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Abstract

Multi-aspect controllable text generation aims
to generate fluent sentences that possess mul-
tiple desired attributes simultaneously. Tradi-
tional methods either require expensive itera-
tion / searching within the discrete text space
during the decoding stage, or train separate
controllers for each aspect, resulting in a degra-
dation of text quality due to the discrepancy
between different aspects. To address these
limitations, we introduce a novel approach for
Multi-aspect control, namely MacLaSa, that
estimates compact Latent space for multiple
aspects, and performs efficient Sampling with
a fast sampler. To eliminate the domain discrep-
ancies between different aspects, we first uti-
lize a variational autoencoder (VAE) network to
map text sequences from various data sources
into close latent representations. The estimated
latent space enables the formulation of joint
energy-based models and the plugging in of ar-
bitrary attribute discriminators to achieve multi-
aspect control. Afterwards, we draw latent sam-
ples with a fast sampler based on ordinary dif-
ferential equations and feed sampled examples
to the VAE decoder to produce target text se-
quences. Experimental results demonstrate that
MacLaSa outperforms strong baselines on both
attribute relevance and textual quality while
maintaining a high inference speed.

1 Introduction

Attribute-based controllable generation aims to gen-
erate text that exhibits desired attributes in cer-
tain aspects (Zhang et al., 2022). Early work fo-
cused on single-aspect control tasks and involved
re-training or fine-tuning language models (LMs)
using well-labeled data, which resulted in good per-
formance (Keskar et al., 2019; Chan et al., 2021;
Hao et al., 2021; Hu et al., 2017; Ficler and Gold-
berg, 2017; Xiao et al., 2021). Recent studies fo-
cus on a more challenging and practical setting,
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Figure 1: A comparison of existing methods and our
approach. Top: optimization-based methods perform
iteration / searching in the distorted text space. Middle:
prefix-based methods fuse multiple prefixes to obtain
interpolation or average of these distribution centers.
Bottom: our framework estimates compact latent space
for better controllability and performs efficient sampling
with a fast ODE-based sampler.

multi-aspect controllable text generation1 (Kumar
et al., 2021; Qian et al., 2022; Qin et al., 2022).
For instance, a dialogue system may require the
control of emotions, persona, politeness, etc, at
the same time. However, training multi-aspect
controllers directly is difficult due to the limited
availability of sentences with multi-attribute anno-
tations. Thus, recent works focus on training sepa-
rate single-aspect discriminators or controllers for
each aspect and combining them for multi-aspect
controllable text generation (Mireshghallah et al.,
2022; Qian et al., 2022).

As illustrated in Figure 1, recent works on
multi-aspect controllable text generation task can
be primarily categorized into two types. Firstly,

1The aspect can be sentiment or topic, and sentiment may
have two attributes: positive and negative.



optimization-based methods either apply extra at-
tribute classifiers to adjust the conditional prob-
ability distributions of language model at every
generation step (Dathathri et al., 2020; Krause
et al., 2021; Yang and Klein, 2021), or regard
the decoding process as an optimization objective
and search for optimal soft-representations that
satisfy multi-objective constraints (Kumar et al.,
2021, 2022; Qin et al., 2022; Mireshghallah et al.,
2022). However, from a distributional perspective,
optimization-based methods often conduct com-
plicated gradient-descent iterations or searching
in the distorted text space, and the discrete na-
ture makes it difficult to find high-quality texts,
leading to poor linguistic quality and slow infer-
ence speeds. Secondly, prefix-based methods are
introduced to guide conditional generation using
lightweight continuous task-specific vectors (Qian
et al., 2022; Yang et al., 2022). They typically train
single-aspect prefixes separately and suffer from
text quality degeneration when combining them for
multi-aspect control due to the mutual interference
between multiple prefixes. As depicted in Figure 1,
prefix-based methods combine multiple prefixes
to obtain the interpolation or average of these dis-
tribution centers appraised by prefixes. However,
there could be a mismatch between interpolation
points and target intersection regions when the dis-
tribution centers of different aspects are far away,
leading to the degradation of textual fluency. There-
fore, an ideal method for multi-aspect controllable
generation should enhance controllability and tex-
tual quality, while enabling rapid inference speeds.

In this paper, we introduce a new technique for
multi-aspect controllable text generation, dubbed
MacLaSa, which estimates a compact space con-
taining latent representations of various attributes
and performs effective sampling using a fast
sampler based on ordinary differential equations
(ODEs). To eliminate the domain discrepancies be-
tween different aspects, we initially employ a VAE
encoder network to map attribute-related sentences
into latent representations and penalize the distance
between each pair of aspect distribution centers.
The acquired compact latent space aids in formulat-
ing joint latent-space energy-based models (EBMs)
and allows us to integrate arbitrary attribute dis-
criminators to satisfy multi-aspect combinations.
Subsequently, we utilize an efficient ODE-based
sampler (Song et al., 2021; Nie et al., 2021) to
draw latent samples possessing desired attributes

from the distribution formed by multiple attribute
classifiers. Ultimately, the selected latent vectors
are input into a VAE decoder to generate target text
sequences. In short, our approach improves control-
lability and textual quality by estimating a compact
latent space to mitigate mutual interference among
various aspects, and the fast ODE-based sampler
contributes to efficient sampling.

We conduct experiments on the multi-aspect con-
trol task with two attributes from the sentiment as-
pect and four attributes from the topic aspect, with
datasets IMDb movie reviews (Maas et al., 2011)
and AGNews (Zhang et al., 2015), respectively.
Experimental results of both automatic and human
evaluation demonstrate that our method achieves
encouraging improvements in attribute relevance
and text quality compared to previous strong base-
lines. Our work also exhibits significant advantages
in inference speed over existing baselines2.

2 Related Work

In this section, we discuss the related work on
multi-aspect control. Recent researches on multi-
aspect can be divided into two types: optimization-
based methods and prefix-based methods.

Optimization-based Methods Existing efforts
on multi-aspect control typically combine many at-
tribute controllers in the decoding stage to bias the
language model for desired directions. Weighted-
decoding methods focus on decomposing condi-
tional probability through Bayesian factorization
into a language model and a classifier (Dathathri
et al., 2020; Krause et al., 2021; Yang and Klein,
2021; Liu et al., 2021; Gu et al., 2022a; Hallinan
et al., 2023). Other approaches define controllable
text generation as a multi-objective optimization
problem and find the optimal soft-representation
sequences by specific sampling schemes or other
gradient-based samplers (Lample et al., 2018; Bhat-
tacharyya et al., 2021; Mireshghallah et al., 2022;
Qin et al., 2022; Kumar et al., 2021, 2022). These
optimization-based methods often require compli-
cated iteration / search in the high-dimensional text
space, leading to slow inference speed.

Prefix-based Methods Recent work leverages
the learned continuous task-specific vectors, which
are called prefixes, as a lightweight alternative
to guide the language model to generate desired

2Our code is available at https://github.com/
TrustedLLM/MacLaSa

https://github.com/TrustedLLM/MacLaSa
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attribute text (Li and Liang, 2021; Yu et al.,
2021; Zhao et al., 2020; Qian et al., 2022; Yang
et al., 2022; Huang et al., 2023). Contrastive Pre-
fixes (Qian et al., 2022) utilize the opposite re-
lationship between different attributes to help to
train single-aspect prefixes and combine them for
multi-aspect control. Tailor (Yang et al., 2022) pro-
vides a multi-aspect prefix mask and a re-indexing
position-ids sequence to bridge the gap between sin-
gle and multi-aspect control. Nevertheless, these
learned controllers in prefix-based methods may
prefer different language habits, resulting in tex-
tual quality degeneration when combining them for
multi-aspect control.

There is also a line of work that manipulates la-
tent variables in the latent space (Gu et al., 2022c,b;
Liu et al., 2022). Gu et al. (2022c) map attribute-
related sentences to the latent space and then de-
signs a heuristic searching algorithm to approach
intersection regions of the different attributes for
generation. Despite their efficiency, they still suffer
from the unstable controllability due to the rare
intersections of different attributes. LatentOps (Liu
et al., 2022) executes composable control opera-
tions within the low-dimensional continuous latent
space. However, it does not adequately consider the
discrepancy between various aspects, resulting in
suboptimal performance when controlling multiple
attributes simultaneously.

3 Methodology

In this section, we first present the task definition
of multi-aspect controllable text generation (§3.1).
Next, we describe how to build the compact latent
space (§3.2), how to define the joint EBMs on the
latent space (§3.3), and how to sample from the
EBMs to generate the final results (§3.4).

The overall structure of MacLaSa is illustrated
in Figure 2. Our approach primarily relies on the
variational autoencoder architecture for manipulat-
ing latent spaces. To weaken the mutual interfer-
ence among different aspects, we initially employ
the VAE encoder to estimate a continuous low-
dimensional latent space, incorporating additional
losses to ensure its compactness. Subsequently,
we establish joint latent-space energy-based mod-
els, which allow us to integrate multiple constraint
functions for guiding sophisticated multi-aspect
control. Finally, we utilize a fast ODE-based sam-
pler to draw samples from the EBMs and input
them into the VAE decoder to generate the desired

multi-aspect sequences.

3.1 Task Definition

First, we present the task definition of multi-aspect
controllable text generation. Suppose we have
N aspects, represented by A = {A1, · · · , AN},
where each aspect An contains |An| attributes,
given by {a1n, · · · , a

|An|
n }. The goal of multi-aspect

control is to generate sentences that possess mul-
tiple attributes a = {a∗1, · · · , a∗N} simultaneously.
For instance, we may expect our model to produce
a sentence with attribute a21 (from aspect A1) and
attribute a42 (from aspect A2).

Our training samples are organized and labeled
according to their corresponding aspects and at-
tributes. Sj

n denotes the index set of sentences with
attribute ajn. As a result, we have Sn =

⋃|An|
j=1 Sj

n,
which represents the index set containing all sen-
tences within aspect An. Likewise, S =

⋃N
n=1 Sn

signifies the indices encompassing our entire train-
ing dataset. We use x to represent an arbitrary
sentence and z to indicate its latent representation.

It is worth noting that our training corpus con-
tains only single-aspect labeled sentences, making
it infeasible to directly train a multi-aspect control-
lable text generative model.

3.2 Building Latent Space

To estimate a compact, continuous latent space
that outlines the latent distribution of interest and
facilitates subsequent sampling processes, we uti-
lize a VAE network equipped with pre-trained lan-
guage models to encode any single-aspect sen-
tence x to its hidden representation z using z =
Encoderϕ (x). The encoded latent representations
constitute the estimated attribute space.

We expect the latent space to be sufficiently com-
pact while ensuring that latent representations from
various aspects maintain their semantic meanings.
To accomplish this, we propose the following three
training objectives:

ELBO Loss LE We adopt the basic Evidence
Lower Bound (ELBO) objective to learn a smooth
latent space and force the decoder to map any given
latent vector z into its original text x:
LE = −Eqϕ(z|x)[log pθ(x|z)] + KL(qϕ(z|x)∥pprior (z)),

(1)

where pprior (z) is a standard Gaussian distribution
as the prior, and KL(·∥·) is the Kullack-Leibler di-
vergency. The first term encourages z to encode
more relevant content information for reconstruct-
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Figure 2: An overview of MacLaSa. Left: Build latent space for MacLaSa. We utilize the VAE framework with two
additional losses to build a compact latent space. Top Right: Formulate joint EBMs. We formulate the latent-space
EBMs of latent representation and attribute to facilitate the plug in of multiple attribute constraint classifiers. Bottom
Right Sample with ODE. We adopt a fast ODE-based sampler to perform efficient sampling from the EBMs, and
feed samples to the VAE decoder to output desired multi-aspect sentences.

ing the original text x with the VAE decoder pθ.
The KL divergence forces the variational distribu-
tion qϕ(z|x) to match the prior.

Classification Loss LC We propose the classifi-
cation loss LC to force the mapped representations
to preserve their original attribute information and
help the model to distinguish representations of
different attributes from the same aspect. We in-
troduce independent classification layers for each
aspect and train them by minimizing the negative
log-likelihood of the corresponding attribute ajn:

LC = −
N∑

n=1

|An|∑
j=1

∑
i∈S

j
n

log pπn

(
aj
n | zi

)
, (2)

where pπn is a classifier that distinguish attributes
{a∗n} from aspect An with parameter πn.

Aspect Discrepancy Loss LD To reduce the dis-
tribution discrepancy between different aspects, we
introduce the aspect discrepancy loss (Gu et al.,
2022c) to penalize the distance between distribu-
tion centers of each two aspects:

LD =
∑

1≤n1<n2≤N

∥∥∥∥∥∥
∑

i∈Sn1

zi
|Sn1 |

−
∑

j∈Sn2

zj
|Sn2 |

∥∥∥∥∥∥
2

, (3)

which calculates the Euclidean distance between
two distribution centers. In practice, we use a batch-
level approximation by taking the average repre-
sentations of each aspect in each mini-batch as the
estimated center and calculating the distances to

centers of other aspects. Minimizing LD allows
the model to reduce the discrepancy between dif-
ferent aspects, and helps to eliminate the mutual
interference among them.

Totally, our learning objective is:
L = w1LE + w2LC + w3LD. (4)

We update parameters ϕ, θ and {πn} for the
encoder, decoder, and the classifier layers.

3.3 Formulating Joint Latent-Space EBMs
In order to satisfy the requirement of controlling
multiple attributes simultaneously, we leverage the
compositionality of EBMs and formulate the joint
distribution for the latent representations and tar-
get attribute by incorporating any constraint(e.g.,
attribute classifiers) into the energy function E(·).

To begin with, we define the following joint dis-
tribution on both the latent representation z and
desired attributes a as:

p(z,a) := pprior(z)p(a|z) = pprior(z) · e−E(a|z)/Z, (5)

where Z =
∫
e−E(a|z)dz is the normalization term,

pprior(z) is the Gaussian prior distribution, and
p(a|z) follows a Boltzmann distribution. In this
work, We assume the target attributes are indepen-
dent with each others. We then formulate E(a|z)
as the energy-based models that can combine arbi-
trary attribute classifiers based on our needs:

E(a|z) =
N∑

n=1

λnEn (a∗
n|z) . (6)



λn ∈ R is the balanced weight to balance the per-
formance among attributes from different aspects.
The energy function En (a

∗
n|z) is defined as the

negative log probability of target attribute ajn:

En (a∗
n|z) = −fn(z)

[
aj
n

]
+ log

∑
k

exp
(
fn(z)

[
ak
n

])
,

(7)

where fn(z) is the multi-class attribute classifier
trained on the frozen latent space, and fn(z)[a

∗
n]

is the output unnormalized logits for attribute a∗n.
After the training of VAE, we fix the entire VAE
encoder and map the input text with attribute anno-
tations into the latent space, then ask the classifier
to predict target attribute label given the latent vec-
tor. Training attribute classifiers fn(z) in the frozen
low-dimensional latent space is efficient, which en-
ables us to plug in different attribute classifiers to
guide complex multi-aspect control.

3.4 Sampling from EBMs with ODE

After the acquisition of the joint distribution
p(z,a), we would like to draw latent representa-
tions z given the target attribute values a. To en-
sure high-quality and efficient sampling, we adopt
a fast ODE-based sampler to draw samples from
the energy based models.

Prior work (Song et al., 2021) shows that control-
lable generation p(x|a) can be achieved by solving
the following ordinary differential equation (ODE):

dx = −1

2
β(t) [x+∇x log pt(x,a)] dt, (8)

where β(t) is a time-variant diffusion coefficient
that has the form β(t) = βmin + (βmax − βmin) t.
t is the timestep from T to 0, and pt(x,a) denotes
the join distribution of data and attribute at time t.

In our work, we adapt the ODE from Eq.(8) into
the low-dimensional latent space, which gives:

dz = −1

2
β(t) [z +∇z log pt(z,a)] dt

= −1

2
β(t) [z −∇zEt(a|z) +∇z log pt(z)] dt.

(9)

Note that pt(z) = N (0, I) is time-invariant for
t ∈ [0, T ]. Since the classifier fn(z) in Eq.(7) is
fixed, Et(a|z) is also time-invariant and we have
Et(a|z) = E(a|z). The above ODE becomes:

dz = −1

2
β(t)

[
z −∇zE(a|z)− 1

2
∇z∥z∥22

]
dt

=
1

2
β(t)∇zE (a|z) dt

=
1

2
β(t)

∑
n

∇zλnEn (a∗
n|z) dt.

(10)

Now we can easily sample latent samples by

drawing z(T ) ∼ N (0, I) and solving the Eq.(10)
with a differential neural ODE solver3 (Chen et al.,
2018) to obtain z(0). Then z(0) is fed to the VAE
decoder pθ to produce target text sequences that
possess multiple attributes simultaneously.

To narrow the inevitable gap between the prior
distribution pprior (z) and the learned VAE posterior
qϕ(z|x) on Z , following previous work (Li et al.,
2020; Hu and Li, 2021; Liu et al., 2022), we fit a
simple single-layer generative adversarial network
(GAN) (Goodfellow et al., 2014), pGAN(z), on the
learned latent space and draw z(T ) from pGAN(z).
We study the impact of pGAN in §4.5.

4 Experiments

In this section, we demonstrate the effectiveness of
our proposed MacLaSa in the multi-aspect control
setting through both automatic and human evalu-
ations. Additionally, we provide further analysis
and visualization on efficiency, and case studies.

4.1 Experimental Setups

Datasets We conduct experiments for controlling
two aspects: sentiment and topic, simultaneously.
We adopt the IMDb movie reviews (positive and
negative) (Maas et al., 2011) for sentiment control
and AGNews dataset (World, Sports, Business and
Sci./Tech) (Zhang et al., 2015) for topic control.
Following previous work (Qian et al., 2022; Gu
et al., 2022c), we randomly sample 20k sentences
from each dataset for each attribute to train our
method. For evaluation, consistent with previous
work (Dathathri et al., 2020; Krause et al., 2021;
Yang and Klein, 2021; Liu et al., 2021; Gu et al.,
2022a), we choose the same 15 attribute-unrelated
prompts and ask the model to complete 50 sen-
tences with the desired attributes starting with each
prompt.

MacLaSa Settings For the proposed MacLaSa,
we employ BERT-base and GPT-2 medium to ini-
tialize the encoder and decoder networks in VAE,
respectively. The dimension of the latent space
is 128. We also apply a cyclical schedule for KL
weight and a KL thresholding scheme to allevi-
ate the notorious KL vanishing issue (Bowman
et al., 2016). During the training stage, we use the
AdamW (Loshchilov and Hutter, 2017) optimizer
with a learning rate of 8e-5. The number of train-
ing epochs is 50. We also randomly select 10k / 1k

3https://github.com/rtqichen/torchdiffeq
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examples to train / validate attributes classifiers in
the latent-space EBMs. In our experiments, w1, w2

and w3 are set to 1. During the inference stage, we
set βmin = 0.1 and βmax = 20 for the time-variant
diffusion coefficient βt. We also manually tune the
weight λn of different attributes to balance them.
All experiments are conducted on a single NVIDIA
V100 32GB GPU.

4.2 Baseline Models
We compare with three types of baseline models:
(1) optimization-based methods: PPLM (Dathathri
et al., 2020) back-propagates gradients of extra
attribute classifiers to guide conditional genera-
tion at every decoding step. DEXPERTS (Liu
et al., 2021) reweights the predictions of language
models based on expert (and anti-expert) opinions
for effective attribute control. MaRCo (Hallinan
et al., 2023) achieves controllable generation using
likelihoods under a expert LM and a anti-expert
LM to find candidate words to mask and replace.
Mix&Match (Mireshghallah et al., 2022) uses a
Metropolis-Hastings sampling scheme to draw sam-
plers from an energy-based model that combines
multiple attribute discriminators. (2) Prefix-based
methods: Contrastive Prefixes (abbreviated as Con-
trastive) (Qian et al., 2022) trains prefixes for each
aspect while the combination of them can achieve
multi-aspect control. We also compare with re-
cent approaches that manipulate the latent space,
including: LatentOps (Liu et al., 2022) performs
composable text operations in the low-dimensional
latent space, and Distribution (Gu et al., 2022c)
searches for the intersection areas of multiple at-
tribute distributions for generation.

4.3 Evaluation Metrics
Automatic Evaluations We adopt three auto-
matic evaluations metrics to measure the perfor-
mance on the two-aspect control task. Correctness
evaluates the success rate of controlling the two as-
pects simultaneously. We finetune two RoBERTa-
Large (Liu et al., 2019) discriminators on the IMDb
dataset for sentiment aspect, and the AGNews
dataset for topic aspect. We use the two attribute
discriminators to compute the fraction of sentences
that contain pre-specified attributes. Perplexity
(PPL) is an automatic metric of text fluency. We
feed generated test sentences to a GPT2-Large
model and report the perplexity score. Distinct-
ness (Li et al., 2016) is a n-gram-based metric for
evaluating textual diversity, we report Distinct-1

and Distinct-2 in our paper.

Human Evaluations In addition to automatic
evaluations, we conduct human evaluations to com-
pare our method’s performance with that of the
baseline models. We enlist four annotators with
high-level language skills to carry out the human
evaluation. Annotators are instructed to assess at-
tribute relevance, fluency, and diversity on a scale
of 1-5, with 1 denoting "very low" and 5 represent-
ing "very high." Moreover, we direct the annotators
not to consider linguistic quality when evaluating
attribute alignment and vice versa. We randomly
select 800 generated sentences (100 for each com-
bination) and shuffle them for evaluation with each
method. The scores are then averaged to derive the
final human evaluation results.

4.4 Main Results

Automatic Evaluations We conduct experi-
ments in the two-aspect control setting and com-
pare our method with several strong baselines. The
results of automatic evaluation are depicted in Ta-
ble 1. We calculate the average correctness scores
of eight attribute combinations as the final results
for each method. We also report the standard de-
viations, which stand for the stability of models
among different runs. Moreover, we assess the av-
erage inference time required to generate a single
sentence for each method.

We note that existing baselines excel in individ-
ual evaluation metrics but struggle to concurrently
achieve good controllability and superior linguistic
quality, which is essential for multi-aspect control.
PPLM and MaRCo can generate fluent sentences
but fall short in attribute accuracy. In contrast,
Mix&Match demonstrates strong attribute control-
lability, yet the text quality is subpar. Moreover,
optimization-based methods, including PPLM and
Mix&Match, exhibit severe slow inference speeds
due to their complex iterations or searching in
the high-dimensional text space. The Contrastive
method attains a high correctness score in multi-
aspect control by training separate continuous pre-
fix vectors for each aspect. However, the mutual in-
terference of different prefixes results in diminished
text quality. LatentOps has average performance
over baseline models. The Distribution method
generates highly fluent texts with good attribute
correctness scores but lacks textual diversity.

MacLaSa showcases a notable performance
boost in average correctness scores, achieving an



Method Correctness (%) Text Fluency Diversity Efficiency

Senti. & Topic Acc. ↑ PPL ↓ Distinct-1 ↑ Distinct-2 ↑ Time (s) ↓

optimization-based method
PPLM 18.14 ± 0.45 25.59 ± 1.09 0.23 0.64 40.56
DEXPERTS 23.93 ± 1.11 38.70 ± 2.51 0.23 0.70 0.64
MaRCo 27.81 ± 1.94 18.87 ± 1.85 0.18 0.58 0.40
Mix&Match 50.17 ± 2.07 68.72 ± 0.97 0.36 0.84 164.60

prefix-based method
Contrastive 53.02 ± 1.52 52.56 ± 11.97 0.22 0.71 0.59

method that manipulates latent space
LatentOps 44.41 ± 5.72 26.11 ± 1.46 0.16 0.55 0.10
Distribution 49.79 ± 1.99 12.48 ± 0.52 0.08 0.28 0.04
MacLaSa 59.18 ± 0.81 28.19 ± 1.26 0.16 0.60 0.10

w/o LC 47.54 ± 12.67 27.91 ± 1.10 0.15 0.57 0.10
w/o LD 51.18 ± 3.90 28.49 ± 0.44 0.18 0.62 0.10

Table 1: Automatic results on multi-aspect control. We average the correctness scores of eight combinations(two
sentiment attributes × four topic attributes) as the final results for each method. Detailed results of each combination
are listed in Appendix A.

Method Correctness↑ Fluency↑ Diversity↑

PPLM 1.96 2.67 2.54
DEXPERTS 1.98 2.38 1.88
MaRCo 2.08 2.78 2.65
Mix&Match 1.21 1.38 2.13
Contrastive 2.04 2.29 2.38
LatentOps 2.21 2.21 2.38
Distribution 2.67 2.67 2.63
MacLaSa 3.54 3.25 2.96

Table 2: Human evaluations on multi-aspect control.

11.62% improvement compared to the strongest
baseline. This result highlights our superior-
ity in multi-aspect controllability. Additionally,
MacLaSa displays good linguistic quality com-
pared to previous method, emphasizing the ben-
efits of learning a compact latent space. Our ap-
proach also exhibits substantial advantages in gen-
eration efficiency. Compared to the parameter-
efficient prefix-based Contrastive method, our
method demonstrates a remarkable 5.9× faster in
inference speeds. In summary, MacLaSa surpasses
existing baselines in attribute correctness and tex-
tual quality while keeping high inference speeds.

Human Evaluations The human evaluation re-
sults for the multi-aspect control task can be found
in Table 2. The inter-annotator agreement is 0.32
in Fleiss’ κ, indicating a fair agreement. Generally,
the human judgment on attribute correctness aligns
well with the results of the automatic evaluation.
Our method excels in attribute control, achieving a
correctness score of 3.54. Contrary to the automatic

Method Correctness (%) Text Quality

Sentiment & Topic ↑ PPL ↓

Random 13.24 32.28
LD 26.93 6.70
ODE (MacLaSa) 58.22 26.86

w/o pGAN 37.82 36.93

Table 3: Automatic results of comparison of different
samplers.

evaluation results, annotators favor our approach
as it delivers the highest text quality among the
baselines. Overall, our model demonstrates supe-
rior performance in both attribute correctness and
textual quality.

Both automatic and human evaluations demon-
strate that our proposed MacLaSa outperforms
other baseline models in terms of attribute correct-
ness and linguistic quality, while maintaining a
high inference speed.

4.5 Analysis

Effects of VAE Losses We conduct an ablation
study to verify the effects of the classification loss
LC and aspect discrepancy loss LD. The results
are shown in Table 1. Removing LC causes the
latent space to collapse completely. The correct-
ness scores drop drastically as the model can hardly
distinguish between representations of different at-
tributes within the same aspect. Removing LD de-
grades attribute correctness since we cannot allevi-
ate domain gaps between different data sources. In-
terestingly, without LD, the distance between sam-
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Figure 3: Projection of four attributes of two aspects
from latent space via t-SNE.

ple points from different aspects increases, lead-
ing our model to generate sentences mapped from
sparser regions. This results in a minor decrease in
fluency while slightly increasing diversity.

Effects of Samplers To demonstrate the supe-
riority of our ODE-based sampler, we compare
it with other standard samplers. For fair compar-
ison, we fix the parameters of VAE and choose
different samplers for multi-aspect control text gen-
eration. We first implement a random sampler by
directly drawing samples from the latent space us-
ing pGAN(described in §3.4). We also compared
it with a gradient-based sampler using Langevin
Dynamics (Kumar et al., 2022; Qin et al., 2022).
The automatic evaluation results are shown in Ta-
ble 3. Random sampling directly from the latent
space can only generate representations with sin-
gle attributes, highlighting the necessity of using
a specific sampler. While the LD-based sampler
can generate high-quality sentences, it sacrifices
attribute alignment, resulting in low attribute rel-
evance. This may be because LD is sensitive and
unrobust to hyperparameters (Nie et al., 2021). In
contrast, our ODE-based sampler outperforms LD
in terms of attribute alignment and textual diversity.

To investigate the impact of pGAN, we conduct
experiments by removing the GAN network and
directly drawing latent representations from the
standard Gaussian distribution N (0, I). As shown
in Table 3, without the GAN, our model cannot
accurately estimate the attribute space, resulting in
decreased attribute relevance and textual quality.

Visualization of Latent Space To provide an
intuitive impression of the estimated latent space,

Model Generated Sentences
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Once upon a time, not so bad ASTRONAUT Tragic end-
Mariners collapse to sweep from the cliff in the AL wild-
goose division.
The country turns its tail WESTMINSTER is in many ways
and SOUTHAMPTON FALL seems to have the same bor-
ing name of it all NBA names that is.
The president of the country not to be? Your unk will not
like your unk, your unk says the singer, doesn.

D
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n

The last time was bad. The first time is bad. The third time
is bad. And the fourth is worse.
The horse is bad. The horse was bad in the first round of
contest, showing a loss to rival South Korea after an earlier
victory.
The road is bad. The road was bad in the first round of com-
petition, ending up with a record-breaking 30-year drought
in the U.S. Open...

M
ac

L
aS

a

The president of the country can’t hang on to results. After
Sunday’s debacle in Philadelphia, there is little hope that
Tedford University can maintain its ranking in the top 10 in
the country.
The horse was all wrong: Rossi Causes world championship
leader Valentino Rossi suffered from an unusual form of ...
The last time they clashed, they failed to meet expectations
for this matchup to be made at the WNBA Finals and they
have not been...

Table 4: Example cases of generated sentences with at-
tribute combination negative and sports. Red highlights
sentiment-related contents. Blue highlights topic-related
contents. Underlined are the input prompts.

we use the t-SNE technique (Van der Maaten and
Hinton, 2008) to visualize part of our estimated
latent space with four attributes: positive, nega-
tive, world and sports in Figure 3. As shown, (1)
attribute distributions within the same aspect are
well separated due to the classification loss LC that
helps our model distinguish mutually exclusive at-
tributes. (2) The distribution centers of sentiment
and topic aspects are close to each other because
we introduced LD to penalize the distance between
them to eliminate domain gaps, which helps gener-
ating high-quality multi-aspect sentences. We also
notice that the combination of negative-world is
tighter than that of negative-sports because world
news often covers negative events such as war, dis-
ease, and famine. This observation aligns with our
experimental results in Appendix A.

4.6 Case Study

To better understand the benefits of learning a
compact latent space for generative models, we
randomly present generated examples in Table 4.
When generating sentences with the attribute
combination negative and sports, the Contrastive
method can generate attribute-related words like
"tragic" and "NBA"; however, the semantic coher-
ence of the sentences is insufficient. This observa-



tion is consistent with the results of both automatic
and human evaluations (see § 4.4). One possible ex-
planation is that the prefixes used for sentiment and
topic control are trained independently, causing the
two learned prefixes to exhibit different language
habits and leading to incoherent expressions when
combined for multi-aspect control. Conversely,
the Distribution method can generate fluent sen-
tences that display multiple attributes but struggles
with varying expressions. For instance, Distribu-
tion tends to use the word "bad" to convey nega-
tive emotions, and its sentence structure is often
repetitive, such as "The [noun] was bad in the first
round of ". Our proposed MacLaSa can generate
numerous attribute-related content, such as "there
is little hope" and "world championship leader", in
a fluent manner. By minimizing the discrepancy
between sentiment and topic representations in the
latent space, we merge high-quality representations
related to attribute information, resulting in more
coherent expression.

5 Conclusion and Future Work

In this study, we introduce a novel method, namely
MacLaSa, for multi-aspect controllable text gen-
eration that estimates a compact, low-dimensional
latent space and employs a fast ODE-based sam-
pler for efficient sampling. Our experiments on the
two-aspect control task demonstrate the effective-
ness and efficiency of our approach. Additionally,
we carry out in-depth analytical experiments to
emphasize the impact of each module and visual-
ize the estimated latent space. In the future, we
aim to expand our work by incorporating arbitrary
attribute discriminators into the diffusion process
using a plug-and-play approach. Furthermore, we
plan to explore more powerful models to enhance
the linguistic quality of generated sentences.

Limitations

One of the limitations of the current MacLaSa ap-
proach is that when a new aspect or attribute is in-
troduced, the entire VAE framework needs to be re-
trained to accommodate the unseen attributes. This
retraining process can often be time-consuming
and computationally expensive, posing a signif-
icant challenge in dynamic environments where
new aspects may frequently emerge.

Moreover, due to the notorious KL vanishing
issue, the training process of the VAE framework
is not stable and requires a significant amount of

skill and experience to address. The KL vanishing
problem refers to the situation where, during the
training process, the KL divergence term may ap-
proach zero. This can lead to a poorly constrained
latent space, resulting in the model generating sam-
ples that lack diversity and are not representative
of the true data distribution. To tackle this issue,
we adopt several techniques, which are described
in § 4.1.
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A Detailed Results of Multi-aspect
Control

We exhibit the detailed results of eight combi-
nations (two sentiment attributes × four topic
attributes) on multi-aspect control in Table 5.
We compare with three types of baselines:
(1) optimization-based methods, PPLM and
Mix&Match. (2) prefix-based method Contrastive,
and (3) methods that manipulate the latent space,
for example, LatentOps and the Distribution
method. For automatic evaluation metrics, we fine-
tune two RoBERTa-Large (Liu et al., 2019) dis-
criminators to assess the attribute accuracy scores
for both sentiment and topic aspects simultaneously.
Perplexity (PPL) is employed to gauge the linguis-
tic quality of the generated sentences. Additionally,
we compute the Distinctness score to appraise the
textual diversity, reporting Distinct-1 and Distinct-
2 in our paper. We also report the standard de-
viations, which stand for the stability of models
among different runs.

We observe that PPLM demonstrates strong con-
trollability in specific combinations, such as the
Positive-Sci./Tech pairing. However, the perfor-
mance of each combination varies significantly, re-
sulting in subpar average results. This phenomenon
also exists for DEXPERTS and MaRCo. While
Mix&Match and the Contrastive method excel at
attribute alignment, their linguistic quality leaves
much to be desired. We postulate that this is due
to Mix&Match employing a Metropolis-Hastings
sampling scheme for high-dimensional text space
sampling, which is hindered by the discrete nature
of text space and prevents smooth text generation.
The Contrastive method posits that contrasting rela-
tionships between individual attributes within each
aspect aid in training attribute controllers, but it
neglects the differences between aspects, compro-
mising overall textual quality. Regarding the two
latent space manipulation methods, LatentOps ex-
hibits moderate performance in both attribute rel-
evance and textual quality, while the Distribution
method generates fluent sentences with the desired
attributes but lacks diversity.

Our method attains a remarkable average ac-
curacy of 59.18% across the eight combinations,
boasting a 11.62% improvement compared to the
most powerful baseline and showcasing the excep-
tional controllability of our approach. Additionally,
our technique excels in both linguistic quality and
textual diversity. MacLaSa delivers well-rounded

Positive
Negative
Business
Sci./Tech

Sentiment Center
Topic Center

Figure 4: Projection of part of estimated attribute space
with t-SNE.

performance concerning attribute alignment, lin-
guistic quality, and diversity. We also evaluate
the inference speed for sentence generation, with
the results displayed in Table 1. The experimental
findings indicate that MacLaSa maintains a high
inference speed as well.

B Distribution of Attribute Space

In Figure 4, we employ the t-SNE technique to
project hidden representations from four attributes
into 2D for visualization: positive, negative, busi-
ness, and sci./tech. This offers insight into a por-
tion of the estimated latent space. We observe
that, on one hand, the two sentiment attributes are
distinctly separated due to the classification loss
LC , which also applies to the topic aspects. Con-
versely, the distribution centers of the two aspects
are situated closely together, as a result of the as-
pect discrepancy loss penalty LD. Overall, the
observed attribute space distribution aligns with
our expectations.



Methods Combination Correctness (%) Text Quality Diversity
Senti. & Topic Acc. ↑ PPL ↓ Distinct-1 ↑ Distinct-2 ↑

PPLM

Positive-World 20.36 ± 1.69 25.47 ± 1.70 0.23 0.64
Positive-Sports 16.53 ± 1.13 25.78 ± 1.30 0.23 0.63
Positive-Business 25.24 ± 2.96 26.66 ± 1.26 0.24 0.64
Positive-Sci./Tech 61.73 ± 0.66 25.06 ± 1.53 0.24 0.66
Negative-World 3.87 ± 1.99 25.27 ± 1.23 0.23 0.64
Negative-Sports 2.27 ± 0.57 25.96 ± 1.54 0.23 0.63
Negative-Business 1.78 ± 1.26 26.11 ± 1.20 0.23 0.64
Negative-Sci./Tech 13.29 ± 1.82 24.40 ± 1.11 0.24 0.66
Average 18.14 ± 0.45 25.59 ± 1.09 0.23 0.64

DEXPERTS

Positive-World 34.22 ± 4.24 37.36 ± 3.46 0.24 0.72
Positive-Sports 8.40 ± 2.66 37.36 ± 3.46 0.24 0.72
Positive-Business 10.98 ± 1.67 37.36 ± 3.46 0.24 0.72
Positive-Sci./Tech 45.02 ± 4.31 37.36 ± 3.46 0.24 0.72
Negative-World 9.47 ± 2.68 40.03 ± 2.35 0.21 0.68
Negative-Sports 8.17 ± 2.27 40.03 ± 2.35 0.21 0.68
Negative-Business 10.98 ± 1.50 40.03 ± 2.35 0.21 0.68
Negative-Sci./Tech 63.64 ± 8.73 40.03 ± 2.35 0.21 0.68
Average 23.93 ± 1.11 38.70 ± 2.51 0.23 0.70

MaRCo

Positive-World 36.22 ± 8.04 17.13 ± 1.51 0.18 0.57
Positive-Sports 37.11 ± 25.23 18.16 ± 1.47 0.17 0.55
Positive-Business 38.89 ± 8.34 19.43 ± 2.13 0.19 0.59
Positive-Sci./Tech 50.00 ± 5.21 17.91 ± 1.39 0.18 0.57
Negative-World 8.22 ± 4.91 18.79 ± 1.88 0.19 0.59
Negative-Sports 10.89 ± 0.38 19.94 ± 2.85 0.17 0.57
Negative-Business 22.89 ± 20.07 20.51 ± 2.45 0.19 0.59
Negative-Sci./Tech 18.22 ± 5.39 19.06 ± 1.91 0.18 0.59
Average 27.81 ± 1.94 18.87 ± 1.85 0.18 0.58

Mix&Match

Positive-World 58.89 ± 0.83 61.27 ± 0.79 0.36 0.84
Positive-Sports 58.89 ± 5.06 66.58 ± 2.52 0.35 0.84
Positive-Business 39.78 ± 1.66 65.89 ± 1.77 0.35 0.84
Positive-Sci./Tech 65.33 ± 2.49 69.07 ± 2.17 0.36 0.84
Negative-World 41.55 ± 1.66 69.49 ± 1.14 0.35 0.84
Negative-Sports 47.33 ± 8.13 72.72 ± 1.33 0.36 0.84
Negative-Business 31.56 ± 5.15 71.61 ± 3.87 0.35 0.84
Negative-Sci./Tech 58.00 ± 4.75 73.08 ± 2.06 0.37 0.84
Average 50.17 ± 2.07 68.72 ± 0.97 0.36 0.84

Contrastive

Positive-World 67.87 ± 1.13 48.15 ± 15.74 0.23 0.72
Positive-Sports 70.31 ± 5.55 52.36 ± 8.74 0.21 0.70
Positive-Business 53.16 ± 5.00 56.13 ± 14.35 0.22 0.72
Positive-Sci./Tech 51.96 ± 3.09 45.03 ± 12.27 0.23 0.71
Negative-World 40.94 ± 4.26 51.27 ± 15.52 0.22 0.70
Negative-Sports 40.71 ± 10.65 59.77 ± 8.87 0.21 0.71
Negative-Business 48.84 ± 6.95 61.91 ± 15.14 0.20 0.70
Negative-Sci./Tech 50.40 ± 3.95 45.86 ± 9.81 0.23 0.71
Average 53.02 ± 1.52 52.56 ± 11.97 0.22 0.71

LatentOps

Positive-World 57.96 ± 5.07 24.79 ± 3.34 0.17 0.56
Positive-Sports 63.47 ± 11.01 28.01 ± 1.80 0.16 0.55
Positive-Business 61.73 ± 9.36 25.73 ± 1.84 0.14 0.52
Positive-Sci./Tech 39.64 ± 22.07 26.49 ± 1.73 0.17 0.55
Negative-World 34.62 ± 1.59 24.98 ± 1.56 0.16 0.55
Negative-Sports 40.41 ± 9.72 25.14 ± 1.48 0.14 0.52
Negative-Business 25.74 ± 2.41 27.30 ± 2.11 0.15 0.54
Negative-Sci./Tech 31.56 ± 2.53 26.49 ± 0.99 0.16 0.57
Average 44.41 ± 5.72 26.11 ± 1.46 0.16 0.55

Distribution

Positive-World 37.42 ± 4.38 13.34 ± 0.13 0.09 0.30
Positive-Sports 71.60 ± 4.39 14.67 ± 0.53 0.09 0.29
Positive-Business 72.80 ± 6.45 11.23 ± 1.00 0.07 0.25
Positive-Sci./Tech 72.80 ± 11.07 12.41 ± 0.64 0.08 0.28
Negative-World 46.80 ± 10.89 11.89 ± 1.12 0.07 0.28
Negative-Sports 35.91 ± 7.84 12.99 ± 0.57 0.08 0.28
Negative-Business 26.09 ± 5.60 11.03 ± 0.11 0.07 0.25
Negative-Sci./Tech 34.86 ± 6.25 12.25 ± 0.93 0.08 0.27
Average 49.79 ± 1.99 12.48 ± 0.52 0.08 0.28

MacLaSa

Positive-World 59.47 ± 6.66 26.26 ± 0.20 0.19 0.65
Positive-Sports 87.93 ± 4.20 28.69 ± 1.78 0.16 0.57
Positive-Business 82.87 ± 3.27 27.67 ± 1.55 0.15 0.57
Positive-Sci./Tech 76.34 ± 0.46 28.77 ± 2.03 0.16 0.60
Negative-World 56.54 ± 1.47 26.28 ± 1.26 0.16 0.59
Negative-Sports 38.00 ± 2.67 32.23 ± 0.20 0.17 0.61
Negative-Business 31.40 ± 4.07 29.06 ± 1.12 0.15 0.59
Negative-Sci./Tech 44.74 ± 0.34 31.95 ± 0.48 0.17 0.62
Average 59.18 ± 0.81 28.19 ± 1.26 0.16 0.60

Table 5: Detailed results of each combination on multi-aspect control.


