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ABSTRACT

Controlling high-dimensional systems in biological and robotic applications is
challenging due to expansive state–action spaces, where effective exploration is
critical. Commonly used exploration strategies in reinforcement learning are
largely undirected with sharp degradation as action dimensionality grows. Many
existing methods resort to dimensionality reduction, which constrains policy ex-
pressiveness and forfeits system flexibility. We introduce Q-guided Flow Ex-
ploration (QFLEX), a scalable reinforcement learning method that conducts ex-
ploration directly in the native high-dimensional action space. During training,
QFLEX traverses actions from a learnable source distribution along a probability
flow induced by the learned value function, aligning exploration with task-relevant
gradients rather than isotropic noise. Our proposed method substantially outper-
forms representative online reinforcement learning baselines across diverse high-
dimensional continuous-control benchmarks. QFLEX also successfully controls
a full-body human musculoskeletal model to perform agile, complex movements,
demonstrating superior scalability and sample efficiency in very high-dimensional
settings. Our results indicate that value-guided flows offer a principled and prac-
tical route to exploration at scale.

1 INTRODUCTION

Controlling over high-dimensional dynamical systems underpins a broad range of applications in
robotics, sports, and embodied intelligence from legged locomotion to full-body musculoskeletal
control. Complex sensorimotor coordination and over-actuation are common in such systems. As
the number of sensors and actuators grows, these systems gain flexibility and robustness, enabling
agile and precise movements. However, increasing dimensionality also amplifies the challenges of
coordination and learning efficiency due to rapidly expanding state–action spaces, making effective
exploration strategies essential.

A widespread practice in online deep reinforcement learning (RL) is to inject undirected stochastic-
ity (e.g., Gaussian noise) into policy outputs for exploration (Haarnoja et al., 2018). While simple
and effective in moderate dimensions, such isotropic perturbations rapidly lose coverage and be-
come sample-inefficient as action dimensionality and actuator redundancy grow, yielding vanishing
signal for discovering task-relevant actions. Dimensionality reduction-based learning constrains
control within low-rank subspaces to make search tractable (Berg et al., 2024). Such complemen-
tary strategy may forfeit the flexibility and redundancy that high-dimensional dynamical systems are
designed to provide.

Iterated sampling techniques, most notably diffusion models and flow-based transports, have
achieved striking success in high-dimensional generative modeling, providing robust procedures
for sampling in thousands of dimensions (Song et al., 2021; Lipman et al., 2023). Motivated by
these advances, several works have adapted iterated-sampling ideas to control and decision making
(Janner et al., 2022; Yang et al., 2023). Despite promising results in moderate-dimensional set-
tings, these methods have not demonstrated success for high-dimensional continuous control with
substantial over-actuation.

In this paper, we introduce Q-guided Flow Exploration (QFLEX), a scalable exploration mechanism
that operates in the native high-dimensional action space. QFLEX achieves directed exploration
for policy improvement by sampling from probability flow induced by learned state–action value
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function Q, proposing informative actions aligned with task-relevant direction. Our design preserves
flexibility of the complex systems, and integrates cleanly into a actor-critic loop, yielding efficient
learning across diverse high-dimensional continuous-control benchmarks. QFLEX also succeeds
in controlling a full-body musculoskeletal system to perform complex movements, highlighting its
scalable and efficient exploration.

Our contributions: (1) We propose QFLEX, a scalable RL method which achieves value-
aligned directed exploration with policy-improvement validity, enabling efficient learning over high-
dimensional state-action spaces. (2) We present an actor–critic implementation of QFLEX that con-
sistently outperforms representative Gaussian-based and diffusion-based RL baselines on a wide
range of high-dimensional continuous-control benchmarks. (3) We demonstrate QFLEX on a full-
body human musculoskeletal model with 700 actuators, achieving agile, complex movements and
efficient exploration without dimension reduction.

2 RELATED WORK

High-dimensional over-actuated control. The control of high-dimensional dynamical system is
challenging due to its high-dimensionality and over-actuation. With few model-based strategies
(Hansen et al., 2024; Wei et al., 2025), model-free deep reinforcement learning is the mainstream
solution for solving complex control tasks (Kidziński et al., 2018; Geiβ et al., 2024; Caggiano et al.,
2024). Hierarchical RL decomposes decision making into high-level planning and low-level control,
reducing exploration burden by restricting search to joint- or skill-level choices (Lee et al., 2019;
Park et al., 2022; Feng et al., 2023). Curriculum based-learning iterates over sub-tasks to smooth the
learning curve for diverse skill learning over high-dimensional embodiment (Caggiano et al., 2023;
Park et al., 2025). DEP-RL employs bio-inspired sampling for coordinated exploration (Schumacher
et al., 2023b;a). Lattice generated correlated noise for exploration by injecting stochasticity into la-
tent embeddings of the policy network (Chiappa et al., 2023b; Simos et al., 2025). Synergy-based
approaches such as DynSyn (He et al., 2024) learn or impose low-dimensional control subspaces
derived from morphology or task structure, enabling more stable training on systems with high de-
grees of freedom. These methods primarily mitigate undirected exploration issue by explicit or
implicit dimensionality reduction, which can constrain policy expressiveness and underutilize re-
dundancy—potentially limiting the flexibility required for agile, task-diverse movements.

Iterated sampling-based online reinforcement learning. Inspired by early successes of iterated
sampling for offline and imitation decision making (Janner et al., 2022; Chi et al., 2023), many works
have adapted diffusion-based policy parameterization to online reinforcement learning to encourage
diverse action distribution (Yang et al., 2023; Li et al., 2024; Ishfaq et al., 2025; Celik et al., 2025).
DACER introduces a diffusion actor–critic with an entropy regulator to stabilize policy learning and
maintain exploration (Wang et al., 2024). Given unknown target distributions, several studies utilizes
the learned value function to regularize the policy learning (Ding et al., 2024; Dong et al., 2025; Jain
et al., 2025). QSM matches the score of diffusion policy with the gradient of the Q-function (Psenka
et al., 2024). SDAC introduce a Q-reweighted score matching function to avoid unstable training of
backpropagating gradients through the diffusion chain (Ma et al., 2025). Recent works also employ
flow-based policy in KL-constrained policy optimization (Lv et al., 2025; McAllister et al., 2025).
These methods typically use standard Gaussian as a general initial distribution for the primary goal
of multi-modal policy learning. The uninformative, isotropic bases can hinder scalability of policy
learning in high-dimensional continuous control.

3 PRELIMINARIES

3.1 HIGH-DIMENSIONAL CONTINUOUS CONTROL

In this paper, we formalize the control of high-dimensional dynamical system as a infinite horizon
Markov decision process (MDP) defined by the tupleM := {S,A, γ, f, r, ρ}, where S ⊂ R|S| is
the state space, A ⊂ [−1, 1]|A| is the action space, γ is the discount factor, f := S × A → P(S) is
the transition probability to s′ ∈ S when being in s ∈ S and executing a ∈ A, r := S × A → R
is the reward function, and ρ := S → P(S) is the initial state distribution. The MDP starts from an
initial state s0 sampled from ρ, and proceeds with actions sampled from a policy π := S → P(A).
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Our goal is to optimize the policy parameters to maximize the discounted cumulative reward:

J(π) = Eπ

∞∑
h=0

γhr(sh,ah). (1)

Compared with low-dimensional dynamical systems, controlling high-dimensional dynamics is sub-
stantially more challenging. We use the human musculoskeletal system as a motivating example to
illustrate the difficulties of high-dimensional continuous control.

High dimensionality. Full-body human locomotion integrates rich sensory feedback with more than
600 muscles. Unlike robotic arms or quadrupeds, which typically operate within state and action
spaces on the order of tens, the human musculoskeletal system features state and action spaces that
are orders of magnitude larger. The size of the state-action space grows rapidly with dimension,
leading to pronounced “curse-of-dimensionality” effects (Köppen, 2000). This demands expres-
sive models and substantial informative data to reliably map high-dimensional states and actions to
control performance.

Over-actuation. The number of biological actuators far exceeds the system’s degrees of freedom
(DoFs): many joints can be actuated by multiple muscles, and identical joint torques can arise from
numerous activation patterns. This redundancy enlarges the feasible action set and complicates ex-
ploration and credit assignment, as multiple action sequences can yield indistinguishable kinematics
but different internal forces and costs (Valero-Cuevas et al., 2015).

3.2 ACTOR-CRITIC ONLINE REINFORCEMENT LEARNING

Online reinforcement learning typically employs actor-critic framework, where the Q-function
Qπ(s,a) represents the value of state-action pair (s,a) under policy π:

Qπ(s, a) = Eπ

[ ∞∑
h=0

γh(r(sh,ah)

∣∣∣∣s0 = s,a0 = a

]
, (2)

The value function and the policy can be iteratively learned via a two-step scheme: policy evaluation
and policy improvement. During policy evaluation, the Q-function is updated by Bellman equation
operator T π from any function Q, which converges to Qπ when the operation number goes to
infinity:

T πQ(sh,ah) ≜ r(sh,ah) + γEah+1∼π [Q(sh+1,ah+1)] , (3)

where the transition data tuples (sh,ah, r(sh,ah), sh+1) are collected by interacting with the en-
vironment and stored in the replay buffer B. To enhance the stability of Q-function update, two or
more Q-functions are learned with separated parameters, where we use the minimum estimation to
compute the regression target. In high-dimensional continuous control setting, the transition tuples
are often collected from large number of parallel environments for better time efficiency.

In policy improvement, the policy parameters θ can be updated via optimizing the Q-function:

πnew = argmax
π

Es,a∼πQ
πold(s,a). (4)

In practice, the Q-function and the policy are typically parameterized by neural network Qϕ and πθ,
and optimized by minimizing the following loss functions with gradient descent:

LQ(ϕ) = E(s,a,s′)∼B
[
(r(s,a) + γEs′∼f,a′∼π[Qϕ(s

′,a′)]−Qϕ(s,a))
2
]
, (5)

Lπ(θ) = Es,a∼πθ
[−Qϕ(s,a)]. (6)

3.3 FLOW MATCHING

Flow matching is a simulation-free method for generative modeling that learns a probability flow
directly by matching velocity fields along continuous-time probability paths. Let p(0)(x0) and
p(1)(x1) denote the source and target distributions over Rd respectively. Flow matching considers a
continuous-time probability path {p(t)(x)}t∈[0,1] that evolves smoothly from p(0)(x0) to p(1)(x1).

3
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Figure 1: Exploration behavior across increasing action dimensionality. The gray polyline de-
picts a planar kinematic chain with |A| degrees of freedom. The orange background (darker is
higher) visualizes the state–action value Q. Green contours show the end-effector distribution in-
duced by an undirected Gaussian proposal over joint angles, whose exploratory reach collapses as
|A| increases. Red streamlines/contours depict Q-guided probability flows that transport probability
mass from the Gaussian proposal toward high-value modes, sustaining directed exploration in high
dimensions.

This evolution is governed by a velocity field v(t)(x), such that the density p(t) satisfies the conti-
nuity equation:

dp(t)(x)

dt
+∇ · [p(t)(x)v(t)(x))] = 0. (7)

Assuming the path p(t) is regular enough, one can define a flow map ϕ(t) through the following
Ordinary Differential Equation (ODE):

dϕ(t)(x)

dt
= v(t)(ϕ(t)(x)), ϕ(0)(x) = x. (8)

We denote ϕ(t)(x) as x(t). Flow matching seeks to learn an approximate velocity field vw(x, t),
parameterized by a neural network, that induces a flow transporting p0 to p1. To train vw, flow
matching minimizes the expected squared error between the model and a reference (or target) veloc-
ity field, which is tractable when conditioned on samples from the target distribution (Lipman et al.,
2023):

LCFM = E t∼U([0,1])

x(1)∼p(1)(·)
x(t)∼p(t)(·|x(1))

∥∥∥vw(x
(t), t)− v(t)(x(t)|x(1))

∥∥∥2 (9)

4 VANISHING EFFECTIVENESS OF UNDIRECTED EXPLORATION

To enable exploration during interaction with the environment, the policy π is often designed to
be a stochastic distribution (Haarnoja et al., 2018) or perturbed with undirected, isotropic noises
(Schulman et al., 2017). Gaussian distribution is a commonly used choice for policy and noise pa-
rameterization for its simplicity and tractable likelihood computation. The policy that uses Gaussian
for exploration follows the generalized form as:

π(a|s) = N (µ(s), σ2(s)), (10)

where µ := R|S| → R|A| and σ := R|S| → R|A| are mean and (typically) diagonal standard
deviation functions of each Gaussian action distribution. In this section, we demonstrate that the
undirected stochasticity leads to vanishing exploration in high-dimensional continuous control by
the following case analysis:

Case analysis: vanishing exploration in high DoF settings. Consider a planar kinematic chain
with |A| degree-of-freedeom (i.e. |A| revolute joints and a terminal link) in 2D, where each link
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has length li = L/|A|. Under i.i.d. zero-mean joint-angle perturbations with fixed variance, the
end-effector position variance scales as O( 1

|A| ); equivalently, it decays proportionally to 1
|A| as |A|

grows. (See Appendix A.1 for the proof.)

We visualize the vanishing exploration in Figure 1. When the action dimension is moderate (A ≤
10), Gaussian-based exploration suffices to find informative samplings with high values. However,
the diversity of the Gaussian-based exploration collapses as the system complexity grows, leading to
uninformative sampling behavior. Related observations of vanishing exploration for over-actuated
systems have also been reported in previous works (Schumacher et al., 2023b). These findings
motivate directed exploration mechanisms rather than relying on isotropic perturbations.

Algorithm 1 Q-guided Flow Exploration (QFLEX)

Input: Initialized parameters θ, w, ϕ, gradient step number N , initial gradient step size η, learning
rates λϕ, λθ, λw

1: for h = 1, 2, · · · do
2: ah ∼ π

(1)
θ,w(·|sh)

3: sh+1 ∼ p(·|a0
t , sh)

4: B ← B
⋃
{sh,ah, rh, sh+1}

5: ϕ← ϕ− λϕ∇ϕLQ(ϕ) ▷ Eq. (5)
6: θ ← θ − λθ∇θLπ(θ) ▷ Eq. (6)
7: a(0) ∼ π

(0)
θ (·|sh)

8: for n = 1 to N do
9: a( n

N ) ← a(n−1
N ) + η̄∇aQϕ(sh,a

(n−1
N )) ▷ Q-guided flow construction

10: end for
11: w ← w − λw∇wLv(w) ▷ Eq. (17)
12: end for

5 FLOW-BASED POLICY FOR SCALABLE EXPLORATION

In this section, we first demonstrate how policy improvement can be achieved by sampling from a
probability flow guided by the learned state-action value function. Then we introduce QFLEX , an
efficient online RL method for scalable exploration in high-dimensional continuous control.

5.1 POLICY IMPROVEMENT VIA VALUE-GUIDED FLOW

Since undirected exploration vanishes in high-dimensional action space, a suitable strategy to ex-
plore is to take the “best” action under current experience. Given policy πold and the Q-function
Qπold , the policy improvement procedure in Eq. (4) seeks a new policy πnew that maximizes the ex-
pectation of Qπold . We denote the policy learned by minimizing Eq. (6) as π(0). In practice, π(0)

often deviates from πnew due to factors such as restrictive parameterization or insufficient optimiza-
tion. To bridge this gap, we construct a Q-guided velocity field that transports π(0) towards πnew:

da(t)

dt
= v

(t)
Q (a(t); s) = M∇aQ

πold(s,a), a(0) ∼ π(0)(·|s), (11)

where M is any positive definite preconditioner that that rescales and reorients the raw action-
gradient. Defining the advantage of π(t) over π(0) as:

F (t; s) = Ea∼π(t)(·|s)
[
Qπold(s,a)− Ea′∼π(0)(·|s)[Q

πold(s,a′)]
]
. (12)

Under mild regularity assumptions, the transformed policy π(t)(·|s) = ϕ
(t)
s (πθ(·|s)) constitutes a

valid policy-improvement flow which increases the expected state–action value.
Proposition 1. Assuming Qπold is once continuously differentiable with locally Lipschitz ∇aQ

πold ,
M has bounded operator norm ∥M∥ and ∥∇aQ

πold∥M is intergrable under π(t)(·|s) for relevant
t. Then the map t → F (t; s) is monotone nondecreasing, i.e., d

dtF (t; s) ≥ 0. (See Appendix A.2
for the proof.)

Figure 1 demonstrates that the Q-guided flow consistently steers actions toward high-value regions
across action dimensionalities, enabling directed exploration and yielding more informative samples.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5.2 Q-GUIDED FLOW EXPLORATION

As summarized in Algorithm 1, we embed the above results into an actor-critic online RL routine
and introduce Q-guided Flow Exploration (QFLEX), which explores high-dimensional action spaces
via sampling from the Q-guided conditional normalizing flow in Eq. (11). We parameterize the flow-
based policy via a Gaussian initializer π(0)

θ (a|s) and state-dependent velocity field vw(a|t, s,a(t)).
Starting from initial samples drawn from Gaussian policy, QFLEX transform actions following the
learned vector field by solving the ODE:

π
(1)
θ,w(a|s,a

(0)) = a(0) +

∫ 1

0

vw(t, s,a
(t))dt, a(0) ∼ π

(0)
θ (·|s). (13)

The training of QFLEX proceeds as follows:

Update of Q-function and Gaussian policy. At each training iteration, QFLEX collects trajectories
into replay buffer B by sampling from the flow-induced policy π

(1)
θ,w (line 2-4). The Q-function and

the Gaussian policy are updated according to the standard policy iteration and policy improvement
steps (line 5-6). Since the sample efficiency of QFLEX hinges on the quality of the learned Q-
function, we employ batch normalization within the Q-network to normalize state–action batches
and stabilize optimization (Bhatt et al., 2024). This stabilization allows us to dispense with a target
Q-network and to train with a low update-to-data (UTD) ratio, yielding more efficient Q-learning.

Q-guided flow construction. Starting from samples of π
(0)
θ , we adopt identity matrix I as the

preconditioner of the Q-guided velocity field, which corresponds to Euclidean steepest ascent in
action space. We then construct the Q-guided flow by taking N finite gradient-ascent steps on the
differentiable Q-function, where the transported actions a(1) are treated as samples from the target
distribution π(1) (line 7-9). Because the Q-network’s gradients can be poorly behaved outside the
admissible action domain, updates near the boundary may push actions outside [−1, 1]|A|. Thus a
fixed step size η can destabilize learning. To mitigate this, we cap each update using the l2-diameter
of the action space:

a( n
N ) ← a(n−1

N ) + η̄∇aQϕ(sh,a
(n−1

N )), η̄ = min

η,
2
√
|A|∥∥∥∇aQϕ(sh,a(n−1

N ))
∥∥∥
 . (14)

The truncated step size bounds the per-iteration displacement, enabling stable, valid exploration
within the action space.

Update of Q-guided velocity field. Given target a(1) and source sample a(0) from Gaussian policy
π
(0)
θ , we specify the optimal transport conditional probability path and its target velocity field as:

p(t)(a(t)|s,a(0),a(1)) = δ

(
a(t) −

[
(1− t)a(0) + ta(1)

])
, (15)

v(t)(a(t)|s,a(0),a(1)) = a(1) − a(0), (16)

where δ(·) denotes the Dirac distribution. The velocity field vw can be updated by optimizing the
state-dependent conditional flow matching loss (line 11):

Lv(w) = E t∼U([0,1])

s,a(0)∼π
(0)
θ (·|s)

a(1)∼π(1)(·|s,a(0))

a(t)∼p(t)(·|s,a(0),a(1))

∥∥∥vw(t, s,a
(t))− v(t)(a(t)|s,a(0),a(1))

∥∥∥2 (17)

Compared with diffusion-based online RL methods that initialize from a fixed standard Gaussian,
QFLEX maintains a learnable source distribution. This yields informative initialization points for
transport toward the target distribution and substantially easing the learning of high-performing flow-
based policies. In contrast to approaches that rely on dimensionality reduction, QFLEX preserves
the full flexibility of high-dimensional dynamical systems by exploring the original action space,
thereby facilitating agile, complex motor control.

6
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Figure 2: Control over high-dimensional control benchmarks. (a) Morphologies and state-action
dimensions of evaluated benchmarks. (b) Learning curve of algorithms. Results show mean perfor-
mances with one standard deviation of 5 independent runs. Baselines in the second row are run only
on musculoskeletal benchmarks.

Although Algorithm 1 presents a minimalist instantiation, QFLEX readily extends to various RL
frameworks and exploration regimes. The flow-based policy parameterization permits direct sim-
ulation of policy likelihoods via the instantaneous change of variables (Chen et al., 2018), making
QFLEX naturally compatible with KL-constrained policy optimization (Schulman et al., 2015; 2017)
and maximum-entropy RL (Haarnoja et al., 2017). Moreover, geometry-aware or curvature-adaptive
choices of the preconditioner M (e.g. natural-gradient or Newton-type updates) can induce more
structured exploration to accelerate search. We leave a systematic study of these design choices to
future work.

6 EXPERIMENT

In this section, we present a comprehensive evaluation of QFLEX for high-dimensional continuous
control. We first compare QFLEX against extensive online RL baselines on simulated benchmarks.
Then we demonstrate its control performance on a 700-actuator human musculoskeletal model ex-
ecuting agile, full-body movements. Finally, we analyze QFLEX’s behavior to assess its scalability
in exploration. For all experiments, we construct the Q-guided flow by N = 20 gradient steps with
initial step size η = 0.01. The ODE in Eq. (13) is solved with a naive Euler integrator by 20 discrete
steps with timestep ∆t = 0.05. Our code and video results can be found in the anonymous link.

6.1 CONTROL OVER HIGH-DIMENSIONAL SIMULATED BENCHMARKS

We evaluate on a diverse suite of simulated high-dimensional continuous-control benchmarks: (1)
SMPL Humanoid–Jump (Tirinzoni et al., 2025), which controls a humanoid agent based on the

7
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Figure 3: Control over full-body human musculoskeletal system. (a) Learning efficiency over
walking control of MS-Human-700. Results show mean performances with one standard deviation
of 5 independent runs. (b) Learned behavior of whole-body running. (c) Learned behavior of ballet
dancing.

SMPL skeleton (Loper et al., 2023) to execute jumps; (2) Unitree H1–Run/Balance (Sferrazza
et al., 2024), which controls a Unitree H1 humanoid1 to run forward or maintain balance on an un-
stable platform; (3) MyoHand–PenTwirl / MyoLeg–Walk (Caggiano et al., 2022), which controls
a hand musculoskeletal system to twirl a pen and a lower-body musculoskeletal system to walk; and
(4) Ostrich–Run (La Barbera et al., 2021), which controls an ostrich musculoskeletal system to run.
The state and action spaces for all tasks are summarized in Figure 2 (a).

We compare QFLEX to representative online RL baselines: (1) Gaussian-based: CrossQ (Bhatt
et al., 2024), SAC (Haarnoja et al., 2018); (2) Diffusion-based: SDAC (Ma et al., 2025), DACER
(Wang et al., 2024), QSM (Psenka et al., 2024); and (3) High-dimensional musculoskeletal con-
trol: DynSyn (He et al., 2024), Lattice (Chiappa et al., 2023a), DEP-RL (Schumacher et al., 2023b).

As shown in Figure 2 (b), QFLEX demonstrates consistently superior learning efficiency across all
benchmarks. The performance gap widens with increasing action dimensionality and over-actuation,
indicating scalable exploration behavior.

6.2 CONTROL OVER FULL-BODY HUMAN MUSCULOSKELETAL SYSTEM

Figure 4: Sample quality between QFLEX and
source Gaussian policy during training. Over-
actuated musculoskeletal control tasks are de-
noted as dash-dotted lines.

We employ QFLEX for locomotion control of
MS-Human-700 (Zuo et al., 2024), a full-body
musculoskeletal system with 206 joints and 700
muscle-tendon units. Its state–action dimen-
sionality is more than five times that of the
most complex benchmark in the previous sub-
section (Ostrich–Run). As shown in Figure 3
(a), QFLEX exhibits high-learning efficiency
and strong scalability over whole-body walking
control, outperforms existing high-dimensional
musculoskeletal control baselines by a large
margin without dimension reduction.

We further deploy QFLEX on two challeng-
ing skills—running and ballet dancing—that,
to our knowledge, have not previously been
demonstrated on a 700-actuator full-body sys-
tem. In Figure 3 (b), QFLEX enables rapid
high-dimensional sensorimotor coordination,
achieving a stable running gait. In Figure 3 (c), QFLEX successfully imitates a ballet routine featur-
ing complex whole-body sequences with single-foot spins and balance. By exploring in the original
action space, QFLEX fully leverages the flexibility of high-dimensional dynamical systems, enabling
agile and complex motion control.

1https://github.com/unitreerobotics/unitree_ros
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6.3 ALGORITHM ANALYSIS

We examine QFLEX’s efficiency by analyzing its learning dynamics. To compare sampling quality
between the flow-based policy and the Gaussian reference, we track the flow superiority ratio during
training, which is the proportion of states in a minibatch for which

Q(s, π
(1)
θ,w(·|s)) > Q(s, π

(0)
θ (·|s)). (18)

Figure 5: Ablation study over hyperparameters of QFLEX. (a)
Gradient steps N . (b) Step size η. (c) Euler solving timestep ∆t.

As shown in Figure 4, the flow-
based policy consistently yields
higher state-action values than
Gaussian exploration, and this
advantage strengthens over the
course of training. Notably,
the superiority ratio is substan-
tially higher on musculoskele-
tal control tasks than on torque-
controlled benchmarks, under-
scoring the importance of value-
aligned exploration in high-
dimensional, over-actuated set-
tings.

On MyoLeg-Walk task, we fur-
ther perform a sensitivity study over QFLEX’s hyperparameters: number of gradient steps N , step
size η and Euler solving timestep ∆t. Figures 5 shows broadly comparable learning performance
across a reasonable range of these choices.

7 CONCLUSION

In this paper, we introduce QFLEX, a scalable online RL method for efficient exploration in high-
dimensional continuous control. Our method conducts directed exploration by sampling from a Q-
guided probability flow with policy-improvement guarantees, yielding superior learning efficiency
over representative online RL baselines across benchmarks characterized by high dimensionality
and over-actuation. QFLEX further demonstrates agile, complex motion control on a full-body
musculoskeletal model with 700 actuators, achieving high efficiency and strong scalability in truly
high-dimensional settings. Our analysis shows that value-aligned exploration in QFLEX surpasses
undirected sampling strategies in high-dimensional regimes, which is readily extensible to a variety
of online RL frameworks and exploration settings.

Ethics statement. This work follows the ICLR Code of Ethics. We considered the potential ethical
and societal impacts of this work. No human or animal subjects were directly involved. We report
limitations and assumptions transparently and strive to promote beneficial and responsible use of
this work.

Reproducibility statement. We provide an anonymous codebase, full hyperparameters, and exact
evaluation protocols to enable faithful replication.

LLM usage statement. We used a large language model solely for language polishing.
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A THEORETICAL PROOFS

A.1 PROOF OF CASE ANALYSIS

Case analysis: vanishing exploration in high DoF settings. Consider a planar kinematic chain
with |A| degree-of-freedeom (i.e. |A| revolute joints and a terminal link) in 2D, where each link
has length li = L/|A|. Under i.i.d. zero-mean joint-angle perturbations with fixed variance, the
end-effector position variance scales as O( 1

|A| ); equivalently, it decays proportionally to 1
|A| as |A|

grows.
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Proof. We denote the position of the end-effector as x = (x, y). The forward kinematics of the
system can be expressed as a function:

x = f(φ), (19)

where φ = (φ1, · · · , φ|A|) is the system joint positions. For small noise, we can use a first-order
Taylor expansion of f(φ) around the current joint position φ̄:

x ≈ f(φ̄) + J(φ̄)δφ, (20)

where J(φ̄) is the the Jacobian matrix of the forward kinematics with respect to φ̄, and δφ =
(δφ1, · · · , δφ|A|) with Var(δφi) = σ2

i . The covariance matrix of δφ is Σφ = σ2I . Therefore the
covariance of the end position x is given by:

Σx = J(φ̄)ΣφJ(φ̄)
T =

|A|∑
i=1

σ2
i ∥J:,i∥ ≤ σ2

max

|A|∑
i=1

∥J:,i∥ , (21)

where ∥J:,i∥ is the norm of the i-th column of the Jacobian matrix J , and σmax = maxi σi . Where
we can extract the end position variance as the trace of Σx:

Var(x) = Tr(Σx) (22)

For a planar |A|-link system where each link li = L/|A|, the Jacobian entries are influenced by
these link lengths, and the trace term can be approximated as:

Tr(
|A|∑
i=1

∥J:,i∥) ≈ |A|
(

L2

|A|2

)
=

L2

|A|
, (23)

which leads to the total variance of the end-effector as:

Var(x) =
σ2

maxL
2

|A|
(24)

A.2 PROOF OF PROPOSITION 1

Proposition 1. Assuming Qπold is once continuously differentiable with locally Lipschitz ∇aQ
πold ,

M has bounded operator norm ∥M∥ and ∥∇aQ
πold∥M is intergrable under π(t)(·|s) for relevant

t. Then the map t→ F (t; s) is monotone nondecreasing, i.e., d
dtF (t; s) ≥ 0.

Proof. Let a(t) = ϕ
(t)
s (a(0)). Then we can reparameterize F as

F (t; s) = Ea∼π(0)(·|s)

[
Qπold(s,ϕ(t)

s (a))− Ea′∼π(0)(·|s)[Q
πold(s,a′)]

]
(25)

The the differentiate under the expectation is

d

dt
F (t; s) =

d

dt
Ea∼π(0)(·|s)

[
Qπold(s,ϕ(t)

s (a)− Ea′∼π(0)(·|s)[Q
πold(s,a′)]

]
(26)

=
d

dt
Ea∼π(0)(·|s)

[
Qπold(s,ϕ(t)

s (a))]
]

(27)

= Ea∼π(0)(·|s)

[
∇aQ

πold(s,ϕ(t)
s (a))⊤

d

dt
ϕ(t)

s (a)

]
(28)

= Ea∼π(0)(·|s)

[
∇aQ

πold(s,ϕ(t)
s (a))⊤M∇aQ

πold(s,ϕ(t)
s (a))

]
(29)

= Ea∼π(t)(·|s)
[
∇aQ

πold(s,a)⊤M∇aQ
πold(s,a)

]
(30)

= Ea∼π(t)(·|s)

[
∥∇aQ

πold(s,a)∥2M
]
≥ 0, (31)

where Eq. (28) follows the derivative chain rule, and Eq. (30) is derived by reparameterization.
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B EXPERIMENTAL DETAILS

B.1 ALGORITHM IMPLEMENTATION

We implement QFLEX under JAX platform (Bradbury et al., 2018). Specifically, the neural networks
are implemented using Haiku2 with parameters optimized with Optax3.

For the implementation of SAC, DACER and QSM, we refer to DACER-Diffusion-with-Online-
RL4 in the official code repository of DACER, which provide efficient JAX-based implementation
of SAC and diffusion-based online RL baselines.

For the implementation of SDAC, we directly use the official repository5, which provides JAX-based
implement based on DACER repository.

For the implementation of CrossQ, we refer to the official repository6, and reproduce a JAX-based
implementation to improve the time efficiency of training.

For the implementation of DynSyn, we directly use the official repository7, and use SAC as the RL
backbone.

For the implementation of Lattice, we directly use the official repository8, and use SAC as the RL
backbone.

For the implementation of DEP-RL, we directly use the official repository9, and use SAC as the RL
backbone.

For all algorithms, we align the network parameters and learning rate with 1 gradient steps after each
parallel sampling step. For the training of Lattice, we follow the default training setting of 8 gradient
steps after 8 parallel sampling steps, which we consider comparable to other baselines on average.
Otherwise we use the default hyperparameter in the original implementation. The full experimental
details is listed in Table 1 and 2.

Table 1: Training details of each environments.

System Unitree H1 SMPL Humanoid MyoHand MyoLeg Ostrich MS-Human-700

Parallel number 70 80 80 80 80 224

Critic hidden layer 3 3 3 3 3 3

Critic hidden size 256 256 256 256 256 1024

Policy hidden layer 3 3 3 3 3 3

Policy hidden size 256 256 256 256 256 1024

Diffusion/flow hidden layer 3 3 3 3 3 3

Diffusion/flow hidden size 256 256 256 256 256 1024

B.2 BENCHMARK IMPLEMENTATION

SMPL-Humanoid-Jump. We implement the benchmark using the jump-2 task in the official
Humenv repository10 with provided reward function. The environment is wrapped to be compatible
with Gymnasium environment make function.

2https://github.com/google-deepmind/dm-haiku
3https://github.com/google-deepmind/optax
4https://github.com/happy-yan/DACER-Diffusion-with-Online-RL
5https://github.com/mahaitongdae/diffusion_policy_online_rl
6https://github.com/adityab/CrossQ
7https://github.com/Beanpow/DynSyn
8https://github.com/amathislab/lattice
9https://github.com/martius-lab/depRL

10https://github.com/facebookresearch/humenv
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Table 2: Hyperparameter settings.

QFLEX SDAC DACER QSM CrossQ SAC DynSyn DEP-RL Lattice

Gradient steps 1 1 1 1 1 1 1 1 8/8

Discount 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Batch size 256 256 256 256 256 256 256 256 256

Buffer size 1e6 1e6 1e6 1e6 1e6 1e6 1e6 1e6 1e6

Learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4

Optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam

Diffusion/flow steps 20 20 20 20 - - - - -

Batch normalization decay 0.99 - - - 0.99 - - - -

Batch normalization ϵ 1e-5 - - - 1e-5 - - - -

Target policy entropy - −0.9 · |A| −0.9 · |A| - −|A| −|A| −|A| −|A| −|A|

Unitree H1-Run/Balance. We use h1-run-v0 and h1-balance simple-v0 tasks in the
official HumanoidBench repository11 to implement the benchmark with provided reward function.

MyoHand-PenTwirl/MyoLeg-Walk. We use myoHandPenTwirlRandom-v0 and
myoLegWalk-v0 tasks in the official MyoSuite repository12 to implement the benchmarks
with provided reward function.

Ostrich-Run. We implement the benchmarks using the ostrich-run task in the official Os-
trichRL repository13 with provided reward function. The environment is wrapped to be compatible
with Gymnasium environment make function.

Table 3: States in the MS-Human-700-Walking environments.

State Dimension

Joint position 85
Joint velocity 85

Joint acceleration 85
Actuator activation 700

Actuator force 700
Actuator length 700

Actuator velocity 700
Simulation time 1

Phase in walking period 1
Pelvis position 3

Sternum position 3
Joint position error 85

MS-Human-700-Walk. We develop task environments with MS-Human-700 under Gymnasium.
The full states (observations) and dimensions are listed in Table 3. We design the following walk
reward functions to make the 700-actuator full-body model to walk forward based on a reference
walking trajectory from motion capture data:

rwalk = 50 · rqpos + 0.1 · rqvel + 50 · ract + 5 · rvel + 100 · rhealthy, (32)

where rqpos penalizes the squared error of between model and reference joint position; rqvel penalizes
the squared error of between model and reference joint velocity; ract penalizes the l2-norm of the
total actuator forces; rvel penalizes the squared error of between model and reference center-of-mass
velocity; rhealthy encourages the model not to falling down and deviate from the reference trajectory.

MS-Human-700-Run. We design the following walk reward functions to make the 700-actuator
full-body model to run forward based on a reference trajectory from CMU Graphics Lab Motion

11https://github.com/carlosferrazza/humanoid-bench
12https://github.com/MyoHub/myosuite
13https://github.com/vittorione94/ostrichrl
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Capture Database14 (Subject #2, Trial #3):
rrun = 10 · rqpos + 100 · rhealthy, (33)

with reward terms defined same as MS-Human-700-Walk under different reference trajectory.

MS-Human-700-Dance. We design the following walk reward functions to make the 700-actuator
full-body model to perform ballet dancing based on a clip of reference trajectory from CMU Graph-
ics Lab Motion Capture Database (Subject #5, Trial #9):

rdance = 5 · rqpos + 100 · rxpos + 100 · rhealthy, (34)
where rxpos penalizes the squared error of between model and reference body position. The remain-
ing reward terms are defined same as MS-Human-700-Walk under different reference trajectory.

C ADDITIONAL EXPERIMENTS

Comparison with PPO. We follow the official HumanoidBench repository and evaluate PPO on
the Unitree H1 Run/Balance task using Stable-Baselines3. We observe that PPO exhibits limited
reward improvement, which is consistent with the findings reported in the HumanoidBench paper.
QFLEX substantially outperforms this widely used baseline.

(a) Unitree H1-Run (b) Unitree H1-Balance

Figure 6: Learning curve of of QFLEX and PPO on Unitree H1 tasks

Comparison with flow-based online RL. We compare QFLEX with FlowRL (Lv et al., 2025) on the
Unitree H1–Balance task, which is also evaluated in the FlowRL paper. Since the official FlowRL
implementation15 supports only single-environment training, we run all algorithms in a single envi-
ronment and align network architectures and training hyperparameters. We successfully reproduce
the FlowRL performance reported in the original paper, and QFLEX substantially outperforms this
baseline, highlighting its systematic advantages over FlowRL in high-dimensional continuous con-
trol (see Figure 7).

Comparison with intrisic motivation-based RL. We additionally compare QFLEX against MaxIn-
foRL (Sukhija et al., 2024), an intrinsic-motivation method that promotes exploration via estimated
information gain and includes evaluations on Unitree-H1 robots. We refer to the official implemen-
tation16 and use the MaxInfoSAC variant, which is the primary version evaluated in the original
paper. We observe QFLEX significantly outperforms MaxInfoRL on the Unitree H1–Balance task
(see Figure 7). We consider intrinsic motivation-based RL methods encourage exploration by modi-
fying the learning objective, but they do not directly address the challenge of inefficient sampling in
high-dimensional continuous control.

Ablation over exploration strategy. On the MS-Human-700–Walk task, we directly ablate the
flow-based exploration strategy against a Gaussian-based alternative. QFLEX significantly outper-
forms the Gaussian-exploration variant, demonstrating the systematic advantage of flow-based ex-
ploration in high-dimensional continuous control (see Figure 8).

14https://mocap.cs.cmu.edu/
15https://github.com/bytedance/FlowRL
16https://github.com/sukhijab/maxinforl_jax
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Figure 7: Learning curve of algorithms on Unitree H1-Balance task. Algorithms are trained on
single environment. Results show mean performances with one standard deviation of 5 independent
runs.

Method MyoLeg-Walk (80 actuators) MS-Human-700-Walk (700 actuators)

QFLEX 34.26± 2.84 307.51± 20.37
CrossQ 38.47± 3.49 356.87± 22.57

Table 4: Energy efficiency measured by total actuator activation (lower is better). Results shows
mean performances with one standard deviation.

Energy efficiency. In the MyoLeg–Walk and MS-Human-700–Walk tasks, we compare the total
muscle activation of QFLEX with CrossQ (the strongest Gaussian-based policy). QFLEX achieves
substantially lower total muscle activation, demonstrating the superior energy efficiency enabled by
flow-based exploration (see Table 4).

Figure 8: Ablation over exploration strategy on MS-Human-700-Walk task. Results show mean
performances with one standard deviation of 5 independent runs.

Runtime analysis. On the MyoLeg–Walk task, we compare the runtime of QFLEX with Gaussian-
based and diffusion-based baselines on an NVIDIA GeForce RTX 4090 D GPU. QFLEX achieves
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Method Training time Per-step deployment time

QFLEX 52.94± 0.29min 0.49± 0.19ms
SDAC 82.26± 0.71min 4.07± 0.58ms

DACER 75.06± 0.08min 0.54± 0.28ms
QSM 48.36± 0.24min 2.95± 0.39ms
SAC 29.4± 0.12min 0.11± 0.05ms

CrossQ 34.83± 0.04min 0.13± 0.05ms

Table 5: Runtime comparison of algorithms on MyoLeg-Walk task. Results shows mean perfor-
mances with one standard error.

Figure 9: Correlation matrix of QFLEX exploration over right lowerbody muscles in MyoLeg-Walk.

comparable or lower runtime relative to all evaluated diffusion-based methods (see Table 5,). Al-
though its runtime is higher than that of Gaussian-based baselines, this overhead is acceptable given
the substantial performance gains and remains well within real-time control requirements.

Correlation of QFLEX exploration. We conduct the exploration analysis on the MyoLeg–Walk
task. Because the flow-based distribution is difficult to visualize directly, we approximate QFLEX’s
exploration noise by computing the standard deviation of 1,000 sampled actions at each timestep.
QFLEX exhibits structured correlations across action dimensions, in contrast to isotropic Gaus-
sian noise (see Figure 9). We further observe strong correlations among actuators within the same
anatomical groups, for example, the gluteus maximus (glmax1, glmax2, glmax3) and the gastrocne-
mius (gaslat, gasmed). These patterns provide evidence that QFLEX performs directed exploration
informed by both task structure and system morphology.
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