Expression Ñ Expression Op1 Term
Op1 Ñ ` | ´

Term Ñ Factor
Term Ñ Term Op2 Factor
Op2 Ñ ˆ | ˜

Factor Ñ Number
Factor Ñ (Expression)
Number Ñ 0|1|2|3...|9 }

SCAN

T= {C, S, V, D, U}
Start symbol: C
Σ = {walk, look, run, jump, turn, left, right,
around, opposite, and after, twice, thrice}
R = {

C → S — S and S — S after S
S → V — V twice — V thrice
V → D[1] opposite D[2]
V → D[1] around D[2]
V → D — U
D → U left — U right
D → turn left — turn right
U → walk — look — run — jump }

For each split, we plot the frequency distributions of various aspects, including symbol, number
of operators, expression length, tree depth, maximum dependency range, and result, as shown in
Figure A2. The symbol distributions are similar across different splits, and the Kullback–Leibler di-
vergence between train and test is low (0.0055). The digits and operators are approximately equally
distributed, except for the test-SL split. The test-SL split has a relatively higher portion of mul-
tiplication (‘*’) since generating large numbers generally requires more multiplication for short
expressions.

The test set’s result distributions differ from the train set. All results in the training set are smaller
than 100 as desired; about half are in r0, 10q. In comparison, 29% of the results in the test set are
larger than 100.

Several properties of an input expression, including length, number of operators, tree depth, and
maximum dependency range, are indicators of the difficulty of calculating the expression. We plot
the frequency distributions w.r.t. these input properties in Figure A2. These distributions demonstrate
significant differences between train and test.

A2

Published as a conference paper at ICLR 2023

0 1000 2000 3000 4000 5000 6000

1
2
-

+
x
(
)

=
a
3
N
y
b
0

sqrt
4
c
z
d
i

5
f
6
T

sin
7
9
8
p
R
k

sum
e

int
times

,
M

cos
theta

pi
G
v

infty
alpha

H
S
|
u
q
j

6327
6210

6022
5443

5333
3986
3978

3640
2724

2469
2403

1895
1830
1810

1649
1641

1194
1075
1062

1027
1008

848
812
795
783
753
742
731

676
674
666
642
616
606
600
596
576
574

543
498

409
391
386
383
369
355
348
321
308
303

Figure A1: The number of handwritten images for each symbol. There are 82 arithmetic symbols (the top
50 are shown here) and 83,501 images in total. We use the handwritten images for digits 0 „ 9, operators
`,´,ˆ,˜, and parentheses p, q in this work; others are for potential future use.

A3

Published as a conference paper at ICLR 2023

0 1 2 3 4 5 6 7 8 9 + - * / ()
Symbol

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fr
eq

ue
nc

y

train
test
test-I
test-SS

test-LS
test-SL
test-LL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Operators

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
eq

ue
nc

y

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
Expression Length

0.00

0.02

0.04

0.06

0.08

Fr
eq

ue
nc

y

1 2 3 4 5 6 7 8 9 10 11 12
Tree Depth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Maximum Dependency

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Fr
eq

ue
nc

y

0 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000 10000
Result

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc

y

Figure A2: The frequency distributions w.r.t. various aspects, including symbol, number of operators, ex-
pression length, tree depth, maximum dependency range, and result.

A4

Published as a conference paper at ICLR 2023

B IMPLEMENTATION DETAILS

We benchmark deep sequence-to-sequence (seq2seq) frameworks on HINT, as illustrated by Fig-
ure 1. All models are implemented in PyTorch (Paszke et al., 2019).

B.1 IMAGE TOKENIZER AND EMBEDDING

To tokenize a handwritten expression, we first resize it by making its height 32 and apply a sliding
window of size 32 along the horizontal axis to render a sequence of images. Next, each image in the
sequence is encoded by the ResNet-18 (He et al., 2016). We found in preliminary experiments that
pre-training on the ImageNet does not help, likely due to the domain gap between ImageNet and
HINT. Therefore, we use a random initialization for ResNet-18 in our experiments.

B.2 ENCODER-DECODER ARCHITECTURES

We consider the following three choices for the encoder-decoder architecture in a seq2seq frame-
work: Recurrent Neural Networks (RNNs), Transformers, and GPT-3.

RNNs We test two popular RNNs: long short-term memory (LSTM) (Hochreiter & Schmidhuber,
1997) and gated recurrent units (GRU) (Chung et al., 2014). Both networks are evaluated with and
without attention (Bahdanau et al., 2015). Our implementations of RNNs are adapted from a seq2seq
tutorial.3

Transformers We benchmark three variants of Transformer: the vanilla Transformer, Transformer
with relative positional encoding, and Universal Transformer with relative positional encoding. The
implementations of these Transformers are adapted from Csordás et al. (2021).4

GPT-3 To test GPT-3’s ability to perform simple arithmetic operations without task-specific train-
ing, Brown et al. (2020) developed a small battery of 10 tests that involve asking GPT-3 a simple
arithmetic problem in natural language; see Section 3.9.1 and Table 3.9 in Brown et al. (2020) for
the results. In these tests, GPT-3 displays reasonable proficiency at simple arithmetic in the few-
shot setting. However, they do not evaluate the multi-hop reasoning capability required by complex
arithmetic expressions, which usually involve more operators and larger numbers.

To systematically and comprehensively evaluate GPT-3’s capability of arithmetic reasoning, we test
GPT-3 on the proposed HINT benchmark using symbolic expressions as input. Since all tokens of
HINT are in the vocabulary of GPT-3, we directly evaluate GPT-3 via zero-shot prompting using the
OpenAI API 5. We construct the prompt in the following form: “Q: What is <Expression>?
A: The answer is,” similar to the practice in Brown et al. (2020) but with more complex ex-
pressions.

Via task-specific zero-shot or few-shot prompting, pre-trained large language models achieve ex-
cellent performance in intuitive and single-step System 1 tasks Kahneman (2011). However, LLMs
struggled on System 2 tasks that require slow thinking and multi-hop reasoning (Rae et al., 2021),
even at the scale of over 100B parameters like GPT-3. To address this shortcoming, chain of thought
prompting (CoT) (Wei et al., 2022), which feeds LLMs with the intermediate step-by-step reasoning
to augment the final answer in a few-shot setting, has been proposed to elicit the multi-hop reasoning
in LLMs.

Very recently, chain of thought prompting has been extended to the zero-shot setting (Kojima et al.,
2022) by adding a simple prompt, “Let’s think step by step”, to facilitate step-by-step
thinking before answering each question. Zero-shot CoT amazingly outperforms the standard zero-
shot prompting by a large margin in a variety of reasoning tasks. Therefore, we also apply zero-shot
CoT prompting to evaluate GPT-3 on HINT. More concretely, it follows a two-stage prompting
strategy similar to Kojima et al. (2022):
1st prompt “Q: What is <Expression>? A: Let’s think step-by-step.” This
prompt extracts the step-by-step reasoning process in the form of natural language from GPT-3,

3https://github.com/bentrevett/pytorch-seq2seq
4https://github.com/RobertCsordas/transformer_generalization
5https://openai.com/api/

A5

https://github.com/bentrevett/pytorch-seq2seq
https://github.com/RobertCsordas/transformer_generalization
https://openai.com/api/

Published as a conference paper at ICLR 2023

Table A3: Hyperparameter tuning. Our choices are underlined.

Model Variant Encoder Decoder Embedding Hidden Heads Dropout Batch Steps Learning Rate

RNN LSTM (+ att) 1,3,6,9 1,3,6,9 128, 256, 512 128, 256, 512 - 0, 0.1, 0.5 128 100K 10´3, 10´4, 10´5

GRU (+ att)

Transformer
vanilla

1,3,6,9 1,3,6,9 128, 256, 512 128, 256, 512 4,8,12 0, 0.1, 0.5 128 100K 10´3, 10´4, 10´5relative
relative universal

0 20 40 60
length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

5 10 15
depth

0 20 40 60
dependency

0 10 20
operators

101 103

result

Figure A3: Test accuracy (avg.) of Transformer rel. uni. using symbol inputs as a function of several prop-
erties of samples: the expression’s length, the depth of the expression’s parse tree, the expression’s maximum
dependency range, the number of operators in the expression, the final result.

which is denoted by ¡Z¿.
2st prompt “Q: What is <Expression>? A: Let’s think step-by-step. <Z>
Therefore, the answer (arabic numerals) is” In the second stage, the response
¡Z¿ generated in the first step is appended to the initial prompt along with an answer trigger sentence.
This second prompt is then fed into GPT-3 to predict the final answer.

In our experiments, we use the ‘text-davinci-002’ engine in the OpenAI API, the most capable GPT-
3 model at the time of writing with approximately 175 billion parameters6.

B.3 TRAINING

Table A3 shows the tuned hyperparameters for the baselines. Our choices for each model are under-
lined, and the performance is reported under these settings unless explicitly stated otherwise. When
generating the output, we use greedy decoding in all models for simplicity.

For the few-shot learning experiments, models are first pre-trained on the main training set and then
fine-tuned on the training set of each new concept individually. Models are fine-tuned for 1000 iter-
ations using a batch size of 128 with half examples from the main training set to prevent forgetting.
The learning rates are 10´5 and 10´3 for Transformers and RNNs, respectively.

All models reported in our paper can be trained on a single NVIDIA TITAN V GPU with 12G
memory. It takes at most eight hours to train a model.

B.4 ADDITIONAL EXPERIMENTAL RESULTS

Figure A3 shows the test accuracy as a function of several sample properties. Figure A4 shows the
importance of these properties.

C HUMAN STUDY FOR FEW-SHOT LEARNING AND GENERALIZATION

We conduct a preliminary human study to evaluate human performance in the few-shot learning
experiment. Specifically, we test ten human subjects on the six concepts that are unknown to subjects
to reduce the human prior as much as possible. The human subjects are asked to determine each
concept’s meaning from 10 training examples and answer 4 test questions. We report the accuracy
of test questions as human performance.

6OpenAI API GPT-3 model sizes: https://blog.eleuther.ai/gpt3-model-sizes

A6

https://blog.eleuther.ai/gpt3-model-sizes

Published as a conference paper at ICLR 2023

length depth dependency operators result

Im
po

rta
nc

e

I SS LS SL LL

Figure A4: The importance of sample properties w.r.t. the test accuracy of Transformer rel. uni. using
symbol inputs. Normalized permutation feature importance is reported here using a k-nearest neighbors clas-
sifier (k=3) to predict if the model can generate correct results.

A7

https://scikit-learn.org/stable/modules/permutation_importance.html

	Introduction
	Related Work
	The
	The Definitions of Perception, Syntax, and Semantics
	Data Generation

	Deep Sequence-to-Sequence Baselines
	Image Tokenizing and Embedding
	Encoder-Decoder Architectures
	Training and Evaluation

	Results
	Joint Learning of Perception, Syntax, and Semantics
	Few-shot Learning and Generalization

	Discussions: Conclusions and Limitations
	Dataset Statistics
	Implementation Details
	Image Tokenizer and Embedding
	Encoder-Decoder Architectures
	Training
	Additional Experimental Results

	Human Study for Few-shot Learning and Generalization

