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ABSTRACT

We identify a new phenomenon in neural network optimization which arises from
the interaction of depth and a particular heavy-tailed structure in natural data. Our
result offers intuitive explanations for several previously reported observations
about network training dynamics, including a conceptually new cause for progres-
sive sharpening and the edge of stability. We further draw connections to related
phenomena including grokking and simplicity bias. Experimentally, we demon-
strate the significant influence of paired groups of outliers in the training data with
strong Opposing Signals: consistent, large magnitude features which dominate the
network output and provide gradients which point in opposite directions. Due to
these outliers, early optimization enters a narrow valley which carefully balances
the opposing groups; subsequent sharpening causes their loss to rise rapidly, oscil-
lating between high on one group and then the other, until the overall loss spikes.
We carefully study these groups’ effect on the network’s optimization and be-
havior, and we complement this with a theoretical analysis of a two-layer linear
network under a simplified model. Our finding enables new qualitative predictions
of training behavior which we confirm experimentally. It also provides a new lens
through which to study and improve modern training practices for stochastic op-
timization, which we highlight via a case study of Adam versus SGD.

1 INTRODUCTION

There is a steadily growing list of intriguing properties of neural network (NN) optimization which
are not readily explained by prior tools from optimization. Likewise, there exist varying degrees of
understanding of the mechanistic causes for each. Extensive efforts have led to possible explanations
for the effectiveness of Adam (Kingma & Ba, 2014), Batch Normalization (Ioffe & Szegedy, 2015)
and other tools for successful training—but the evidence is not always entirely convincing, and there
is certainly little theoretical understanding. Other findings, such as grokking (Power et al., 2022)
or the edge of stability (Cohen et al., 2021), do not have immediate practical implications, but they
provide new ways to study what sets NN optimization apart. These phenomena are typically consid-
ered in isolation—though they are not completely disparate, it is unknown what specific underlying
factors they may share. Clearly, a better understanding of NN training dynamics in a specific context
can lead to algorithmic improvements (Chen et al., 2021); this suggests that any commonality will
be a valuable tool for further investigation.

In this work, we identify a phenomenon in NN optimization which offers a new perspective on
many of these prior observations and which we hope will contribute to a deeper understanding of
how they may be connected. While we do not (and do not claim to) offer a complete explanation for
this finding, we present strong qualitative and quantitative evidence which suggests a more coherent
picture of the origin of these prior results, offering a single high-level idea which naturally fits
into several existing narratives. Specifically, we demonstrate the prevalence of paired groups of
outliers which have a significant influence on a network’s optimization dynamics. These groups are
characterized by the inclusion of one or more (relatively) large magnitude features that dominate
the network’s output at random initialization and throughout most of training. In addition to their
magnitude, the other distinctive property of these features is that they provide large, consistent, and
opposing gradients, in that reducing loss on one group (usually) increases loss on the other; because
of this structure, we refer to them as Opposing Signals. These features share a non-trivial correlation
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Figure 1: Training dynamics of neural networks are heavily influenced by outliers with op-
posing signals. We plot the overall loss of a ResNet-18 trained with GD on CIFAR-10, plus the
losses of a small but representative subset of outlier groups. These groups have consistent opposing
signals (e.g., wheels and headlights sometimes means car and sometimes truck). Throughout
training, losses on these groups oscillate with growing amplitude—this oscillation has an obvious
correspondence to the short term spikes in overall training loss and, in particular, appear to be the
direct cause of the “edge-of-stability” phenomenon.

with the target task, but they are often not the “correct” (e.g. human-aligned) signal. In fact, in many
cases these features perfectly encapsulate the classic conundrum of “correlation vs. causation”—for
example, a bright blue sky background does not determine the label of a CIFAR image, but it does
most often occur in images of planes. Other features are relevant, such as the presence of wheels
and headlights on trucks and cars, or whether punctuation comes before after the end of a quotation.

Opposing signals are most easily understood with an example, which we will give along with a brief
outline of their effect on training dynamics; a more detailed description is presented in Section 3.
Fig. 1 depicts the training loss of a ResNet-18 trained with full-batch gradient descent (GD) on
CIFAR-10, along with a few dominant outlier groups and their respective losses. In the early stages
of training, the network enters a narrow valley in weight space which carefully balances the pairs’
opposing gradients; subsequent sharpening of the loss landscape (Jastrzȩbski et al., 2020; Cohen
et al., 2021) causes the network to oscillate with growing magnitude along particular axes, upsetting
this balance. Returning to our example of a sky background, one step results in the class plane
being assigned greater probability for all images with sky, and the next will reverse that effect. In
essence, the “sky = plane” subnetwork grows and shrinks.1 The direct result of this oscillation is
that the network’s loss on images of planes with a sky background will alternate between sharply
increasing and decreasing with growing amplitude, with the exact opposite occurring for images
of non-planes with sky. Consequently, the gradients of these groups will alternate directions while
growing in magnitude as well. As these pairs represent a small fraction of the data, this behavior
is not immediately apparent from the overall training loss—but eventually, it progresses far enough
that the overall loss spikes. As there is an obvious direct correspondence between these two events
throughout, we conjecture that opposing signals are the direct cause of the “edge-of-stability” phe-
nomenon (Cohen et al., 2021). We also note that the most influential signals appear to increase in
complexity over time (Nakkiran et al., 2019).

We repeat this experiment across a range of vision architectures: though the precise groups and
their order of appearance change, the pattern occurs consistently. We also verify this behavior for
transformers on next-token prediction of natural text and small ReLU MLPs on simple 1D functions;
we give some examples of opposing signals in text in Appendix B. However, we rely on images for
exposition because it offers the clearest intuition. To isolate this effect, most of our experiments use
GD—but we observe similar patterns during SGD, which we present in Section 4.

1It would be more precise to say “strengthening connections between regions of the network’s output and
neurons which have large activations for sky-colored inputs”. Though we prefer to avoid informal terminology,
this example makes clear that the more relaxed phrasing is usually much cleaner. We therefore employ it when
the intended meaning is clear.
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Contributions. The primary contribution of this paper is demonstrating the existence, pervasive-
ness, and large influence of opposing signals during NN optimization. We further present our current
best understanding, with supporting experiments, of how these signals cause the observed training
dynamics—in particular, we provide evidence that it is a consequence of depth and steepest descent
methods. We complement this discussion with a toy example and an analysis of a two-layer linear
net on a simple model. Notably, though rudimentary, our explanation enables concrete qualitative
predictions of NN behavior during training, which we confirm experimentally. It also provides a
new lens through which to study modern stochastic optimization methods, which we highlight via a
case study of SGD vs. Adam. We see possible connections between opposing signals and a wide va-
riety of phenomena in NN optimization and generalization, including grokking (Power et al., 2022),
catapulting/slingshotting (Lewkowycz et al., 2020; Thilak et al., 2022), simplicity bias (Valle-Perez
et al., 2019), double descent (Belkin et al., 2019; Nakkiran et al., 2020), and Sharpness-Aware Min-
imization (Foret et al., 2021). We discuss these and other connections in Appendix A.

2 SETUP AND EXPERIMENTAL METHODOLOGY

Though their influence on aggregate metrics is non-obvious, identifying opposing signals is straight-
forward. When training a network with GD, we track its loss on each individual training point. For a
given iteration, we identify the training points whose loss exhibited the most positive and most nega-
tive change in the preceding step (there is large overlap between these sets in successive steps). This
set will sometimes contain multiple opposing signals, which we distinguish via visual inspection.
This last detail means that the images we depict are not random, but we emphasize that it would not
be correct to describe this process as cherry-picking: though precise quantification is difficult, these
signals consistently obey the maxim “I know it when I see it”. To demonstrate this fact, Appendix H
contains the pre-inspection samples for a ResNet-18, VGG-11, and a Vision Transformer at sev-
eral training steps and for multiple seeds ; we believe the implied groupings are immediate, even
if not totally objective. We see algorithmic approaches to automatically clustering these samples
as a direction for future study—for example, one could select samples by correlation in their loss
time-series, or by gradient alignment.

Given how these samples were selected, several other characterizations seem relevant. For instance,
maximal one-step loss change is often a reasonable proxy for maximum gradient norm; we could
also consider the largest eigenvalue of the loss Hessian of the individual point, or how much curva-
ture it has in the direction of the overall loss’s top eigenvector. For large networks these options are
far more compute-intensive than our chosen method, but we can evaluate them post-hoc on specific
groups. In Fig. 2 we track these metrics for several opposing group pairs and find that they are
consistently much larger than that of random samples from the training set.

On the Possibility of a Formal Definition. Though the features and their exemplar samples are
immediately recognizable, we do not attempt to exactly define a “feature”, nor an “outlier” with
respect to that feature. The presence of a particular feature is often ambiguous, and it is difficult
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Figure 2: Tracking other metrics which characterize outliers with opposing signals. For com-
putational considerations, we select outliers according to maximal per-step change in loss. However,
this quantity relates to other useful metrics, such as gradient norm and curvature. We see that the
samples we uncover are also significant outliers according to these metrics.
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to define a clear threshold for what makes a given point an outlier.2 Thus, instead of trying to
exactly partition the data, we simply note that these heavy tails exist and we use the most obvious
outliers as representatives for visualization. In Figs. 1 and 2 we choose an arbitrary cutoff of twenty
samples per group. We also note that what qualifies as an opposing signal or outlier may vary
over time. For visual clarity, Fig. 1 depicts the loss on only the most dominant group pair in its
respective training phase, but this pattern occurs simultaneously for many different signals and at
multiple scales throughout training. Further, the opposing signals are with respect to the model’s
internal representations (and the label), not the input space itself; this means that the definition is
also a property of the architecture. For example, following Cohen et al. (2021) we train a small
MLP to fit a Chebyshev polynomial on evenly spaced points in the interval [−1, 1] (Fig. 36 in the
Appendix). This data has no “outliers” in the traditional sense, and it is not immediately clear what
opposing signals are present. Nevertheless, we observe the same alternating behavior: we find a pair
where one group is a small interval of x-values and the opposing group contains its neighbors, all
in the range [−1,−0.5]. This suggests that the network has internal activations which are heavily
influential only for more negative x-values. In this context, these two groups are the outliers.

3 UNDERSTANDING THE EFFECT OF OPPOSING SIGNALS

Our eventual goal will be to derive actionable insights from this finding. To do this, it is necessary
to gain a better understanding of how these opposing signals lead to the observed behavior. In this
section we give a simplified “mental picture” which serves as our current understanding this process:
first a general discussion of why opposing signals are so influential, followed by a more mechanistic
description with a toy example. This explanation is intentionally high-level, but we will eventually
see how it gives concrete predictions of specific behaviors, which we then verify on real networks.
Finally, we prove that this behavior occurs on a two-layer linear network under a simple model.

3.1 PROGRESSIVE SHARPENING, AND WHY THESE OUTLIERS ARE SO INFLUENTIAL

At a high level, most variation in the input is unneeded when training a network to minimize predic-
tive error—particularly with depth and high dimension, only a small fraction of information will be
propagated to the last linear layer (Huh et al., 2021). Starting from random initialization, training
a network aligns adjacent layers’ singular values (Saxe et al., 2013; Mulayoff & Michaeli, 2020) to
amplify meaningful signal while downweighting noise,3 growing sensitivity to the important signal.
This sensitivity can be measured, for example, by the spectral norm of the input-output Jacobian,
which grows during training (Ma & Ying, 2021); it has also been connected to growth in the norm
of the output layer (Wang et al., 2022). Observe that with this growth, small changes to how the net-
work processes inputs become more influential. Hypothetically, a small weight perturbation could
massively increase loss by redirecting unhelpful noise to the subspace to which the network is most
sensitive, or by changing how the last layer uses it. The increase of this sensitivity thus represents
precisely the growth of loss Hessian spectrum, with the strength of this effect increasing with depth
(Wang et al., 2016; Du et al., 2018; Mulayoff & Michaeli, 2020).4

Crucially, this sharpening also depends on the structure of the input. If the noise is independent of
the target, it will be downweighted throughout training. In contrast, genuine signals which oppose
each other will be retained and perhaps even further amplified by gradient descent; this is because
the “correct” feature may be much smaller in magnitude (or not yet learned), so using the large, “in-
correct” feature is often the most immediate way of minimizing loss. As a concrete example, observe
that a randomly initialized network will lack the features required for the subtle task of distinguish-
ing birds from planes. But it will capture the presence of sky, which is very useful for reducing loss
on such images by predicting the conditional p(class | sky) (this is akin to the “linear/shallow-first”
behavior described by Nakkiran et al. (2019); Mangalam & Prabhu (2019)). Thus, any method at-
tempting to minimize loss as fast as possible (e.g., steepest descent) may actually upweight these

2In the case of language—where tokenization is discrete and more interpretable—a precise definition is
sometimes possible, such as those depicted in Appendix B.

3In this discussion we use the term “noise” informally. We refer not necessarily to pure randomness, but
more generally to input variation which is least useful in predicting the target.

4The coincident growth of these two measures was previously noted by Ma & Ying (2021); Gamba et al.
(2023); MacDonald et al. (2023), though they did not make explicit this connection to how the network pro-
cesses different types of input variance.
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Figure 3: A toy example illustrating the effect of opposing signals. Images with many blue pixels
cause large activations and steep gradients. We project the loss to the hypothetical weight-space
dimension “sky = plane”. Left: Early optimization approaches the minimum, balancing the two
opposing losses. Progress continues through this valley, further aligning subnetworks and growing
the linear head. Right: The valley sharpens and iterates become unstable. Because these images are
a small minority and the others are less sensitive to this axis, the train loss is not noticeably affected
at first. Eventually either (a) the outlier gradients’ growth forces the network to downweight “sky”,
flattening the valley and returning to the first phase; or (b) the weights “catapult” to a different basin.

features. Furthermore, amplified opposing signals will cause greater sharpening than random noise,
because using a signal to the benefit of one group is maximally harmful for the other—e.g., confi-
dently predicting plane whenever there is sky will cause enormous loss on images of other classes
with sky. Since random noise is more diffuse, this effect is less pronounced.

This description is somewhat abstract. To gain a more precise understanding, we illustrate the
dynamics more explicitly on a toy example.

3.2 ILLUSTRATING WITH A HYPOTHETICAL EXAMPLE OF GRADIENT DESCENT

Consider the global loss landscape of a neural network: this is the function which describes how the
loss changes as we move through parameter space. Suppose we identify a direction in this space
which corresponds to the network’s use of the “sky” feature to predict plane versus some other
class. That is, we will imagine that whenever the input image includes a bright blue background,
moving the parameters in one direction increases the logit of the plane class and decreases the oth-
ers, and vice-versa. We will also decompose this loss—among images with a sky background, we
consider separately the loss on those labeled plane versus those with any other label. Because
the sky feature has large magnitude, a small change in weight space will induce a large change in
the network outputs— i.e., a small movement in the direction “sky = plane” will greatly increase
loss on these non-plane images.

Fig. 3 depicts this heavily simplified scenario. Early in training, optimizing this network with GD
will rapidly move towards the minimum along this direction. In particular, until better features are
learned, the direction of steepest descent will lead to a network which upweights the sky feature and
predicts p(class | sky) whenever it occurs. Once sufficiently close to the minimum, the gradient will
point “through the valley” towards amplifying the more relevant signal (Xing et al., 2018). However,
this will also cause the sky feature to grow in magnitude—as well as its potential influence under
selective perturbation, as described above. Both these factors contribute to progressive sharpening.

Here we emphasize the distinction between the loss on the outliers and the full train loss. As images
without sky (which comprise the majority of the dataset) are not nearly as sensitive to movement
along this axis, the global loss landscape may not at first be significantly affected. Continued op-
timization will oscillate across the minimum with growing magnitude, but this growth may not
be immediately apparent. Furthermore, progress orthogonal to these oscillations need not be af-
fected—we find some evidence that these two processes occur somewhat independently, which we
present in Section 4. Returning to the loss decomposition, we see that these oscillations will cause
the losses to grow and alternate, with one group having high loss and then the other. Eventually the
outliers’ loss increases sufficiently and the overall loss spikes (Fig. 1), either flattening the valley or
“catapulting” to a different basin (Wu et al., 2018; Lewkowycz et al., 2020; Thilak et al., 2022).

Verifying our toy example’s predictions. Though this explanation lacks precise details, it does
enable concrete predictions of network behavior during training. Fig. 4 tracks the predictions of a
ResNet-18 on an image of sky—to eliminate possible confounders, we create a synthetic image as a

5



Published as a conference paper at ICLR 2024

0 100 200 300 400 500
Iteration

−6

−4

−2

0

2

4

6

L
og

it
V

al
ue

Class Logits

plane
auto
bird
cat
deer
dog
frog
horse
ship
truck

0 1000 2000 3000 4000 5000
Iteration

5

10

15

20

N
or

m

Feature Norm

Input Image
Mean Over Data

Iter 27 Iter 28

Iter 29 Iter 30

Class Probabilities During OscillationInput Image

Figure 4: Passing a sky-colored block through a ResNet during GD precisely tracks the predic-
tions of our toy example. Left: In the first phase, the network rapidly learns to use the sky feature
to minimize loss. As signal is amplified, so too is the sky-colored input, and oscillation begins as de-
picted in Fig. 3. Middle: During oscillation, gradient steps alternate along the axis “sky = plane”
(and a bit ship). Right: The initial phase and oscillation amplifies the sky input, as evidenced by
the rapid growth in feature norm. The network then slowly learns to downweight this feature and
rely on other signal (average feature norm provided for comparison).

single color block. Though the “plane vs. other” example seems almost too simple, we see ex-
actly the described behavior—initial convergence to the minimum along with rapid growth in feature
norm, followed by oscillation in class probabilities. Over time, the network learns to use other signal
and downweights the sky feature, as evidenced by the slow decay in feature norm. We reproduce
this figure for many other inputs and for a VGG-11-BN in Appendix C, with similar findings.

Our example also suggests that oscillation serves as a valuable regularizer that reduces reliance
on easily learned opposing signals which may not generalize. When a signal is used to the ben-
efit of one group and the detriment of another, the disadvantaged group’s gradient will have larger
magnitude, and the network will be encouraged to downweight the feature. In Appendix C.3 we
reproduce Fig. 4 with a VGG-11-BN trained with a very small learning rate to closely approximate
gradient flow. We see that gradient flow and GD are very similar until reaching the edge of stability.
After this point, the feature norm under GD begins to slowly decay while oscillating; in contrast, in
the absence of oscillation, the feature norms of opposing signals under gradient flow grow contin-
uously. If opposing signals represent “simple” features which generalize worse, this could help to
explain the poor generalization of gradient flow. A similar effect was observed by Jastrzȩbski et al.
(2020), who noted that large initial learning rate leads to a better-conditioned loss landscape later.

3.3 THEORETICAL ANALYSIS OF OPPOSING SIGNALS IN A SIMPLE MODEL

To demonstrate this effect formally, we study misspecified linear regression on inputs x ∈ Rd with
a two-layer linear network. Though this model is simplified, it enables preliminary insight into
the factors we think are most important for these dynamics to occur. Since we are analyzing the
dynamics from initialization until the stability threshold, it will be sufficient to study the trajectory
of gradient flow—for reasonable step sizes η, a similar result then follows for gradient descent.
Our analysis reproduces the initial phase of quickly reducing loss on the outliers, followed by the
subsequent growth in sensitivity to the way the opposing signal is used—i.e., progressive sharpening.
We also verify this pattern (and the subsequent oscillation, which we do not formally prove) in
experiments on real and synthetic data in Appendix F.

Model. We model the observed features as a distribution over x ∈ Rd1 , assuming only that its co-
variance Σ exists—for clarity we treat Σ = I in the main text. We further model a vector xo ∈ Rd2

representing the opposing signal, with d2 > d1. We will suppose that on some small fraction of out-
liers p ≪ 1, xo ∼ Unif

({
±
√

α
pd2

1
})

(1 is the all-ones vector) for some α which governs the fea-

ture magnitude, and we let xo = 0 on the remainder of the dataset. We model the target as the func-
tion y = β⊤x+ 1√

d2
1⊤|xo|; this captures the idea that the signal xo correlates strongly with the tar-

get, but in opposing directions of equal strength. Finally, we parameterize the network with vectors
b ∈ Rd1 , bo ∈ Rd2 and scalar c in one single vector θ, as fθ(x) = c ·(b⊤x+b⊤o xo). Note the specific
distribution of xo is unimportant for our analysis; only the mean and variance matter. Furthermore,
in our simulations we observed the exact same behavior with cross-entropy loss. Our results suggest
that depth and a small signal-to-noise ratio are the only elements needed for this behavior to arise.
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Setup. A standard initialization would be to sample [b, bo]
⊤ ∼ N (0, 1

d1+d2
I), which would

then imply highly concentrated distributions for the quantities of interest. As tracking the pre-
cise concentration terms would not meaningfully contribute to the analysis, we simplify by di-
rectly assuming that at initialization these quantities are equal to their expected order of magnitude:
∥b∥22 = 1⊤b = d1

d1+d2
, ∥bo∥22 = 1⊤bo = d2

d1+d2
, and b⊤β = ∥β∥√

d1+d2
. Likewise, we let c = 1, ensur-

ing that both layers have the same norm. We perform standard linear regression by minimizing the
population loss L(θ) := 1

2E[(fθ(x) − y)2]. We see that the minimizer of this objective has bo = 0
and cb = β. However, an analysis of gradient flow will elucidate how depth and strong opposing
signals lead to sharpening as this minimum is approached.

Results. In exploring progressive sharpening, Cohen et al. (2021) found that sometimes the model
would have a brief decrease in sharpness, particularly for the square loss. In fact, this is consistent
with our above explanation: for larger α and a sharper loss (e.g. the square loss), the network will
initially prioritize minimizing loss on the outliers, thus heavily reducing sharpness. Our first result
proves that this occurs in the presence of large magnitude opposing signals:

Theorem 3.1 (Initial decrease in sharpness). Let k := d2

d1
, and assume ∥β∥ > max( d1√

d1+d2
, 24

5 ). At
initialization, the sharpness ∥∇2

θL(θ)∥2 lies in (α, 3α). Further, if
√
α = Ω(∥β∥k ln k), then both

∥bo∥22 and the overall sharpness will decrease as Õ(e−αt) from t = 0 until some time t1 ≤ ln ∥β∥/2
2∥β∥ .

Proofs can be found in Appendix G. After this decrease, signal amplification can proceed—but this
also means that the sharpness with respect to how the network uses the feature xo will grow, so a
small perturbation to the parameters bo will induce a large increase in loss.
Theorem 3.2 (Progressive sharpening). If

√
α = Ω(1 + ∥β∥2k ln k), then at starting at time t1 the

sharpness will increase linearly in ∥β∥ until some time t2 ≥ 1
2∥β∥2

2
, reaching at least 5

8∥β∥α. This
lower bound on sharpness applies to each dimension of bo.

Oscillation will not occur during gradient flow—but for SGD with step size η > 16
5∥β∥α , bo will start

to increase in magnitude while oscillating across the origin. If this growth continues, it will rapidly
reintroduce the feature, causing the loss on the outliers to grow and alternate. Such reintroduction (an
example of which occurs around iteration 3000 in Fig. 4) seems potentially helpful for exploration.
In Fig. 40 in the Appendix we simulate our model and verify exactly this sequence of events.

3.4 ADDITIONAL FINDINGS

Sharpness often occurs overwhelmingly in the first few layers. In Appendix D we track what
fraction of curvature5 lies in each layer of various networks during training with GD. In a ResNet-18,
sharpness occurrs almost exclusively in the first convolutional layer after the first few training steps;
the same pattern appears more slowly while training a VGG-11. In a Vision Transformer curvature
occurs overwhelmingly in the embedding layer and very slightly in the earlier MLP projection heads.
GPT-2 (Radford et al., 2019) follows the same pattern, though with less extreme concentration in the
embedding. Thus it does seem to be the case that earlier layers have the most significant sharpness—
especially if they perform dimensionality reduction or have particular influence over how the signal
is propagated to later layers. This seems the likely cause of large gradients in the early layers of
vision models (Chen et al., 2021; Kumar et al., 2022), suggesting that this effect is equally influential
during finetuning and pretraining and that further study can improve optimization.

Batchnorm may smooth training, even if not the loss itself. Cohen et al. (2021) noted that batch-
norm (BN) (Ioffe & Szegedy, 2015) does not prevent networks from reaching the edge of stability
and concluded, contrary to Santurkar et al. (2018), that BN does not smooth the loss landscape. We
conjecture that the benefit of BN may be in downweighting the influence of opposing signals and
mitigating this oscillation. In other words, BN may smooth the optimization trajectory of neural
networks, rather than the loss itself (this is consistent with the distinction made by Cohen et al.
(2021) between regularity and smoothness). In Section 4 we demonstrate that Adam also smooths

5The “fraction of curvature” is with respect to the top eigenvector of the loss Hessian. We partition this
vector by network layer, so each sub-vector’s squared norm represents that layer’s contribution to the overall
curvature.
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Figure 5: Outliers with opposing signals have a significant influence even during SGD. Left: We
plot the losses of paired outlier groups on a VGG-11-BN trained on CIFAR-10, along with the full
train loss for comparison. Modulo batch randomness, the outliers’ loss follow the same oscillatory
pattern with large magnitude. See appendix for the same without batchnorm. Right (top): We train
a small MLP on a 5k subset of CIFAR-10 with various optimizers and project the iterates onto the
top Hessian eigenvector. SGD closely tracks GD, bouncing across the valley; momentum somewhat
mitigates the sharp jumps. Adam smoothly oscillates along one side. Right (bottom): Adam’s
effective step size drops sharply when moving too close or far from the valley floor.

the optimization trajectory and that minor changes to emulate this effect can aid stochastic optimiza-
tion. We imagine that the effect of BN could also depend on the use of GD vs. SGD. Specifically,
our findings hint at a possible benefit of BN which applies only to SGD: reducing the influence of
imbalanced opposing signals in a random minibatch.

For both GD and SGD, approximately half of training points go up in loss on each step.
Though only the outliers are wildly oscillating, many more images contain some small compo-
nent of the features they exemplify. Fig. 37 in the Appendix shows that the fraction of points which
increase in loss hovers around 50% for every step—to some extent, a small degree of oscillation
appears to be happening to the entire dataset. Fig. 38 depicts the distribution of changes in loss of
individual training points at each iteration: the density closely approximates a normal curve, with a
mean consistently just below 0 and a standard deviation around 0.3-0.5.

4 THE INTERPLAY OF OPPOSING SIGNALS AND STOCHASTICITY

Full-batch GD is not used in practice when training NNs. It is therefore pertinent to ask what
these findings imply about stochastic optimization. We begin by verifying that this pattern persists
during SGD. Fig. 5(a) displays the losses for four opposing group pairs of a VGG-11-BN trained on
CIFAR-10 with SGD batch size 128. We observe that the paired groups do exhibit clear opposing
oscillatory patterns, but they do not alternate with every step, nor do they always move in opposite
directions. This should not be surprising: we expect that not every batch will have a given signal
in one direction or the other. For comparison, we include the full train loss in each figure—that is,
including the points not in the training batch. We see that the loss on the outliers has substantially
larger variance; to confirm that this is not just because the groups have many fewer samples, we also
plot the loss on a random subset of training points of the same size. We reproduce this plot with a
VGG-11 without BN in Fig. 39 in the Appendix.

Having verified that this behavior occurs in the stochastic setting, we conjecture that current best
practices for neural network optimization owe much of their success to how they handle opposing
signals. As a proof of concept, we will make this more precise with a preliminary investigation of
the Adam optimizer (Kingma & Ba, 2014).

4.1 HOW ADAM HANDLES GRADIENTS WITH OPPOSING SIGNALS

To better understand their differences, Fig. 5(b) visualizes the parameter iterates of Adam and SGD
with momentum on a ReLU MLP trained on a 5k subset of CIFAR-10, alongside those of GD and
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SGD (all methods use the same initialization and sequence of training batches). The top figure is the
projection of these parameters onto the top eigenvector of the loss Hessian of the network trained
with GD, evaluated at the first step where the sharpness crosses 2/η. We observe that SGD tracks a
similar path to GD, though adding momentum mitigates the oscillation somewhat. In contrast, the
network optimized with Adam markedly departs from this pattern, smoothly oscillating along one
side. We identify three components of Adam which potentially contribute to this effect:

Advantage 1: Smaller steps along directions with higher curvature. Adam’s normalization
causes smaller steps along the top eigenvector, especially near the minimum. The lower plot in
Fig. 5(b) shows that the effective step size in this direction—i.e., the absolute inner product of the
parameter-wise step sizes and the top eigenvector—rapidly drops to zero as the iterates move or-
thogonal to the valley floor. Thus normalizing by curvature parameter-wise seems crucial; similarly,
Pan & Li (2023) show that parameter-wise gradient clipping improves SGD substantially.

Advantage 2: Managing heavy-tailed gradients and avoiding steepest descent. Zhang et al.
(2020) identified the “trust region” as important for Adam’s success, pointing to heavy-tailed noise
in the stochastic gradients. More recently, Kunstner et al. (2023) argued that Adam’s superiority
does not come from better handling noise, supported with large batch experiments. Our result
reconciles these contradictory claims by showing that the difficulty is not heavy-tailed noise,
but strong, directed (and perhaps imbalanced) opposing signals. Unlike traditional “gradient
noise”, larger batch sizes may not reduce this effect—that is, the full gradient is heavy-tailed across
parameters. Furthermore, the largest steps emulate Sign SGD, which is notably not a descent
method. Fig. 5(b) shows that Adam’s steps are more parallel to the valley floor than those of steepest
descent. Thus it seems advantageous to intentionally avoid steepest descent, which might lead to
an ill-conditioned landscape. This point is also consistent with the observed generalization benefits
of a large learning rate for SGD on NNs (Jastrzȩbski et al., 2020); in fact, opposing signals naturally
fit the concept of “easy-to-fit” features as modeled by Li et al. (2019).

Advantage 3: Dampening. Traditional SGD with momentum β < 1 takes a step which weights
the current gradient by 1/(1+β) > 1/2. Though this makes intuitive sense, our results imply that
heavily weighting the most recent gradient can be problematic. Instead, we expect an important
addition is dampening, which multiplies the stochastic gradient at each step by some (1 − τ) < 1.
We observe that Adam’s (unnormalized) gradient is equivalent to SGD with momentum and
dampening both equal to β1, plus a debiasing step. Recently proposed alternatives also include
dampening in their momentum update but do not explicitly identify the distinction (Zhang et al.,
2020; Pan & Li, 2023; Chen et al., 2023).

Using these insights to aid stochastic optimization. To test whether our findings translate to
practical gains, we design a variant of SGD which incorporates these insights. First, we use damp-
ening τ = 0.9 in addition to momentum. Second, we choose a global threshold: if the gradient
magnitude for a parameter is above this threshold, we take a fixed step size; otherwise, we take a
gradient step as normal. The exact method appears in Appendix E. We emphasize that our goal here
is not to propose a new optimization algorithm; we are exploring the potential value gained from
knowledge of the existence and influence of opposing signals.

Results in Appendix E show that this approach matches Adam when training ResNet-56/110 on
CIFAR-10 with learning rates for the unthresholded parameters across several orders of magnitude
ranging from 10−4 to 103. Notably, the fraction of parameters above the threshold is only around
10-25% per step, and the trajectory and behavior of the network is dominated by this small fraction;
the remainder can be optimized much more robustly, but their effect on the network’s behavior
is obscured. We therefore see the influence of opposing signals as a possible explanation for the
“hidden” progress in grokking (Barak et al., 2022; Nanda et al., 2023). We also compare this method
to Adam for the early phase of training GPT-2 on the OpenWebText dataset (Gokaslan et al., 2019)—
not only do they perform the same, their loss similarity suggests that their exact trajectory may be
very similar (Appendix E.1). Here the fraction of parameters above the threshold hovers around
50% initially and then gradually decays. The fact that many more parameters in the transformer are
above the threshold suggests that the attention mechanism is more sensitive to opposing signals and
that further investigation of how to mitigate this instability may be fruitful.
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5 CONCLUSION

The existence of outliers with such a significant yet non-obvious influence on neural network train-
ing raises as many questions as it answers. This work presents an initial investigation into their effect
on various aspects of optimization, but there is still much more to understand. Though it is clear
they have a large influence on training, less obvious is whether reducing their influence is necessary
for improved optimization or simply coincides with it. At the same time, there is evidence that the
behavior these outliers induce may serve as an important method of exploration and/or regulariza-
tion. If so, another key question is whether these two effects can be decoupled—or if the incredible
generalization ability of neural networks is somehow inherently tied to their instability.
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A RELATED WORK AND DISCUSSION

Many of the observations we make in this paper are not new, having been described in various prior
works. Rather, this work identifies a possible higher-order cause which neatly ties these findings
together. There are also many works which pursue a more theoretical understanding of each of these
phenomena independently. Such analyses begin with a set of assumptions (on the data, in particular)
and prove that the given behavior follows. In contrast, this work begins by identifying a condition—
the presence of opposing signals—which we argue is likely a major cause of these behaviors. These
two are not at odds: we believe in many cases our result serves as direct evidence for the validity
of these modeling assumptions and that it may enable even more fine-grained analyses. This work
provides an initial investigation which we hope will inspire future efforts towards a more complete
understanding.

Characterizing the NN loss landscape. Earlier studies of the loss landscape extensively explored
the spectrum of the Hessian of the loss, with a common observation being a hierarchical structure
with a small group of very large outlier eigenvalues (Sagun et al., 2016; 2017; Papyan, 2018; 2019;
Fort & Ganguli, 2019; Ghorbani et al., 2019; Li et al., 2020; Papyan, 2020; Kopitkov & Indelman,
2020). Later efforts focused on concretely linking these observations to corresponding behavior,
often with an emphasis on SGD’s bias towards particular solutions (Wu et al., 2018; Jastrzȩbski
et al., 2017; 2020) and what this may imply about its resulting generalization (Jastrzȩbski et al.,
2019; Zhu et al., 2019; Wu et al., 2022). Our method for identifying these paired groups, along with
Fig. 2, indicates that this outlier spectrum is precisely the directions with opposing signals in the
gradient, and that this pattern may be key to better understanding the generalization ability of NNs
trained with SGD.

Progressive sharpening and the edge of stability. Shifting away from the overall structure, more
recent focus has been specifically on top eigenvalue(s), where it was empirically observed that their
magnitude (the loss “sharpness”) grows when training with SGD (Jastrzȩbski et al., 2019; 2020)
and GD (Kopitkov & Indelman, 2020; Cohen et al., 2021) (so-called “progressive sharpening”).
This leads to rapid oscillation in weight space (Xing et al., 2018; Jastrzȩbski et al., 2019; Cohen
et al., 2021; 2022). Cohen et al. (2021) also found that for GD this coincides with a consistent
yet non-monotonic decrease in training loss over long timescales, which they named the “edge of
stability”; moreover, they noted that this behavior runs contrary to our traditional understanding of
NN convergence. Many works have since investigated the possible origins of this phenomenon (Zhu
et al., 2023; Kreisler et al., 2023); several are deeply related to our findings. Ma et al. (2022) connect
this behavior to the existence of multiple “scales” of losses; the outliers we identify corroborate
this point. Damian et al. (2022) prove that GD implicitly regularizes the sharpness—we identify a
conceptually distinct source of such regularization, as described in Section 3. Arora et al. (2022)
show under some conditions that the GD trajectory follows a minimum-loss manifold towards lower
curvature regions. This is consistent with our findings, and we believe this manifold to be precisely
the path which evenly balances the opposing gradients. Wang et al. (2022) provide another thorough
analysis of NN training dynamics at the edge of stability; their demonstrated phases closely align
with our own. They further observe that this sharpening coincides with a growth in the norm of
the last layer, which was also noted by MacDonald et al. (2023). Our proposed explanation for the
effect of opposing signals offers some insight into this relationship.

Roughly, our results seem to imply that progressive sharpening occurs when the network learns to
rely on (or not rely on) opposing signals in a very specific way, while simultaneously amplifying
overall sensitivity. This growth in sensitivity means a small parameter change modifying how op-
posing signals are used can massively increase loss. This leads to intermittent instability orthogonal
to the “valley floor”, accompanied by gradual training loss decay and occasional spikes as described
by the toy example in Fig. 3 and depicted on real data in Fig. 1.

Generalization, grokking, slingshotting, and subnetworks. We see ties between opposing sig-
nals and many other phenomena in NN optimization, but a few specific concepts stand out to us
as most clearly related. At least in images, the features which provide opposing signals match the
traditional picture of “spurious correlations” surprisingly closely—we conjecture that the factors af-
fecting whether a network maintains balance or diverges along a direction also determine whether
it continues to use a “spurious” feature or is forced to find an alternative way to minimize loss.
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Indeed, the exact phenomenon of a network “slingshotting” to a new region has been directly ob-
served, along with a corresponding change in generalization (Wu et al., 2018; Lewkowycz et al.,
2020; Jastrzȩbski et al., 2021; Thilak et al., 2022). “Grokking” (Power et al., 2022), whereby a net-
work learns to generalize long after memorizing the training set, is another closely related area of
study. Several works have shown that grokking is a “hidden” phenomenon, with gradual amplifica-
tion of generalizing subnetworks (Barak et al., 2022; Nanda et al., 2023; Merrill et al., 2023); it has
even been noted to co-occur with weight oscillation (Notsawo Jr et al., 2023). We observe that the
opposing signal gradients dominate the overall gradient for most of training—and our experiments
on SGD in Section 4 and Appendix E give some further evidence that NN optimization occurs on
two different scales, obscured by the network’s behavior on outliers. We note that this also relates
to the Lottery Ticket Hypothesis (Frankle & Carbin, 2019): we think it is not unlikely that a pruned
winning ticket is one which is not as influenced by opposing signals, allowing it to more easily tra-
verse the loss landscape. In fact, said ticket may already be following this trajectory during standard
optimization—but the behavior (and loss) of the remainder of the network on these opposing signals
would obscure its progress.

Simplicity bias and double descent. Nakkiran et al. (2019) observed that NNs learn functions
of increasing complexity throughout training. Our experiments—particularly the slow decay in
the norm of the feature embedding of opposing signals—lead us to believe it would be more
correct to say that they unlearn simple functions, which enables more complex subnetworks with
smaller magnitude and better performance to take over. At first this seems at odds with the notion
of simplicity bias (Valle-Perez et al., 2019; Shah et al., 2020), defined broadly as a tendency of
networks to rely on simple functions of their inputs. However, it does seem to be the case that the
network will use the simplest (e.g., largest norm) features that it can, so long as such features allow
it to approach zero training loss; otherwise it may eventually diverge. This tendency also suggests
a possible explanation for double descent (Belkin et al., 2019; Nakkiran et al., 2020): even after
interpolation, the network pushes towards greater confidence and the weight layers continue to
balance (Saxe et al., 2013; Du et al., 2018), increasing sharpness. This could lead to oscillation,
pushing the network to learn new features which generalize better (Wu et al., 2018; Li et al., 2019;
Rosenfeld et al., 2022; Thilak et al., 2022). This behavior would also be more pronounced for
larger networks because they exhibit greater sharpening. Note that the true explanation is not quite
so straightforward: generalization is sometimes improved via methods that reduce oscillation (like
loss smoothing), implying that this behavior is not always advantageous. A better understanding of
these nuances is an important subject for future study.

Sharpness-Aware Minimization Another connection we think merits further inquiry is
Sharpness-Aware Minimization (SAM) (Foret et al., 2021), which is known to improve general-
ization of neural networks for reasons still not fully understood (Wen et al., 2023). In particular, the
better-performing variant is 1-SAM, which takes positive gradient steps on each training point in
the batch individually. It it evident that several of these updates will point along directions of steep-
est descent/ascent orthogonal to the valley floor (and, if not normalized, the updates may be very
large). Thus it may be that 1-SAM is in some sense “simulating” oscillation and divergence out of
this valley in both directions, enabling exploration in a manner that would not normally be possible
until the sharpness grows large enough—these intermediate steps would also encourage the network
to downweight these features sooner and faster. In contrast, standard SAM would only take this
step in one of the two directions, or perhaps not at all if the opposing signals are equally balanced.
Furthermore, unlike 1-SAM the intermediate step would blend together all opposing signals in the
minibatch. These possibilities seem a promising direction for further exploration.
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B EXAMPLES OF OPPOSING SIGNALS IN TEXT

Punctuation Ordering

the EU is \the best war-avoidance mechanism ever invented["].
because it was one of the few that still \dry-farmed["].
He describes the taste as \almost minty["].
I did receive several offers to \help out a bit["].
Nor is it OK to say \the real solution is in a technological
breakthrough["].
and that’s what they mean by \when complete["].
and that the next big investment bubble to burst is the \carbon
bubble["].
he had been \driven by ideological and political motives["].
Prime Minister Najib Razak’s personal bank account was a \genuine
donation["].
exceptional intellect, unparalleled integrity, and record of
independence["].
was the \most consequential decision I’ve ever been involved
with["].
which some lawmakers have called the \filibuster of all
filibusters["].
Democrats vowed to filibuster what some openly called a \stolen
seat["].

His leather belt was usually the delivery method of choice.["]
\It’s laborious and boring. He loved excitement and attention.["]
‘That little son-of-a-gun is playing favorites,’ and turned it
against him.["]
\For medicinal purposes, for medical purposes, absolutely, it’s
fine.["]
\That’s a choice that growers make. It’s on their side of the
issue.["]
to be a good steward of your land. You have to make big decisions
in a hurry.["]
\But of course modern farming looks for maximum yield no matter
what you have to put in. And in the case of California, that input
is water.["]
And we have been drawing down on centuries of accumulation. Pretty
soon those systems are not going to be able to provide for us.["]
not a luxury crop like wine. I’m really excited ab out the
potential.["]
\We knew and still believe that it was the right thing to do.["]
spending lots of time in the wind tunnel, because it shows when we
test them.["]
Compliance was low on the list, but I think it’s a pretty
comfortable bike.["]
the opportunity to do that.’ I just needed to take it and run with
it.["]

Figure 6: Examples of opposing signals in text. Found by training GPT-2 on a subset of OpenWeb-
Text. Sequences are on separate lines, the token in brackets is the target and all prior tokens are (the
end of the) context. As both standards are used, it is not always clear whether punctuation will come
before or after the end of a quotation (we include the period after the quote for clarity—the model
does not condition on it). Note that the double quotation is encoded as the pair of tokens [447,
251], and the loss oscillation is occurring for sequences that end with this pair, either before (top)
or after (bottom) the occurrence of the period token (13).
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New Line or ‘the’ After Colon

In order to prepare your data, there are three things to do:[\n]
in the FP lib of your choice, namely Scalaz or Cats. It looks like
this:[\n]
Salcedo said of the work:[\n]
Enter your email address:[\n]
According to the CBO update:[\n]
Here’s a list of 5 reasons as to why self diagnosis is valid:[\n]
successive Lambda invocations. It looks more or less like
this:[\n]
data, there are three things to do:[\n]
4.2 percent in early 2018.\n\nAccording to the CBO update:[\n]
other than me being myself."\n\nWATCH:[\n]
is to make the entire construction plural.\n\nTwo recent
examples:[\n]
We offer the following talking points to anyone who is attending
the meeting:[\n]
is on the chopping block - and at the worst possible moment:[\n]

as will our MPs in Westminster. But to me it is obvious: [the]
The wheelset is the same as that on the model above: [the]
not get so engrained or in a rut with what I had been doing. Not
to worry: [the]
robs this incredible title of precisely what makes it so wonderful:
[the]
you no doubt noticed something was missing: [the]
Neil Gorsuch’s ’sexist’ comments on maternity leave: [the]

Figure 7: Examples of opposing signals in text. Found by training GPT-2 on a subset of Open-
WebText. Sequences are on separate lines, the token in brackets is the target and all prior tokens
are (the end of the) context. Sometimes a colon occurs mid-sentence—and is often followed by
“the”—other times it announces the start of a new line. The model must unlearn “: 7→ [\n]” versus
“: 7→ [the]” and instead use other contextual information.
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Figure 8: Loss of GPT-2 on the above opposing signals.
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C REPRODUCING FIG. 4 IN OTHER SETTINGS

Though colors are straightforward, for some opposing signals such as grass texture it is not clear
how to produce a synthetic image which properly captures what precisely the model is latching on
to. Instead, we identify a real image which has as much grass and as little else as possible, with the
understanding that the additional signal in the image could affect the results. We depict the grass
image alongside the plots it produced.

C.1 RESNET-18 TRAINED WITH GD ON OTHER INPUTS
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Figure 9: ResNet-18 on a red color block.
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Figure 10: ResNet-18 on a green color block. As this color seems unnatural, we’ve included two
examples of relevant images in the dataset.

Figure 11: Examples of images with the above green color.
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Figure 12: ResNet-18 on a white color block.
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Figure 13: ResNet-18 on a black color block.
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Figure 14: ResNet-18 on an image with mostly grass texture.
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C.2 VGG-11-BN TRAINED WITH GD

For VGG-11, we found that the feature norm of the embedded images did not decay nearly as much
over the course of training. We expect this has to do with the lack of a residual component. However,
for the most part these features do still follow the pattern of a rapid increase, followed by a marked
decline.
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Figure 15: VGG-11-BN on a sky color block.
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Figure 16: VGG-11-BN on a red color block.
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Figure 17: VGG-11-BN on a green color block. See above for two examples of relevant images in
the dataset.
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Figure 18: VGG-11-BN on an image with mostly grass texture.
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C.3 VGG-11-BN WITH SMALL LEARNING RATE TO APPROXIMATE GRADIENT FLOW

Here we see that oscillation is a valuable regularizer, preventing the network from continuously
upweighting opposing signals. As described in the main body, stepping too far in one direction
causes an imbalanced gradient between the two opposing signals. Since the group which now has
a larger loss is also the one which suffers from the use of the feature, the network is encouraged to
downweight its influence. If we use a very small learning rate to approximate gradient flow, this
regularization does not occur and the feature norms grow continuously. This leads to over-reliance
on these features, suggesting that failing to downweight opposing signals is a likely cause of the
poor generalization of networks trained with gradient flow.

The following plots depict a VGG-11-BN trained with learning rate .0005 to closely approximate
gradient flow. We compare this to the feature norms of the same network trained with gradient
descent with learning rate 0.1, which closely matches gradient flow until it becomes unstable..
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Figure 19: VGG-11-BN on a sky color block with learning rate 0.005 (approximating gradient flow)
compared to 0.1.
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Figure 20: VGG-11-BN on a white color block with learning rate 0.005 (approximating gradient
flow) compared to 0.1.
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Figure 21: VGG-11-BN on a black color block with learning rate 0.005 (approximating gradient
flow) compared to 0.1.
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Figure 22: VGG-11-BN on a red color block with learning rate 0.005 (approximating gradient flow)
compared to 0.1.
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Figure 23: VGG-11-BN on a green color block with learning rate 0.0005 (approximating gradient
flow) compared to 0.1.
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Figure 24: VGG-11-BN on an image with mostly grass texture with learning rate 0.0005 (approxi-
mating gradient flow) compared to 0.1.
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C.4 RESNET-18 TRAINED WITH FULL-BATCH ADAM

Finally, we plot the same figures for a ResNet-18 trained with full-batch Adam. We see that Adam
consistently and quickly reduces the norm of these features, especially for more complex features
such as texture, and that it also quickly reaches a point where oscillation ends. Note when comparing
to plots above that the maximum iteration on the x-axis differs.
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Figure 25: ResNet-18 on a sky color block trained with Adam.
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Figure 26: ResNet-18 on a red color block trained with Adam.

0 200 400 600 800 1000
Iteration

−10

−5

0

5

10

L
og

it
V

al
ue

Class Logits

plane
auto
bird
cat
deer
dog
frog
horse
ship
truck

0 200 400 600 800 1000
Iteration

10

20

30

40

50

60

N
or

m

Feature Norm

Input Image
Mean Over Data

Input Image

Figure 27: ResNet-18 on a green color block trained with Adam.
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Figure 28: ResNet-18 on an image with mostly grass texture trained with Adam.
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D TRACKING THE AMOUNT OF CURVATURE IN EACH PARAMETER LAYER

Here we plot the “fraction of curvature” of different architectures at various training steps. Recall
the fraction of curvature is defined with respect to the top eigenvector of the loss Hessian. We
partition this vector by network layer and evaluate each sub-vector’s squared norm. This represents
that layer’s contribution to the overall curvature. To keep the plots readable, we omit layers whose
fraction is never greater than 0.01 at any training step (including the intermediate ones not plotted),
though we always include the last linear layer. The total number of layers is 45, 38, 106, and 39 for
the ResNet, VGG-11, ViT, and NanoGPT respectively.
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Figure 29: Sum of squared entries of the top eigenvector of the loss Hessian which lie in each
parameter layer of a ResNet-18 throughout training.
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Figure 30: Sum of squared entries of the top eigenvector of the loss Hessian which lie in each
parameter layer of a VGG-11-BN throughout training.
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Figure 31: Sum of squared entries of the top eigenvector of the loss Hessian which lie in each
parameter layer of a ViT throughout training.
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Figure 32: NanoGPT (6 layers, 6 head per layer, embedding dimension 384) trained on the default
shakespeare character dataset in the NanoGPT repository. Due to difficulty calculating the true top
eigenvector, we approximate it with the exponential moving average of the squared gradient.
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E COMPARING OUR VARIANT OF SGD TO ADAM

As described in the main text, we find that simply including dampening and taking a fixed step
size on gradients above a certain threshold results in performance matching that of Adam for the
experiments we tried. We found that setting this threshold equal to the q = .1 quantile of the very
first gradient worked quite well—this was about 1e-4 for the ResNet-110 and 1e-6 for GPT-2.

For the ResNet we also ablate the use of dampening: we find that masking appears to be much more
important for early in training, while dampening is helpful for maintaining performance later. It is
not immediately what may be the cause of this, nor if it will necessarily transfer to attention models.

Simply to have something to label it with, we name the method SplitSGD, because it performs SGD
and SignSGD on different partitions of the data. We emphasize that we do not intend to introduce
this as a new optimization algorithm or assert any kind of superior performance—our goal is only to
demonstrate the insight gained from knowledge of opposing signals’ influence on NN optimization.
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(a) Adam versus standard SGD with Momentum
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(b) Adam vs. SplitSGD, but with no dampening.
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(a) Adam vs. SplitSGD with dampening
(b) The fraction of parameters for which a fixed-size
signed step was taken for each gradient step.

E.1 SPLITSGD ON GPT-2

For the transformer, we use the public nanoGPT repository which trains GPT-2 on the OpenWebText
dataset. As a full training run would be too expensive, we compare only for the early stage of
optimization. Not only do the two methods track each other closely, it appears that they experience
exactly the same oscillations in their loss. Though we do not track the parameters themselves, we
believe it would be meaningful to investigate if these two methods follow very similar optimization
trajectories as well.
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Figure 35: Adam versus SplitSGD on the initial stage of training GPT-2 on the OpenWebText
dataset, and the fraction of parameters with a fixed-size signed step. All hyperparameters are the de-
faults from the nanoGPT repository. Observe that not only is their performance similar, they appear
to have exactly the same loss oscillations.
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F ADDITIONAL FIGURES
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Figure 36: Opposing signals when fitting a Chebyshev polynomial with a small MLP. Though the
data lacks traditional “outliers”, it is apparent that the network has some features which are most
influential only on the more negative inputs (or whose effect is otherwise cancelled out by other
features). Since the correct use of this feature is opposite for these two groups, they provide opposing
signals.
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Figure 37: The fraction of overall training points which increase in loss on any given step. For both
SGD and GD, it hovers around 0.5 (VGG without batchnorm takes a long time to reach the edge of
stability). Though the outliers have much higher amplitude in their loss change, many more images
contain some small component of the features they exemplify (or are otherwise slightly affected by
the weight oscillations), and so these points also oscillate in loss at a smaller scale.
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Figure 38: Distribution of changes in loss of individual training points at each iteration (starting
at iteration 200 on a ResNet-18). The density is a nice bell curve, with consistent mean near 0
and standard deviation in [0.3, 0.5], sometimes a bit more or less. The fraction of samples at a
loss change greater in magnitude than µ ± cσ is consistently very near to [0.055, 0.015, 0.005] for
c ∈ [2, 3, 4].
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Figure 39: We reproduce Fig. 5(a) without batch normalization.
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(a) A 3-layer ReLU MLP trained on a 5k-subset
of CIFAR-10.
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(b) Our model: a 2-layer linear network trained on
mostly Gaussian data with opposing signals.

Figure 40: We compare a small ReLU MLP on a subset of CIFAR-10 to our simple model of linear
regression with a two-layer network.
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G PROOFS OF THEORETICAL RESULTS

Before we begin the analysis, we must identify the quantities of interest during gradient flow and
the system of equations that determines how they evolve.

We start by writing out the loss:

2L(θ) = E[(c(b⊤x+ b⊤o xo)− (β⊤x+ d
−1/2
2 1⊤|xo|))2] (1)

= E[((cb− β)⊤x)2] + E[((cbo − d
−1/2
2 sign(xo)1)

⊤xo)
2] (2)

= ∥cb− β∥2 + p

2

((√
α

p
(cbo − 1)

)2

+

(√
α

p
(cbo + 1)

)2
)

(3)

= ∥cb− β∥2 + α(c2∥bo∥2 + 1). (4)

This provides the gradients
∇bL = c(cb− β), (5)

∇boL = αc2bo, (6)

∇cL = b⊤(cb− β) + α∥bo∥2c. (7)
We will also make use of the Hessian to identify its top eigenvalue; it is given by

∇2
θL(θ) =

 c2Id1
0d1×d2

2cb
0d2×d1 αc2Id2 2cαbo
2cb⊤ 2cαb⊤o ∥b∥2 + α∥bo∥2

 . (8)

The maximum eigenvalue λmax at initialization is upper bounded by the maximum row sum of this
matrix, and thus λmax ≤ 3d1+αd2

d1+d2
< 3α. Clearly, we also have λmax ≥ α.

We observe that tracking the precise vectors b, bo are not necessary to uncover the dynamics when
optimizing this loss. First, let us write b := ϵ β

∥β∥ + δv, where v is the direction of the rejection of b
from β (i.e., β⊤v = 0) and δ is its norm. Then we have the gradients

∇ϵL = (∇ϵb)
⊤(∇bL) (9)

=
β

∥β∥
⊤(

c2
(
ϵ

β

∥β∥ + δv

)
− cβ

)
(10)

= c2ϵ− c∥β∥, (11)

∇δL = (∇δb)
⊤(∇bL) (12)

= v⊤
(
c2
(
ϵ

β

∥β∥ + δv

)
− cβ

)
(13)

= c2δ, (14)

∇cL =

(
ϵ

β

∥β∥ + δv

)⊤(
c

(
ϵ

β

∥β∥ + δv

)
− β

)
+ α∥bo∥2c (15)

= c(ϵ2 + δ2 + α∥bo∥2)− ϵ∥β∥. (16)

Finally, define the scalar quantity o := ∥bo∥2, noting that ∇oL = 2b⊤o ∇boL = 2αc2o. Minimizing
this loss via gradient flow is therefore characterized by the following ODE on four scalars:

dϵ

dt
= −c2ϵ+ c∥β∥, (17)

dδ

dt
= −c2δ, (18)

do

dt
= −2αc2o, (19)

dc

dt
= −c(ϵ2 + δ2 + αo) + ϵ∥β∥. (20)

(21)
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Furthermore, we have the boundary conditions

ϵ(0) =

√
1

d1 + d2
, (22)

δ(0) =

√
d1 − 1

d1 + d2
, (23)

o(0) =
d2

d1 + d2
, (24)

c(0) = 1. (25)

Given these initializations and dynamics, we make a few observations: (i) all four scalars are initial-
ized at a value greater than 0, and remain greater than 0 at all time steps; (ii) δ and o will decrease
towards 0 monotonically, and ϵ will increase monotonically until cϵ = ∥β∥; (iii) c will be decreasing
at initialization. Lastly, we define the quantity r := (ϵ(0)2+δ(0)2+αo(0)) = d1+αd2

d1+d2
and k := d2

d1
.

Before we can prove the main results, we present a lemma which serves as a key tool for deriving
continuously valid bounds on the scalars we analyze:
Lemma G.1. Consider a vector valued ODE with scalar indices v1, v2, . . ., where each index is
described over the time interval [tmin, tmax] by the continuous dynamics dvi(t)

dt = ai(v−i(t))·vi(t)+
bi(v−i(t)) with ai ≤ 0, bi ≥ 0 for all i, t (v−i denotes the vector v without index i). That is, each
scalar’s gradient is an affine function of that scalar with a negative coefficient. Suppose we define
continuous functions âi, b̂i : R → R such that ∀i, t, âi(t) ≤ ai(v−i(t)) and b̂i(t) ≤ bi(v−i(t)).
Let v̂ be the vector described by these alternate dynamics, with the boundary condition v̂i(tmin) =
vi(tmin) and vi(tmin) ≥ 0 for all i (if a solution exists). Then for t ∈ [tmin, tmax] it holds that

v̂(t) ≤ v(t), (26)

elementwise. If âi, b̂i upper bound ai, bi, the inequality is reversed.

Proof. Define the vector w(t) := v̂(t)− v(t). This vector has the dynamics

dwi

dt
=

dv̂i
dt

− dvi
dt

(27)

= âi(t) · v̂i(t) + b̂i(t)− ai(v−i(t)) · vi(t)− bi(v−i(t)) (28)
≤ âi(t) · v̂i(t)− ai(v−i(t)) · vi(t). (29)

The result will follow by showing that w(t) ≤ 0 for all t ∈ [tmin, tmax] (this clearly holds at
tmin). Assume for the sake of contradiction there exists a time t′ ∈ (tmin, tmax] and index i such
that wi(t

′) > 0 (let i be the first such index for which this occurs, breaking ties arbitrarily). By
continuity, we can define t0 := max {t ∈ [tmin, t

′] : wi(t) ≤ 0}. By definition of t0 it holds that
wi(t0) = 0 and ∀ϵ > 0, wi(t0 + ϵ) − wi(t0) = wi(t0 + ϵ) > 0, and thus dwi(t0)

dt > 0. But by the
definition of w we also have

v̂i(t0) = vi(t0) + wi(t0) (30)
= vi(t0), (31)

and therefore
dwi(t0)

dt
≤ âi(t0) · v̂i(t0)− ai(v−i(t0)) · vi(t0) (32)

=
(
âi(t0)− ai(v−i(t0))

)
· vi(t0) (33)

≤ 0, (34)

with the last inequality following because âi(t) ≤ ai(v−i(t)) and vi(t) > 0 for all i, t ∈ [tmin, tmax].
Having proven both dwi(t0)

dt > 0 and dwi(t0)
dt ≤ 0, we conclude that no such t′ can exist. The other

direction follows by analogous argument.

We make use of this lemma repeatedly and its application is clear so we invoke it without direct
reference. We are now ready to prove the main results:
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G.1 PROOF OF THEOREM 3.1

Proof. At initialization, we have ∥β∥ ≥ d1√
d1+d2

=⇒ ∥β∥ϵ(0) ≥ d1

d1+d2
= c(0)(ϵ(0)2 + δ(0)2).

Therefore, we can remove these terms from dc
dt at time t = 0, noting simple that dc

dt ≥ −αoc.
Further, so long as c is still decreasing (and therefore less than c(0) = 1),

d(∥β∥ϵ− c(ϵ2 + δ2))

dt
≥ d(∥β∥ϵ− (ϵ2 + δ2))

dt
(35)

= (∥β∥ − 2ϵ)
dϵ

dt
− 2δ

dδ

dt
(36)

= (∥β∥ − 2ϵ)(−c2ϵ+ ∥β∥c)− 2δ(−c2δ) (37)

= −c2(ϵ∥β∥ − 2(ϵ2 + δ2) + c(∥β∥2 − 2ϵ) (38)

≥ −c(ϵ∥β∥ − 2(ϵ2 + δ2)) + c(∥β∥2 − 2ϵ) (39)

= c(∥β∥2 − 2ϵ− ϵ∥β∥+ 2(ϵ2 + δ2)) (40)

≥ c(∥β∥2 − ϵ(2 + ∥β∥)). (41)

Since c > 0 at all times, this is non-negative so long as the term in parentheses is non-negative,
which holds so long as ϵ ≤ ∥β∥2

∥β∥+2 . Further, since ϵc ≤ ∥β∥ we have

dϵ2

dt
= 2ϵ

dϵ

dt
(42)

= −2c2ϵ2 + 2ϵc∥β∥ (43)

≤ 2∥β∥2. (44)

This implies ϵ(t)2 ≤ ϵ(0)2 + 2t∥β∥2. Therefore, for t ≤ ln ∥β∥/2
2∥β∥ we have ϵ(t)2 ≤ 1

d1+d2
+

∥β∥ ln ∥β∥/2 ≤ ∥β∥4

(∥β∥+2)2 (this inequality holds for ∥β∥ ≥ 2). This satisfies the desired upper bound.

Thus the term in Eq. (41) is non-negative for all t ≤ ln ∥β∥/2
2∥β∥ , and so we have dc

dt ≥ −αoc under the
above conditions. Since the derivative of o is negative in c, a lower bound on dc

dt gives us an upper
bound on do

dt , which in turn maintains a valid lower bound on dc
dt This allows us to solve for just the

ODE given by

dc2

dt
= −2αc2o, (45)

do

dt
= −2αc2o. (46)

Define m := d1

d1+d2
= 1

1+k . Recalling the initial values of c2, o, The solution to this system is given
by

c(t)2 =
m

1− (1−m)
exp(2αmt)

, (47)

o(t) =
m

exp(2αmt)
1−m − 1

(48)

=
m

exp(2αmt)(1 + k−1)− 1
(49)

Since these are bounds on the original problem, we have c(t)2 ≥ m and o(t) shrinks exponentially
fast in t. In particular, note that under the stated condition

√
α ≥ ∥β∥ ln k

m(ln ∥β∥/2) (recalling k := d2

d1
> 1),

we have ln k
2
√
αm

≤ ln ∥β∥/2
2∥β∥ . Therefore we can plug in this value for t, implying o(t) ≤ m

(
d1

d2

)√α

=

mk−
√
α at some time before t = ln ∥β∥/2

2∥β∥ .

Now we solve for the time at which dc
dt ≥ 0. Returning to Eq. (41), we can instead suppose that

ϵ ≤ ∥β∥2−γ
∥β∥+2 =⇒ ∥β∥2 − ϵ(2 + ∥β∥) ≥ γ for some γ > 0. If this quantity was non-negative and
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has had a derivative of at least γ until time t = ln k
2
√
αm

, then its value at that time must be at least
γ ln k
2
√
αm

. For dc
dt to be non-negative, we need this to be greater than c(t)2αo(t), so it suffices to have

γ ln k
2
√
αm

≥ αm
exp(2αmt)(1+k−1)−1 ⇐= γ ln k ≥ 2α3/2m2(

d2
d1

)√
α
(1+k−1)−1

⇐= γ ≥ 2α3/2m2k−
√

α

ln k . Observe

that the stated lower bound on α directly implies this inequality.

Finally, note that ∥b∥2 = ϵ2 + δ2, and therefore

d∥b∥2
dt

= 2ϵ
dϵ

dt
+ 2δ

dδ

dt
(50)

= −2c2(ϵ2 + δ2) + 2cϵ∥β∥. (51)

Since c(0) = 1 and cϵ < ∥β∥, this means ∥b∥2 will also be decreasing at initialization. Thus we
have shown that all relevant quantities will decrease towards 0 at initialization, but that by time
t = ln k

2
√
αm

, we will have dc
dt ≥ 0.

G.2 PROOF OF PROOF OF THEOREM 3.2

Proof. Recall from the previous section that we have shown that at some time t1 ≤ ln k
2
√
αm

, c(t)2

will be greater than m and increasing, and o(t) will be upper bounded by mk−
√
α. Furthermore,

ϵ(t)2 ≤ 1
d1+d2

+2t∥β∥2. To show that the sharpness reaches a particular value, we must demonstrate
that c grows large enough before the point cϵ ≈ ∥β∥ where this growth will rapidly slow. To do this,
we study the relative growth of c vs. ϵ.

Recall the derivatives of these two terms:

dc

dt
= −(ϵ2 + δ2 + αo2)c+ ∥β∥ϵ, (52)

dϵ

dt
= −c2ϵ+ ∥β∥c. (53)

Considering instead their squares,

dc2

dt
= 2c

dc

dt
(54)

= −2(ϵ2 + δ2 + αo2)c2 + 2∥β∥ϵc, (55)

dϵ2

dt
= 2ϵ

dϵ

dt
(56)

= −2ϵ2c2 + 2∥β∥ϵc. (57)

Since δ, o decrease monotonically, we have dc2

dt ≥ −2(ϵ2+ d1

d1+d2
+αm

(
d1

d2

)√α

)c2+2∥β∥ϵ. Thus
if we can show that

∥β∥ϵc ≥ (ϵ2 + 2(
d1

d1 + d2
+ αm

(
d1
d2

)√
α

))c2, (58)

we can conclude that dc2

dt ≥ (ϵ2c2 + ∥β∥ϵc) = 1
2
dϵ2

dt —that is, that c(t)2 grows at least half as fast as
ϵ(t)2. And since δ, o continue to decrease, this inequality will continue to hold thereafter.

Simplifying the above desired inequality, we get

∥β∥ ϵ
c
≥ ϵ2 + 2m(1 + αk−

√
α). (59)

Noting that ϵ
c ≥ 1 and m = d1

d1+d2
≤ 1

2 , and recalling the upper bound on ϵ(t)2, this reduces to
proving

∥β∥ ≥ 1

d1 + d2
+ 2t∥β∥2 + 1 + αk−

√
α. (60)

35



Published as a conference paper at ICLR 2024

Since this occurs at some time t1 ≤ ln k
2
√
αm

, and since m−1 = 1 + k, we get

∥β∥ ≥ 1

d1 + d2
+

∥β∥2(1 + k) ln k√
α

+ 1 + αk−
√
α. (61)

The assumed lower bound on
√
α means the sum of the first three terms can be upper bounded by a

small 1 + o(1) term (say, 9/5) and recalling ∥β∥ ≥ 24/5 it suffices to prove

∥β∥ ≥ 9

5
+ αk−

√
α (62)

⇐= αk−
√
α ≤ 3. (63)

Taking logs,

2 ln
√
α

ln k
−√

α ≤ ln 3, (64)

which is clearly satisfied for
√
α ≥ 1 + k ln k. As argued above, this implies dc2

dt ≥ 1
2
dϵ2

dt by some
time t2 ≤ ln k

2
√
αm

.

Consider the time t2 at which this first occurs, whereby c(t2)
2 is growing by at least one-half the

rate of ϵ(t2)2. Here we note that we can derive an upper bound on c and ϵ at this time using our
lemma and the fact that

dc

dt
≤ ∥β∥ϵ, (65)

dϵ

dt
≤ ∥β∥c. (66)

The solution to this system implies

c(t2) ≤
1

2

(
exp(∥β∥t2)− exp(−∥β∥t2)√

d1 + d2
+ exp(∥β∥t2) + 1

)
(67)

≤ 1

2

(
exp(∥β∥t2)

(
1 +

1√
d1 + d2

)
+ 1

)
(68)

≤ 1

2

(
exp

(∥β∥ ln k
2
√
αm

)(
1 +

1√
d1 + d2

)
+ 1

)
, (69)

ϵ(t2) ≤
1

2

(
exp(∥β∥t2)

(
1 +

1√
d1 + d2

)
+

1√
d1 + d2

− 1

)
(70)

≤ 1

2

(
exp

(∥β∥ ln k
2
√
αm

)(
1 +

1√
d1 + d2

)
+

1√
d1 + d2

− 1

)
(71)

Then for α >

(
∥β∥ ln

d2
d1

m(ln ∥β∥−ln 2)

)2

, the exponential term is upper bounded by
√

∥β∥
2 , giving

c(t2) ≤
1

2

(√
∥β∥
2

(
1 +

1√
d1 + d2

)
+ 1

)
(72)

≤
√
∥β∥
2

, (73)

ϵ(t2) ≤
1

2

(√
∥β∥
2

(
1 +

1√
d1 + d2

)
+

1√
d1 + d2

− 1

)
(74)

≤
√

∥β∥
2

. (75)

We know that optimization will continue until ϵ2c2 = ∥β∥2, and also that dc2

dt ≥ 1
2
dϵ2

dt . Since c ≤ ϵ,
this implies that ϵ2 ≥ ∥β∥ before convergence. Suppose that starting from time t2, ϵ2 grows until
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time t′ by an additional amount s. Then we have

s = ϵ(t′)2 − ϵ(t2)
2 (76)

=

∫ t′

t2

dϵ(t)2

dt
(77)

≤
∫ t′

t2

2
dc(t)2

dt
(78)

= 2(c(t′)2 − c(t2)
2). (79)

In other words, c2 must have grown by at least half that amount. Since ϵ(t2)
2 ≤ ∥β∥

4 and therefore
ϵ(t′)2 ≤ ∥β∥

4 + s, even if c(t′)2 is the minimum possible value of s
2 we must have at convergence

s
2 = c2 = ∥β∥2

ϵ2 ≥ ∥β∥2

∥β∥
4 +s

. This is a quadratic in s and solving tells us that we must have s ≥ 5
4∥β∥.

Therefore, c(t′)2 ≥ 5
8∥β∥ is guaranteed to occur. Noting our derivation of the loss Hessian, this

implies the sharpness must reach at least 5
8α∥β∥ for each dimension of bo.
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H ADDITIONAL SAMPLES UNDER VARIOUS ARCHITECTURES/SEEDS

To demonstrate the robustness of our finding we train a ResNet-18, VGG-11, and a Vision Trans-
former for 1000 steps with full-batch GD, each with multiple random initializations. For each run,
we identify the 24 training examples with the most positive and most negative change in loss from
step i to step i+1, for i ∈ {100, 250, 500, 750}. We then display these images along with their label
(above) and the network’s predicted label before and after the gradient step (below). The change
in the network’s predicted labels display a clear pattern, where certain training samples cause the
network to associate an opposing signal with a new class, which the network then overwhelmingly
predicts whenever that feature is present.

Consistent with our other experiments, we find that early opposing signals tend to be “simpler”,
e.g. raw colors, whereas later signals are more nuanced, such as the presence of a particular texture.
We also see that the Vision Transformer seems to learn complex features earlier, and that they are
less obviously aligned with human perception—this is not surprising since they process inputs in a
fundamentally different manner than traditional ConvNets.
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Figure 41: (ResNet-18, seed 1) Images with the most positive (top 3 rows) and most negative
(bottom 3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true
label (above) and the predicted label before and after the gradient update (below).
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(d) Step 750 to 751

Figure 42: (ResNet-18, seed 2) Images with the most positive (top 3 rows) and most negative
(bottom 3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true
label (above) and the predicted label before and after the gradient update (below).
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(d) Step 750 to 751

Figure 43: (ResNet-18, seed 3) Images with the most positive (top 3 rows) and most negative
(bottom 3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true
label (above) and the predicted label before and after the gradient update (below).
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Figure 44: (VGG-11, seed 1) Images with the most positive (top 3 rows) and most negative (bottom
3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label
(above) and the predicted label before and after the gradient update (below).
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Figure 45: (VGG-11, seed 2) Images with the most positive (top 3 rows) and most negative (bottom
3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label
(above) and the predicted label before and after the gradient update (below).
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Figure 46: (VGG-11, seed 3) Images with the most positive (top 3 rows) and most negative (bottom
3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label
(above) and the predicted label before and after the gradient update (below).
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Figure 47: (ViT, seed 1) Images with the most positive (top 3 rows) and most negative (bottom
3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label
(above) and the predicted label before and after the gradient update (below).
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Figure 48: (ViT, seed 2) Images with the most positive (top 3 rows) and most negative (bottom
3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label
(above) and the predicted label before and after the gradient update (below).
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(d) Step 750 to 751

Figure 49: (ViT, seed 3) Images with the most positive (top 3 rows) and most negative (bottom
3 rows) change to training loss after steps 100, 250, 500, and 750. Each image has the true label
(above) and the predicted label before and after the gradient update (below).
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