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Abstract

UNet-like segmentation models have been widely explored for the computer-aided segmen-
tation and diagnosis of gastrointestinal (GI) tract diseases. However, the UNet architecture
encounters two primary challenges: limited receptive fields due to conventional convolution
operations, and a semantic gap arising from simplistic skip connections. In this paper,
we introduce BiF3-Net, a novel model that integrates BiFormer blocks throughout the
encoder and decoder, along with a full-scale BiFormer Fusion Bridge (BFB) module, aimed
at addressing the aforementioned limitations. Meanwhile, we propose the Dense Inception
Classifier (DIC) module to mitigate the over-segmentation problem in non-organ images.
Extensive experiments demonstrate the effectiveness and adaptability of the proposed model.
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1. Introduction

Gastrointestinal (GI) cancer is a malignant tumor affecting the digestive organs, accounting
for 26% of the global cancer incidence and 35% of all cancer-related deaths (Arnold et al.,
2020). Accurate segmentation of gastrointestinal tumors is crucial for subsequent radiother-
apy. However, manual delineation is a tedious and labor-intensive task.
UNet (Ronneberger et al., 2015), as a hierarchical encoder-decoder fully convolutional
architecture with skip connections, has shown promising performance in automated medical
image segmentation. However, its limited receptive field due to traditional convolution
operations hinders its effectiveness. ViT (Dosovitskiy et al., 2020), benefiting from capturing
long-range dependencies, has achieved outstanding performance in natural image classifi-
cation. Nevertheless, its architecture primarily faces two challenges: first, traditional ViT
architectures use columnar structures to input images, utilizing only single-scale feature
maps. Second, ViT’s computational complexity scales quadratically with image size. These
drawbacks limit ViT’s further application in dense tasks such as medical image segmentation.
A series of works have introduced progressive hierarchical structures and inductive biases to
reduce attention computation, such as Swin-UNet (Cao et al., 2022), Medical Transformer
(Valanarasu et al., 2021), respectively restricting attention operation within local windows,
axial stripes. However, these attention mechanisms are based on manually designed patterns.
In this paper, as illustrated in Figure 1(a), we employ a consecutive content-aware sparse
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attention block, BiFormer (Zhu et al., 2023), to construct our hierarchical UNet-like BiF3-Net.
Specifically, in the BiFormer block, irrelevant key-value pairs are first filtered out at a coarse
region level for a query, followed by fine-grained token-to-token attention applied in the
union of remaining candidate regions. Since simple skip connections in UNet-like networks
merely copy features from the encoder to the decoder, which may not sufficiently bridge the
semantic gap between them, we design the BiFormer fusion bridge, as shown in Figure 1(b),
to alleviate this gap. In addition, considering non-organ and over-segmentation phenomena
in medical images, we design a Dense Inception Classifier (DIC) module, a class of Inception
structure used to determine whether an image needs segmentation. Only those classified as
requiring further segmentation will undergo loss computation.
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Figure 1: (a)(a)(a) The overview of our proposed framework BiF3-Net for gastrointestinal image
segmentation. (b)(b)(b) The details of the BiFormer Fusion Bridge module.

2. Methods

Backbone. The BiF3-Net employs fully BiFormer-based encoders and decoders. In the
encoder, input data is processed through BiFormer blocks and patch merging modules to
form hierarchical features. Subsequently, in the decoder, features are upsampled to produce
mask output using BiFormer blocks and patch expanding modules. The BiFormer block
serves as the basic unit of BiF3-Net. Specifically, given a 2D input, BiFormer first divides the
input feature map into non-overlapping patches of size S×S and derives the query, key, and

value Q,K, V ∈ RS2×H×W

S2 ×C . Then, we derive region-level queries and keys Qr,Kr ∈ RS2×C ,
by applying per-region averaging on Q and K (note: each region contains multiple patches).
We multiply Qr with Kr to obtain Ar, measuring how much two regions are semantically
related. Then, we use a row-wise top-k operator to obtain the top-k most relevant regions
for each region. Finally, patches within each region only interact with patches within the
corresponding top-k most relevant regions through standard attention mechanisms.
BiFormer Fusion Bridge. The BiFormer fusion bridge (BFB) module addresses the
semantic gap between the encoder and decoder by extending the attention interaction within
a single feature map, akin to the BiFormer module. Additionally, it enables interaction across
different stages of the encoder by computing the top-k most relevant regions within each
feature map and performing basic attention operations between these selected regions, as
shown in Figure 1(b). To maintain consistency with BiFormer, other settings are preserved.
As our framework is hierarchically designed, feature map sizes vary across different levels in
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the encoder and decoder. To address this, adaptive pooling and 1×1 depth-wise convolutional
operations are applied to ensure uniform feature map sizes across all stages in the encoder.
Dense Inception Classifier. The classification branch DIC, aimed at alleviating over-
segmentation, utilizes the output of the final stage of the encoder as input and performs
classification through a network consisting of several parallel pathways and a MLP layer.
Specifically, our DIC module comprises a 3× 3 maximum pooling layer, a 1× 1 convolutional
layer (CL), and 1× 1 and 3× 3 CLs with an atrous rate of 1.

3. Experiments and Conclusion

Dataset. The UW-Madison GI Tract Segmentation dataset (happyharrycn, 2022) is used in
this study, which comprises 38,496 MRI slices from 85 cases, with 21,906 annotated for the
large bowel, small bowel, and stomach, and the rest as background. The dataset is randomly
split into 80% for training and 20% for testing, 10% of the training set is used for validation.
Setting. All images are resized to 224 × 224, random flip and crop is used for data
augmentation. The initial learning rate is set to 2e−4, with a weight decay of 0.05, and
a cosine schedule with warm-ups. The number of epochs is 120 with batch sizes of 16.
Weighted deep supervision (WDS) is used during the training stage. The loss function
is expressed as below, where Y is the ground truth, Ỹi refers to mask output in different
decoder stages and αi refers to the weight of the deep supervision in different decoder stages.

LWDS =

4∑
i=1

αi(LDice(Ỹi, Y ) + LCE(Ỹi, Y )), αi =

{
0.7 if i = 1,

0.1 otherwise.

Results. As shown in Table 1, we report the quantitative results of the proposed model with
a series of state-of-the-art (SOTA) medical image segmentation methods on the Dice score
(Dice), Intersection over-union (IoU) and Hausdorff distance (HD). Additionally, we report
the number of parameters and inference time of each method. Our model outperforms other
SOTA methods across the mentioned three kind of evaluation metrics with relatively fewer
parameters and faster inference time, without utilizing any ImageNet pre-trained weights.

Table 1: Performance comparison and ablation study on the UW-Madison GI dataset.

# Params(M) Inference Time(S)
Average Large bowel Small bowel Stomach

Dice (%) ↑ IoU (%) ↑ HD ↓ Dice (%) ↑ IoU (%) ↑ HD ↓ Dice (%) ↑ IoU (%) ↑ HD ↓ Dice (%) ↑ IoU (%) ↑ HD ↓
UNet(Ronneberger et al., 2015) 24.5624.5624.56 3.12 87.96 85.01 1.29 86.08 82.53 1.54 85.56 81.89 1.58 92.77 90.99 0.68
UNet3+(Huang et al., 2020) 26.97 4.32 88.49 85.41 1.22 86.93 83.03 1.49 85.60 82.00 1.53 92.94 91.21 0.66
Deeplabv3+(Oktay et al., 2018) 31.23 4.12 88.61 85.48 1.21 87.45 83.45 1.47 85.69 82.03 1.49 92.71 90.97 0.66
TransUnet(Petit et al., 2021) 105.3 4.87 88.30 85.59 1.28 87.66 83.83 1.51 86.71 83.13 1.57 91.53 89.82 0.76
Swin-UNet(Cao et al., 2022) 41.40 3.58 88.56 85.86 1.21 87.94 84.31 1.48 86.66 83.03 1.59 92.07 90.13 0.70
UCTransNet(Wang et al., 2022) 56.13 5.12 88.96 86.39 1.17 88.21 84.48 1.43 86.95 83.84 1.51 91.80 90.21 0.71
nn-UNet(Isensee et al., 2021) 79.65 9.65 89.39 86.94 1.10 88.34 85.32 1.40 88.10 85.21 1.43 93.03 91.29 0.63

Ours (Baseline) 24.67 2.872.872.87 88.67 85.98 1.19 88.30 84.46 1.46 86.91 83.74 1.55 92.18 90.35 0.68
Ours (w BFB) 32.89 3.23 89.57 87.36 1.07 88.63 85.64 1.34 88.36 85.30 1.42 93.20 91.33 0.61
Ours (w BFB & DIC) 33.23 3.40 90.41 88.21 1.04 89.32 86.32 1.25 89.23 86.09 1.39 94.12 92.20 0.55
Ours (w BFB & DIC & WDS)Ours (w BFB & DIC & WDS)Ours (w BFB & DIC & WDS) 33.23 3.40 90.9890.9890.98 88.7188.7188.71 1.021.021.02 89.7189.7189.71 86.6686.6686.66 1.201.201.20 89.7089.7089.70 86.4986.4986.49 1.311.311.31 94.8594.8594.85 92.5192.5192.51 0.500.500.50

Conclusion. In this paper, we introduce BiF3-Net, a comprehensive UNet variant designed
for accurate segmentation of the gastrointestinal tract on MRI images. Using BiFormer sparse
attention blocks, our model captures long-range dependencies and employs full-scale feature
maps for improved precision. While the Dense Inception Classifier module and weighted
deep supervision strategy further enhance performance. To the best of our knowledge, this
is the first fully BiFormer-based medical image segmentation model. Extensive experiments
and ablation studies demonstrate the effectiveness and applicability of the proposed model.

3



Wang Chen Long Tian Huang Wang Liu

References

Melina Arnold, Christian C Abnet, Rachel E Neale, Jerome Vignat, Edward L Giovannucci, Kather-
ine A McGlynn, and Freddie Bray. Global burden of 5 major types of gastrointestinal cancer.
Gastroenterology, 159(1):335–349, 2020.

Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning Wang.
Swin-unet: Unet-like pure transformer for medical image segmentation. In European conference
on computer vision, pages 205–218. Springer, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

Phil Culliton Poonam Yadav Sangjune Laurence Lee happyharrycn, Maggie. Uw-
madison gi tract image segmentation, 2022. URL https://kaggle.com/competitions/

uw-madison-gi-tract-image-segmentation.

Huimin Huang, Lanfen Lin, Ruofeng Tong, Hongjie Hu, Qiaowei Zhang, Yutaro Iwamoto, Xianhua
Han, Yen-Wei Chen, and Jian Wu. Unet 3+: A full-scale connected unet for medical image
segmentation. In ICASSP 2020-2020 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pages 1055–1059. IEEE, 2020.

Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnu-net: a
self-configuring method for deep learning-based biomedical image segmentation. Nature methods,
18(2):203–211, 2021.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa,
Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net:
Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.

Olivier Petit, Nicolas Thome, Clement Rambour, Loic Themyr, Toby Collins, and Luc Soler. U-net
transformer: Self and cross attention for medical image segmentation. In Machine Learning in
Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI
2021, Strasbourg, France, September 27, 2021, Proceedings 12, pages 267–276. Springer, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015.

Jeya Maria Jose Valanarasu, Poojan Oza, Ilker Hacihaliloglu, and Vishal M Patel. Medical transformer:
Gated axial-attention for medical image segmentation. In Medical Image Computing and Computer
Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September
27–October 1, 2021, Proceedings, Part I 24, pages 36–46. Springer, 2021.

Haonan Wang, Peng Cao, Jiaqi Wang, and Osmar R Zaiane. Uctransnet: rethinking the skip
connections in u-net from a channel-wise perspective with transformer. In Proceedings of the AAAI
conference on artificial intelligence, volume 36, pages 2441–2449, 2022.

Lei Zhu, Xinjiang Wang, Zhanghan Ke, Wayne Zhang, and Rynson WH Lau. Biformer: Vision
transformer with bi-level routing attention. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 10323–10333, 2023.

4

https://kaggle.com/competitions/uw-madison-gi-tract-image-segmentation
https://kaggle.com/competitions/uw-madison-gi-tract-image-segmentation

	Introduction
	Methods
	Experiments and Conclusion

