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PHYSICS-INFORMED NEURAL NETWORKS FOR
TRANSFORMED GEOMETRIES AND MANIFOLDS

ABSTRACT

Physics-informed neural networks (PINNs) effectively embed physical principles
into machine learning, but often struggle with complex or alternating geome-
tries. We propose a novel method for integrating geometric transformations within
PINNs to robustly accommodate geometric variations. Our method incorporates
a diffeomorphism as a mapping of a reference domain and adapts the derivative
computation of the physics-informed loss function. This generalizes the appli-
cability of PINNs not only to smoothly deformed domains, but also to lower-
dimensional manifolds and allows for direct shape optimization while training
the network. We demonstrate the effectivity of our approach on several prob-
lems: (i) Eikonal equation on Archimedean spiral, (ii) Poisson problem on surface
manifold, (iii) Incompressible Stokes flow in deformed tube, and (iv) Shape opti-
mization with Laplace operator. Through these examples, we demonstrate the en-
hanced flexibility over traditional PINNs, especially under geometric variations.
The proposed framework presents an outlook for training deep neural operators
over parametrized geometries, paving the way for advanced modeling with PDEs
on complex geometries in science and engineering.

1 INTRODUCTION

Physics-informed neural networks (PINNs) (Raissi et al., 2019) are simple yet surprisingly pow-
erful machine learning approaches to incorporate physical knowledge, in particular, formulated as
partial differential equations (PDEs), into the training of neural networks. In the burgeoning field
of physics-informed machine learning (Karniadakis et al., 2021), they play a significant role due to
their versatile applicability in a wide range of problems in science and engineering, for instance,
connecting measurement data and known physics in fluid dynamics (Raissi et al., 2020).

Substantial challenges remain, unfortunately, and training PINNs is difficult in practice (Wang et al.,
2023). A considerable degree of hyper-parameter tuning, coupled with precise weighting of compet-
ing loss terms, is often indispensable to derive satisfactory solutions, irrespective of the challenges
associated with determining an effective network architecture or finding a sufficient optimum (Raissi
et al., 2019). Training physics-informed neural networks becomes especially challenging in the con-
text of complex problems Krishnapriyan et al. (2021), and accurately adhering boundary conditions
is tough (van der Meer et al., 2022).

Distance functions exhibited potential in precisely enforcing boundary conditions (Sukumar & Sri-
vastava, 2022), however, the idea is limited to rather simple geometries where distance functions can
be constructed. Addressing the challenges posed by complex geometries, PhyGeoNet (Gao et al.,
2021) first proposed the integration of a geometric mapping to accommodate a convolutional neural
network architecture to unstructured domains. A geometric mapping has also been used for Fourier
neural operators on transformed geometries (Li et al., 2022), but not in a physics-informed manner.
Interestingly, hardly any approach of PINNs for manifolds has been proposed, e.g., for problems on
surfaces in three-dimensional space, only few works like (Fang et al., 2021), (Costabal et al., 2022)
and, to a limited extend, (Bonev et al., 2023) show attempts in this direction.

Drawing upon and meticulously synthesizing prior concepts, we propose a novel yet straightforward
approach to facilitate the application of physics-informed neural networks (PINNs) to complex or
varying geometries, as well as for solving partial differential equations (PDEs) on manifolds.
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Our approach integrates a geometric transformation of a reference domain to represent the compu-
tational domain, while concurrently adjusting the derivative computation of the physics-informed
loss function. This engenders a latent representation of the solution to the PDE on the reference
domain, yielding improved generalization properties across similar geometries and facilitating the
implementation of exact boundary conditions. Such a formulation not only extends the applicability
of PINNs to smoothly deformed domains, but also lower-dimensional manifolds, and extends its
utility to free boundary problems or shape optimization.

The paper is divided into three sections: Initially, we outline the formulation of PDEs on transformed
geometries. Subsequently, we situate physics-informed neural networks within the realm of trans-
formations and manifolds. In the final section, through four illustrative examples, we exhibit diverse
applications of our novel approach, thereby unveiling exciting new horizons for physics-informed
neural networks.

2 PROBLEM SETTING

2.1 DOMAIN AND TRANSFORMATION

Let us consider a diffeomorphism φ, a differentiable function with differentiable inverse, with

φ : Ωref → Ω, (1)
x 7→ y,

that maps an open and bounded m-dimensional domain Ωref ⊂ Rm to an m-dimensional manifold
Ω ⊂ Rn embedded in n-dimensional Euclidean space. We will refer to Ωref as reference domain,
for instance, a unit square as illustrated in Figure 1, and to Ω as computational domain, which is the
domain where the subsequent problem will be posed.

•
x

Ωref ⊂ Rm

φ

•
y = φ(x)

Ω ⊂ Rn

Figure 1: A diffeomorphism φ smoothly transforms reference domain Ωref into Ω.

2.2 DIFFERENTIAL EQUATION

Consider a generic scalar differential equation in Ω of the form

Lu = f, in Ω, (2)
u = g, on ∂Ω, (3)

where L is an arbitrary continuous differential operator and f : Ω → R a source term. For simplicity,
let us denote Dirichlet boundary conditions g : ∂Ω → R only. We assume that system (2)-(3) is
well-posed and has a unique and smooth solution u.

Incorporating the transformation φ into this system, we distinguish between the following two cases.

2.2.1 MANIFOLD: m < n

In case of embedded manifolds, m < n, the system denoted by equations (2)-(3) needs to be formu-
lated in terms of directional derivatives. This translates to expressing the system in local coordinates
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Lx(u ◦ φ) = f ◦ φ, in Ωref, (4)
u ◦ φ = g ◦ φ, on ∂Ωref, (5)

and provides a straightforward formulation for applying PINNs to problems on manifolds. Notably,
without this formulation, solving PDEs on manifolds is not possible — just sampling points along
the manifold falls short as this does not compute the directional derivatives along the manifold.

Some examples using this formulation are presented in Section 4.1 and 4.2.

2.2.2 TRANSFORMATION: m = n

In case ofm = n, the differential operator can be understood as L = Ly with respect to global coor-
dinates, facilitating the interpretation of Ω as a (parametrized) domain possessing constant measure.
In this spirit, system (2)-(3) can be reformulated in terms of uref : Ωref → R on the reference domain

Ly(uref ◦ φ−1) = f, in Ω = φ(Ωref), (6)

uref ◦ φ−1 = g, on ∂Ω = φ(∂Ωref), (7)

and offers a versatile way of representing solutions on varying geometries.

As uref is defined on a latent representation of the geometry, Ωref, it changes smoothly with variations
in φ. Moreover, it is beneficial for imposing exact Dirichlet boundary conditions, as they can be
stated on a geometrically simple reference domain.

We will demonstrate some applications of formulation (6)-(7) in Section 4.3 and 4.4, after outlining
how both formulations can be put into the context of PINNs.

3 PHYSICS-INFORMED NEURAL NETWORKS

Physics-informed neural networks are deep neural networks that encode physical effects by training
with respect to a loss function incorporating the underlying partial differential equation (Raissi et al.,
2019). To approximate the solution of a PDE, let us consider a neural network

û : Rn → R
that maps coordinates y ∈ Ω to scalar values û(y) ∈ R. If the network’s output depends smoothly
on the input coordinates, a differential equation like (2)-(3) can be incorporated into the loss function
to guide the update of the weights of the network. Advanced automatic differentiation techniques in
modern machine learning frameworks make it feasible to perform the necessary computations, and
the universal approximation theorem suggests that we can find a proper solution to our equation.

More technically, sampling a set of N loss points yi within Ω andM boundary loss points zi on ∂Ω,
we train the neural network with respect to the loss function

MSE(û) =
1

N

N∑
i=1

[Lû(yi)− f(yi)]
2
+

1

M

M∑
i=1

[û(zi)− g(zi)]
2
, (8)

that evaluates the differential operator L in a point-wise manner and, additionally, penalizes a devia-
tion of our solution from the Dirichlet boundary conditions at the boundary. Provided that the neural
network û possesses sufficient expressiveness and a sufficient number of loss points is sampled, û
aspires to approximate the solution u to the PDE.

This approach is simple, yet very powerful, as it not only allows the solution of a wide range of
PDEs, but also easily incorporates (noisy) measurement data or can be used to solve inverse prob-
lems, bridging the gap between physics-based solvers and data-driven machine learning (Karni-
adakis et al., 2021).

3.1 EXACT BOUNDARY CONDITION WITH OUTPUT TRANSFORM

Dirichlet boundary conditions can be imposed exactly by adding an output transform to the net-
work’s outputs (Sukumar & Srivastava, 2022; Lu et al., 2021c). To make the approximate solution
satisfy the boundary conditions, we construct the approximation û as
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û(y) = N (y)b(y) + g(y), y ∈ Ω,

where N is the network output, and b : Ω → R is a smooth (distance) function satisfying b = 0
at the boundary ∂Ω and b > 0 within Ω. For a unit square, for instance, b(y) = q(y1)q(y2) with
q(z) = 4z(1 − z) is a viable option. The expressivity of the neural network does not suffer from
this output transform, but the approximation û satisfies the Dirichlet boundary values g exactly.

However, for complex geometries, formulating a distance function b can pose significant challenges
or may even be infeasible. Instead, when writing the problem as a transformation of a simple refer-
ence domain, the boundary conditions can be imposed in local coordinates, which makes it relatively
easy to impose exact boundary conditions even on complex geometries as we will demonstrate in
the following.

3.2 PINNS FOR MANIFOLDS

In the manifold case, the PDE has to be rewritten in local coordinates, see formulation (4)-(5),
defined over the reference domain. We plug in transformation φ, mapping from local to global
coordinates, as an input feature transform to the network û : Rn → R, which is defined in global
coordinates. Then, we train the transformed network

M(x; û) = (û ◦ φ)(x), x ∈ Ωref,

on the reference domain Ωref, such that û results in an approximation to the solution u of system
(4)-(5). Remarkably, Dirichlet boundary conditions can exactly be imposed in this setting by adding
an output transform that acts on the local domain. If bref : Ωref → R is a distance function on the
reference domain, we can construct a transformed network as

M(x; û) = (û ◦ φ)(x) bref(x) + (g ◦ φ)(x), x ∈ Ωref, (9)

and M satisfies the Dirichlet conditions g on the boundary of the reference domain exactly.

3.3 PINNS FOR TRANSFORMATIONS

In the case of transformations (n = m), we solve system (6)-(7) for the differential operator Ly with
respect to global coordinates. For this purpose, we map (loss points from) the reference domain Ωref
to global coordinates, and understand û : Rn → R as a function in local coordinates. Formulation
(6)-(7) motivates to put the transformed network

M(y; û) = (û ◦ φ−1)(y), y ∈ φ(Ωref),

into the differential operator, which implicitly encodes the derivatives of the transformation. Similar
to above, Dirichlet boundary conditions on the reference domain can be imposed by

M(y; û) = (û ◦ φ−1)(y) bref(φ
−1(y)) + g(y), y ∈ φ(Ωref).

In summary, training a neural network û : Rn → R with respect to the loss function

MSE(û) =
1

N

N∑
i=1

[L (M(yi; û))− f(yi)]
2
, yi = φ(xi), xi ∈ Ωref, (10)

results in an approximation M to the solution of system (2)-(3) on Ω = φ(Ωref), and a latent space
solution û formulated in terms of local coordinates. This latent û depends smoothly on the geometry
transformations φ, and formulation (10) enables the solution of PDEs across complex transformed
geometries with exact Dirichlet boundary conditions that are defined by distance functions on a
simple reference domain.

In the following section, we will demonstrate the use of both formulations in several examples.
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4 EXAMPLES

We demonstrate the effectivity of our approach through several representative problems. Through
these examples, we highlight the significantly enhanced flexibility offered by our method over
traditional PINNs, particularly under geometric variations, unveiling exciting new capabilities for
physics-informed neural networks.

The list of examples includes two manifold and two transformation cases:

(i) Eikonal equation on Archimedean spiral

(ii) Poisson problem on surface manifold

(iii) Incompressible Stokes flow in deformed tube

(iv) Shape optimization with Laplace operator

All examples have been implemented using DeepXDE (Lu et al., 2021b), and the full source code
is provided in the supplementary material. Unless stated otherwise, we employ fully connected
neural networks with 128 nodes in three hidden layers with tanh activation function. Optimization
is carried out using PyTorch’s L-BFGS algorithm over 1000 steps.

Figure 2: Eikonal equation on Archimedean spiral.

4.1 EIKONAL EQUATION ON ARCHIMEDEAN SPIRAL

Our first example serves as a simple benchmark problem to evaluate the accuracy of our method.
We consider a one-dimensional manifold Ω given by a mapping of

Ωref = [0, 1] ⊂ R

to an Archimedean spiral in R2. Choosing l = 3.5π, a = 0.1 and r(x) = ax, it can be written by

φ(x) =

(
r(lx) sin(lx)
r(lx) cos(lx)

)
∈ Ω ⊂ R2.

In this domain Ω, we solve the (one-dimensional) Eikonal equation

∇u = 1, in Ω,

u = 0, on (0, 0),
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and use reformulation (4)-(5) to implement the directional derivatives of the problem, which reads

∇x(u ◦ φ) = 1, in Ωref,

u ◦ φ = 0, on {0}.

This problem can be easily implemented on the basis of (9) and the numerical result is depicted in
Figure 2. The maximum value of the solution of this problem corresponds to the length of the spiral,
as long as we parameterize the curve by arc length. The length of the spiral is analytically given by

a

2
(l
√
1 + l2) + log(l +

√
1 + l2) ≈ 6.225,

and our transformed PINN finds the exact length with an error of ≈ 0.1%.

Figure 3: Poisson problem on surface manifold.

4.2 POISSON PROBLEM ON SURFACE MANIFOLD

The second example shows how a transformed PINN can solve PDEs on surface manifolds. As a
reference PDE, we consider Poisson’s equation with uniform Dirichlet boundary conditions

−∆u = f in Ω, (11)
u = 0 on ∂Ω. (12)

The manifold Ω is chosen as a part of a sphere, written in polar coordinates by

φ(x1, x2) =

(
sin(ψ) cos(θ)
sin(ψ) cos(θ)

cos(ψ)

)
,

ψ = x1 + ψ0,
θ = x2 + θ0,

parametrized over the reference domain Ωref = [0, 1]2. In our specific example, we choose f ≡ 1,
ψ0 = 0.5 and θ0 = 1.0. The resulting manifold and the solution of the problem are depicted in
Figure 3. We use reformulation (4)-(5) to express problem (11)-(12) in terms of local coordinates

−∆x(u ◦ φ) = f ◦ φ, in Ωref,

u ◦ φ = 0, on ∂Ωref.

and solve this problem as described in Section 3.2 with strong boundary conditions. The function
u : R3 → R is represented by a neural network that maps three-dimensional coordinates, but all
derivatives are, due to the formulation in local coordinates, evaluated as directional derivatives along
the manifold. To the best of our knowledge, this represents the first instance of a Poisson equation
being solved on a manifold utilizing physics-informed neural networks.
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Figure 4: Incompressible Stokes flow in deformed tube.

4.3 INCOMPRESSIBLE STOKES FLOW IN DEFORMED TUBE

The third example applies our approach to a physical problem that is ubiquitous in fluid dynamics.

An incompressible, steady-state fluid flow can be described by the Stokes equations

−∆u+∇p = 0, in Ω, (13)
divu = 0, in Ω, (14)

where for Ω ⊂ R2 the unknowns are velocity u = (u, v) : Ω → R2 and pressure p : Ω → R. We
examine a flow through a tube from left to right, characterized in terms of (local) Dirichlet boundary
conditions on Ωref = [0, 1]2, specifically:

u(x1, x2) = 4x2(1− x2), on ∂Ωref,

v(x1, x2) = 0, on ∂Ωref,

p(x1, x2) = 0, on {1} × [0, 1].

In our example, we choose a deformed tube Ω that arises from the transformation

φ(x1, x2) = (x1, (2x2 − 1)s(x1)) , s(x1) = 0.2 + 0.1 cos(3πx1).

The resulting tube geometry and the corresponding flow field are depicted in Figure 4. As we
elaborated in Section 3.3, the system defined by (13)-(14) can be solved on Ω = φ(Ωref) using exact
boundary conditions imposed on the reference domain, and we train the network for 5000 steps.
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The numerical solution exhibits the anticipated pattern, wherein the fluid velocity significantly in-
creases at the narrow segment of the tube, accompanied by a more rapid pressure decrement. It’s
noteworthy that all boundary conditions are met exactly, obviating the need for hyper-parameters to
strike a balance between inner and boundary loss.

Figure 5: Shape optimization with Laplace operator. Initial configuration, one intermediate step,
and final solution. The four black squares indicate the constrained points of the transformation.

4.4 SHAPE OPTIMIZATION WITH LAPLACE OPERATOR

Our final example reveals novel capabilities engendered by our approach of representing computa-
tional domains via transformations of a reference domain. Indeed, this methodology facilitates free
boundary problems and shape optimization in a straightforward manner. Topology optimization has
previously been executed using PINNs (Lu et al., 2021c), but with a quantity of interest for the
inverse design problem embedded within the PDE problem.

Let us represent the transformation φ itself by a neural network
φ̂ : Rm → Rn, x 7→ y,

which can be learned independently (or concurrently) during the training of a physics-informed
neural network. Note that, in general, φ̂ will not be a diffeomorphism, but at least we can assure that
it is smooth and differentiable.

The newfound flexibility can be demonstrated in the following example, employing the Laplace
operator. Having two neural networks û : R2 → R and φ̂ : R → R, we solve problem

−∆û = 1, in Ω = φ̂(Ωref), (15)
û = 0, on ∂Ω = φ̂(∂Ωref), (16)
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where the computational domain Ω is a mapping of Ωref = [0, 1]2 via φ̂. We impose Dirichlet
conditions weakly by adding a penalization term to the loss, as in (8), and train both neural networks
simultaneously to minimize this PINN loss. Additionally, we fix four points of domain Ω which
imposes constraints to the transformation φ̂, namely φ̂(x) = x for x ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}.
In our implementation, both neural networks have a single hidden layer with 1024 nodes, and we
execute training simultaneously until convergence which occurs after 18 steps of optimization.

We do not introduce any explicit objective to the optimization, yet observe that the loss attains
minimization when the domain manifests as a circle, as illustrated Figure 5. This outcome suggests
that weakly imposed boundary conditions pose a distinctive challenge for PINNs in non-convex
geometries. It shows how the parametrization of geometries via neural network can address an
entirely new class problems, in particular, free boundary problems or shape optimization.

5 CONCLUSION AND OUTLOOK

In this paper, we introduced a novel formulation of physics-informed neural networks for trans-
formed geometries, thereby expanding their applicability to domain transformations, manifolds, and
free boundary problems. Our methodology opens new pathways for employing PINNs on com-
plex geometries and enables the precise enforcement of Dirichlet boundary conditions via distance
functions on intricate geometries. The versatility of our approach was demonstrated through four
illustrative examples, encompassing applications ranging from solving the Eikonal to the Poisson
equation on manifolds, analyzing incompressible fluid flow within a parametrized tube geometry,
to applying our framework to free boundary problems where the optimal domain geometry itself is
learned by a neural network.

The proposed framework presents an outlook for training physics-informed neural operators, like
DeepONets (Lu et al., 2021a) or Fourier Neural Operators (Li et al., 2022), on parametrized geome-
tries as the latent representation of the solution on the reference domain can generalize well between
similar transformations. It paves the way for advanced modeling with PDEs on complex geometries
in science and engineering.

REPRODUCIBILITY STATEMENT

All numerical examples presented in this paper have been kept straightforward for ease of under-
standing and have been thoroughly implemented to ensure correctness. The full source code of the
examples is self-contained and it is provided in the supplementary material for independent repro-
duction and analysis.
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