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ABSTRACT

Existing Knowledge Graph-based RAG (Retrieval-Augmented Generation) sys-
tems face a fundamental dilemma in multi-document scenarios. They either treat
each document as an isolated knowledge graph, which preserves contextual pu-
rity but prevents cross-document reasoning, or merge them into a single, mas-
sive graph, leading to entity saturation and contextual noise pollution. To resolve
this core conflict, we introduce the BridgeRAG framework, designed to elegantly
achieve both “partitioned isolation” and “cross-partition linking” for multiple doc-
uments. BridgeRAG is a collaborative framework that integrates static linking and
dynamic reasoning. Experiments on multi-hop question answering benchmarks
like HotpotQA show that BridgeRAG significantly outperforms state-of-the-art
RAG models, especially on complex questions that require deep cross-partition
navigation.

1 INTRODUCTION

Despite the remarkable capabilities of Large Language Models (LLMs) Brannon et al. (2023); Chen
et al. (2024), their reliance on static knowledge and susceptibility to factual hallucinations limit their
application. To address this, Retrieval-Augmented Generation (RAG) has emerged as a paradigm
that grounds LLMs in external knowledge bases Lewis et al. (2020), supplementing them with up-
to-date or private data. Knowledge Graph-based RAG (KG-RAG) further enables more precise
multi-step reasoning by leveraging structured information Yu et al. (2024); Gao et al. (2025).

However, applying KG-RAG to real-world, multi-document scenarios exposes a fundamental
dilemma: either constructing an independent knowledge graph for each document Mao et al. (2025),
which preserves contextual purity but has a fatal flaw in its inability to reason across documents when
faced with questions requiring the integration of multi-source information; or merging all documents
into a single, monolithic graph Baek et al. (2023); Kang et al. (2023). This latter approach leads to
“entity saturation” and contextual noise pollution, especially when entity alignment is ambiguous
(e.g., “Apple” the company versus “apple” the fruit). This contamination of the semantic structure
ultimately causes the system to retrieve a large volume of irrelevant or even contradictory informa-
tion, thereby misleading the LLM’s judgment.

The core solution to this conflict lies in skillfully achieving both “partitioned isolation” and “cross-
partition linking.” Chan et al. (2024); Fan et al. (2025) This paper introduces BridgeRAG, a novel
iterative reasoning framework designed to build bridges across these isolated knowledge partitions.
Our approach actualizes an effective and efficient RAG system by addressing three key challenges:
(C1) How to intelligently connect independent document knowledge graphs? (C2) How to precisely
retrieve relevant documents for a cross-document query? (C3) How to focus on highly relevant
information within the retrieved documents while avoiding noise?

BridgeRAG systematically addresses these challenges through a multi-component, synergistic ar-
chitecture.Our approach is predicated on a key observation: the semantic core of a document is
anchored by its named entities, such as specific people, places, and events. Consequently, any
meaningful relationship between two documents is established through these shared entities. Even
when a link is indirect, it is invariably mediated by an intermediary document that shares distinct
named entities with each of the original documents. Therefore, we posit that shared named entities
form the fundamental conduits for establishing and navigating inter-document relationships.
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Based on this premise, we have designed: 1) A dual-verification mechanism combining an LLM and
an embedding model to construct high-fidelity SAME AS cross-document entity links, addressing
(C1). 2) A multi-source weighted routing module that focuses on a small set of key documents by
evaluating the relevance of their summaries and entity lists, addressing (C2). 3) An iterative reason-
ing engine driven by an LLM agent, which dynamically constructs a reasoning path by generating
sub-questions and leverages a Dynamic Working Memory (DWM) mechanism to manage context,
addressing (C3).

To address the core dilemma of contextual purity versus knowledge connectivity in multi-document
KG-RAG, we propose BridgeRAG, a novel framework based on a synergistic two-phase architec-
ture. We first perform offline knowledge pre-digestion and hybrid entity linking to build a robust
navigational backbone across isolated knowledge partitions. Then, an online agent performs dy-
namic, iterative reasoning guided by a Dynamic Working Memory (DWM). The contributions are
listed as follows:

• We propose BridgeRAG, a novel paradigm for multi-document RAG that resolves the conflict
between contextual purity and knowledge connectivity.

• We design a dynamic reasoning agent empowered by three key mechanisms: knowledge pre-
digestion, hybrid entity linking, and a Dynamic Working Memory (DWM).

• Extensive experiments and analyses on multi-hop QA benchmarks verify the superiority of our
proposed BridgeRAG framework.

2 RELATED WORK

2.1 RAG TO KNOWLEDGE GRAPH RAG

Retrieval-Augmented Generation (RAG) has become a central paradigm for mitigating the factual
hallucinations and knowledge obsolescence issues inherent in Large Language Models (LLMs).
This paradigm has evolved from early sparse retrievers (e.g., BM25) to dense retrievers (e.g., DPR)
capable of superior semantic matching. DPR learns to embed questions and passages into a shared
vector space, thereby enabling more effective semantic alignment Zhou et al. (2025).

The insufficiency of one-shot retrieval for multi-hop queries led to iterative methods like IRCoT
Trivedi et al. (2022). While they expand context, their navigation of unstructured text is imprecise
and lacks an understanding of the knowledge structure. Autonomous systems like Self-RAGAsai
et al. (2024) introduced self-awareness with “reflection tokens”, but their effectiveness remains
capped by the challenge of reasoning over unstructured text. This core limitation of all text-based
RAG methods makes adoption of Knowledge Graphs (KGs) a necessary evolution. KGs provide the
explicit structure and relational pathways required for precise, logical reasoning.

2.2 CHALLENGES IN MULTI-DOCUMENT KGS

Despite its promise, applying KG–RAG to real-world, multi-document corpora exposes a fundamen-
tal architectural dilemma, as illustrated in Figure 1. Existing strategies are trapped in a trade-off.
One approach is to construct isolated Partitioned Knowledge Graphs (PKGs) Han et al. (2025);
Luo et al. (2025), which preserves contextual purity but creates information silos that make cross-
document reasoning impossible. The opposing strategy creates a single Monolithic Knowledge
Graph (MKG) Hu et al. (2019); Matsumoto et al. (2024), a static “aggregate-first, query-later”
model that ensures connectivity but inevitably suffers from fatal flaws like “entity saturation” and
contextual noise from ambiguous linking Zhang et al. (2022). Our work, BridgeRAG, is designed
to break this stalemate by synergizing the advantages of both isolation and linking.

2.3 LIMITATIONS OF LLM’S GRAPH NAVIGATION

Recent advancements have positioned LLMs as reasoning agents Singh et al. (2025); Wei et al.
(2022); Yao et al. (2023), but their inherently text-based nature makes them inefficient at navigating
knowledge graphs, often resulting in brute-force search rather than precise traversal. While agentic
systems like Self-RAG Asai et al. (2024); Xiong et al. (2025) add self-reflection, their focus is on
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Partitioned
Knowledge
Graphs (PKGs):
Fails to support
cross-partition
inference, creating
isolated
knowledge silos.

Monolithic
Knowledge
Graphs (MKGs):
Prone to severe
"entity saturation"
and the
contamination of
context with noise.

BridgeRAG: Elegantly
unifies "partitioned
isolation" with "cross-
partition linking,"
enabling targeted multi-
document reasoning by
combining the strengths
of both paradigms.

Figure 1: The architectural dilemma in multi-document KG-RAG. (Left) Partitioned KGs
(PKGs) ensure contextual purity but create isolated knowledge silos. (Center) Monolithic KGs
(MKGs) enable connectivity but suffer from entity saturation and noise. (Right) BridgeRAG uni-
fies both, using a navigational backbone to enable precise reasoning across partitions.

evaluating isolated information. In contrast, BridgeRAG proactively constructs a reasoning path
within a structured knowledge space. It moves beyond mere evaluation by decomposing a problem
into targeted sub-questions to navigate the multi-graph environment, exhibiting a deeper capacity
for the structured planning crucial for multi-hop reasoning.

3 METHODOLOGY

3.1 OVERALL FRAMEWORK AND DESIGN

The core of our proposed BridgeRAG framework is a synergistic two-phase architecture, designed
to fundamentally address the challenges LLM Agents face when reasoning over complex, multi-
partitioned knowledge bases. Our design philosophy is rooted in a recognition of the intrinsic chal-
lenges LLMs face with graph-structured data. The worldview of general-purpose agents is inher-
ently text-based; they lack a native understanding of graph topology. Therefore, instead of forcing
the agent to adapt to the data, we reshape the knowledge to adapt to the agent.

To this end, we designed a two-stage summarization process to “pre-digest” structured graph infor-
mation into the natural language format that LLMs excel at processing. First, for each core named
entity e within a document’s knowledge graph, we generate an information-dense Entity Summary,
Se. This is achieved by prompting an LLM, fsum, to synthesize the entity’s description, Desc(e),
with all of its first-degree relational information, N1(e):

Se = fsum(Desc(e), N1(e)). (1)

This crucial “knowledge pre-digestion” step effectively flattens a local graph structure into a co-
herent natural language text. Subsequently, we generate a higher-level Document Summary, Sd,
by prompting an aggregation LLM, fagg , to summarize the set of all core entity summaries {Sei}
within that document:

Sd = fagg({Se1 , Se2 , . . . , Sek}). (2)
This summary encapsulates the document’s core information, providing a powerful signal for re-
trieval during online inference. Based on this principle, the BridgeRAG workflow is divided into
two phases:

Offline Knowledge Base Construction. We begin by constructing independent Partitioned
Knowledge Graphs (Partitioned KGs) from each document to ensure contextual purity (partitioned
isolation). Subsequently, we perform knowledge pre-digestion to generate entity and document
summaries. Finally, a Hybrid Entity Linking mechanism establishes a high-fidelity cross-graph nav-
igational backbone, laying the groundwork for cross-partition linking.

Online Iterative Reasoning. When a query q arrives, the Agent interacts with the pre-digested
document summaries {Sdi

} rather than traversing raw graphs. It first uses a Multi-Source Weighted
Router to generate a retrieval plan P = (Dp, Da), partitioning relevant documents into Primary
(Dp) and Auxiliary (Da) sets. The agent then enters an iterative reasoning loop managed by a
Dynamic Working Memory (DWM), whose state at iteration t is denoted by Mt. The process starts
with M0 = {q}. In each iteration, the agent executes an action to gather new evidence Evt, updating
the memory as:

Mt+1 = Mt ∪ Evt. (3)

3
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This loop of proactive planning and guided retrieval continues until a termination condition is met,
at which point the agent synthesizes the final answer A from the complete context Mfinal using a
generation function fsynth.

This model, which combines “offline knowledge reshaping” with “online lightweight navigation,”
allows BridgeRAG to elegantly unify “partitioned isolation” and “cross-partition linking,” achieving
efficient and precise multi-document reasoning.

3.2 KNOWLEDGE BASE CONSTRUCTION

To support efficient online inference, we designed an offline pipeline that transforms raw documents
into a structured and navigable federated knowledge base, as illustrated in Figure 2.

Doc1：Musk graduated from
the University of

Pennsylvania with a double
major in economics and

physics. . .

Doc2：Tesla CEO Elon Musk
and CFO Vaibhav Taniya

attended the second quarter
earnings conference call for

fiscal year 2025 today...

graduated

Musk

With

The University of Pennsylvania

Pennsylvania

Tesla CEO

Attended

Musk
CFO

Attended

Vaibhav Taniya

2025 Q2 Earnings Conference Call

Musk
Tesla

Tesla
Musk

Entity_Summery :
Musk graduated

from the University
of Pennsylvania

with...

Doc1_Summery :
Musk are ...

Entity_Summery:
Tesla CEO Elon

Musk  attended...

Doc 1

Doc 2
Doc2_Summery :

Tesla CEO ...

Entity/Relation Extraction Two-Level Summary Generation

Candidate Entity Pair: 
{ Doc1_Musk , Doc2_Musk}
{ Doc1_Tesla , Doc2_Tesla}

...

LLM and Embedding
 Dual-Verification

Mixed 

judgment 

mechanism

Link Entity Pair: 
{ Doc1_Musk , Doc2_Musk}
{ Doc1_Tesla , Doc2_Tesla}

...

SAME_AS Entity Link

Musk
Tesla

Doc 1

Tesla
Musk

Doc 2

SAME_AS

SAME_AS

Figure 2: The Offline Knowledge Base Construction Phase of BridgeRAG. The process unfolds
in three main stages. First, we perform Entity/Relation Extraction to build an independent, con-
textually pure knowledge graph for each document. Second, we execute a Two-Level Summary
Generation step, creating information-dense summaries for both individual entities and the entire
document. Finally, based on these rich summaries, we establish high-fidelity SAME AS Entity
Links across different partitions by employing a dual-verification mechanism that leverages both
LLMs and embedding models. This entire offline process transforms raw text into a structured, nav-
igable, and LLM-friendly federated knowledge base.

3.2.1 PARTITIONED KG CONSTRUCTION AND PRE-DIGESTION

We first process each document di ∈ D through an independent NLP pipeline, constructing an initial
partitioned knowledge graph Gi = (Ei,Ri) via Named Entity Recognition (NER) and Relation
Extraction (RE).

To make this structured information more accessible to the LLM Agent, we introduce the crucial
step of Knowledge Pre-Digestion. For each core named entity ek ∈ Ei, we generate a concise
entity summary Sek Lyu et al. (2025). This summary is produced by a powerful LLM, denoted by
the function fsum, which synthesizes the entity’s description, Desc(ek), with its set of first-degree
relational triples, N1(ek):

Sek = fsum(Desc(ek), N1(ek)). (4)

This summary encapsulates the entity’s core information and provides rich context for cross-
document identity verification, forming the basis for disambiguation.

3.2.2 CROSS-PARTITION NAVIGATIONAL BACKBONE

After achieving partitioned isolation, to solve challenge (C1) and enable cross-partition linking, we
designed a Hybrid Entity Linking mechanism to construct a navigational backbone composed of
SAME AS relations. This mechanism performs a dual-verification process on same-name entity
pairs (ei, ej), where ei ∈ Gi and ej ∈ Gj .

Efficient Semantic Matching (Semb). We first use an advanced sentence embedding model,
Memb : string → Rd, to encode the entity summaries Sei and Sej into high-dimensional vectors.

4
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The semantic similarity score is then computed as the cosine similarity between these vectors:

Semb(ei, ej) =
Memb(Sei) · Memb(Sej )

∥Memb(Sei)∥ · ∥Memb(Sej )∥
. (5)

This step allows for the rapid, large-scale filtering of semantically irrelevant entity pairs.

Deep Semantic Adjudication (SLLM). Candidates that pass an initial similarity filter are submit-
ted to a more powerful LLM, fadj , for deep semantic adjudication. The LLM is prompted to act
as a “domain expert,” leveraging its extensive world knowledge and the context from both entity
summaries to determine if they refer to the same real-world entity. It outputs a calibrated confidence
score:

SLLM(ei, ej) = fadj(Sei , Sej ) ∈ [0, 1]. (6)

The final link score, Slink, is a weighted combination of these two scores, formulated as:

Slink(ei, ej) = α · SLLM(ei, ej) + (1− α) · Semb(ei, ej). (7)

where α ∈ [0, 1] is a balancing hyperparameter. A weighted SAME AS edge with weight w =
Slink(ei, ej) is established between the two entities if and only if Slink(ei, ej) > τ , where τ is a
predefined linking threshold. This process ensures the high fidelity of our navigational backbone.

3.2.3 DOCUMENT-LEVEL REPRESENTATION GENERATION

To efficiently address challenge (C2): locating relevant documents precisely during online inference,
we create an information-rich representation for each document di, termed the Document Manifest,
Mi. It consists of two components: a Named Entity Manifest, Ecore

i ⊆ Ei, which is the set of all
core named entities in the document, and a Document Summary, Sdi . The latter is a higher-level
summary generated by an aggregation LLM, fagg , which synthesizes the set of all entity summaries
{Sek |ek ∈ Ecore

i }:
Sdi

= fagg({Sek |ek ∈ Ecore
i }). (8)

The complete Document Manifest is thus defined as:

Mi = (Ecore
i , Sdi). (9)

This manifest provides a powerful and precise input signal for the multi-source routing module in
the online phase, enabling rapid relevance ranking.

3.3 ONLINE ITERATIVE REASONING

To enable precise and efficient multi-document question answering, we designed an online itera-
tive reasoning workflow, which is driven by an LLM agent to perform lightweight navigation over
the pre-constructed federated knowledge base. As illustrated in Figure 3, this workflow is cen-
tered around a multi-source weighted routing module and an iterative reasoning engine: the routing
module first locates a small set of key documents based on the relevance between the query and doc-
ument summaries (addressing C2), after which the reasoning engine constructs a coherent reasoning
chain and manages context by dynamically generating sub-questions and leveraging the Dynamic
Working Memory (DWM) mechanism (addressing C3).

3.3.1 PLANNING AND CONTEXT CONSTRUCTION

To address challenge (C2) and avoid noise, the initial step of the reasoning process is to locate a
high-relevance candidate set from the entire corpus D. We designed a multi-source weighted routing
mechanism Wang et al. (2023); He et al. (2025) that combines two signals for ranking: 1) the degree
of entity matching between the query Q and each document’s “Named Entity Manifest,” and 2) the
semantic similarity between Q and each “Document Summary.” By employing the Reciprocal Rank
Fusion (RRF) algorithm, we generate a unified, high-relevance candidate set.

The Agent leverages an LLM to generate a detailed Guided Retrieval Plan by taking the original
query Q and the summary information of Dcand as input. This plan categorizes Dcand into two types:
Primary Documents (Dmain),one or two documents deemed most central and directly relevant to
answering the query, and auxiliary documents (Daux), which contain key supplementary information,
with a clear specification of the exact entities to be investigated.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Query + LLM

Document
Summary

and Entity List

Multi-Source Weighted Router

Primary Docs :
{Doc1,Doc2..}

Auxiliary Docs :
{Doc3:

[Entity1... ]...}

+

Multi-document partitioned
knowledge graph

History and
New Query

Entity Summary +
Docs Summary +

Document Chunks +
SAME_AS
Extension

Iterative Inference Engine

Entity Summary

Query +
Contexts LLM

Answer

+

DWM

Figure 3: The Online Iterative Reasoning Phase of BridgeRAG. The workflow begins when
the Multi-Source Weighted Router, guided by the query and document summaries, generates a
retrieval plan by categorizing relevant documents into Primary and Auxiliary Docs. The Iterative
Inference Engine executes a targeted information extraction strategy: it performs in-depth mining
on primary docs (extracting summaries, chunks, and performing SAME AS expansion) and surgical
extraction on auxiliary docs (extracting only specified entity summaries). All gathered evidence is
loaded into the Dynamic Working Memory (DWM), where the LLM agent enters a self-correction
loop, refining its query based on the current context until a sufficient answer can be generated.

3.3.2 DYNAMIC WORKING MEMORY (DWM)

Based on the retrieval plan Pguide, we extract information selectively. For primary documents Dmain,
we employ an in-depth mining strategy, denoted as Extractmain. For auxiliary documents Daux,
we use a surgical precision strategy, Extractaux. This dual-pronged approach constructs a high-
relevance, low-noise initial context, C0, which is then loaded as the initial state of the Dynamic
Working Memory (DWM). This process can be formulated as:

C0 = Extractmain(Dmain, Q) ∪ Extractaux(Daux, Pguide). (10)

where Q is the original query.

3.3.3 CORE REASONING LOOP AND REFINEMENT

After obtaining the initial context C0, the LLM Agent enters the core loop to tackle challenge (C3).
At the beginning of iteration t (for t ≥ 1), the Agent first evaluates if the context gathered so far,
Ct−1, is sufficient to answer the original query Q using a critique function, IsSufficient(Ct−1, Q)
Liu et al. (2025). If true, the loop terminates and a final answer is generated.

If the information is insufficient, the Agent executes Query Refinement. This process generates
a new, more targeted query Q(t) by summarizing the current findings and formulating a precise
sub-question to fill the most critical information gap:

Q(t) = Refine(Q,Ct−1) = Q(t)
sum ⊕Q

(t)
sub. (11)

where Q
(t)
sum is the summary of current findings, Q(t)

sub is the new sub-question, and ⊕ denotes string
concatenation.

This refined query Q(t) drives the next round of focused planning and extraction, yielding new
contextual information, ∆Ct. This new evidence is then appended to the DWM to form the context
for the next iteration:

Ct = Ct−1 ∪∆Ct. (12)

If an answer is not formed within a preset maximum number of iterations, Tmax, the process termi-
nates. Through this iterative model, which establishes a foundation via “planning-and-extraction”
and is driven by a “critique-and-refine” core engine, BridgeRAG achieves robust and dynamic rea-
soning capabilities.
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4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We designed a series of experiments to evaluate the effectiveness of BridgeRAG on multi-document,
multi-hop question answering tasks, aiming to answer the following research questions: (RQ1) How
does the end-to-end performance of BridgeRAG compare to state-of-the-art RAG baselines? (RQ2)
What are the individual contributions of the core components in our framework, such as planning,
iteration, summaries, and linking? (RQ3) What specific advantages does BridgeRAG demonstrate
across various scenarios, as illustrated by case studies? (RQ4) How do key hyperparameters, such
as those for entity linking and context expansion, affect BridgeRAG’s performance?

Evaluation Datasets: We evaluate our framework on three challenging datasets Zhang et al.
(2025). A meticulously constructed HotpotQA-Subset targets the core multi-hop (2-3 hops) rea-
soning across documents Yang et al. (2018). The LongBench (QA part) probes the robustness of
our summarization and DWM on extremely long contexts (>5000 tokens) Bai et al. (2023). Finally,
the 2WikiMultiHopQA-Subset stress-tests the model’s long-chain planning and iterative abilities by
requiring information integration across a larger number of documents (average of 3-4).

Evaluation Metrics: We designed a dual-metric system to assess performance across two key di-
mensions. For Answer Quality, we evaluate the final generated text using ROUGE-L (for fluency
and content overlap), Substring Exact Match (SUB EM), and token-level F1, Precision, and Recall
Şakar & Emekci (2025). For Retrieval Quality, we evaluate the core retrieval module’s performance
using Retrieval Precision, which measures the amount of noise introduced, and Retrieval Recall,
which measures the system’s ability to find all relevant evidence.

Baselines: We compare BridgeRAG against three representative categories of baselines. Naive
RAG, a standard single-pass retrieval model Qian et al. (2024).Iterative Text Retrieval Models, in-
cluding IRCoT Trivedi et al. (2022)and Iter-RetGen Kumar et al. (2025), which conduct multiple
rounds of unstructured text retrieval.Knowledge Graph RAG, represented by GraphRAG Edge et al.
(2024), which builds and traverses a monolithic knowledge graph.This comparison is designed to
comprehensively position BridgeRAG’s advantages within the existing RAG landscape.

For reproducibility, we provide a comprehensive description of all hyperparameter configurations
and implementation details in the Appendix.

4.2 RESULTS AND ANALYSIS (RQ1)

To answer our first research question (RQ1: How does the end-to-end performance of BridgeRAG
compare to state-of-the-art RAG baselines?), we conducted a comprehensive evaluation of
BridgeRAG and all baseline models on the HotpotQA-Subset, LongBench and 2WikiMultiHopQA-
Subset datasets. The experimental results are presented in Table 1.

The performance of GraphRAG provides a compelling validation for our thesis on “entity satu-
ration.” While achieving a high ROUGE-L score (56.13%), its monolithic graph introduced mas-
sive contextual noise, causing a collapse in TOKEN PRECISION (39.73%) and a poor F1 score
(51.47%). BridgeRAG avoids this pitfall, using high-precision retrieval to deliver a focused context
and achieve superior F1 performance (65.34%). Furthermore, traditional iterative models (IRCoT,
Iter-RetGen) consistently underperformed, confirming that unstructured iteration fails on complex
multi-hop tasks. On the most challenging dataset, 2WikiMultiHopQA, no baseline surpassed a
55% F1 score. Here, BridgeRAG’s guided navigation via SAME AS links was decisive, achieving
a 69.00% F1 score, a commanding lead of over 14 points that proves the necessity of our approach
as reasoning complexity increases. Finally, BridgeRAG demonstrated strong robustness across di-
verse challenges. Its leading F1 score (67.47%) on the long-context LongBench dataset validates
the effectiveness of our summarization and DWM mechanisms. This shows our architecture consis-
tently delivers high-quality answers, whether facing the information overload of long documents or
the complex dependencies of multi-hop reasoning.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Overall performance comparison on multi-hop question answering benchmarks.
The bold values denote the best results among all models for each specific dataset and metric.
BridgeRAG consistently and significantly outperforms most baseline models, demonstrating the su-
periority of our proposed paradigm.

Model Datasets Answer Quality Retrieval Quality

ROUGE-L SUB EM TOKEN PRECISION TOKEN RECALL F1 Retrieval Precision Retrieval Recall

Naive RAG
HotpotQA-Subset 45.77% 50.46% 55.24% 59.00% 54.29% 67.11% 85.10%
LongBench 43.28% 50.61% 54.37% 58.76% 57.78% 71.47% 84.90%
2WikiMultiHopQA-Subset 43.44% 51.35% 48.20% 51.01% 47.04% 62.48% 78.72%

IRCoT
HotpotQA-Subset 50.83% 48.42% 55.71% 57.22% 54.23% 67.09% 85.08%
LongBench 45.95% 53.06% 55.44% 59.16% 56.50% 73.15% 88.34%
2WikiMultiHopQA-Subset 48.76% 52.03% 46.74% 52.45% 49.82% 62.48% 78.72%

Iter-RetGen
HotpotQA-Subset 44.74% 50.56% 54.43% 59.09% 53.59% 69.66% 88.03%
LongBench 45.12% 49.22% 53.95% 60.81% 59.47% 72.50% 85.73%
2WikiMultiHopQA-Subset 37.22% 56.08% 52.51% 55.86% 51.50% 65.63% 83.45%

GraphRAG
HotpotQA-Subset 56.13% 53.28% 39.73% 64.52% 51.47% 74.87% 86.55%
LongBench 60.26% 54.87% 41.19% 65.77% 53.31% 75.49% 89.64%
2WikiMultiHopQA-Subset 53.77% 56.81% 44.16% 64.49% 54.71% 66.18% 84.09%

BridgeRAG (Ours)
HotpotQA-Subset 54.29% 60.47% 66.51% 69.42% 65.34% 79.62% 89.15%
LongBench 60.07% 59.92% 64.85% 69.27% 67.47% 81.17% 90.31%
2WikiMultiHopQA-Subset 46.53% 72.30% 68.51% 71.73% 69.00% 73.11% 88.65%

4.3 ABLATION STUDY (RQ2)

To answer our second research question (RQ2: What are the respective contributions of the core
components of the framework, such as planning, iteration, summaries, and linking?), and to quanti-
tatively evaluate the contribution of each core component to the final performance, we conducted a
series of rigorous ablation studies. Using the full BridgeRAG model as the baseline, we constructed
different variants by independently removing or replacing a key module. As the overall results in
Table 2 show, removing any of our designed core components leads to a significant decline in the
final answer quality, measured primarily by F1 and SUB EM scores.

Table 2: Ablation study results on the HotpotQA-Subset. The removal of any core component
leads to a significant degradation in performance across all evaluated metrics, validating the neces-
sity and synergistic design of our framework.

Variant ROUGE-L SUB EM TOKEN PRECISION TOKEN RECALL F1 Retrieval Precision Retrieval Recall

BridgeRAG (Ours) 54.29% 60.47% 66.51% 69.42% 65.34% 79.62% 89.15%

w/o Iteration 51.71% 55.86% 59.93% 63.49% 62.62% 80.33% 86.09%
w/o Planning 48.19% 52.88% 56.16% 62.98% 60.14% 71.43% 84.28%
w/o Summaries 50.84% 53.19% 57.21% 63.82% 61.01% 79.36% 88.75%
w/o SAME AS 52.39% 57.75% 57.11% 63.12% 61.97% 73.98% 88.47%

The ablation study confirms the critical role of each component. Removing the Planning module
caused the most severe performance drop (over 5% in F1), proving that without this top-level guid-
ance, the agent becomes a blind information gatherer, overwhelmed by initial noise. While removing
Iteration and SAME AS linking had a lesser impact on retrieval, the sharp F1 score decline reveals
they are essential for transforming retrieved facts into a coherent answer; they are the bridge from
“information gathering” to “deep reasoning.” Finally, the performance hit from removing Sum-
maries validates our “knowledge pre-digestion” strategy, showing that a high signal-to-noise ratio
in the context is crucial for unleashing the LLM’s full reasoning potential.

4.4 CASE STUDY (RQ3)

A case study (Table 4) reveals the flaws of existing paradigms: Naive RAG’s one-shot” retrieval
prevents multi-hop reasoning, while GraphRAG suffers from entity saturation,” creating a noisy
context that buries the answer and burdens the LLM.

In contrast, BridgeRAG demonstrates an efficient and precise path. It leverages planning and query
refinement to define its objective, then uses a SAME AS link as a surgical bridge between knowledge
silos. The resulting context is clean and focused, proving that its dynamic, lightweight navigation
overcomes the limitations of both Naive RAG’s incompleteness and GraphRAG’s contextual noise.
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What government positions did the person who played Corliss Archer in the movie Kiss and Tell hold in reality?

This is a typical multi-hop reasoning task. A successful system must:
1. First Hop: Locate documents related to the movie Kiss and Tell or the character "Corliss Archer" to identify the name of the actress.
2. Second Hop: Use the actress's name as the new query core to find documents describing her personal life and extract her government positions. The key to this process is
how to efficiently and accurately complete the "information relay" from the first hop to the second.

Query

Query Difficulty Analysis

Naive RAG
...The movie "Kiss and Tell" is a 1945 comedy film... In the film, the young Corliss Archer is played by Shirley Temple... ...The character Corliss Archer was popular in a 1940s
radio sitcom, known for her lively and adorable personality...  Generated Answer (Incomplete): "The person who played Corliss Archer in Kiss and Tell is Shirley Temple."

GraphRAG
...Shirley Temple played Corliss Archer in the movie "Kiss and Tell"... She was the originator of the famous Shirley Temple curly hairstyle... She won an Academy Juvenile
Award... She served as the U.S. Ambassador to Ghana... She also served as the U.S. Ambassador to Czechoslovakia... She was a member of the Republican Party...
Her first husband was John Agar... Her former home is located in Woodside, California... She also appeared in the movie "Our Little Girl"...

BridgeRAG

Step 0: The Plan
Upon receiving the query, the agent generates a retrieval plan:
Primary Documents: Doc-101 (Kiss and Tell movie summary), Doc-
245 (Corliss Archer character page).
Auxiliary Documents: None.

Step 1: First Hop & Key Entity Identification
The agent processes the primary documents and identifies the key
entity: "Shirley Temple," the actress who played Corliss Archer.

Step 2: Context Expansion via SAME_AS Bridge
The agent immediately leverages the pre-constructed SAME_AS link
on the "Shirley Temple" entity. This bridge leads to Doc-778 (Shirley
Temple's biography). The agent performs an initial targeted extraction
from Doc-778 based on the original query. Let's assume this initial
pass only retrieves partial information.

Step 3: Self-Critique & Query Refinement
The agent reviews the aggregated context in its Dynamic Working Memory (DWM):
Current Context:
Shirley Temple played Corliss Archer. (from Doc-101, Doc-245)
Shirley Temple was a U.S. diplomat. (from Doc-778)
The agent critiques this context and identifies that the specific "government positions" are still missing. It
refines its goal into a new sub-question:
New Sub-question: What specific government positions did Shirley Temple hold?

Step 4: Iterative Re-extraction & Final Answer
Now in a second iteration, the agent re-queries the already-identified relevant document, Doc-778, using
the more precise sub-question. This targeted re-extraction successfully pulls the specific details.
Final Context in DWM:
The actress who played Corliss Archer is Shirley Temple. (from Doc-101, Doc-245)
Shirley Temple served as the U.S. Ambassador to Ghana. (from Doc-778, 2nd iteration)
Shirley Temple served as the U.S. Ambassador to Czechoslovakia. (from Doc-778, 2nd iteration)
This iterative process, guided by the initial SAME_AS jump, allows the agent to precisely gather all
necessary facts and generate the complete answer.

Figure 4: Case Study of Reasoning Paths for Different RAG Paradigms. BridgeRAG success-
fully navigates the multi-hop query by leveraging a pre-constructed SAME AS link to bridge knowl-
edge partitions, avoiding the incompleteness of Naive RAG and the contextual noise of GraphRAG.

4.5 HYPERPARAMETER EXPERIMENTS (RQ4)
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Figure 5: Analysis of key online reasoning hyperparameters on the HotpotQA-Subset. Anal-
ysis of online reasoning hyperparameters. (a, b) The impact of the SAME AS expansion degree
(expansion degree), which controls how many linked entities are used for context expansion.
(c, d) The impact of the chunk retrieval number (chunk num), which determines how many text
chunks are extracted from documents during information retrieval.

Figure 5 provides a compelling visual summary of our online reasoning experiments. Subplots (a,
b) clearly illustrate the trade-off for expansion degree, showing the F1 score peaking at 5, thus
avoiding both an overly “barren” context (degree <5) and a “bloated” one (degree >5). Subplots (c,
d) validate the “less is more” principle for chunk num, with the F1 score maximized at 2 (63.74%)
before dropping as additional chunks introduce noise and dilute focus. The figure provides decisive
visual support for our final configuration.

5 CONCLUSION

This paper introduces BridgeRAG, a novel “planned navigation” framework that resolves the funda-
mental trade-off between contextual purity (“partitioned isolation”) and noise (“monolithic fusion”)
in multi-document KG-RAG. By converting static graph traversal into a dynamic “plan-extract-
iterate” process, our framework achieves state-of-the-art results on benchmarks like HotpotQA.
While acknowledging limitations such as reliance on the base LLM and a computationally intensive
offline phase, we propose future directions, including integrating Hypergraphs to model higher-order
relationships Kim et al. (2024); Lu et al. (2023) and employing specialized Graph LLMs or Agents
to enhance navigational precision and efficiency Tang et al. (2024); Zhang (2023).
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6 APPENDIX

The performance of BridgeRAG is influenced by several key hyperparameters that govern both
the offline knowledge construction and the online reasoning phases. To ensure the robustness and
optimal performance of our framework, we conducted a series of comprehensive experiments to
determine the optimal value for each critical hyperparameter. The following sections detail the
methodology and results of this analysis, validating our final parameter choices on the HotpotQA-
Subset.

6.1 IMPLEMENTATION DETAILS

All experiments were conducted on a server equipped with 4x NVIDIA RTX 3080 (80GB) GPUs. To
ensure fairness and reproducibility, all models, including our BridgeRAG and the baselines, shared
a unified configuration for their core components. The specific fixed settings are as follows:

• Base Large Language Model: For all generative and reasoning tasks, including knowl-
edge summarization, entity linking adjudication, retrieval planning, and final answer syn-
thesis, we utilized Qwen2.5-14B-Instruct.

• Text Embedding Model: For all semantic similarity calculations, such as initial entity
screening and online routing, we employed nomic-ai/nomic-embed-text-v1.5.

• Document Chunking: During the offline knowledge base construction, documents were
segmented into chunks of 512 tokens with a 64-token sliding window overlap.

• Max Iteration: The maximum number of reasoning iterations in the online inference loop
was set to 3.

6.2 HYPERPARAMETER ANALYSIS

To determine the optimal values for key hyperparameters in our BridgeRAG framework, we con-
ducted a series of ablation studies on the HotpotQA-Subset. The following sections detail the ex-
perimental process and results for each parameter.

6.2.1 KNOWLEDGE BASE CONSTRUCTION PHASE (SLLM AND LINK THRESHOLD)

In our hybrid entity linking mechanism, we balance the deep semantic adjudication from the LLM
(SLLM ) with the vector similarity from the embedding model (Semb). To find the optimal balance,
we analyzed the weight α assigned to SLLM , where the final score is calculated as α ·SLLM +(1−
α) · Semb. We varied α from 0.4 to 1.0.

Table 3 presents the end-to-end performance for different values of α. Peak performance, as indi-
cated by the primary metrics of F1 and SUB EM, is achieved at α = 0.7. The results reveal a clear
trade-off: a lower α (≤ 0.6) over-relies on embedding similarity, which, despite its robustness, lacks
the nuanced understanding required for precise linking. Conversely, a higher α (≥ 0.8) marginalizes
the embedding signal, making the process susceptible to potential LLM hallucinations or misjudg-
ments. The configuration of α = 0.7 strikes an effective balance, leveraging the LLM’s superior
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reasoning while using the embedding score as a strong regularizer. We therefore adopted this value
in our final configuration.

Table 3: Hyperparameter analysis for the LLM score weight (α) in the hybrid entity linking
mechanism. Performance is evaluated on the HotpotQA-Subset. The bold values denote the best
results for each metric.

SLLM (α) ROUGE-L SUB EM TOKEN PRECISION TOKEN RECALL F1 Retrieval Precision Retrieval Recall

0.4 50.12% 55.65% 63.24% 64.77% 61.98% 75.83% 88.70%
0.5 48.86% 56.52% 63.69% 65.47% 62.10% 75.30% 88.77%
0.6 51.03% 56.52% 63.72% 64.83% 62.42% 75.48% 87.79%
0.7 52.24% 59.13% 65.70% 68.48% 64.68% 75.13% 88.17%
0.8 52.32% 56.52% 64.82% 66.48% 63.40% 75.30% 88.33%
0.9 47.04% 53.91% 59.24% 61.66% 58.30% 75.48% 87.91%
1.0 51.66% 59.13% 63.96% 67.79% 63.09% 75.13% 88.17%
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Figure 6: Impact of the LLM adjudication score weight (α) on generation quality (F1 Score)
and retrieval quality (Recall) on the HotpotQA-Subset. An optimal F1 score is achieved at
α = 0.7, highlighting the synergy between the LLM’s deep adjudication and the embedding model’s
robust similarity signal.

The empirical results, detailed in Table 3, point to α = 0.7 as the optimal weight for the LLM score.
Figure 6 provides a compelling visual representation of this finding. The bar chart for Generation
Quality clearly shows the F1 score rising to a distinct peak at α = 0.7 before declining. This
visualization underscores the synergy of our hybrid approach: when the LLM’s weight is too low
(≤ 0.6), performance is capped by the embedding model’s limitations. When it is too high (≥ 0.8),
the model loses the robust grounding provided by the embedding signal. The figure demonstrates
that the 0.7 weighting is not merely an incremental improvement but a significant sweet spot for
model performance.

The linking threshold τ acts as the final gatekeeper for establishing a SAME AS link, directly
controlling the trade-off between the density (connectivity) and the precision (purity) of the cross-
document knowledge graph. We systematically varied τ from 6.5 to 9.0 to identify its optimal value.

As shown in Table 4, the model’s overall performance peaks at τ = 7.0. This result highlights a
critical balance. A lenient threshold (e.g., 6.5) increases connectivity but introduces noisy, incorrect
links, leading to contextual pollution that degrades performance. In contrast, an overly strict thresh-
old (e.g., ≥ 8.0) prunes too aggressively, severing valid reasoning paths and resulting in an overly
sparse knowledge graph. A threshold of τ = 7.0 optimally balances link precision with network
connectivity, ensuring sufficient pathways for multi-hop reasoning without introducing significant
noise. This value was used for our main experiments.

The results in Table 4 reveal a clear performance peak at τ = 7.0. This trend is visually corroborated
in Figure 7, which plots the F1 score and Retrieval Recall against the linking threshold. The figure
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Table 4: Hyperparameter analysis for the linking threshold (τ ) in the hybrid entity linking
mechanism. Performance is evaluated on the HotpotQA-Subset. The bold values denote the best
results for each metric.

link threshold (τ ) ROUGE-L SUB EM TOKEN PRECISION TOKEN RECALL F1 Retrieval Precision Retrieval Recall

6.5 53.05% 58.41% 65.07% 65.98% 63.91% 75.93% 88.94%
7.0 52.24% 59.13% 65.89% 68.48% 64.68% 75.13% 89.02%
7.5 49.93% 56.52% 63.02% 65.76% 61.96% 75.30% 88.58%
8.0 51.11% 56.52% 63.97% 64.30% 62.52% 75.30% 87.47%
8.5 50.77% 56.52% 64.41% 65.66% 62.87% 74.96% 88.56%
9.0 48.70% 53.91% 62.19% 62.76% 60.88% 75.83% 89.01%
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Figure 7: Impact of the linking threshold (τ ) on generation quality (F1 Score) and retrieval
quality (Recall) on the HotpotQA-Subset. The results show that a threshold of τ = 7.0 achieves
the highest F1 score, striking an optimal balance between link precision and network connectivity.

illustrates a critical trade-off: a lenient threshold (e.g., 6.5) maintains high recall but at the cost of
introducing erroneous links that pollute the context, thereby failing to achieve the highest F1 score.
Conversely, an overly strict threshold (e.g., ≥ 8.0) causes a sharp drop in both metrics by aggres-
sively pruning valid reasoning paths. The visualization clearly confirms that τ = 7.0 represents the
optimal balance, ensuring sufficient network connectivity for reasoning while maintaining high link
precision.

6.2.2 ONLINE ITERATIVE REASONING PHASE (EXPANSION SCOPE AND CHUNK NUM)

During online inference, the expansion scope parameter determines how many linked entities
are expanded to enrich the context. This directly controls the breadth of information available for
reasoning. We tested values from 2 to 6 to find the best configuration.

The results in Table 5 indicate that the optimal performance is achieved when expansion scope
is set to 5. This demonstrates a clear trade-off between information gain and contextual noise.
Insufficient expansion (expansion scope <5) results in a context that is too “barren” to fully
support complex reasoning chains. Conversely, excessive expansion (expansion scope >5)
inundates the context with potentially irrelevant information, creating a “bloated” context that can
distract the LLM. Expanding the top 5 most relevant entities provides a sufficiently rich yet focused
context for the agent.

The chunk num parameter dictates how many relevant text chunks are retrieved from each doc-
ument to form the final context. This hyperparameter governs the granularity and density of the
evidence presented to the LLM. We evaluated values from 1 to 4.

Table 6 shows that retrieving the top 2 chunks yields the best overall performance (F1: 63.74%).
This finding supports a “less is more” principle for context construction. Retrieving only one chunk
often provides insufficient evidence, while retrieving three or more introduces noise and dilutes the
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Table 5: Hyperparameter analysis for the number of SAME AS entities to expand
(expansion scope) during the online inference phase. Performance is evaluated on the
HotpotQA-Subset. The bold values denote the best results for each metric.

expansion scope ROUGE-L SUB EM TOKEN PRECISION TOKEN RECALL F1 Retrieval Precision Retrieval Recall

2 48.33% 53.91% 59.62% 61.81% 58.90% 75.30% 88.26%
3 49.07% 55.65% 62.93% 64.35% 61.90% 75.65% 88.03%
4 47.55% 54.78% 59.92% 62.34% 59.28% 75.49% 87.50%
5 51.11% 56.52% 63.97% 64.30% 62.52% 75.30% 87.99%
6 48.74% 53.91% 60.21% 61.90% 59.49% 74.96% 88.47%

focus on the most critical information, potentially distracting the LLM. Therefore, chunk num=2
was chosen as it strikes the ideal balance between informational completeness and contextual purity.

Table 6: Hyperparameter analysis for the number of chunks to retrieve (chunk num) during
the online information extraction phase. Performance is evaluated on the HotpotQA-Subset. The
bold values denote the best results for each metric.

chunk num ROUGE-L SUB EM TOKEN PRECISION TOKEN RECALL F1 Retrieval Precision Retrieval Recall

1 48.61% 55.65% 62.70% 64.59% 61.64% 75.65% 87.72%
2 52.00% 57.39% 64.94% 65.80% 63.74% 75.65% 88.30%
3 49.89% 57.39% 63.74% 65.18% 62.98% 76.00% 88.39%
4 50.35% 54.78% 61.75% 63.38% 60.77% 75.38% 88.69%
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