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Abstract

Tokenization serves as a crucial preprocessing step in multilingual language models,1

affecting performance in both high-resource and low-resource languages. How-2

ever, current tokenizers seem to adopt language biases due to unbalanced training3

datasets, leading to a poorly optimized tokenizer for underrepresented languages.4

This research examines the impact of balanced multilingual datasets on the perfor-5

mance of tokenizers trained with the Byte Pair Encoding, WordPiece, and Unigram6

Language Model algorithms. We build balanced corpora from various sources to7

study the impact of vocabulary size on 15k, 30k, 50k dataset scales. The trained8

tokenizers are assessed through intrinsic metrics, including Subword Fertility and9

Normalized Sequence Length, as well as through extrinsic performance on down-10

stream tasks like Part-of-Speech tagging, Named Entity Recognition, and Machine11

Translation. We build custom data sets along with customized evaluation pipelines12

to enable consistent comparisons across nine languages using models built into13

standard NLP frameworks. Our observations reinforce the importance of a balanced14

dataset when training tokenizers and, in turn, advance the development of equitable15

and robust multilingual NLP systems.16

1 Introduction17

Tokenization serves as the critical bridge between raw text and model input in NLP, particularly18

challenging in multilingual settings where vocabulary overlap is limited Conneau et al. [2020].19

Subword tokenization strategies: BPE Sennrich et al. [2016], WordPiece Devlin et al. [2019], and20

Unigram Kudo [2018], address the out-of-vocabulary problem by segmenting rare words into known21

units, each optimizing different trade-offs between frequency, coverage, and segmentation granularity.22

However, existing tokenization strategies disproportionately favor high-resource and Latin-script23

languages, leading to over-segmentation of low-resource languages and inflating sequence lengths24

Petrov et al. [2023]. This bias results in up to 68% additional training costs Ali et al. [2023] and creates25

societal inequalities through higher API costs and slower processing for marginalized communities26

Rust et al. [2021]. While multilingual models like mBERT Devlin et al. [2018] and XLM-R Conneau27

et al. [2020] use shared vocabularies, they suffer from token collisions and inconsistent granularity that28

disadvantage underrepresented languages Xiang Zhang [2024]. This work systematically investigates29

how balanced multilingual corpora can mitigate tokenizer performance disparities. We analyze30

nine typologically diverse languages (Yoruba, Arabic, Mandarin Chinese, Russian, Hindi, Japanese,31

Swahili, Bengali, Turkish) representing different language families, scripts, and morphological32

complexity. Our evaluation combines intrinsic metrics (subword fertility, normalized sequence33

length) with downstream performance on POS tagging, NER, and machine translation using balanced34

Wikipedia and OSCAR datasets.35
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We focus on subword tokenizers, excluding character-level and neural approaches. While down-36

stream evaluation uses curated datasets rather than full-scale pretrained models, and data limitations37

affect some low-resource language tasks, this work provides empirical evidence for balanced data’s38

importance in fair tokenizer design.39

2 Methodology40

2.1 Tokenizers41

We constructed a typologically diverse, balanced corpus from Wikipedia dumps1 and the OSCAR 242

(Common Crawl) for nine languages: Yoruba, Arabic, Mandarin Chinese, Russian, Hindi, Japanese,43

Swahili, Bengali, and Turkish, allocating equal characters per language to reduce high-resource bias44

Zhang et al. [2022]. To study corpus size effects, three datasets of approximately 100M, 200M, and45

400M characters were created. All corpora underwent a uniform normalization pipeline consisting of46

text repair using ftfy, Unicode normalization to NFKC, removal of non-printable characters, and47

whitespace standardization, with only non-empty cleaned lines retained. Using Hugging Face and48

SentencePiece, we trained BPE, WordPiece, and Unigram tokenizers with vocabulary sizes of 15k,49

30k, and 50k; BPE and WordPiece applied whitespace pre-tokenization, while Unigram operated50

on raw text to better handle non-whitespace scripts. Special tokens ([PAD], [UNK], [CLS], [SEP],51

[MASK] or equivalents) and full character coverage were enforced, enabling direct comparison across52

algorithms and vocabulary sizes. Tokenizer performance was assessed using Normalized Sequence53

Length (NSL), the average tokens per character indicating segmentation granularity, and Subword54

Fertility, the average tokens per whitespace-delimited word reflecting subword splits. Evaluation was55

conducted on balanced samples of 50 sentences per language from TATOEBA3 (Yoruba, Bengali)56

and TED2020 4 (others), with results summarized in Table 3.57

2.2 Downstream Tasks58

POS Tagging We compiled a balanced dataset for nine languages from Universal Dependencies59

(Arabic, Mandarin Chinese, Russian, Hindi, Japanese, Turkish), MasakhaPOS (Yoruba, Swahili),60

and the NLTK Indian corpus (Bengali). Sentences with aligned tokens and POS tags were retained,61

reformatted into a unified JSONL structure (tokens, tags, lang), shuffled, and saved in UTF-8.62

A BERT-based token classification model (bert-base-cased) was fine-tuned with each tokenizer63

configuration. Tokenization was word-aligned, with subwords inheriting parent word labels and64

non-aligned tokens masked. Training used batch size 16, learning rate 5e-5, and 3 epochs.65

Named Entity Recognition (NER) For NER, Yoruba data came from MasakhaneNER (CoNLL),66

and the remaining eight languages from WikiANN. All datasets were normalized to a shared schema67

(tokens, ner_tags, language), with Yoruba tags mapped to the WikiANN label set. Each lan-68

guage was downsampled to balance representation, shuffled, and split 80/20. A BERT-based token69

classification model was fine-tuned with all tokenizer variants. Subword alignment followed POS70

procedures, and class weights mitigated label imbalance. Evaluation used seqeval metrics: precision,71

recall, F1, and accuracy.72

Machine Translation Parallel corpora were sourced from OPUS100 and TED2020, with TED202073

filling low-resource gaps (e.g., Swahili). Preprocessing removed duplicates, noisy strings, extreme-74

length sentences, and number/punctuation-heavy lines. Datasets were balanced across languages,75

shuffled, and split 90/10. We trained multilingual BART-large models with different tokenizer76

configurations. Training used Seq2SeqTrainer for 5 epochs (batch size 8, gradient accumulation 8, lr77

1e-4, warmup 10%, weight decay 0.01, FP16, label smoothing 0.1, gradient clipping 1.0). Inputs were78

truncated/padded to 256 tokens; generation used beam search (beam=2, max length=128). Evaluation79

employed BLEU and exact match accuracy.80

1https://dumps.wikimedia.org/
2https://oscar-project.org/
3https://tatoeba.org/
4https://opus.nlpl.eu/TED2020.php
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3 Experimental Results81

3.1 Intrinsic Tokenizer Evaluation82

As shown in Appendix Table 3, larger vocabularies consistently reduce both metrics, with the strongest83

effect in logographic languages like Mandarin Chinese and Japanese Kudo and Richardson [2018],84

Conneau et al. [2020]. Across tokenizers, BPE yields the most compact sequences, WordPiece85

the least (especially at smaller vocabularies), and Unigram lies in between Sennrich et al. [2016],86

Wu et al. [2016], Kudo and Richardson [2018]. Typology also matters: morphologically complex87

languages benefit more from larger vocabularies, while simpler languages like Yoruba and Swahili88

show little change Bostrom and Durrett [2020], Wang et al. [2020]. Overall, larger vocabularies89

improve efficiency across algorithms, reducing sequence length and fragmentation and thus lowering90

computational cost in downstream tasks Qiu et al. [2020].91

3.2 POS Tagging Results92

We further compare tokenizers on POS tagging across vocabulary sizes using accuracy and F1 metrics.93

From Table 1, it can be inferred that wordPiece achieves the highest overall performance, with a94

test accuracy of 0.7830 and weighted F1 of 0.7722 at 15k, consistently outperforming BPE and95

SentencePiece Unigram. This can be attributed to WordPiece’s ability to preserve morphologically96

meaningful units, which benefits POS tagging where syntactic boundaries are crucial Straka et al.97

[2016]. In contrast, BPE prioritizes frequency-based merges, often splitting or merging across98

morpheme boundaries, which reduces efficiency for this task despite shorter sequences Sennrich et al.99

[2016], Kudo [2018]. SentencePiece Unigram shows intermediate behavior, offering slightly higher100

macro-F1 than BPE but lacking the stability of WordPiece Kudo and Richardson [2018]. Notably,101

increasing vocabulary size does not improve results and in some cases reduces accuracy, as larger102

vocabularies can overspecialize subword units and lose the generalization capacity needed for POS103

tagging Nivre et al. [2016], Kann and Schütze [2016], Mielke et al. [2021].104

Table 1: POS Performance comparison across tokenizers, vocabulary sizes, and metrics. Best values
per block are highlighted in bold.

Tokenizer Voc size Epoch Train Acc Train F1 Macro Train F1 Weighted Test Acc Test F1 Macro Test F1 Weighted
BPE

15k
3 0.7847 0.2957 0.7722 0.7207 0.2973 0.7057

WordPiece 3 0.8413 0.3889 0.8325 0.7830 0.3952 0.7722
SentencePiece Unigram 3 0.8067 0.3209 0.7947 0.7484 0.3299 0.7340

BPE
30k

3 0.7526 0.2686 0.7366 0.6932 0.2724 0.6735
WordPiece 3 0.7964 0.2877 0.7839 0.7325 0.2915 0.7174
SentencePiece Unigram 3 0.7752 0.3141 0.7625 0.7211 0.3218 0.7061

BPE
50k

3 0.7643 0.2719 0.7484 0.7015 0.2775 0.6812
WordPiece 3 0.8001 0.2848 0.7880 0.7335 0.2883 0.7187
SentencePiece Unigram 3 0.7662 0.3085 0.7528 0.7107 0.3141 0.6944

3.3 NER Results105

Table 2 presents the NER performance across tokenizers, vocabulary sizes, and evaluation metrics.106

With 15k vocabulary size, WordPiece significantly outperforms BPE and SentencePiece Unigram,107

achieving the highest Test F1 (0.5844) and Test Accuracy (0.7644). This suggests that WordPiece is108

particularly effective in low-vocabulary regimes, where its ability to balance word-level and subword-109

level information aids entity boundary recognition Devlin et al. [2019], Wu et al. [2016], Li et al.110

[2019]. As vocabulary size increases to 30k and 50k, BPE shows competitive performance, especially111

in Test Accuracy (0.7032 at 50k), while SentencePiece occasionally surpasses BPE in terms of F1112

score. However, WordPiece maintains overall superiority, albeit with diminishing margins, likely113

due to reduced fragmentation and more stable subword segmentation as vocabulary size grows Klein114

et al. [2017]. Overall, these results indicate that WordPiece offers the best generalization for NER at115

smaller vocabulary sizes, while BPE and SentencePiece Unigram become more competitive at larger116

vocabularies, reflecting the trade-off between segmentation granularity and contextual representation117

in sequence labeling tasks Peters et al. [2018], Akbik et al. [2018], Mielke et al. [2021].118
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Table 2: NER Performance comparison across tokenizers, vocabulary sizes, and metrics

Tokenizer Voc size Epoch Train Precision Train Recall Train F1 Train Accuracy Test Precision Test Recall Test F1 Test Accuracy
BPE 15k 3 0.3113 0.6453 0.4200 0.6878 0.2452 0.5088 0.3309 0.6324
WordPiece 3 0.5990 0.8601 0.7062 0.8374 0.4937 0.7157 0.5844 0.7644
SentencePiece Unigram 3 0.4949 0.8398 0.6228 0.7856 0.3769 0.6441 0.4756 0.7102

BPE 30k 3 0.3730 0.7452 0.4971 0.7604 0.2640 0.5393 0.3545 0.6828
WordPiece 3 0.4432 0.8106 0.5731 0.7898 0.3251 0.6063 0.4233 0.7014
SentencePiece Unigram 3 0.4120 0.7810 0.5394 0.7449 0.2920 0.5690 0.3860 0.6532

BPE 50k 3 0.3951 0.7533 0.5183 0.7902 0.2650 0.5290 0.3531 0.7032
WordPiece 3 0.4266 0.7842 0.5525 0.7927 0.3034 0.5767 0.3976 0.7153
SentencePiece Unigram 3 0.4258 0.7885 0.5530 0.7599 0.2914 0.5515 0.3813 0.6694

Figure 1: Performance comparison of tokenization methods (BPE, WordPiece, SentencePiece Uni-
gram) across vocabulary sizes (15k, 30k, 50k) using BLEU and Exact Match metrics on multilingual
BART-large.

3.4 Machine Translation Results119

Figure 1 compares tokenization methods on multilingual BART-large across vocabulary sizes (15k,120

30k, 50k) . At 15k, BPE achieved the best BLEU (0.1226), reflecting efficient rare word segmentation,121

while WordPiece performed poorly (0.0103) due to insufficient coverage of morphologically rich122

words. At 30k, WordPiece (0.1136 BLEU) nearly matched BPE (0.1135) and aligned better with123

reference lengths, while SentencePiece Unigram achieved the highest Exact Match (0.086) but124

produced shorter sequences. At 50k, WordPiece led in BLEU (0.1218) and Unigram in Exact Match125

(0.096), showing a trade-off between fluency and precision. Overall, BPE is strongest at smaller126

vocabularies, WordPiece scales better with larger ones, and Unigram favors exact matching but127

tends to under-generate. These trends highlight how subword granularity, vocabulary coverage, and128

sequence length jointly shape BLEU and Exact Match performance.129

4 Discussion and Conclusion130

This study investigated the impact of balanced multilingual datasets on tokenizer performance across131

nine typologically diverse languages, showing that balanced data improves both efficiency and132

fairness. BPE consistently yielded the lowest Normalized Sequence Length and Subword Fertility,133

while logographic languages like Chinese and Japanese benefited most from larger vocabularies134

(e.g., NSL for Chinese dropped from 0.85 to 0.70 between 15k and 50k). Downstream performance135

was task-dependent: WordPiece excelled in POS tagging (accuracy 0.7830) and NER (F1 0.5844),136

while BPE led in machine translation at smaller vocabularies (BLEU 0.1226). Balanced datasets137

reduced over-segmentation in low-resource languages, mitigating computational inequities where138

underrepresented languages can otherwise incur up to 68% extra processing costsAli et al. [2023].139

While our results are promising, several limitations must be acknowledged. Future work should extend140

evaluation to character-level and neural tokenization methods, explore family-specific balancing, and141

assess generative tasks where tokenizer choice may influence quality differently. Multi-tokenizer142

approaches within a single model also offer promise for leveraging complementary strategies. Overall,143

balanced training data is critical for fair and efficient multilingual tokenization. While optimal144
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choice remains task-dependent, balanced datasets consistently enhance performance, advancing more145

equitable multilingual NLP systems that move beyond one-size-fits-all paradigms.146
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with NVIDIA GeForce RTX 4090 (24GB VRAM) and CUDA 11.8. The choice of computational230

environments was determined by the memory requirements of each task, with the larger BART-large231

models for machine translation necessitating the higher VRAM capacity of the RTX 4090 GPU.232
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Table 3: NSL and Subword Fertility across tokenizers, languages, and vocabulary sizes.

Language Tokenizer 15k voc size 30k voc size 50k voc size
NSL Subword Fertility NSL Subword Fertility NSL Subword Fertility

Yoruba
BPE 0.4584 1.9911 0.3993 1.7278 0.3668 1.5783
WordPiece 0.8137 3.5557 0.4584 1.9867 0.3827 1.6498
SentencePiece Unigram 0.5471 2.3723 0.4178 1.8040 0.3963 1.7086

Arabic
BPE 0.4908 2.8232 0.3726 2.1427 0.3316 1.9056
WordPiece 0.8353 4.8084 0.4485 2.5773 0.3567 2.0482
SentencePiece Unigram 0.4859 2.7878 0.3879 2.2264 0.3427 1.9706

Mandarin Chinese
BPE 0.8479 8.7353 0.7438 7.6769 0.6985 7.2173
WordPiece 0.8391 8.4954 0.7628 7.7758 0.6786 6.9250
SentencePiece Unigram 0.9393 9.6524 0.8556 8.7974 0.8166 8.4003

Russian
BPE 0.4621 3.3589 0.3367 2.4322 0.2990 2.1634
WordPiece 0.8701 6.3412 0.4406 3.1862 0.3276 2.3668
SentencePiece Unigram 0.4879 3.5411 0.3414 2.4549 0.3091 2.2264

Hindi
BPE 0.4727 2.5893 0.3566 1.9619 0.3258 1.8028
WordPiece 0.7793 4.1668 0.4210 2.2823 0.3377 1.8444
SentencePiece Unigram 0.5174 2.8608 0.3819 2.1243 0.3497 1.9463

Japanese
BPE 0.7739 11.0098 0.5978 8.4776 0.5290 7.4856
WordPiece 0.9168 13.1019 0.7082 10.0753 0.5775 8.1898
SentencePiece Unigram 0.8368 11.8092 0.6681 9.3931 0.5973 8.3685

Swahili
BPE 0.4008 2.6293 0.2953 1.9350 0.2620 1.7163
WordPiece 0.8573 5.6392 0.3759 2.4664 0.2910 1.9076
SentencePiece Unigram 0.4068 2.6739 0.3031 1.9849 0.2632 1.7273

Bengali
BPE 0.4270 2.9301 0.2897 1.9807 0.2479 1.6934
WordPiece 0.8569 5.8917 0.3897 2.6693 0.2759 1.8865
SentencePiece Unigram 0.4621 3.1692 0.2958 2.0243 0.2512 1.7167

Turkish
BPE 0.4295 3.3339 0.3166 2.4487 0.2807 2.1667
WordPiece 0.8805 6.8531 0.3937 3.0524 0.3050 2.3543
SentencePiece Unigram 0.4482 3.4741 0.3262 2.5227 0.2826 2.1694

Table 4: Performance comparison of different tokenization methods on multilingual BART-large.
Best scores per vocabulary size are in bold.

Voc Size Tokenizer Type BLEU Exact Match Avg. Pred Len Avg. Label Len

15k
BPE 0.1226 0.069 27.41 23.05
WordPiece 0.0103 0 20 35.11
SentencePiece Unigram 0.0526 0.031 9.14 7.37

30k
BPE 0.1135 0.006 17.99 18.55
WordPiece 0.1136 0.067 23.30 21.65
SentencePiece Unigram 0.0966 0.086 7.58 7.37

50k
BPE 0.1039 0.055 22.35 16.97
WordPiece 0.1218 0.078 19.94 17.96
SentencePiece Unigram 0.1039 0.096 7.13 7.37

NeurIPS Paper Checklist233

1. Claims234

Question: Do the main claims made in the abstract and introduction accurately reflect the235

paper’s contributions and scope?236

Answer: [Yes]237

Justification: The abstract and introduction accurately reflect the paper’s contributions238

and scope. The abstract clearly states the research examines tokenizer performance using239

balanced multilingual datasets across BPE, WordPiece, and Unigram algorithms, evaluated240

on 9 languages with both intrinsic metrics and downstream tasks (POS tagging, NER,241

machine translation). The introduction properly contextualizes the problem of tokenization242

bias and clearly delineates the study’s scope, including explicit acknowledgment that the243

work focuses on subword-based tokenizers and excludes full-scale pretrained models.244

Guidelines:245
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• The answer NA means that the abstract and introduction do not include the claims246

made in the paper.247

• The abstract and/or introduction should clearly state the claims made, including the248

contributions made in the paper and important assumptions and limitations. A No or249

NA answer to this question will not be perceived well by the reviewers.250

• The claims made should match theoretical and experimental results, and reflect how251

much the results can be expected to generalize to other settings.252

• It is fine to include aspirational goals as motivation as long as it is clear that these goals253

are not attained by the paper.254

2. Limitations255

Question: Does the paper discuss the limitations of the work performed by the authors?256

Answer: [Yes]257

Justification: The paper explicitly discusses limitations in Section 4, acknowledging that258

the scope is deliberately focused on subword-based tokenizers (excluding character-level259

and neural approaches), etc. The authors also outline future research directions to address260

these limitations, including expanding to character-level methods and exploring intermediate261

balancing strategies.262

Guidelines:263

• The answer NA means that the paper has no limitation while the answer No means that264

the paper has limitations, but those are not discussed in the paper.265

• The authors are encouraged to create a separate "Limitations" section in their paper.266

• The paper should point out any strong assumptions and how robust the results are to267

violations of these assumptions (e.g., independence assumptions, noiseless settings,268

model well-specification, asymptotic approximations only holding locally). The authors269

should reflect on how these assumptions might be violated in practice and what the270

implications would be.271

• The authors should reflect on the scope of the claims made, e.g., if the approach was272

only tested on a few datasets or with a few runs. In general, empirical results often273

depend on implicit assumptions, which should be articulated.274

• The authors should reflect on the factors that influence the performance of the approach.275

For example, a facial recognition algorithm may perform poorly when image resolution276

is low or images are taken in low lighting. Or a speech-to-text system might not be277

used reliably to provide closed captions for online lectures because it fails to handle278

technical jargon.279

• The authors should discuss the computational efficiency of the proposed algorithms280

and how they scale with dataset size.281

• If applicable, the authors should discuss possible limitations of their approach to282

address problems of privacy and fairness.283

• While the authors might fear that complete honesty about limitations might be used by284

reviewers as grounds for rejection, a worse outcome might be that reviewers discover285

limitations that aren’t acknowledged in the paper. The authors should use their best286

judgment and recognize that individual actions in favor of transparency play an impor-287

tant role in developing norms that preserve the integrity of the community. Reviewers288

will be specifically instructed to not penalize honesty concerning limitations.289

3. Theory assumptions and proofs290

Question: For each theoretical result, does the paper provide the full set of assumptions and291

a complete (and correct) proof?292

Answer: [NA] .293

Justification: This paper is primarily an empirical study that does not include theoretical294

results, theorems, or mathematical proofs. The work focuses on experimental evaluation295

of tokenization algorithms across languages using established metrics (NSL and Subword296

Fertility). Along with the downstream evaluation for these tokenizers.297

Guidelines:298
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• The answer NA means that the paper does not include theoretical results.299

• All the theorems, formulas, and proofs in the paper should be numbered and cross-300

referenced.301

• All assumptions should be clearly stated or referenced in the statement of any theorems.302

• The proofs can either appear in the main paper or the supplemental material, but if303

they appear in the supplemental material, the authors are encouraged to provide a short304

proof sketch to provide intuition.305

• Inversely, any informal proof provided in the core of the paper should be complemented306

by formal proofs provided in appendix or supplemental material.307

• Theorems and Lemmas that the proof relies upon should be properly referenced.308

4. Experimental result reproducibility309

Question: Does the paper fully disclose all the information needed to reproduce the main ex-310

perimental results of the paper to the extent that it affects the main claims and/or conclusions311

of the paper (regardless of whether the code and data are provided or not)?312

Answer: [Yes]313

Justification: The paper details dataset sources and balancing, preprocessing, tokenizer314

training configurations, and task-specific training setups (hyperparameters, model choices,315

and evaluation metrics) in Sections 2, with complete result tables in Section 3, enabling inde-316

pendent reproduction of the main findings. See “Dataset Generation,” “Data Preprocessing,”317

“Tokenizer training,” and the POS/NER/MT training descriptions for exact settings.318

Guidelines:319

• The answer NA means that the paper does not include experiments.320

• If the paper includes experiments, a No answer to this question will not be perceived321

well by the reviewers: Making the paper reproducible is important, regardless of322

whether the code and data are provided or not.323

• If the contribution is a dataset and/or model, the authors should describe the steps taken324

to make their results reproducible or verifiable.325

• Depending on the contribution, reproducibility can be accomplished in various ways.326

For example, if the contribution is a novel architecture, describing the architecture fully327

might suffice, or if the contribution is a specific model and empirical evaluation, it may328

be necessary to either make it possible for others to replicate the model with the same329

dataset, or provide access to the model. In general. releasing code and data is often330

one good way to accomplish this, but reproducibility can also be provided via detailed331

instructions for how to replicate the results, access to a hosted model (e.g., in the case332

of a large language model), releasing of a model checkpoint, or other means that are333

appropriate to the research performed.334

• While NeurIPS does not require releasing code, the conference does require all submis-335

sions to provide some reasonable avenue for reproducibility, which may depend on the336

nature of the contribution. For example337

(a) If the contribution is primarily a new algorithm, the paper should make it clear how338

to reproduce that algorithm.339

(b) If the contribution is primarily a new model architecture, the paper should describe340

the architecture clearly and fully.341

(c) If the contribution is a new model (e.g., a large language model), then there should342

either be a way to access this model for reproducing the results or a way to reproduce343

the model (e.g., with an open-source dataset or instructions for how to construct344

the dataset).345

(d) We recognize that reproducibility may be tricky in some cases, in which case346

authors are welcome to describe the particular way they provide for reproducibility.347

In the case of closed-source models, it may be that access to the model is limited in348

some way (e.g., to registered users), but it should be possible for other researchers349

to have some path to reproducing or verifying the results.350

5. Open access to data and code351
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Question: Does the paper provide open access to the data and code, with sufficient instruc-352

tions to faithfully reproduce the main experimental results, as described in supplemental353

material?354

Answer: [No]355

Justification: Since this is a paper for double blind, the manuscript does not provides code356

repository links, thus once review is done, the authors are willing to add the repository link357

in the code. With that and the detailed processing steps in Sections 2, the results can be358

replicated.359

Guidelines:360

• The answer NA means that paper does not include experiments requiring code.361

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/362

public/guides/CodeSubmissionPolicy) for more details.363

• While we encourage the release of code and data, we understand that this might not be364

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not365

including code, unless this is central to the contribution (e.g., for a new open-source366

benchmark).367

• The instructions should contain the exact command and environment needed to run to368

reproduce the results. See the NeurIPS code and data submission guidelines (https:369

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.370

• The authors should provide instructions on data access and preparation, including how371

to access the raw data, preprocessed data, intermediate data, and generated data, etc.372

• The authors should provide scripts to reproduce all experimental results for the new373

proposed method and baselines. If only a subset of experiments are reproducible, they374

should state which ones are omitted from the script and why.375

• At submission time, to preserve anonymity, the authors should release anonymized376

versions (if applicable).377

• Providing as much information as possible in supplemental material (appended to the378

paper) is recommended, but including URLs to data and code is permitted.379

6. Experimental setting/details380

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-381

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the382

results?383

Answer: [Yes]384

Justification: The paper provides comprehensive experimental details across all tasks.385

Section 2 thoroughly specifies tokenizer configurations, preprocessing pipelines, training386

hyperparameters (batch size 16, learning rate 5e-5, 3 epochs for POS; batch size 8 with387

gradient accumulation for MT), data splits (80/20 for NER, 90/10 for MT), and evaluation388

metrics. The methodology sections clearly describe how datasets were constructed, balanced,389

and preprocessed for each downstream task.390

Guidelines:391

• The answer NA means that the paper does not include experiments.392

• The experimental setting should be presented in the core of the paper to a level of detail393

that is necessary to appreciate the results and make sense of them.394

• The full details can be provided either with the code, in appendix, or as supplemental395

material.396

7. Experiment statistical significance397

Question: Does the paper report error bars suitably and correctly defined or other appropriate398

information about the statistical significance of the experiments?399

Answer: [No]400

Justification: We report mean values for NSL, Subword Fertility, and aggregate metrics401

(accuracy, F1, BLEU, Exact Match) over balanced test sets, which ensures reliable compar-402

isons. However, explicit error bars or statistical significance tests were not included due to403

computational constraints.404
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Guidelines:405

• The answer NA means that the paper does not include experiments.406

• The authors should answer "Yes" if the results are accompanied by error bars, confi-407

dence intervals, or statistical significance tests, at least for the experiments that support408

the main claims of the paper.409

• The factors of variability that the error bars are capturing should be clearly stated (for410

example, train/test split, initialization, random drawing of some parameter, or overall411

run with given experimental conditions).412

• The method for calculating the error bars should be explained (closed form formula,413

call to a library function, bootstrap, etc.)414

• The assumptions made should be given (e.g., Normally distributed errors).415

• It should be clear whether the error bar is the standard deviation or the standard error416

of the mean.417

• It is OK to report 1-sigma error bars, but one should state it. The authors should418

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis419

of Normality of errors is not verified.420

• For asymmetric distributions, the authors should be careful not to show in tables or421

figures symmetric error bars that would yield results that are out of range (e.g. negative422

error rates).423

• If error bars are reported in tables or plots, The authors should explain in the text how424

they were calculated and reference the corresponding figures or tables in the text.425

8. Experiments compute resources426

Question: For each experiment, does the paper provide sufficient information on the com-427

puter resources (type of compute workers, memory, time of execution) needed to reproduce428

the experiments?429

Answer: [Yes]430

Justification: The paper provides detailed computational resource information in Appendix431

A Computational Resources. It specifies that tokenizer training and POS/NER experiments432

used Google Colab with Tesla T4 GPU (16GB VRAM) and Python 3.10 with CUDA 11.8,433

while machine translation experiments required a local workstation with NVIDIA GeForce434

RTX 4090 (24GB VRAM) and CUDA 11.8. The choice of different environments is justified435

by memory requirements, with BART-large models necessitating the higher VRAM capacity.436

Guidelines:437

• The answer NA means that the paper does not include experiments.438

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,439

or cloud provider, including relevant memory and storage.440

• The paper should provide the amount of compute required for each of the individual441

experimental runs as well as estimate the total compute.442

• The paper should disclose whether the full research project required more compute443

than the experiments reported in the paper (e.g., preliminary or failed experiments that444

didn’t make it into the paper).445

9. Code of ethics446

Question: Does the research conducted in the paper conform, in every respect, with the447

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?448

Answer: [Yes]449

Justification: The research conforms to NeurIPS ethics guidelines by using publicly available450

datasets, addressing fairness in multilingual NLP (which has positive societal implications),451

and conducting responsible empirical research without ethical concerns.452

Guidelines:453

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.454

• If the authors answer No, they should explain the special circumstances that require a455

deviation from the Code of Ethics.456
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-457

eration due to laws or regulations in their jurisdiction).458

10. Broader impacts459

Question: Does the paper discuss both potential positive societal impacts and negative460

societal impacts of the work performed?461

Answer: [Yes]462

Justification: The paper discusses positive societal impacts by addressing computational463

inequities and linguistic bias that affect underrepresented languages and communities. It464

acknowledges how tokenization disparities can impose additional costs and processing465

delays for marginalized communities, contributing to more equitable multilingual NLP466

systems.467

Guidelines:468

• The answer NA means that there is no societal impact of the work performed.469

• If the authors answer NA or No, they should explain why their work has no societal470

impact or why the paper does not address societal impact.471

• Examples of negative societal impacts include potential malicious or unintended uses472

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations473

(e.g., deployment of technologies that could make decisions that unfairly impact specific474

groups), privacy considerations, and security considerations.475

• The conference expects that many papers will be foundational research and not tied476

to particular applications, let alone deployments. However, if there is a direct path to477

any negative applications, the authors should point it out. For example, it is legitimate478

to point out that an improvement in the quality of generative models could be used to479

generate deepfakes for disinformation. On the other hand, it is not needed to point out480

that a generic algorithm for optimizing neural networks could enable people to train481

models that generate Deepfakes faster.482

• The authors should consider possible harms that could arise when the technology is483

being used as intended and functioning correctly, harms that could arise when the484

technology is being used as intended but gives incorrect results, and harms following485

from (intentional or unintentional) misuse of the technology.486

• If there are negative societal impacts, the authors could also discuss possible mitigation487

strategies (e.g., gated release of models, providing defenses in addition to attacks,488

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from489

feedback over time, improving the efficiency and accessibility of ML).490

11. Safeguards491

Question: Does the paper describe safeguards that have been put in place for responsible492

release of data or models that have a high risk for misuse (e.g., pretrained language models,493

image generators, or scraped datasets)?494

Answer: [NA]495

Justification: The paper focuses on tokenization algorithms and evaluation metrics rather496

than releasing high-risk models or datasets. The work involves standard NLP evaluation497

tasks and does not pose significant misuse risks requiring special safeguards.498

Guidelines:499

• The answer NA means that the paper poses no such risks.500

• Released models that have a high risk for misuse or dual-use should be released with501

necessary safeguards to allow for controlled use of the model, for example by requiring502

that users adhere to usage guidelines or restrictions to access the model or implementing503

safety filters.504

• Datasets that have been scraped from the Internet could pose safety risks. The authors505

should describe how they avoided releasing unsafe images.506

• We recognize that providing effective safeguards is challenging, and many papers do507

not require this, but we encourage authors to take this into account and make a best508

faith effort.509
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12. Licenses for existing assets510

Question: Are the creators or original owners of assets (e.g., code, data, models), used in511

the paper, properly credited and are the license and terms of use explicitly mentioned and512

properly respected?513

Answer: [Yes]514

Justification: The paper cites in the footnotes and acknowledges all dataset sources (e.g.,515

Tatoeba, OSCAR, etc.) and tokenizer/modeling baselines in Section 2 and related work.516

While explicit license types (e.g., CC-BY, MIT) are not always included, references to517

original sources and their respective documentation ensure compliance with their usage518

terms.519

Guidelines:520

• The answer NA means that the paper does not use existing assets.521

• The authors should cite the original paper that produced the code package or dataset.522

• The authors should state which version of the asset is used and, if possible, include a523

URL.524

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.525

• For scraped data from a particular source (e.g., website), the copyright and terms of526

service of that source should be provided.527

• If assets are released, the license, copyright information, and terms of use in the528

package should be provided. For popular datasets, paperswithcode.com/datasets529

has curated licenses for some datasets. Their licensing guide can help determine the530

license of a dataset.531

• For existing datasets that are re-packaged, both the original license and the license of532

the derived asset (if it has changed) should be provided.533

• If this information is not available online, the authors are encouraged to reach out to534

the asset’s creators.535

13. New assets536

Question: Are new assets introduced in the paper well documented and is the documentation537

provided alongside the assets?538

Answer: [NA]539

Justification: The paper does not release new datasets or models as assets; it focuses on540

evaluating existing tokenization algorithms on curated versions of publicly available datasets.541

Guidelines:542

• The answer NA means that the paper does not release new assets.543

• Researchers should communicate the details of the dataset/code/model as part of their544

submissions via structured templates. This includes details about training, license,545

limitations, etc.546

• The paper should discuss whether and how consent was obtained from people whose547

asset is used.548

• At submission time, remember to anonymize your assets (if applicable). You can either549

create an anonymized URL or include an anonymized zip file.550

14. Crowdsourcing and research with human subjects551

Question: For crowdsourcing experiments and research with human subjects, does the paper552

include the full text of instructions given to participants and screenshots, if applicable, as553

well as details about compensation (if any)?554

Answer: [NA]555

Justification: The research uses existing publicly available datasets and does not involve556

crowdsourcing experiments or research with human subjects.557

Guidelines:558

• The answer NA means that the paper does not involve crowdsourcing nor research with559

human subjects.560
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• Including this information in the supplemental material is fine, but if the main contribu-561

tion of the paper involves human subjects, then as much detail as possible should be562

included in the main paper.563

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,564

or other labor should be paid at least the minimum wage in the country of the data565

collector.566

15. Institutional review board (IRB) approvals or equivalent for research with human567

subjects568

Question: Does the paper describe potential risks incurred by study participants, whether569

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)570

approvals (or an equivalent approval/review based on the requirements of your country or571

institution) were obtained?572

Answer: [NA]573

Justification: The research does not involve human subjects research, crowdsourcing, or data574

collection that would require IRB approval, as it uses existing publicly available datasets.575

Guidelines:576

• The answer NA means that the paper does not involve crowdsourcing nor research with577

human subjects.578

• Depending on the country in which research is conducted, IRB approval (or equivalent)579

may be required for any human subjects research. If you obtained IRB approval, you580

should clearly state this in the paper.581

• We recognize that the procedures for this may vary significantly between institutions582

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the583

guidelines for their institution.584

• For initial submissions, do not include any information that would break anonymity (if585

applicable), such as the institution conducting the review.586

16. Declaration of LLM usage587

Question: Does the paper describe the usage of LLMs if it is an important, original, or588

non-standard component of the core methods in this research? Note that if the LLM is used589

only for writing, editing, or formatting purposes and does not impact the core methodology,590

scientific rigorousness, or originality of the research, declaration is not required.591

Answer: [NA] .592

Justification: The paper does not describe using LLMs as part of the core methodology;593

the research focuses on evaluating tokenization algorithms using standard NLP models like594

BERT and BART, not developing or using LLMs in novel ways.595

Guidelines:596

• The answer NA means that the core method development in this research does not597

involve LLMs as any important, original, or non-standard components.598

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)599

for what should or should not be described.600
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