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ABSTRACT

Training Physics-Informed Neural Networks (PINNs) on stiff time-dependent
PDEs remains highly unstable. Through rigorous ablation studies, we identify
a surprisingly critical factor: the enforcement of initial conditions. We present the
first systematic ablation of two core strategies, hard initial-condition constraints
and adaptive loss weighting. Across challenging benchmarks (sharp transitions,
higher-order derivatives, coupled systems, and high frequency modes), we find
that exact enforcement of initial conditions (ICs) is not optional but essential. Our
study demonstrates that stability and efficiency in PINN training fundamentally
depend on ICs, paving the way toward more reliable PINN solvers in stiff regimes.

1 INTRODUCTION

Time-dependent partial differential equations (PDEs) constitute the mathematical foundation of nu-
merous scientific and engineering disciplines, serving as essential tools for modeling a diverse range
of physical phenomena. Their applications span from the intricate dynamics of fluid flow, as de-
scribed by the Navier–Stokes equations, to the complex interplay of chemical reactions in bio-
logical systems, captured by reaction–diffusion models (Whitham, 2011; Burgers, 1948; Allen &
Cahn, 1979; Shen & Yang, 2010; Bazant, 2017; Horstmann et al., 2013; Tian et al., 2015; Hyman
et al., 2014; Takatori & Brady, 2015; Cahn & Hilliard, 1958; Lee et al., 2014; Miranville, 2017;
Kudryashov, 1990; Michelson, 1986; De Kepper et al., 1991; Nishiura & Ueyama, 1999; Zhabotin-
sky, 2007; Cassani et al., 2021; Kato, 1987; Kevrekidis et al., 2001; Fibich, 2015). However, solution
of stiff time-dependent PDEs can be exceedingly challenging to obtain and often requires substantial
computational resources and specialized numerical techniques.

Machine learning methodologies have demonstrated remarkable success across various scientific
and engineering fields, transforming areas such as protein folding prediction (Jumper et al., 2021),
drug discovery and development (Carracedo-Reboredo et al., 2021), and even the optimization of
fundamental algorithmic processes such as matrix-vector multiplication (Fawzi et al., 2022). How-
ever, traditional machine learning approaches, which rely on large datasets, can be impractical in
scientific contexts where data acquisition is expensive, time consuming, or simply infeasible. More-
over, purely data-driven models often lack physical fidelity and interpretability, as they may fail to
capture the underlying physical principles governing the systems they aim to describe. Physics-
informed machine learning (PIML), and in particular physics-informed neural networks (PINNs),
address these limitations by integrating physical laws directly into the learning process. This sig-
nificantly reduces the amount of training data required. By embedding constraints derived from
governing PDEs into the neural network architecture, PINNs enable accurate predictions even when
data are sparse or noisy (Yang et al., 2019; Chen et al., 2021; Raissi & Karniadakis, 2018; Raissi
et al., 2019; Liu & Wang, 2019; 2021; Jin et al., 2021; Cai et al., 2021; Rad et al., 2020; Zhu et al.,
2021; Chen et al., 2022; Wang et al., 2023). Despite their promise, effectively training PINNs for
stiff time-dependent PDEs remains a major challenge. The difficulty of propagating information
from initial and boundary conditions into the computational domain, combined with the need to bal-
ance multiple loss terms, often results in convergence issues and suboptimal solutions (Wang et al.,
2020a;b; McClenny & Braga-Neto, 2020; Coutinho et al., 2023).

This paper presents a complete study of investigating the importance of the training components for
PINNs on solving stiff time-dependent PDES. First, we conduct an ablation study of training algo-
rithms for PINNs applied to stiff time-dependent PDEs, focusing specifically on two schemes: hard
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constraints and self-adaptive loss weights (McClenny & Braga-Neto, 2020). The hard-constraint
scheme directly embeds information about initial and boundary conditions into the neural net-
work architecture. This transformation reduces the effects of spectral bias from training a multi-
objective loss, leading to improved solution accuracy (Wang et al., 2020b). In addition, we in-
vestigate the use of adaptive loss weights to alleviate spectral bias in PINN training (McClenny &
Braga-Neto, 2020). Through our ablation study of these training schemes, we conclude that the
hard-constraint transformation provides the best improvement. Next, we provide a Neural Tan-
gent Kernel perspective on how the hard-constrained transformation is reducing the spectral bias in
PINN training. We emphasize that hard constraints is not the only effective strategies for handling
stiff PDEs. Such method can be integrated with other advanced PINN techniques, such as causal
PINNs (Wang et al., 2020b), time-marching PINNs (Wight & Zhao, 2020), residual-based-attention
(RBA) PINNs (Anagnostopoulos et al., 2024), curriculum training (Krishnapriyan et al., 2021), and
co-training PINNs (Zhong et al., 2024), to achieve synergistic improvements in prediction accuracy
and robustness.

The rest of the paper is structured as follows. We compare our methodology to other related works in
section 1.1; in section 2, we discuss the hard-constrained framework and other training methodolo-
gies used in our ablation and comparison study; we presented a detailed discussion on the theoretical
mechanism behind the hard-constrained transformation in section 3.1; we presented the results (in
summary) from four major categories of examples in section 4; we conclude our paper in 5, point-
ing out several future directions for this line of research. Since the examples we conducted are too
extensive, the additional details are presented in Appendix section D.

Figure 1: 7 Benchmark Results: Truth vs HC-PINN vs Absolute Error.

1.1 RELATED WORK

PINNs have shown significant potential to solve a wide range of PDEs. However, challenges arise,
particularly when dealing with “stiff” PDEs, where explicit numerical methods require extremely
small time steps for stability. A primary concern is the imbalance between the fitting of initial
data and residual components within the PINN loss function (Wight & Zhao, 2020; Shin et al.,
2020; Wang et al., 2020a;b). This imbalance often leads gradient descent to prioritize minimiz-
ing the residual loss over data fitting loss, hindering convergence to accurate solutions. This issue
is exacerbated in forward problems, where data is primarily concentrated at initial and boundary
conditions, leaving limited information within the PDE domain. Specifically, for time-dependent
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problems, PINNs struggle to propagate information from initial conditions to subsequent time steps,
a phenomenon widely documented in the literature (Wight & Zhao, 2020; McClenny & Braga-Neto,
2020; Krishnapriyan et al., 2021; Wang et al., 2022; Haitsiukevich & Ilin, 2022).

Several strategies have been proposed to address these challenges. One approach, introduced
by Wight & Zhao (2020), involves time-marching, where the time domain is divided into smaller
intervals, with PINNs being sequentially trained on each interval, starting from the initial condition.
While effective, this method can be computationally expensive due to the need to train multiple
networks. To improve information propagation, researchers have emphasized the importance of
weighting initial condition data and residual points near the initial time (Wight & Zhao, 2020; Mc-
Clenny & Braga-Neto, 2020). McClenny & Braga-Neto (2020) demonstrated that their self-adaptive
PINNs can autonomously learn these weights during training, particularly in scenarios with com-
plex initial conditions, such as the wave equation. Further advancements include the “sequence-
to-sequence” approach (Krishnapriyan et al., 2021), causality PINN (Wang et al., 2022), artificial
viscosity PINN (Coutinho et al., 2023), Co-training PINN (Zhong et al., 2024).

Beyond loss weighting and time marching, structural modifications to PINNs have also been ex-
plored. Braga-Neto (2022) introduced Characteristic-Informed Neural Networks (CINNs) for trans-
port equations, where PDE information is integrated into the neural network architecture. A similar
approach, albeit for Dirichlet boundary conditions, was proposed in (Lagaris et al., 1998). Our
method builds upon these architectural modifications, with a focus on enforcing (near)-exact fit of
the initial condition using hard-constrained transformation.

2 METHODOLOGY

We consider the following setup for general time dependent PDEs. Let u be an unknown function
defined on [0, T ]× Ω̄ with Ω ⊂ Rd. Here the physical domain Ω comes with a Lipschitz boundary
∂Ω and Ω̄ = Ω ∪ ∂Ω. And we denote x = (x1 · · · xd)

⊤ ∈ Ω. Then we say that u is a solution
of a time-dependent PDE, if u satisfies the following

ut(t,x) + P[u](t,x) = f(t,x), (t,x) ∈ (0, T ]× Ω,

u(0,x) = u0(x), x ∈ Ω̄,

B[u](t,x) = g(t,x), (t,x) ∈ [0, T ]× ∂Ω,

. (1)

Here the operator P has order K and it is defined as

P[u] = h(u, {∂k
x
j1
1 x

j2
2 ···xjd

d

u}Kk=1), h is any multivariate function,

where ∂k
x
j1
1 x

j2
2 ···xjd

d

u is a set that contains all of partial derivatives of u with respective to x of kth

order in the multi variate sense, i.e., for the powers of each coordinate, we have

j1, j2, · · · , jd ≥ 0 and j1 + j2 + · · ·+ jd = k.

Furthermore B is an operator defined for (t,x) on the boundary. We also assume that the functions
u0, f , and g are user inputs that satisfy the desired regularity so that the existence and uniqueness of
solutions for such a PDE are guaranteed. We also assume that the compatibility condition, g(0,x) =
u0(x) for x ∈ ∂Ω, is satisfied to prevent any ill-conditioning of the solution.

Types of Boundary Conditions: one can consider many kinds of boundary conditions as follows

B[u](t,x; a, b) = au(t,x) + b
∂u

∂n
(t,x), Robin type,

where n is the outward normal vector to ∂Ω and a, b are two fixed constants. Special values of
a and b can give two other BC cases, such as when b = 0 gives B[u](t,x) = u(t,x) (Dirichlet)
and a = 0 gives the B[u](t,x) = ∂u

∂n (t,x) (Neumann). The periodic boundary condition gives d
different equations, and they are,

B[u](t,x) = u(t,x)− u(t,x+ Pei) = 0, i = 1, · · · , d. (2)

Here P is the period and ei is the ith standard basis vector in Rd, that is,

ei = [0 · · · 0 1 0 · · · 0]
⊤︸ ︷︷ ︸

1 is the in the ith position.

.
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One can even consider a mixture of two or all of the above BC conditions. For example, we can
have Ω = Γ1 ∪ · · · ∪ ΓK with each Γi defines a different kind of BC. In this paper, we will mainly
focus on the periodic type of boundary conditions.

Recent advancements in scientific machine learning integrate the principles of Physics, particularly
the Physics-derived PDEs, into the training process of machine learning models. This integration
enables the development of PINNs to solve for u as follows: find an approximate solution from a set
of deep neural networks HNN, where each network has the same depth, the same number of neurons
on each hidden layer, and the same activation functions on each layer, that minimizes the following
loss functional

Loss(unn) = Data Loss(unn) + λ ∗ IC Loss(unn) + BC Loss(unn) + PDE Loss(unn)︸ ︷︷ ︸
Physical Loss

where λ is a regularization parameter, and the two losses are as follows

Data Loss(unn) = 1
NData

∑NData

i=1 |unn(tData,xDatai )− u(tData,xDatai )|2

IC Loss(unn) = 1
NIC

∑NIC

i=1 |unn(0,xICi )− u0(x
IC
i )|2,

BC Loss(unn) =
∑d
i=1

1
NBC

∑NBC

j=1 |unn(tBCj ,xBCj )− unn(t
BC
j ,xBCj + Pei)|2,

or
BC Loss(unn) = 1

NBC

∑NBC

j=1 |(B[unn]− g)(tBCj ,xBCj )|2,
PDE Loss(unn) = 1

NCL

∑NCL

i=1 |(∂u∂t + P[unn]− f)(tCLi ,xCLi )|2

for unn ∈ HNN. Here {(tCL,xCL)i}NCL
i=1 ∈ (0, T ] × Ω are called collocation points,

{(0,xIC)i}NIC
i=1 ∈ {0} × Ω̄ are the initial condition points, {(tBC ,xBC)i}NBC

i=1 ∈ [0, T ] × ∂Ω

are the boundary condition points, and {(tData,xData)i}NData
i=1 ∈ (0, T ]×Ω are known data points

(they can be noisy). The minimizer, denoted as uNN , will an be approximate solution to (1).

2.1 HARD CONSTRAINTS

The main motivation for us to consider hard constrains transformation for PINNs is the possible
ill-conditioning of the PDE solution operator’s dependence on IC and BC. Traditional numerical
methods do not encounter this kind of difficulty, as the IC data is exactly satisfied at the starting
point of the solution loop. PINNs, on the other hand, use L2-loss to fit the IC/BC and PDE residual
data, which causes the solutions to be highly sensitive to the tightness of fit for the IC in the training,
as pointed out in (McClenny & Braga-Neto, 2020). By transforming the need of fitting IC/BC
conditions out of PINNs, it reduces the spectral bias in the training. Therefore, We consider the
following transformation

ũ(t,x) = ψ(t,x) + ϕ(t,x)unn(t,x), (3)
Here the functions ψ and ϕ are smooth functions with the following property{

ψ(0,x) = u0(x), ψ(0,x) = 0, for x ∈ Ω̄,

ψ(t,x) = g(t,x), ψ(t,x) = 0, for (t,x) ∈ [0, T ]× ∂Ω.
(4)

In the case of periodic BC, we simply require ψ and ϕ to be both P -periodic. When such transfor-
mation is used, then the training for unn is updated as

LossHC(unn) =
1

NCL

NCL∑
i=1

|(ũt + P[ũ]− f)(tCLi ,xCLi )|2, ũ = ψ + ϕunn.

We have successfully reduced the multi-objective loss to a single-objective; however the information
about IC and BC has been moved into the PDE residual loss through ψ and ϕ.

Periodic Neural Networks: even though we require ψ and ϕ to be periodic, we still need to build
the information of periodicity into unn, hence we consider the following composition

unn(t, x) = fnn(v(t, x)), where fnn is a neural network and x ∈ R.

Here v(t, x) = [t Fm(x)]
⊤ with

Fm(x) =
[
1 cos

(
2π
P x

)
sin

(
2π
P x

)
· · · cos

(
2π
P mx

)
sin

(
2π
P mx

)]
4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where m is a positive integer hyperparameter controlling the number of Fourier modes. With this
construction, each trigonometric feature is exactly P–periodic, and therefore any linear combination
(and hence unn) will inherit P–periodicity (Dong & Ni, 2021). For x = [x y], we can use the
following

v(t, x, y) = [t Fm(x) Fm(y)] ;

similarly for higher dimensional x = [x1 · · · xd], we have
v(t,x) = [t Fm(x1) · · · Fm(xd)] .

2.2 OTHER TRAINING ENHANCEMENTS

We also consider mini-batching (to handle large sample size) and self-adaptive loss weights (Mc-
Clenny & Braga-Neto, 2020), please see sections C.1 and C.2 for details.

3 THEORETICAL FOUNDATION FOR HARD CONSTRAINTS

We discuss the well-conditioning condition for the hard-constraint transformation and the Neural
Tangent Kernel (NTK) formulation for the training decay rates in this section.

3.1 WELL CONDITION OF THE TRANSFORMATION

We start with the minimal regularity conditions on the pair (ψ, ϕ) for a well-defined transformation.
Theorem 1 (Well Conditioning). The transformation is well defined when ϕ and ψ is C1 in time
and have Kth order partial derivatives w.r.t x. Moreover, ϕt(0,x) ̸= 0. Then unn will satisfy a new
PDE {

ϕ∂tunn + P[ψ + ϕunn] + ϕtunn = f − ψt, (t,x) ∈ (0, T ]× Ω,

unn(0,x) =
ut(0,x)−ψt(0,x)

ϕt(0,x)
, x ∈ Ω̄.

Remark 1. Hence our choice of setting ψ(t,x) = e−Ctu0(x) and ϕ(t,x) = t satisfies the well-
conditioning requirement. However, if we are interested in obtaining the solution at T → ∞, using
ϕ(t,x) = t will cause the learning to deteriorate, since t→ ∞. It is better to use ϕ(t,x) = 1−e−Ct
with ψ(t,x) = e−Ctu0(x), so that the influence of ϕ on unn will settle down to a fixed number.
Therefore we will obtain (when T → ∞)

unn(∞,x) = P−1[f ](∞,x) = u(∞,x).

In the case of P being linear and ϕ(t,x) = ϕ(t), we end up with a much simpler PDE
ϕ∂tunn + ϕP[unn] + ϕ′unn = f − ψt − P(ψ),

If ϕ(t) ̸= 0 when t ̸= 0, then it can be simplified further to

∂tunn + P[unn] +
ϕ′

ϕ
unn =

f − ψt − P(ψ)

ϕ

We can see that unn satisfies a similar PDE to the original one with the additional reaction term
ϕ′

ϕ unn and updated forcing f−ψt−P(ψ)
ϕ , which contains the information of u0 and g.

3.2 WHY INITIAL CONDITIONS MATTER?

The hard constraints transformation consider both the boundary condition and initial condition, how-
ever our emphasis is on the initial condition as the focus of our paper is about solving stiff time-
dependent PDEs with PINNs. Stiff time-dependent PDEs have important features that exhibit over a
widely varying time scaling, hence making even explicit time-integration methods from traditional
numerical methods difficult to capture these features. Therefore by removing the initial condition
through hard constraint transformation, we achieve the following superior performance

• We implicitly enforce the time direction into the training of PINNs, reducing the spectral
bias from training with multi-objective loss.

• We mimic the behavior of traditional numerical methods, as they start out with either exact
or approximated initial condition in their time integration.

• The hard constraint transformation works similarly like an implicit time integrator.

5
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3.3 HOW HARD CONSTRAINTS WORK?

Theorem 2. Assume that P is linear and ϕ(t,x) = ϕ(t) ̸= 0 for t > 0, then for a one-hidden layer
network, we have for a network u(y; θ) with θ ∈ RD being the network parameters, the following
relationship is satisfied

u(y;θ) = h⊤(y)θ, h = [h1(y) · · · hD(y)]
⊤
,

where y = z = (t,x) ∈ (0, T ] × Ω or y = ζ = (0,xIC) ∈ {0} × Ω̄. Therefore the two losses
become

Losss(u(y;θ)) =
1

2N
|Aθ − f |2ℓ2(RN ) +

1

2M
|Cθ − u0|2ℓ2(RM ), (soft constrained)

Lossh(u(z;θ)) =
1

2N
|ΛϕAθ +Λϕt

Bθ − f̃ |2ℓ2(RN ), (hard constrained)

where

A =

Ls[h⊤(z1)]
...

Ls[h⊤(zN )]

 , B =

h⊤(z1)
...

h⊤(zN )

 , and C =

 h⊤(ζ1)
...

h⊤(ζM )

 ,
where xICi ∈ Ω̄; and for the diagonal matrices Λϕ and Λϕt

Λϕ = diag(ϕ(z1), · · · , ϕ(zN )) and Λϕt
= diag(ϕt(z1), · · · , ϕt(zN )),

and the vectors

f =

 f(z1)...
f(zN )

 , f̃ =

 f(z1)− Ls[ψ](z1)
...

f(zN )− Ls[ψ](zN )

 , and u0 =

u0(x
IC
1 )

...
u0(x

IC
M )

 .
Therefore the Hessians of the losses are

Hs(θ) =
1

N
A⊤A+

1

M
C⊤C, Hh(θ) =

1

N
(A⊤Λ2

ϕA+ 2A⊤ΛϕΛϕt
B+B⊤Λ2

ϕt
B),

Then the Hessians are bounded as

|Hs|2 ≤ |Ls|22
N

|B|22 +
1

M
|C|22, |Hh|2 ≤ 1

N
(C1|Ls|22 + 2C2|Ls|2 + C3)|B|22.

where |Ls|2 is the L2-operator norm of Ls and

C1 = max
z
ϕ2(z), C2 = max

z
|ϕ(z)ϕt(z)|, and C3 = max

z
ϕ2t (z).

Remark 2. Notice the competition between the PDE residual points and the initial conditions points
(reflected in B and C) in the bound for Hs, where for Hh, it is all about the operator Ls and the
scaling by ϕ and ϕt. The bounds will become much more complex when P is not linear or ϕ also
depends on x.

In order to give a better picture on the training decay rates, we provide a Neural Tangent Kernel
(NTK) perspective on how hard constraints would work for reduce the spectral bias and training
difficulties of PINNs on solving stiff time-dependent PDEs. To simplify the discussion, we will
focus on the PDEs with periodic boundary. Let {zi = (ti,xi)}Ni=1 ⊂ (0, T ]× Ω denote collocation
(residual) points and {ζj = (0,xj)}Mj=1 denote initial-condition sample points. We define the two
residual functions rs and rh as

rs(zi) = ∂tus(zi) + P[us](zi)− f(zi),

and
rh(zi) = ϕ(zi)∂tuh(zi) + P[ψ + ϕuh](zi) + ϕt(zi)uh(zi)− f(zi)− ψt(zi),

where us = us(t,x;θs) (soft constrained) and uh = uh(t,x;θh) (hard constrained) are the two
PINN approximations, which are automatically periodic due to the Fourier layer. The corresponding
losses to train us and uh are

Losss(us(θs)) = LossIC(us(θs)) + LossPDE(us(θs))

6
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with {
LossIC(us(θs)) = 1

2M

∑M
i=1 |us(ζi;θs)− u0(x

IC
i )|2, ζi = (0,xICi ),

LossPDE(us(θs)) = 1
2N

∑N
i=1 |rs(zi;θs)|2,

and

Lossh(uh(θh)) =
1

2N

N∑
i=1

|rh(zi;θh)|2.

Both Losses can induce a continuous-time (in terms of τ not t as t represents the physical time)
gradient flow systems as

dθs(τ)

dτ
= −∇Losss(us(θs(τ))) and

dθh(τ)

dτ
= −∇Lossh(uh(θs(τ))),

with θs(0) = θh(0) = θ0. Let the operators Ls[u] := ∂tu + P[u] and Lh[u] := ϕ∂tu + P[ψ +
ϕu] + ϕtu. Then with NTK, we obtain[

dus(ζ;θs(τ))
dτ

dLs[us](z;θs(τ))
dτ

]
= −

[
Ks

11(τ) Ks
12(τ)

Ks
21(τ) Ks

22(τ)

]
·
[
us(ζ;θs(τ))− u0(x

IC)
Ls[us](z;θs(τ))− f(z)

]
.

with Ks
11(τ) ∈ RM×M , K12(τ) ∈ RM×N (Ks

12(τ) = (Ks
21(τ))

⊤), and Ks
22(τ) ∈ RN×N and the

entries are given as
(Ks

11)i,j(τ) = ⟨∂θus(ζi;θs(τ)) , ∂θus(ζj ;θs(τ))⟩
(Ks

12)i,j(τ) = ⟨∂θus(ζi;θs(τ)) , ∂θLs[us](zj ;θs(τ))⟩
(Ks

22)i,j(τ) = ⟨∂θLs[us](zi;θs(τ)) , ∂θLs[us](zj ;θs(τ))⟩
.

Meanwhile, for uh, we have

dLh[uh](z;θh(τ))
dτ

= −Kh(Lh[uh](z;θh(τ))− f(z)− ψt(z)), Kh ∈ RM×M ,

with the entries of Kh being

(Kh)i,j(τ) = ⟨∂θLh[uh](zi;θh(τ)) , ∂θLh[uh](zj ;θh(τ))⟩.

Setting Ks =

[
Ks

11 Ks
12

Ks
21 Ks

22

]
, and assuming Ks(τ) ≈ Ks(0) = Ks

∗ and Kh(τ) ≈ Kh(0) = Kh
∗ ,

then the decays satisfy[
dus(ζ;θs(τ))

dτ
dLs[us](z;θs(τ))

dτ

]
−
[
u0(x

IC)
f(z)

]
= −e−Ks

∗τ

[
u0(x

IC)
f(z)

]
= −Q⊤

s e
−ΛsτQs

[
u0(x

IC)
f(z)

]
,

where Ks
∗ = Q⊤

s ΛsQs; moreover

dLh[uh](z;θh(τ))
dτ

− (f(z) + ψt(z)) = −eK
h
∗τ (f(z) + ψt(z)) = −Q⊤

h e
−ΛhτQ(f(z) + ψt(z)),

where Kh
∗ = Q⊤

hΛhQh. One can see that the training decay of not using the hard-constrained
transformation depends on both the eigenvalues of Ks

11 and Ks
22; whereas the training decay of the

hard-constrained transformation depends only on Kh, hence reducing the spectral bias.

4 EXAMPLES

In this section, we examine the hard-constrained PINN (HC-PINN) on a diverse set of prototypical
stiff, time-dependent PDEs with periodic boundary conditions, aiming to demonstrate its robustness
and flexibility in addressing a broad class of challenging problems. These equations often involve
strong nonlinearities, stiffness, and parameter sensitivities, posing significant challenges for data-
driven methods such as PINNs. Nonetheless, our results illustrate the capacity of the proposed
framework to overcome these difficulties and accurately approximate the solutions across these var-
ied regimes.
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To begin, we employ Latin hypercube sampling to generate collocation points across the full spatial-
temporal domain, including its boundary. To facilitate training and better incorporate the initial
condition into the solution structure, we adopt the following transformation:

ũ(t,x) = e−Ct ∗ u0(x) + t ∗ unn(t,x), ψ = e−Ct ∗ u0(x), ϕ = t, (t,x) ∈ [0, T ]× Ω̄,

where u0(x) denotes the initial condition, and we test two values of C ∈ {0.1, 1}, to assess how
the decay rate affects learned dynamics. The transformed PINN unn is trained to minimize a loss
function that accounts for the PDE residuals, which now includes IC/BC.

We present the results in four major categories, (I) ablation study across 7 different stiff PDEs where
stiffness comes in different forms, such as sharp phase transition in Allen-Cahn, higher-order deriva-
tives (forth order) in Cahn-Hilliard and Kuramoto-Sivashinsky, coupled outputs form Gray-Scott
and Shrödinger systems, and high frequency modes in fast moving linear transport; (II) compari-
son to other start-of-the-art PINNs such as the Causal PINN (Wang et al., 2022) and Enhanced RBA
PINN (Anagnostopoulos et al., 2024) on Allen-Cahn, Cahn-Hilliard and Kuramoto-Sivashinsky;
(III) application of HC-PINNs on a 2D Allen-Cahn; (IV ) sensitivity analysis on the parameters
m for the Allen-Cahn equation with two different initial conditions.

Causal training (MLP) Enhanced RBA HC-PINNs
AC (Case I) 6.95× 10−2 2.62× 10−3 8.29× 10−4

AC (Case II) 1.78× 10−2 1.08× 10−3 2.14× 10−4

CH 3.49× 10−1 9.83× 10−2 5.61× 10−4

KS 2.72× 10−1 3.64× 10−2 5.37× 10−4

Table 1: Relative L2 errors for the Allen–Cahn (AC), Cahn-Hilliard (CH) and Ku-
ramoto–Sivashinsky (KS) equations obtained after 50k training iterations. All methods are im-
plemented under the same 50k iteration budget for a fair comparison. Note that the reported errors
for Causal training (Wang et al., 2022) and Enhanced RBA (Anagnostopoulos et al., 2024) differ
from those in their original papers, where results were obtained with 300k iterations.

Figure 1 provides a summary of our ablation study over 7 different benchmarks; it shows the
comparison between the reference exact solutions and our best HC-PINN predictions, together
with the corresponding absolute errors; the benchmarks include Allen–Cahn, Cahn–Hilliard, Ku-
ramoto–Sivashinsky, Gray–Scott, nonlinear Schrödinger, and linear advection equations (with dif-
ferent speeds c = 50, 60). Complementing these visual comparisons, Table 1 summarizes the com-
parison study between HC-PINN and two other PINN variants in terms of relative L2 errors for
Allen–Cahn, Cahn-Hilliard and Kuramoto–Sivashinsky equations under a strictly controlled setting:
all methods are trained for 50k iterations, same data and parameter settings to ensure fairness. No-
tably, while prior works originally reported results with 300k iterations, HC-PINNs achieve substan-
tially lower errors even with a much shorter training budget. Overall, these extensive experiments
highlight the effectiveness and adaptability of our PINN scheme in solving a wide variety of stiff
time-dependent PDEs. The results provide not only strong empirical validation but also a reliable
and reproducible benchmark for future developments in this area. For full experimental details and
visualizations, see Section D in the appendix.

The results of solving the 2D Allen–Cahn equation in Figure 2 were obtained after training the
network for 50k iterations using the initial condition u(0, x, y) = sin(4πx) cos(4πy), with γ1 =
0.0001 and γ2 = 1 in Eq. 5, and periodic boundary conditions. The HC-PINN accurately captures
the solution evolution, yielding exceptionally small relative L2 errors: 8.04 × 10−5 at t = 0.5 and
1.33 × 10−4 at t = 1. This demonstrates the high accuracy and stability of our method for 2D
Allen–Cahn dynamics. At last, we perform a sensitivity study on the number of Fourier modes
m for the Allen–Cahn benchmarks to assess how this key hyperparameter influences the accuracy
of HC-PINNs. The results demonstrate that accuracy is highly dependent on spectral resolution:
while small m yields stable and low errors, performance deteriorates significantly once m exceeds
a critical threshold.
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Exact u(x, y) Predicted u(x, y) Error

(a)

(b)

(c)

Figure 2: Reference, HC-PINN predicted solution, and absolute error of the 2D Allen Cahn equation
at different time snapshots (a) t = 0 , (b) t = 0.5 , (c) t = 1.

Figure 3: Sensitivity of HC-PINNs to the number of Fourier modes m in the Allen–Cahn equations.
The plot shows the relative L2 error as a function of m.

5 CONCLUSION

We provide a comprehensive study of hard-constraints and self-adaptive loss weights to study the
stabilization of PINN training on solving stiff time-dependent PDEs. Our comprehensive study
includes an ablation study of seven distinct types of PDES, comparison study, a theoretical analysis,
an application to 2D Allen Chan, and a sensitive analysis of m (the number of Fourier modes).

From the ablation study, we found out that the transformation provided by hard constraint signif-
icantly alleviates the training challenges typically associated with stiff time-dependent PDEs. Our
ablation study demonstrates effectiveness across seven distinct types of such PDEs, encompass-
ing scalar-valued and vector-valued (including complex-valued) outputs. This approach not only
enhances training efficiency but also improves the accuracy and stability of the learned solutions,
particularly in the presence of stiffness, where conventional PINNs often struggle. We provide
theoretical insights using NTK into how hard-constrained transformation is reducing the training
difficulties, especially in terms of reducing the spectral bias. The comparison study focuses on
comparing our HC-PINN to two other state-of-the-art PINN variants on established examples.

Future work includes extending the hard-cosntraint framework to more two- and three-dimensional
PDEs, which pose additional challenges in both architecture design and computational cost. Ongo-
ing research also focuses on identifying optimal transformations ψ and ϕ, which govern the embed-
ding of IC and BC into the network structure, with the goal of further enhancing performance and
generalizability.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure the reproducibility of our work. All methodological
details, including the hard-constraint framework, loss formulations, and training strategies such as
mini-batching and self-adaptive loss weights, are clearly described in Section 2 and Appendix C.
Theoretical assumptions and complete proofs of our results are provided in Appendix C.4, ensuring
transparency of the analysis. For empirical validation, we conducted extensive ablation studies on
seven benchmark stiff PDEs, detailed in Section 4 and Appendix D, with standardized settings (e.g.,
fixed training iterations, same collocation points, and data sampling strategies) to allow fair com-
parison and replication. We also report sensitivity analyses on key hyperparameters (e.g., Fourier
modes m, decay rate C), presented in Section 4 and ablation studies in Appendix D, to document
the robustness of our approach. Furthermore, all datasets used in experiments are synthetic PDE
solutions, and we describe the data generation and preprocessing steps in the appendix. Finally,
we release our code with full implementations of HC-PINNs, training scripts, and data generation
procedures to facilitate independent verification of our results in supplementary materials.
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A ETHICS STATEMENT

This work focuses on the development of training strategies for physics-informed neural networks
(PINNs) to solve stiff time-dependent partial differential equations (PDEs). All datasets used in
this study are synthetically generated from well-established PDE models and do not involve hu-
man subjects, personal data, or sensitive information. Our methods are intended for advancing
scientific machine learning and have no foreseeable direct harmful applications. We have carefully
documented all experimental settings and theoretical assumptions to ensure research integrity and
reproducibility. We declare that there are no conflicts of interest or external sponsorships that could
have influenced the results.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, large language models (LLMs) were used only for grammar checking
and minor language polishing. No part of the research ideation, technical content, analysis, or
scientific writing relied on LLMs. The authors take full responsibility for the content of the paper.

C METHODOLOGY: ADDITIONAL DETAILS

In this section, we discuss the additional methods used in the ablation study, including mini-batching
and self-adaptive loss weights.

C.1 MINI-BATCHING

We have eliminated the IC/BC losses, but the transformed PDE loss might create additional diffi-
culties in training due to the introduction of IC/BC functions into the PDE. We adopt a machine
learning technique, called mini-batching, commonly used to reduce training complexity by evalu-
ating the loss on randomly selected subsets of collocation data. In PINNs, this reduces memory
costs, especially when handling large numbers of collocation points. Sampling mini-batches from
collocation points also helps stabilize and accelerate optimization. So we consider mini-batching in
the training for the PDE residual loss. As pointed out in (Wight & Zhao, 2020), the mini-batching
technique is similar to time-marching resampling but without an explicit time grid.

C.2 SELF-ADAPTIVE PINNS

The proper choice of penalty term λ can be updated from derived formula as mentioned in (Wang
et al., 2020b). However, data-driven discovery of λ is possible. Outline in (McClenny & Braga-Neto,
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2020), the loss is further modified as

Data Loss({λIC
i }NIC

i=1 , {λBC
i }NBC

i=1 )

=
1

NIC

NIC∑
i=1

Fmask(λ
IC
i )|unn(0,x

IC
i )− u0(x

IC
i )|2

+

d∑
i=1

1

NBC

NBC∑
j=1

Fmask(λ
BC
j )|unn(t

BC
j ,xBC

j )− unn(t
BC
j ,xBC

j + Pei)|2,

and

Physical Loss({λCLi }NCL
i=1 ) =

1

NCL

NCL∑
i=1

Fmask(λ
CL
i )|(∂u

∂t
− P(unn)− f)(tCLi ,xCLi )|2.

The set of loss weights, {λICi }NIC
i=1 ∪ {λBCi }NBC

i=1 ∪ {λCLi }NCL
i=1 , are designed in a way to increase

when needed during any training epoch in order to combat the spectral bias. Adaptive methods are
essential to ensure that the neural network accurately addresses the challenging spots in the solutions
of “stiff” PDEs. In our experiments, we employ self-adaptive PINNs as proposed by (McClenny &
Braga-Neto, 2020) to train PINNs adaptively. This approach involves fully trainable adaptation
weights applied individually to each training point, allowing the neural network to independently
identify and focus on the challenging regions of the solution.

C.3 PERFORMANCE MEASURES

Let {xi, ti}Ni=1 be a collection ofN data points where we evaluate both the reference solution u(x, t)
and the neural network output U(x, t). To measure the accuracy of the trained model, we compute
the relative L1 norm E1 and relative L2 norm E2, defined by:

E1 =

∑N
i=1 |U(xi, ti)− u(xi, ti)|∑N

i=1 |u(xi, ti)|
, E2 =

√∑N
i=1 |U(xi, ti)− u(xi, ti)|2√∑N

i=1 |u(xi, ti)|2
.

These metrics measure the discrepancy between the predicted and reference solutions in average
(energy-based) and absolute (mass-based) senses, respectively. The relative form normalizes the
error with respect to the reference solution, enabling fair comparisons across different scales and
variables. To rigorously assess the accuracy of our results, we implemented a semi-implicit spectral
method in Matlab. This allows us to make precise comparisons between the ground-truth solutions
u(xi, ti) and the PINN-generated solutions U(xi, ti).

C.4 PROOFS OF THE THEOREMS

We present the proofs for the two aforementioned theorem.

Theorem (Well Conditioning). The transformation is well defined when ϕ and ψ is C1 in time and
have Kth order partial derivatives w.r.t x. Moreover, ϕt(0,x) ̸= 0. Then unn will satisfy a new
PDE {

ϕ∂tunn + P[ψ + ϕunn] + ϕtunn = f − ψt, (t,x) ∈ (0, T ]× Ω,

unn(0,x) =
ut(0,x)−ψt(0,x)

ϕt(0,x)
, x ∈ Ω̄.

Proof. Since Ls[u] = ∂tu + P[u] is applied to the transformation u = ψ + ϕunn and unn is
constructed with hyper tangent as the activation function, we only need ψ and ϕ to satisfy the
required regularity from Ls so that the operator can still be applied, hence ψ and ϕ have to have
first-order time derivative and Kth-order partial derivatives w.r.t to x, we further require them to be
continuous in order to allow classical solutions to exist for Ls. Meanwhile from the transformation
we have

unn(t,x) =
u(t,x)− ψ(t,x)

ϕ(t,x)
, for (t,x) ∈ (0, T ]× Ω.
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As t→ 0, we have ψ(0,x) = u0(x) and ϕ(0,x) = 0, hence by L’Hôpital’s rule

lim
t→0

unn(t,x) = lim
t→0

u(t,x)− ψ(t,x)

ϕ(t,x)
= lim
t→0

ut(t,x)− ψt(t,x)

ϕt(t,x)
,

when ϕt(0,x) ̸= 0, then limit is defined and we can have

unn(0,x) = lim
t→0

unn(t,x) =
ut(0,x)− ψt(0,x)

ϕt(0,x)
.

Moreover

Ls(ψ + ϕunn) = ∂t(ψ + ϕunn) + P[ψ + ϕunn] = ϕ∂tunn + P[ψ + ϕunn] + ϕtunn + ψt,

hence the new PDE for unn.

Next, the theorem on Hessian bounds.

Theorem. Assume that P is linear and ϕ(t,x) = ϕ(t) ̸= 0 for t > 0, then for a one-hidden layer
network, we have for a network u(y; θ) with θ ∈ RD being the network parameters, the following
relationship is satisfied

u(y;θ) = h⊤(y)θ, h = [h1(y) · · · hD(y)]
⊤
,

where y = z = (t,x) ∈ (0, T ] × Ω or y = ζ = (0,xIC) ∈ {0} × Ω̄. Therefore the two losses
become

Losss(u(y;θ)) =
1

2N
|Aθ − f |2ℓ2(RN ) +

1

2M
|Cθ − u0|2ℓ2(RM ), (soft constrained)

Lossh(u(z;θ)) =
1

2N
|ΛϕAθ +Λϕt

Bθ − f̃ |2ℓ2(RN ), (hard constrained)

where

A =

Ls[h⊤(z1)]
...

Ls[h⊤(zN )]

 , B =

h⊤(z1)
...

h⊤(zN )

 , and C =

 h⊤(ζ1)
...

h⊤(ζM )

 ,
where xICi ∈ Ω̄; and for the diagonal matrices Λϕ and Λϕt

Λϕ = diag(ϕ(z1), · · · , ϕ(zN )) and Λϕt
= diag(ϕt(z1), · · · , ϕt(zN )),

and the vectors

f =

 f(z1)...
f(zN )

 , f̃ =

 f(z1)− Ls[ψ](z1)
...

f(zN )− Ls[ψ](zN )

 , and u0 =

u0(x
IC
1 )

...
u0(x

IC
M )

 .
Therefore the Hessians of the losses are

Hs(θ) =
1

N
A⊤A+

1

M
C⊤C,

Hh(θ) =
1

N
(A⊤Λ2

ϕA+ 2A⊤ΛϕΛϕt
B+B⊤Λ2

ϕt
B),

Then the Hessians are bounded as

|Hs|2 ≤ |Ls|22
N

|B|22 +
1

M
|C|22,

|Hh|2 ≤ 1

N
(C1|Ls|22 + 2C2|Ls|2 + C3)|B|22.

where |Ls|2 is the L2-operator norm of Ls and

C1 = max
z
ϕ2(z), C2 = max

z
|ϕ(z)ϕt(z)|, and C3 = max

z
ϕ2t (z).
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Proof. Once we have u(y;θ) = h⊤(y)θ, then the loss from the soft-constrained PINN can be
re-written as

Losss(u(θ)) =
1

2N

N∑
i=1

|(Ls[u(·;θ)]− f)(zi)|2 +
1

2M

M∑
j=1

|u(ζi;θ)− u0(x
IC
i )|2,

If we define the matrices

A =

Ls[h⊤(z1)]
...

Ls[h⊤(zN )]

 and C =

 h⊤(ζ1)
...

h⊤(ζM )

 ,
and the vectors

f =

 f(z1)...
f(zN )

 and u0 =

u0(x
IC
1 )

...
u0(x

IC
M )

 .
then Losss(u(θ)) = 1

2N |Aθ − f |2ℓ2(RN ) +
1

2M |Cθ − u0|2ℓ2(RM ). Similarly, for the loss

Lossh(u(θ)) =
1

2N

N∑
i=1

|(Ls[ψ(·) + ϕ(·)u(·;θ)]− f)(zi)|2,

Since
Ls[ψ + ϕu] = ϕ(ut + P[u]) + ϕtu+ ψt, P is linear and ϕ(t,x) = ϕ(t).

Hence with

B =

h⊤(z1)
...

h⊤(zN )

 and f̃ =

 f(z1)− Ls[ψ](z1)
...

f(zN )− Ls[ψ](zN )

 ,
and the two diagonal matrices

Λϕ = diag(ϕ(z1), · · · , ϕ(zN )) and Λϕt = diag(ϕt(z1), · · · , ϕt(zN )),

we have Lossh(u(θ)) = 1
2N |ΛϕAθ +Λϕt

Bθ − f̃ |2ℓ2(RN ). Then the two gradients are

∇θLosss(u(θ)) =
1

N
(A⊤Aθ −A⊤f) +

1

M
(C⊤Cθ −C⊤u0),

∇θLossh(u(θ)) =
1

N
((ΛϕA+Λϕt

B)⊤(ΛϕA+Λϕt
B)θ − (ΛϕA+Λϕt

B)⊤f̃).

Differentiating w.r.t to θ again, we obtain the Hessians as

Hs(θ) =
1

N
A⊤A+

1

M
C⊤C,

Hh(θ) =
1

N
(A⊤Λ2

ϕA+ 2A⊤ΛϕΛϕtB+B⊤Λ2
ϕt
B),

Recall that Ls[u] = ut + P[u], hence by the property of an L2 function/operator norm on Ls, we
have

|Ls[u]|2 ≤ |Ls|2|u|2, This | · |2 is a norm on functions.
Then we have |A⊤A|2 ≤ |Ls|22|B|22 (Here |A|2 is a matrix norm). And if we define

C1 = max
z
ϕ2(z), C2 = max

z
|ϕ(z)ϕt(z)|, and C3 = max

z
ϕ2t (z).

We can have
|A⊤Λ2

ϕA|2 ≤ C1|A⊤A|2 ≤ |Ls|22|B|22,
|A⊤ΛϕΛϕt

A|2 ≤ C2|A⊤B| ≤ C2|Ls|2|B|22,
|B⊤Λϕt

B|2 ≤ C3|B⊤B|2 ≤ C3|B|22
Putting them back in, we obtain the final bounds

|Hs|2 ≤ |Ls|22
N

|B|22 +
1

M
|C|22,

|Hh|2 ≤ 1

N
(C1|Ls|22 + 2C2|Ls|2 + C3)|B|22.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D EXAMPLES: ADDITIONAL DETAILS

We provide additional details for the ablation study, comparison study, 2D application and sensitiv-
ity study of m here. We also explain why each PDE or PDE system is chosen due to their particular
difficulties for solvers in each sub-section.

D.1 IMPLEMENTATION DETAILS

All experiments were implemented in PyTorch (v2.2) and executed on both CUDA-enabled NVIDIA
GPUs and Apple Silicon devices via the MPS backend. Our code runs efficiently across Linux
(Ubuntu 22.04), macOS (Sonoma), and Windows 11 platforms. Primary training was conducted on
an NVIDIA A100 GPU (40 GB memory) and a MacBook Pro with Apple M1 Pro chip (16-core
GPU, 32 GB unified memory).

For each benchmark, we used a fully connected neural network with 7 hidden layers, each containing
32 neurons and tanh activation functions, to represent the latent solution functions. The same initial
weights were used across all ablation experiments for consistency.

Model training was carried out using a two-stage strategy: first, we trained using the Adam optimizer
with an initial learning rate of 10−3 for 50, 000 steps. This was followed by fine-tuning with the
L-BFGS-B optimizer using a learning rate of 1 for 5, 000 steps. We did not perform hyperparameter
sweeps, and the total number of training epochs was fixed across all experiments.

This paper does not rely on any datasets. We used Latin Hypercube Sampling (LHS) to generate a
fixed set of 16, 384 interior collocation points, along with 128 initial data points and 128 boundary
data points. This same sampling configuration was used consistently across all experiments to ensure
comparability. For PDE systems, we employed a mini-batching strategy with 5 batches of size 3, 280
to improve memory efficiency during training.

Ablation studies were conducted by disabling one component of our method at a time, while keeping
all other settings fixed, to evaluate its contribution using relative L2 and relative L1 error metrics,
which measure the discrepancy between the predicted and reference solutions in average (energy-
based) and absolute (mass-based) senses, respectively. The relative form normalizes the error with
respect to the reference solution, enabling fair comparisons across different scales and variables.

We also compare HC-PINN with causal training (MLP) and enhanced RBA using the same data and
a total of 50k iterations, instead of the 300k iterations used in the original works. For the sensitiv-
ity study, experiments with different m values are conducted on the same points, using the same
number of iterations and the same architecture. For 2D training, we use 4,096 initial collocation
points, 10,000 residual collocation points per segment, and 800 boundary points per segment. The
architecture is the same as in the 1D training.

D.2 ALLEN-CAHN PDE

The Allen-Cahn type PDE is a classical phase-field model that has been widely used to study phase
separation phenomena Bazant (2017). It has numerous practical applications across a range of fields,
including materials science Allen & Cahn (1979); Shen & Yang (2010), biological systems Hyman
et al. (2014); Takatori & Brady (2015), and electrochemical systems Horstmann et al. (2013); Tian
et al. (2015). We begin with the 1-dim Allen-Cahn equation with periodic boundary conditions
formulated as follows:

ut − γ1uxx + γ2(u
3 − u) = 0, (t, x) ∈ (0, T ]× (a, b),

u(0, x) = u0(x), x ∈ [a, b], u(t, a) = u(t, b), t ∈ [0, T ],
(5)

where γ1, γ2 > 0, T > 0, a < b are prescribed constants. As γ2 increases, the transition interface of
the solutions is sharper, which makes it harder to solve the AC equation numerically.

D.2.1 CASE I

We first tested on Allen-Cahn equation with the following, u0(x) = x2 cos(πx), T = 1, a = −1,
b = 1, γ1 = 0.001, and γ2 = 5.
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For this example, we first test the baseline PINN approach Raissi et al. (2019). As shown in Table 2,
the baseline PINN alone fails to accurately solve the Allen-Cahn equation, motivating the devel-
opment of a more effective training pipeline. To address this, we employ all proposed techniques
(except mini-batching) and conduct an ablation study by disabling individual components one at a
time. Additionally, we introduce two different decay functions for the initial condition, e−1t and
e−0.1t, to investigate their influence on the solution. The results are summarized in Table 2. The full
scheme, including self-adaptive loss balancing, achieves the best performance, reaching a relative
L2 error of 8.29×10−4 and relative L1 error of 5.34×10−4. In particular, using the faster-decaying
initial condition (IC1) leads to better results than the slower-decaying case (IC2), suggesting that
the initial condition plays a more critical role during the early stages of training but becomes less
dominant over time. The ablation results further highlight the importance of each methodological
component. Removing any single part generally leads to performance degradation, with the most
severe impact observed when the initial condition is omitted, resulting in a relative error close to
0.99 in both L1 and L2 norms. Figure 4 presents cross-sectional comparisons at different times, fur-
ther confirming the excellent agreement between the predicted and true solutions across the entire
time horizon. These results provide strong evidence for the effectiveness of the proposed training
strategy and underscore the critical role of each pipeline component.

Ablation Settings Case I Case II

PBC IC1 IC2 SA Rel. L2 error Rel. L1 error Rel. L2 error Rel. L1 error
! ! % ! 8.29× 10−4 5.34× 10−4 3.53× 10−4 2.14× 10−4

! % ! ! 7.64× 10−2 1.66× 10−2 7.04× 10−4 3.26× 10−4

! ! % % 1.24× 10−3 6.10× 10−4 8.32× 10−4 3.72× 10−4

! % ! % 2.86× 10−2 8.20× 10−3 9.80× 10−4 3.91× 10−4

! % % % 9.99× 10−1 9.99× 10−1 9.99× 10−1 9.99× 10−1

! % % ! 9.99× 10−1 9.99× 10−1 9.99× 10−1 9.99× 10−1

% ! % % 1.05× 10−2 2.65× 10−3 5.11× 10−2 1.21× 10−2

% ! % ! 1.86× 10−3 7.31× 10−4 5.03× 10−2 8.27× 10−3

% % ! % 1.88× 10−2 4.71× 10−3 4.58× 10−2 1.10× 10−2

% % ! ! 4.34× 10−3 1.24× 10−3 3.03× 10−2 4.25× 10−3

% % % ! 5.12× 10−1 3.18× 10−1 4.02× 10−1 1.42× 10−1

% % % % 9.99× 10−1 9.98× 10−1 5.11× 10−1 3.28× 10−1

Table 2: Allen-Cahn (Casse I and Case II): Relative L2 and L1 errors for an ablation study il-
lustrating the impact of disabling individual components of the proposed technique and training
pipeline.

D.2.2 CASE II

For the second case, we change the IC to have highly oscillatory data by u(0, x) = x2 sin(2πx).
Other parameters are T = 1, a = −1, b = 1, γ1 = 0.001 and γ2 = 4.

We first train the baseline PINN model, which produces a large relative L2 error of 0.511 and rel-
ative L1 error of 0.328, demonstrating its inadequacy in resolving the sharp interface dynamics
(Table 2). However, once the initial condition enforcement and periodic boundary neural networks
are incorporated, the performance improves drastically, achieving a relative L2 error of 8.32× 10−4

and relative L1 error of 3.72 × 10−4. Further gains are realized when using the self-adaptive loss
weighting strategy, although the improvement is marginal compared to the dominant contribution
from enforcing the initial and boundary conditions. Interestingly, unlike the previous case, there is
minimal performance difference between the schemes using IC1 and IC2, suggesting that the im-
pact of initial condition decay becomes less significant when strong oscillations are already present
at the beginning.
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Figure 4: Best solution: Allen-Cahn.

D.3 KURAMOTO-SIVASHINSKY PDE

Kuramoto–Sivashinsky (KS) equation is a fourth-order nonlinear partial differential equation, known
for its chaotic behavior Kudryashov (1990); Michelson (1986). It has served as a pivotal model in
the study of complex dynamical phenomena observed in various physical systems. Consequently,
the KS equation provides an excellent case study to demonstrate how PINNs can effectively simulate
chaotic dynamics. The equation is given by:

ut = −uxx − uxxxx − uux, (t, x) ∈ (0, T ]× (a, b),

u(0, x) = cos(
x

16
)(1 + sin

x− 1

16
), x ∈ [a, b], u(t, a) = u(t, b), t ∈ [0, T ],

(6)

where T = 20, a = 0, b = 32π. The best results are shown in 5:

Figure 5: Best solution: Kuramoto-Sivashinsky.

As in Table 3, solving this PDE system using a baseline PINN alone proves to be exceptionally chal-
lenging. The incorporation of periodic neural networks for boundary conditions, paired with initial
condition IC2, consistently yields superior results compared to IC1. This suggests that, in contrast
to the Allen-Cahn equation discussed in Section D.2, the choice of initial condition plays a more sig-
nificant role in the training process for this more complex system. This observation underscores the
importance of carefully selecting both the boundary conditions and initial conditions when training
neural networks for chaotic or higher-order PDE systems, where these factors contribute notably to
the accuracy and stability of the solution.

D.4 CAHN-HILLIARD EQUATION

The Cahn-Hilliard equation, a variant of the Allen-Cahn equation, also models phase separation.
This process describes how the components of a binary fluid spontaneously separate into distinct
domains, each composed of a single component Cahn & Hilliard (1958); Kim et al. (2016); Lee
et al. (2014); Miranville (2017). The equation is expressed as:

ut = ϵ1(−uxx − ϵ2uxxxx + (u3)xx), (t, x) ∈ (0, T ]× (−L,L),
u(0, x) = u0(x), x ∈ [−L,L],
u(t,−L) = u(t, L), t ∈ [0, T ],

(7)
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Ablation Settings Performance

PBC IC1 IC2 SA Rel. L2 error Rel. L1 error
! ! % ! 4.04× 10−2 1.46× 10−2

! % ! ! 5.37× 10−4 1.02× 10−3

! ! % % 1.68× 10−2 8.94× 10−3

! % ! % 1.30× 10−2 7.79× 10−3

! % % % 9.84× 10−3 6.36× 10−3

! % % ! 2.50× 10−3 1.81× 10−3

% ! % % 2.13× 10−1 9.74× 10−2

% ! % ! 2.00× 10−1 1.04× 10−1

% % ! % 1.54× 10−2 1.21× 10−2

% % ! ! 9.60× 10−3 8.75× 10−3

% % % ! 2.11× 10−1 1.06× 10−1

% % % % 3.01× 10−1 1.97× 10−1

Table 3: Kuramoto-Sivashinsky: Relative L2 and L1 errors for an ablation study illustrating the
impact of disabling individual components of the proposed technique and training pipeline.

where ϵ1 = 10−2, ϵ2 = 10−4, T = 1, L = 1. We specify the initial condition as u0(x) =
− cos(2πx). This PDE involves higher-order derivatives, making it more challenging to solve com-
pared to the Allen-Cahn equation.

Figure 6: Best solution of the Cahn-Hilliard. The resulting relative L2 error is 3.53× 10−4.

In this experiment, the full scheme yields the best results. Additionally, methods using initial con-
dition IC2 outperform those with IC1. Except for the full schemes and the experiment with periodic
neural networks for boundary conditions and initial condition IC2, none of the other approaches
produce accurate solutions. The errors for all experiments are summarized in Table 4. The best
results are illustrated in Figure 6.

D.5 GRAY-SCOTT EQUATION

Reaction and diffusion of chemical species can produce a variety of patterns (De Kepper et al., 1991;
Nishiura & Ueyama, 1999), reminiscent of those often seen in nature. The Gray-Scott type system
is one of classical mathematical models for chemical reactions (Gray & Scott, 1983; 1984; Liang
et al., 2022). The general irreversible Gray-Scott equations describe such reactions:

U + 2V −→ 3V,

V −→ P.
(8)
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Ablation Settings Performance

PBC IC1 IC2 SA Rel. L2 error Rel. L1 error
! ! % ! 1.06× 10−3 5.61× 10−4

! % ! ! 9.75× 10−4 5.65× 10−4

! ! % % 2.50× 10−1 5.87× 10−2

! % ! % 3.87× 10−3 1.91× 10−3

! % % % 9.99× 10−1 9.99× 10−1

! % % ! 9.99× 10−1 9.99× 10−1

% ! % % 3.48× 10−1 2.94× 10−1

% ! % ! 2.37× 10−1 1.09× 10−1

% % ! % 4.07× 10−1 3.45× 10−1

% % ! ! 1.55× 10−2 8.20× 10−3

% % % ! 9.99× 10−1 9.99× 10−1

% % % % 9.99× 10−1 9.98× 10−1

Table 4: Cahn-Hilliard Equation: Relative L2 and L1 errors for an ablation study illustrating the
impact of disabling individual components of the proposed technique and training pipeline.

This system is defined by two equations that describe the dynamics of two reacting substances:

ut = ϵ1uxx + b(1− u)− uv2,

vt = ϵ2vxx − (b+ k)v + uv2, (t, x) ∈ (0, T ]× (−L,L),
u(0, x) = u0(x), v(0, x) = v0(x), x ∈ [−L,L],
u(t,−L) = u(t, L), v(t,−L) = v(t, L), t ∈ [0, T ],

(9)

where T = 20, L = 50, ϵ1 = 1, ϵ2 = 0.01 are diffusion rates, b = 0.02 is the ”feeding rate” that
adds U , k = 0.0562 is the ”killing rate” that removes V . We set our initial conditions as:

u0(x) = 1− sin(π(x− 50)/100)4

2
,

v0(x) =
sin(π(x− 50)/100)4

4
.

In this ablation study, we not only evaluate the performance of self-adaptive neural networks but
also test our scheme with mini-batching on the Gray-Scott equations, which model the densities of
two interacting species. For mini-batching, we use 5 batches, each containing 3,280 samples. As
shown in Table 5, the results confirm that each proposed component improves the overall model
performance. Omitting any one of these components leads to higher error rates. Notably, the errors
for the u−equation are typically smaller than those for the v−equation, which aligns with our ex-
pectations. This is because the v−equation is sharper and more challenging to train compared to the
u−equation. Additionally, experiments using initial condition IC2 consistently outperform those
using IC1. Specifically, the full scheme with IC2 achieves the best results, with a relative L2 error
of 2.05× 10−4 for u−equation and 8.46× 10−4 for v−equation. These results suggest that IC2 is
more effective for larger time-scale PDEs, as IC1 causes the initial condition to decay too quickly,
reducing its influence during training. The predicted solutions from our best model are visualized in
Figures 7 and 8, respectively.
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Figure 7: Best solution of the Gray-Scott (u species). The resulting relative L2 error is 2.05× 10−4.

Figure 8: Best solution of the Gray-Scott (v species). The resulting relative L2 error is 8.46× 10−4.

Ablation Settings Performance

PBC IC1 IC2 SA mini-batch E2 : u E2 : v

! ! % ! ! 8.98× 10−4 7.92× 10−3

! % ! ! ! 2.05× 10−4 8.46× 10−4

! ! % % ! 4.93× 10−3 3.03× 10−2

! % ! % ! 2.86× 10−3 8.20× 10−3

! ! % ! % 9.01× 10−3 4.27× 10−3

! % ! ! % 7.59× 10−3 3.98× 10−3

! ! % % % 5.11× 10−3 2.58× 10−2

! % ! % % 1.23× 10−3 9.74× 10−3

! % % % % 8.09× 10−1 9.99× 10−1

% ! % % % 2.06× 10−1 7.43× 10−1

% % ! % % 5.37× 10−1 2.58× 10−1

% % % ! % 1.15× 10−1 2.62× 10−1

% % % % ! 9.53× 10−2 8.65× 10−2

% % % % % 9.21× 10−2 2.98× 10−1

Table 5: Gray-Scott Equation: Relative L2 errors of u and v equations for an ablation study illustrat-
ing the impact of disabling individual components of the proposed technique and training pipeline.
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D.6 NONLINEAR SCHRÖEDINGER EQUATION

In theoretical physics, nonlinear Schröedinger equation is a nonlinear PDE, applicable to classical
and quantum mechanics (Kato, 1987; Kevrekidis et al., 2001; Fibich, 2015). The dimensionless
equation of the classical field is

ut = iuxx + i|u|2u, (t, x) ∈ [0, 2]× [−π, π],
u(0, x) = u0(x), x ∈ [−π, π],
u(t,−π) = u(t, π), t ∈ [0, 2],

(10)

where we let
u0(x) =

2

2−
√
2 cos(x)

− 1.

Using the same parameter settings and training steps with prior experiments, we obtain the following
results:

Figure 9: Best real-part solutions of the Nonlinear Schröedinger Equation.

Figure 10: Best imaginary-part solutions of the Nonlinear Schröedinger Equation.

Table 6 presents the results of all experiments. The full scheme achieves the best performance, with a
relativeL2 error of real part of 1.80×10−4 and the relativeL2 error of imaginary part of 2.58×10−4.
There is no significant difference in the errors between methods using IC1 and those using IC2.
Moreover, without the use of self-adaptive neural networks or mini-batching, accurately obtaining
the solution becomes challenging, highlighting the importance of both methods in ensuring more
stable training.

D.7 LINEAR ADVECTION

The linear advection equation models the transport of a quantity by a constant velocity field and
serves as a fundamental benchmark for testing numerical methods due to its simplicity and rich
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Ablation Settings Performance: E2
PBC IC1 IC2 SA mini-batch Real part Imag part
! ! % ! ! 1.80× 10−4 2.58× 10−4

! % ! ! ! 1.84× 10−4 3.27× 10−4

! ! % % ! 7.34× 10−3 1.23× 10−2

! % ! % ! 8.32× 10−3 1.39× 10−2

! ! % ! % 1.10× 10−3 2.10× 10−3

! % ! ! % 1.70× 10−3 3.27× 10−3

! ! % % % 1.00× 10−1 1.83× 10−1

! % ! % % 9.56× 10−2 1.56× 10−1

! % % % % 8.09× 10−1 9.99× 10−1

% ! % % % 9.99× 10−1 8.78× 10−1

% % ! % % 5.04× 10−2 1.21× 10−1

% % % ! % 5.44× 10−2 7.26× 10−2

% % % % ! 6.60× 10−2 1.05× 10−1

% % % % % 3.63× 10−1 5.06× 10−1

Table 6: Nonlinear Schröedinger Equation: Relative L2 errors of real and imaginary equations
for an ablation study illustrating the impact of disabling individual components of the proposed
technique and training pipeline.

structure LeVeque (2002); Toro (2013). It describes the propagation of a scalar profile without
deformation and is given by:

ut + cux = 0, (t, x) ∈ (0, T ]× (0, 2π),

u(0, x) = sin(x), x ∈ [0, 2π],

u(t, 0) = u(t, 2π), t ∈ [0, T ].

(11)

Unlike dissipative PDEs such as the Allen–Cahn or Cahn–Hilliard equations, the linear advection
equation conserves the shape of the initial profile as it translates. This problem becomes “stiffer” as
the advection velocity increases.

Theorem 3. Let u(t, x) denote the solution to the linear advection equation (11). With the trans-
formed neural approximation in (3) and ψ and η satisfying the conditions in (4), then u(t, x) satisfies
the PDE iff η satisfies the forced linear transport equation:

ηt + cηx = −(ψt + cψx).

This PDE is well-posed and stable for PINN training provided the following conditions hold:

• The function f(t, x) := −(ψt + cψx) satisfies f ∈ C1([0, T ]× Ω).

• If f(t, x) is uniformly bounded or decays in time, then the solution η remains stable and
avoids growth-induced overfitting.

For our choice, we have ψ(t, x) = u0(x)e
−αt and ϕ(t, x) = t with α > 0, ensuring η(0, x) = 0.

Then, the forcing term satisfies ηt+ cηx = (α sinx− c cosx)e−αt. Since this forcing is smooth and
decays exponentially in time, it guarantees both the stability and regularity of the neural network
η(t, x). Here, we compare the results produced by our method with those from a baseline PINN
under the same hyperparameter settings. In our experiments, both models were able to converge
at low velocities; however, we observed that higher advection velocities introduced stiffness. Our
method exhibited greater robustness and was less affected by stiffness compared to the baseline
PINN.
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Figure 11: Periodic advection results after 50,000 iterations.

The implementation details are the same as in Section D.1, except that we perform 10 independent
replications of the experiment to account for the randomness in neural network weight initialization,
rather than using the same initial weights. Table 7 shows the averaged relative L1/L2-error over 10
independent repetitions. As the advection velocity increases and the PDE becomes stiffer, making
it harder for baseline PINN to train. However, our method consistently produces better results. This
trend is clearly reflected in Table 7. Even at low velocities, our method demonstrates significantly
better accuracy compared to the baseline PINN. As c increases, both the relative L1 and L2 errors
grow, however, the errors associated with the PINN rise significantly faster than those of our method.
The most striking example occurs at c = 50, where the base line PINN fails to approximate the
solution, while our method still produces stable and good results. This behavior is evident in Table 7
and Figure 11. Table 8 shows the ablation study of linear advection equation.

Solver c Rel. L1 error Rel. L2 error

30 0.0030 0.0041
HC-PINN 40 0.0141 0.0159

50 0.0147 0.0164
60 0.0171 0.0182

30 0.0478 0.0579
CINN(Braga-Neto, 2022) 40 0.0714 0.0852

50 0.4692 0.5365
60 0.7293 0.7134

30 0.0873 0.1003
Baseline 40 0.3918 0.4395
PINN 50 0.7140 0.7797

60 0.8339 0.8664

Table 7: Comparison of HC-PINN, CINN and baseline PINN across different advection speeds c
over 10 independent repetitions.
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Ablation Settings Performance

PBC IC SA Rel. L2 error Rel. L1 error
! ! ! 1.82× 10−2 1.03× 10−2

! ! % 9.75× 10−2 8.65× 10−2

! % ! 7.50× 10−1 7.87× 10−1

% ! ! 3.87× 10−2 5.47× 10−2

! % % 7.44× 10−1 8.01× 10−1

% ! % 1.07× 10−1 1.19× 10−1

% % ! 7.65× 10−1 7.71× 10−1

% % % 8.66× 10−1 8.34× 10−1

Table 8: Linear Advection Equation (c=60): Relative L2 and L1 errors for an ablation study il-
lustrating the impact of disabling individual components of the proposed technique and training
pipeline.
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