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Abstract

Spiking Neural Networks (SNNs) have been put forward as an energy-efficient alternative to
Artificial Neural Networks (ANNs) since they perform sparse Accumulate operations instead
of the power-hungry Multiply-and-Accumulate operations. ANN-SNN conversion is a widely
used method to realize deep SNNs with accuracy comparable to that of ANNs. Bu et al.
recently proposed the Quantization-Clip-Floor-Shift (QCFS) activation as an alternative
to ReLU to minimize the accuracy loss during ANN-SNN conversion. Nevertheless, SNN
inferencing requires a large number of timesteps to match the accuracy of the source ANN for
real-world datasets. In this work, we propose PASCAL, which performs ANN-SNN conversion
in such a way that the resulting SNN is mathematically equivalent to an ANN with QCFS-
activation, thereby yielding similar accuracy as the source ANN with minimal inference
timesteps. In addition, we propose a systematic method to configure the quantization step
of QCFS activation in a layerwise manner, which effectively determines the optimal number
of timesteps per layer for the converted SNN. Our results show that the ResNet-34 SNN
obtained using PASCAL achieves an accuracy of ≈74% on ImageNet with a 56× reduction
in the number of inference timesteps compared to existing approaches.

1 Introduction

Deep Artificial Neural Networks (ANNs) have revolutionized the field of machine learning by achieving
unprecedented success for various computer vision and natural language processing tasks (LeCun et al.,
2015). Despite their superhuman capabilities, there exists a significant computational efficiency divide
between ANNs and the human brain. In recent years, Spiking Neural Networks (SNNs) have emerged as
a plausible energy-efficient alternative to ANNs (Roy et al., 2019; Tavanaei et al., 2019; Guo et al., 2023).
The fundamental building block of an SNN, namely, the spiking neuron, encodes input information using
binary spiking events over time. The sparse spike-based computation and communication capability of SNNs
have been exploited to obtain improved energy efficiency in neuromorphic hardware implementations (Davies
et al., 2021).

Training methodologies for SNNs can be classified primarily into two approaches, namely, direct training
using spike-based algorithms and ANN-SNN conversion. Direct SNN training using spike-based error
backpropagation (Lee et al., 2016; Wu et al., 2018; Shrestha & Orchard, 2018; Neftci et al., 2019; Lee et al.,
2020) has been shown to yield competitive accuracy on complex vision datasets such as ImageNet (Rathi
et al., 2020; Deng et al., 2022). It is important to note that SNNs require multiple forward passes, as inputs
are fed sequentially over a certain number of timesteps. As a result, performing backpropagation on SNNs is
both compute- and memory-intensive because of the need to accumulate error gradients over time. Despite
being computationally prohibitive, backpropagation methods have been shown to yield competitive accuracy,
with inference latencies typically less than a few tens of timesteps (Deng et al., 2022).

ANN-SNN conversion, on the other hand, eliminates the need for direct SNN training by using the pre-
trained ANN weights and replacing the nonlinear activation (for instance, ReLU) with the equivalent spiking
non-linearity (integrate-and-fire). The ANN activation is effectively mapped to the average firing rate of the
corresponding spiking neuron. The conversion methods have been shown to provide accuracy comparable to
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that of the original ANN, albeit with longer inference latencies typically spanning hundreds to thousands of
timesteps (Sengupta et al., 2019). This is because the correlation between the ANN activation and spiking
neuronal firing rate improves with increasing number of timesteps during SNN inference (Cao et al., 2015).
Several prior works have proposed techniques to optimize the number of inference timesteps (Diehl et al., 2015;
Rueckauer et al., 2017; Sengupta et al., 2018; 2019; Han & Roy, 2020; Deng & Gu, 2021). Most notably, Bu
et al. proposed a novel activation function, namely, the Quantization-Clip-Floor-Shift (QCFS) activation,
as a replacement for the ReLU activation during ANN training. The QCFS function, with pre-determined
quantization step L, was formally shown to minimize the expected ANN-SNN conversion error. We note
that the QCFS activation works well in practice for CIFAR-10, but for CIFAR-100 and ImageNet, the ANN
accuracy can only be matched when the corresponding SNN is inferred for ∼1024 timesteps despite being
trained using only 4 or 8 quantization steps (Bu et al., 2023). In effect, the number of SNN inference timesteps
needed to match the ANN accuracy depends on the complexity of the dataset.

Our work addresses this issue using a precise and mathematically grounded ANN-SNN conversion method, in
which the number of inference timesteps depends only on the structure of the source ANN, and not on the
dataset. We utilize the integrate-and-fire spiking neuron with soft reset (Rueckauer et al., 2017; Han et al.,
2020), a technique that is critical for achieving near-zero conversion loss. Next, we address a key limitation of
SNNs, which is their inability to handle negative inputs effectively, since spikes are commonly treated as
binary values representing either 0 or 1. We demonstrate that inhibitory (or negative) spikes are essential
for ensuring the mathematical correctness of our method. Finally, we propose an algorithm to determine the
optimal quantization step for QCFS activation per layer by computing a statistical layer-sensitivity metric.
This enables an optimal trade-off between computational efficiency and accuracy. In summary, we propose
PASCAL, an accurate and efficient ANN-SNN conversion methodology, which has the following twofold
contributions.

• Spike-count and Spike-inhibition based SNN. We develop a novel spike-count based approach,
which is mathematically grounded and incorporates both excitatory as well as inhibitory spikes,
to transform an ANN with QCFS activation into a sparse SNN. We realize ANN accuracy using
fewer timesteps than state-of-the-art conversion approaches (refer to Section 4), thus lowering both
inference time and energy consumption. We achieve near-lossless ANN-SNN conversion with a small
additional overhead caused by introducing a spike counter per neuron.

• Adaptive Layerwise QCFS Activation. We propose a statistical metric to systematically analyze
and categorize layers of a DNN to selectively use higher precision (or QCFS steps) for certain layers,
and lower precision for others. The DNN layers with lower precision need to be unrolled for fewer
timesteps, thereby, improving the computational efficiency during SNN inference. This is in contrast
to early-exit SNNs, in which all the layers are executed for the same number of timesteps, which in
turn depends on the input complexity (Srinivasan & Roy, 2021; Li et al., 2023b).

We validate the efficacy of PASCAL on CIFAR-10, CIFAR-100 and ImageNet datasets (described further in
Appendix A.3), with both VGG-16 and ResNet architectures. In addition, we demonstrate the hardware
efficiency of SNN, obtained with both uniform and Adaptive Layerwise (AL) activation.

2 Preliminaries and Related Work

2.1 ANN-SNN Conversion

ANN-SNN conversion has been shown to be a promising approach for building deep SNNs yielding high
enough accuracy for complex visual image recognition (Cao et al., 2015; Diehl et al., 2015; Pérez-Carrasco
et al., 2013; Rueckauer et al., 2016; 2017; Sengupta et al., 2019) and natural language processing tasks (Diehl
et al., 2016). The conversion algorithms incur the following steps.

• The trained weights of the ANN are transferred to an architecturally equivalent SNN.

• The ANN activation is replaced with an appropriate spiking activation. In discriminative models,
ReLU is replaced with Integrate-and-Fire (IF) spiking activation. An IF neuron integrates the
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Table 1: Summary of notations used in this paper.

Symbol Definition Symbol Definition
l Layer index X Generic input matrix
ĥ QCFS function used in ANN training sl Output spike train of layer l

h̃ Integrate-and-Fire (IF) layer used in
PASC formulation

W Weight matrix

x A single element in X H(·) Heaviside step function
zl Weighted output after layer l zl

i ith unrolled timestep of the weighted out-
put after layer l

θn Threshold of current IF layer Ln Quantization Step for current IF layer
s Spike count Ln−1 Quantization Step for previous IF layer
λl Trainable threshold in ANN for layer l φ Shift term of QCFS activation
L Generic quantization step mem(t) Membrane Potential after t timesteps
b Bias term µ Batch mean
σ2 Batch variance ϵ Constant for numerical stability of batch

normalization operation
γ Scaling parameter for batch normalization β Shifting parameter for batch normaliza-

tion
z Input to a classification model C Set of output classes
* MatMul operation for a convolution or

fully-connected layer
fz

M Classification map for a classification
model M with input z

T Inference timesteps Ltot Total number of layers

weighted sum of inputs into an internal state known as the membrane potential, as described in
Section 3. It emits an excitatory (or positive) spike if the membrane potential exceeds a predetermined
firing threshold. The membrane potential is subsequently reset to a suitable value.

Efficient ANN-SNN conversion requires careful threshold initialization at every layer of the network so that
the spiking rates are proportional to the ReLU activations. Diehl et al. proposed a model-based threshold
balancing scheme, wherein the firing thresholds are determined solely based on ANN activations. Sengupta
et al. proposed an improved data-based conversion scheme that additionally uses SNN spiking statistics
for threshold initialization. However, the aforementioned methods were susceptible to information loss
during SNN inference due to the use of hard reset spiking neurons, wherein the membrane potential is reset
to zero in the event of a spike. Han et al. demonstrated near lossless low-latency ANN-SNN conversion
with soft reset neurons, wherein the potential is decreased by an amount equal to the neuronal spiking
threshold. Subsequently, Bu et al. showed that the threshold voltage could be learned, instead of configuring
it heuristically post training, by replacing ReLU with the Quantization-Clip-Floor-Shift (QCFS) activation,
which further minimizes the conversion error.

2.2 Quantization-Clip-Floor-Shift (QCFS) Activation

The QCFS function, ĥ, as proposed by Bu et al., can be formulated as

ĥ(zl) = λl clip
(

1
L

⌊
zlL

λl
+ φ

⌋
, 0, 1

)
, (1)

where zl is the input to the activation layer, L is the quantization step, and λl is the trainable parameter for
the activation threshold. At the end of training, λl = θn, where θn is the final threshold that is subsequently
used for SNN inference. Bu et al. showed that the expectation of conversion error reaches 0 when the shift
amount, φ, is 1

2 .

2.3 Temporally Efficient SNN Inference

In parallel with improving the ANN-SNN conversion process, there have been efforts to speed up SNN
inference by optimizing the number of timesteps needed to achieve the best accuracy. Early-exit inference
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methods, which incorporate auxiliary classifiers at various stages in the model, have been shown to improve
the inference efficiency of both ANNs and SNNs (Panda et al., 2016; Huang et al., 2018; Srinivasan & Roy,
2021). Li et al. proposed a unique early-exit approach for SNNs, wherein the number of inference timesteps is
modulated based on the input complexity. In this work, we propose a novel methodology to achieve both
precise and temporally efficient ANN-SNN conversion.

3 Methodology

3.1 Precise ANN-SNN Conversion (PASC)

After obtaining a trained ANN, we replace the QCFS function with Integrate-and-Fire (IF) activation and
transform the Matrix Multiplication (MatMul) layers for SNN inference so that model computation is unrolled
over timesteps. The operations of the transformed IF and MatMul layers are described below.

Integrate-and-Fire (IF) layer. We consider the general case where the quantization step Ln−1 of the
previous layer is different from that of the current layer (Ln). We initialize the layerwise threshold θ∗ = θn

Ln
,

where θn is obtained from ANN training (refer to Section 2.2). The initial membrane potential is set to θ∗

2 ,
similar to prior works (Bu et al., 2023). We outline the procedure in Algorithm 1 for a generic layer, and
Algorithm 2 for the input layer. We formally prove in Section 3.2 that the proposed algorithm enables precise
ANN-SNN conversion. The algorithm for a generic layer is described below.

1. For the first Ln−1 timesteps, we perform the IF operation (detailed in Section 2.1) using the spike
train obtained from the preceding layer. We use a spike counter to record the number of spikes
produced at this stage.

2. In the next stage, we re-initialize the membrane potential to the value obtained at the end of the
previous stage. Similarly, we set the initial spike count for this stage to that obtained from stage
1. We then perform the IF operation for the next max(Ln−1, Ln) − 1 timesteps. It is only at this
stage that we introduce inhibitory spikes. If the membrane potential is less than zero, we emit an
inhibitory spike and update both the membrane potential and the spike count accordingly.

3. For the final stage, we reset the membrane potential to the spike count obtained after stages 1 and
2. We then perform the IF operation for Ln timesteps to generate the final spike train. The spike
output of each timestep is stacked to create the final output tensor.

The output spike train generated by the PASC algorithm is effectively unrolled across Ln timesteps by the
subsequent layer. Therefore, we preserve the fact that after each layer, the number of inference timesteps is
equal to the value of the quantization step, i.e. T = Ln. We note that Algorithm 2 is similar to, albeit simpler
than, Algorithm 1, except that it receives the input image containing real-valued pixels (rather than binary
spikes) over time. Feeding the input image to the SNN, without encoding the pixel intensities as spike trains,
has been adopted in prior works to minimize accuracy loss during inference (Li et al., 2023b; Bu et al., 2023).

MatMul layers. The MatMul layer performs either a convolution or a fully-connected matrix multiplication,
followed by batch normalization. These operations are generally performed using Multiply-and-Accumulate
(MAC) operations during ANN inference. It is important to note that the MatMul layers receive spike trains
over Ln timesteps from the preceding IF layer during SNN inference. The binary spike at each timestep
is represented by {0, 1} · θ∗, where the threshold θ∗ = θn

Ln
. We would like to point out that the quantity

obtained by scaling a spike of unit magnitude with the threshold is referred to as postsynaptic potential in
the literature (Bu et al., 2023). Therefore, all computations in MatMul layers are unrolled over time and
performed on binary input. The former MAC operations are replaced by repeated additions carried out on
the spike train.
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Algorithm 1 PASC Algorithm for Generic IF Layer
1: Input: An Ln−1 × N × H × W matrix X, where Ln−1 and X are the quantization step and output of

the preceding MatMul layer, respectively.
2: Output: An Ln × N × H × W matrix representing the spike output (scaled by threshold) of the current

layer.
3: Initialization: Threshold, θ∗ = θn

Ln
. Initial membrane potential, mem(0) = θ∗

2 . Initial spike count,
s = 0.

4: for t ∈ {1, 2, . . . Ln−1} do
5: mem(t) = mem(t − 1) + X[t]
6: if mem(t) ≥ θ∗ then
7: s = s + θn

Ln
// Increment on Excitatory spike

8: mem(t) = mem(t) − θ∗ // Soft reset upon spike
9: Set mem(0) as the final membrane potential after the previous loop.

10: for t ∈ {1, 2, . . . max(Ln−1, Ln) − 1} do
11: if mem(t) ≥ θ∗ then
12: s = s + θn

Ln
// Increment on Excitatory spike

13: mem(t) = mem(t) − θ∗

14: else if mem(t) < 0 then
15: s = s − θn

Ln
// Decrement on Inhibitory spike

16: mem(t) = mem(t) + θ∗

17: Initialize a new SNN with threshold θ∗ = θn

Ln
, and initial membrane potential mem(0) = s, where s is the

spike count (scaled by θ∗) computed previously.
18: Initialize an empty tensor sl, with dimension Ln × N × H × W , to generate the final spike train.
19: for t ∈ {1, 2, . . . Ln} do
20: sl(t) = H(mem(t − 1) − θ∗) · θ∗, where sl(t) is the spike output scaled by θ∗, and H is the Heaviside

step function.
21: mem(t) = mem(t − 1) − sl(t)
22: return sl, which will be the input for the subsequent MatMul layer.

Algorithm 2 PASC Algorithm for the Input Layer
1: Input: An N × H × W input matrix X.
2: Output: An Ln × N × H × W matrix representing the spike output (scaled by threshold) of the input

layer.
3: Perform the computation as in an ANN, yielding the result ĥ(X) = θn clip

(
1

Ln

⌊
X
θn

+ φ
⌋

, 0, 1
)

.
4: Initialize an SNN with threshold, θ∗ = θn

Ln
. Initial membrane potential, mem(0) = ĥ(X). Initialize an

empty tensor sl with dimension Ln × N × H × W to generate the final spike train.
5: for t ∈ {1, 2, . . . Ln} do
6: sl(t) = H(mem(t − 1) − θ∗) · θ∗, where sl(t) is the spike output scaled by θ∗, and H(x) is the Heaviside

step function.
7: mem(t) = mem(t − 1) − sl(t)
8: return sl

3.2 Demonstration of Correctness of PASC Algorithm

We characterize the correctness of PASC algorithm by defining the notion of mathematical equivalence
(Definition 3.2), which captures whether two models produce the same classification maps (Definition 3.1) for
every input matrix.

Definition 3.1. We define the classification map of a model M with respect to a given input z as the
probability distribution function fz

M : C → [0, 1], where C is the set of output classes. The function f
essentially specifies the class-wise prediction probabilities of the model.
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Definition 3.2. Two classification models M and N are said to be mathematically equivalent if their
classification maps (Definition 3.1) are identical for all inputs. In other words, for all inputs z, fz

M = fz
N , i.e.

fz
M(c) = fz

N (c), ∀c ∈ C.

In order to establish this property at the final layer, we show that we maintain the following invariant at the
end of each layer l.

Ln∑
i=1

zl
i = zl (2)

Here, zl
i denotes the ith unrolled dimension of the output tensor computed using the PASC formulation, and

zl is the output tensor in the corresponding ANN with QCFS activation. We state theorems for two classes
of operations. The notations used in each theorem are specified in Table 1.

1. MatMul operation (either convolution or fully-connected) + Batch Normalization
(Theorem 3.3)

Theorem 3.3. Consider a layer with quantization step L, performing a MatMul operation followed
by Batch Normalization, i.e. zl+1 = γ · (zl∗W )+b−µ√

σ2+ϵ
+ β. Assume that zl =

∑L
i=1 zl

i. Then, if zl+1
i =

γ · (zl
i∗W +b′−µ′)√

σ2+ϵ
+ β′, ∀i ∈ {1, 2, . . . L}, where b′ = b

L , µ′ = µ
L and β′ = β

L , then zl+1 =
∑L

i=1 zl+1
i .

2. Integrate-and-Fire operation (Theorem 3.4)

Theorem 3.4. Let zl be the input to a QCFS activation layer of an ANN with threshold θn. Suppose
that the quantization step is Ln−1 for the input. Consider a set of tensors zl

i, for i ∈ {1, 2, . . . Ln−1}
such that

∑
i zl

i = zl. Let X be a matrix formed by stacking zl
i, i.e. X[i] = zl

i, ∀i ∈ {1, 2, . . . Ln−1}.
Then, (a) ĥ(zl) = λl clip

(
1

Ln

⌊
zlLn

λl + 1
2

⌋
, 0, 1

)
=
∑

j h̃(X)[j], ∀j ∈ {1, 2, . . . Ln}, where h̃ represents
the IF operation detailed in Algorithm 1, and Ln is the quantization step for the output. Moreover,
(b) h̃(X)[j] contains values only from the set {0, θn

Ln
}.

Both of these theorems are inductive in nature, so we also state Theorem 3.5 to show that Invariant 2 holds
immediately after the input layer.
Theorem 3.5. Consider a model with quantization step Ln and threshold θn for the input layer. For a given
input z, let the output of an ANN after the first QCFS activation layer be zl and the corresponding output in
the PASC formulation be sl. Then, (a)

∑Ln

i=1 sl(i) = zl. Moreover, (b) sl contains values only from the set
{0, θn

Ln
}.

We now state the overall equivalence between an SNN with PASC formulation and the corresponding ANN
with QCFS activation in Theorem 3.6.
Theorem 3.6. Let M be the PASC formulation of any ANN model N with QCFS activation. Then, M is
mathematically equivalent to N (Definition 3.2).

The proofs for the aforementioned theorems are presented in Appendix A.1.

3.3 AL: Adaptive Layerwise QCFS Activation

In this section, we describe the proposed Adaptive Layerwise QCFS activation methodology (referred to as
AL) to determine the optimal quantization step for every layer. The AL algorithm consists of the following
steps.

1. Computing the AL metric, as presented in Algorithm 3.

2. Using the metric to train a new model, with adaptive layerwise quantization step, as detailed in
Algorithm 4.
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Algorithm 3 Computing the AL Metric
1: Input: The output of the QCFS activation layer of an ANN with quantization step L, for a batch of I

training images. We show results for I = 3000.
2: Convert the input to a histogram H, storing the number of elements belonging to each level of QCFS

activation with quantization step L.
3: Compute the Skewness g (Equation 4), the Van Der Eijk’s Agreement A (refer Section 3.3.1) , and the

kurtosis K (Equation 5), using the histogram H.
4: Calculate the AL metric M = A × (g2 + 1) × K.

Algorithm 4 Comprehensive Training Methodology using Adaptive Layerwise QCFS Activation
1: Train a model with L = Lα, on the input dataset until it reaches convergence. This is a standard training

iteration with uniform Lα across all the QCFS layers. A pre-trained model can be used, if available
off-the-shelf, for the subsequent steps.

2: Obtain the AL metric using Algorithm 3 for this training iteration, and partition the layers into clusters
(refer Section 3.3.5). At this stage, the user is free to choose the number of clusters χ and the value of L
for each cluster, depending on the desired accuracy-efficiency trade-off.

3: Re-train the model, with uniform L = Lα, for a fraction p ≈ 2
3 of the total number of epochs used in the

initial training step.
4: Update the value of Ln for each QCFS layer and train incrementally until convergence.

The AL metric is a statistical indicator of the frequency distribution of various quantization levels in the
QCFS layers. We use this metric to ascertain the optimal Ln per layer required to approximate the original
distribution. The proposed metric is a combination of three individual statistical measures, each of which is
explained in the following sections.

3.3.1 Van Der Eijk’s Agreement

We use Van Der Eijk’s agreement (Eijk, 2001) to determine how many bins in the histogram H have a
sufficient frequency. It is specified by

A = 1 − S − 1
K − 1 , (3)

where A indicates the Van Der Eijk’s agreement, S is the number of non-empty categories, and K is the total
number of categories. We employ a threshold α ∈ (0, 1) to ascertain if a bin is non-empty, as detailed below.
If the frequency of the ith bin, Wbi

, satisfies Wbi
≥ α ·

∑
j Wbj

, we call the bin non-empty; otherwise, we call
it empty. We show the effect of α on the final metric in Appendix A.2. The insights we draw from A are
twofold:

1. If A ≈ 1, then there are few bins which are full. This is indicative of a unimodal distribution,
which can be approximated well with lower precision. Such a layer is amenable to a reduction in
quantization step.

2. If A ≈ 0, then there are many bins which are full. This means that the activation requires higher
precision, and hence would not support a reduction in the quantization step L.

3.3.2 Skewness

Skewness is defined as the deviation of the given distribution from a normal distribution (Joanes & Gill,
1998). It is given by

g = m3

s3 =
1
n

∑n
i=1(xi − x̄)3

( 1
n−1

∑n
i=1(xi − x̄)2) 3

2
, (4)

where n is the number of samples, m3 is the third moment, s is the sample standard deviation, and xi are
the samples whose mean is x̄. We interpret the value of skewness, as explained below.
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• A larger positive skewness indicates that the peak of the given distribution is close to zero. Hence,
the quantization step can be reduced without impacting the peak of the distribution.

• A smaller positive skewness indicates that the given distribution more closely approximates a normal
distribution. This renders a reduction in the quantization step infeasible.

We use the metric g2 + 1, where g is as defined in Equation 4, as adopted in prior works (Tarbă et al., 2022).

3.3.3 Kurtosis

Kurtosis K is formulated as

K = k4

k2
2

= (n + 1)n
(n − 1)(n − 2)(n − 3) ·

∑n
i=1(xi − x̄)4

k2
2

, (5)

where k4 is the fourth moment, k2 is the second moment, n is the number of samples and xi are the samples
whose mean is x̄ (Joanes & Gill, 1998). We interpret kurtosis in the following manner.

• A distribution with a large (positive) kurtosis indicates a sharp and narrow peak, which makes it
possible to reduce the quantization step.

• Conversely, a low kurtosis indicates a distribution with a broader peak, which warrants more
quantization levels (or a larger quantization step).

3.3.4 Final Metric

The final AL metric, M , is computed by taking the product of all the three aforementioned statistical
measures, as specified below

M = A × (g2 + 1) × K. (6)

A higher value of M indicates that a greater reduction in the quantization step is possible, and vice versa.

3.3.5 Adaptive Layerwise QCFS Activation based Training Methodology

We estimate the AL metric for all the QCFS layers of a pretrained ANN. We use 1-dimensional cluster-
ing (Grønlund et al., 2018) to divide the layers into χ clusters based on the AL metric values, where χ is
a user-defined parameter. The goal is to group QCFS layers with similar AL metric values and assign a
suitable quantization step. We subsequently retrain the source ANN from the beginning. This approach is
inspired by the Lottery Ticket Hypothesis (Frankle & Carbin, 2019); the difference being that our subnetwork
is not obtained by pruning, but rather by activation quantization. We employ a higher quantization step for
the initial epochs to maximize the effect of the learning rate scheduler (Loshchilov & Hutter, 2016). We then
configure the quantization step per layer and incrementally fine-tune the model until training converges, as
outlined in Algorithm 4.

4 Results

4.1 PASCAL: Accuracy Results

Table 2 shows the classification accuracy of SNNs, obtained using the PASCAL methodology, compared to
ANNs with QCFS Activation. Our method mirrors the accuracy of the source ANN for both uniform and
non-uniform values of L, notwithstanding minor differences arising due to floating-point imprecision. We
report competitive accuracy for SNNs inferred using the PASCAL formulation across model architectures
(VGG-16, ResNet-18, and ResNet-34) and datasets (CIFAR-10, CIFAR-100, and ImageNet).
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Table 2: Accuracy comparison between SNNs, inferred using PASCAL, and their source ANNs across various
models and datasets.

Dataset Model Values of Quantization Step L across Lay-
ers

ANN Accuracy SNN Accuracy

CIFAR-10 VGG-16 [4,4,4,4,4,4,4,4,4,4,4,4,4,4,4] 95.66 % 95.61 %
CIFAR-10 VGG-16 [8,8,8,8,8,8,8,8,8,8,8,8,8,8,8] 95.79 % 95.82%
CIFAR-10 VGG-16 [4,4,4,4,1,1,1,1,1,1,4,4,4,4,4] 93.57 % 93.62 %
CIFAR-100 VGG-16 [4,4,4,4,4,4,4,4,4,4,4,4,4,4,4] 76.28 % 76.06 %
CIFAR-100 VGG-16 [8,8,8,8,8,8,8,8,8,8,8,8,8,8,8] 77.01 % 76.77 %
ImageNet VGG-16 [16,16,16,16,16,16,16,16,16,16,16,16,16,16,16] 74.16 % 74.22 %
ImageNet ResNet-34 [8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8] 74.182% 74.31%
CIFAR-10 ResNet-18 [8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8] 96.51 % 96.51 %
CIFAR-100 ResNet-18 [8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8] 78.43 % 78.45%
CIFAR-100 ResNet-18 [4,2,4,1,4,2,2,1,4,2,2,1,4,1,1,1,4] 76.38% 76.19 %

4.2 PASCAL: Energy Efficiency Results

4.2.1 Energy of PASCAL-SNN with respect to vanilla SNN

SNNs gain their energy efficiency as a result of replacing compute-intensive Multiply-and-Accumulate (MAC)
operations by more energy-efficient Accumulate (AC) operations. The energy consumed by the entire network,
ESNN , can be split into two parts as follows.

ESNN = EAC + EIF (7)

Unlike previous works (Rathi & Roy, 2021), we also take into account the energy consumed by the Integrate-
and-Fire layer (EIF ). Similar to Equation 7, we express the total energy consumed by the corresponding
SNN trained using the PASCAL approach as shown below.

EP ASC_SNN = EP ASC_AC + EP ASC_IF (8)

We note that the energy consumed by AC operations does not change in PASCAL compared to the vanilla
SNN. This is because for a given quantization step L, both networks have a MatMul layer that is unrolled
across T = L timesteps. Therefore, we have EP ASC_AC = EAC . The only difference lies in the IF layer,
which is more complex in PASCAL. Consider a network with uniform quantization step L. According to
Algorithm 1, the number of soft reset operations is 3L − 1, while the number of spike accumulation operations
(i.e., addition and subtraction of the spike counter) is 2L − 1. In total, each IF layer in PASC framework
performs (5L − 2) operations, yielding EP ASC_IF ≈ (5L − 2) · EIF . We quantify the excess energy consumed
by the PASC SNN by comparing it with the energy consumed by the vanilla SNN. Specifically, we define the
per-layer energy ratio rl

E as

rl
E =

El
P ASC_SNN

El
SNN

= El
AC + (5L − 2) · El

IF

El
AC + L · El

IF

. (9)

We now analytically compute the ratio from Equation 9 for both convolutional and fully connected layers.
To facilitate this, we introduce an auxiliary ratio r′ that represents the number of operations in an IF layer
relative to those in the preceding MatMul layer. This allows us to express rl

E in terms of r′ as

rl
E = 1 + (5L − 2) · r′

1 + L · r′ . (10)

9
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Finally, we proceed to compute r′ layerwise separately for both the convolution and fully connected layers,
using notation outlined in Table A.8

Convolution Layer

We assume a constant quantization step L for further calculations in this section. Each IF layer performs
L×C0 ×H0 ×W0 accumulation operations. Therefore, we compute the ratio between the number of operations
in the IF layer to the number of operations in the previous convolution layer as

r′
conv = El

IF

El
AC

= #OP l
IF

#OP l
Conv

≈ 1
Ci · Kh · Kw · SpikeRatel

, (11)

where SpikeRatel is the total spikes in layer l across all timesteps averaged over the number of neurons in
the layer.

Fully Connected (FC) Layer

Following a similar reasoning to the previous section, we can deduce r′ for the fully connected layer as

r′
F C = El

IF

El
AC

= #OP l
IF

#OP l
F C

≈ 1
Ci · SpikeRatel

. (12)

We use the above equations defining r′ and rl
E to find the normalized number of inference timesteps Tnorm in

the PASC framework as

Tnorm =
(

1
|Ltot|

·
∑

l

rl
E

)
· T, (13)

where Ltot is the total number of layers and T is the number of time-steps of the corresponding vanilla SNN.
For this computation, we assume that the SpikeRatel = 0.75 for all layers. In addition, we also define the
overall energy ratio as

rE =
Etot

P ASC_SNN

Etot
SNN

, (14)

which characterizes the overall energy cost of our method with respect to the traditional SNN. We show in
Appendix A.10 that the ratio rE is as low as 1.001 in practice, indicating that increasing the number of IF
operations does not adversely affect the overall energy consumption. This shows the ability of the proposed
PASC framework to provide lossless ANN-SNN conversion for negligible increase in energy consumption.

4.2.2 Energy comparison of vanilla SNN with ANN

Having established that PASCAL preserves the energy benefits of vanilla SNNs, we now analytically compute
the energy efficiency of an SNN relative to its source ANN. We estimate this energy efficiency by comparing
the number of operations between the source ANN (#OPANN ) and the converted SNN (#OPSNN ), following
the approach proposed by Rathi & Roy and formulated as

#OPSNN = SpikeRatel × #OPANN . (15)

Table 3 shows that converted SNNs are up to 7× more energy efficient than the corresponding source ANNs.
The energy results account for the fact that the first SNN layer alone performs MAC operations since it
receives input image with real-valued pixel intensities. The formulae used to compute the ANN and SNN
operations are detailed in Appendix A.4.

4.3 Adaptive Layerwise (AL) Activation Results

Figure 1 shows the layerwise AL metric (Equation 6) for different models and datasets. We perform clustering
with various values of χ, and compute the quantization step per layer. We also evaluate the effective inference

10
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Table 3: Energy comparison between ANN and SNN based on the method proposed by Rathi & Roy. The
MAC (AC) energy is estimated as 4.6 pJ (0.9 pJ) (Horowitz, 2014). The spike rate per layer for various
models is shown in Appendix A.9.

Architecture
(quantization
step)

Dataset Normalized
#OPANN (a)

Normalized
#OPSNN (b) 1

#OPSNN_Layer1
#OPT otal

(c) EnergyANN
EnergySNN

( a∗4.6
c∗4.6+(1−c)∗b∗0.9 )

VGG-16 (L=4) CIFAR-10 1.0 0.66 0.005 (Appendix A.5) 7.49
VGG-16 (L=4) CIFAR-100 1.0 0.62 0.005 (Appendix A.5) 7.96
VGG-16 (L=16) ImageNet 1.0 0.73 0.006 (Appendix A.6) 6.76
ResNet-18 (L=8) CIFAR-10 1.0 0.86 0.008 (Appendix A.7) 5.72
ResNet-18 (L=8) CIFAR-100 1.0 0.91 0.008 (Appendix A.7) 5.42

1 Average SpikeRatel across layers, is computed as
∑|Ltot|

l=1
SpikeRatel

|Ltot| , where |Ltot| is the total number of layers.
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Figure 1: AL metric for different models and datasets, with the threshold α = 1
2·|Ltot| for Agreement, where

Ltot is the number of layers. AL metric for (a) VGG-16 (L = 4) on CIFAR-10, (b) ResNet-18 (L = 8) on
CIFAR-10, and (c) VGG-16 (L = 8) on CIFAR-100.

Table 4: SNN accuracy and effective timesteps obtained using the Adaptive Layerwise (AL) activation method
for different models.

AL Metric Model Dataset χ L Layerwise L Teff Accuracy (%)
Figure 1(a) VGG-16 CIFAR-10 3 1,2,4 [2,1,2,1,2,1,1, 1,1,1,4,4,2,4,4] 2.13 93.73
Figure 1(b) ResNet-18 CIFAR-10 2 1,4 [4,4,4,1,4,4,4,1,4,1,1,1,1,1,1,1,4] 3.14 95.34
Figure 1(c) VGG-16 CIFAR-

100
3 1,4,8 [8,4,4,1,4,4,1,1 ,1,1,1,4,8,8,8] 4.54 74.07

VGG-16 ImageNet 3 16,8,4 [16,16,16,8,8,8,8,8,4,4,4,4,4,4,4] 9.92 71.188

timesteps, Teff , which is specified by

Teff = 1
|Ltot|

·
∑

l

rl
E · T l, (16)

where Ltot is the total number of layers and T l is the number of time-steps of the corresponding vanilla
SNN for the same layer. Table 4 shows that adapting the quantization step in a layerwise manner achieves
competitive accuracy using fewer effective timesteps, thereby improving temporal efficiency. For instance,
ResNet-18 provides 95.34% accuracy on CIFAR-10 using Teff ≈ 3.14, which is comparable to the 96.51%
accuracy achieved with a uniform Tnorm = 8.22 (see Table 6).

11
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Table 5: SNN accuracy and inference timesteps comparison with QCFS and SEENN-1.

PASC formulation with uniform Quantization Step PASC with Adaptive Layerwise (AL) activation

Model Dataset Method T Acc. Model Dataset Method T Acc.

VGG-16
CIFAR-10 QCFS 16 93.95%

ResNet-18
CIFAR-10

QCFS 8 94.82%

PASC (Tnorm) 4.21 95.61% SEENN-1 2.01 95.08%

CIFAR-100 QCFS 16 72.80% PASCAL (Teff ) 3.14 95.34%

PASC (Tnorm) 4.21 76.06% CIFAR-100 SEENN-1 6.19 65.48%

ResNet-34 ImageNet

QCFS 64 72.35% PASCAL (Teff ) 2.63 76.19 %

QCFS 256 74.22% VGG-16 CIFAR-100 QCFS 16 72.80%

SEENN-1 29.53 71.84% PASCAL (Teff ) 4.54 74.07%

PASC (Tnorm) 8.17 74.31%

VGG-16 ImageNet QCFS 1024 74.32%

PASC (Tnorm) 18.37 74.22%

Table 6: SNN accuracy and inference timesteps comparison with other state-of-the-art works.

Prior Work Dataset Model Accuracy of Prior Work(%) Accuracy of PASC(%)

Hao et al. (2023) CIFAR-100 VGG-16 76.77 (T=16) 76.77 (Tnorm = 8.79)
Hao et al. (2023) ImageNet ResNet-34 73.93 (T=32) 74.31 (Tnorm = 8.17)
Li et al. (2023a) CIFAR-10 ResNet-18 94.27 (T=11.51) 96.51 (Tnorm = 8.22)
Li et al. (2023a) ImageNet VGG-16 73.30 (T=49.54) 74.22 (Tnorm = 18.37)
Wu et al. (2024) ImageNet ResNet34 71.66 (T=16) 74.31 (Tnorm = 16.67)

4.4 Comparison with the State-of-the-Art

We compare our results, presented in Table 5, with those of the QCFS framework (Bu et al., 2023) and the
SEENN-1 method (Li et al., 2023b). In addition to these baselines, we also benchmark our approach against
various other state-of-the-art works listed in Table 6. Our results indicate that PASCAL consistently yields
SNNs that provide competitive accuracy using fewer timesteps across models and datasets, outperforming the
QCFS framework (Bu et al., 2023). We report comparable performance to the SEENN-1 method (Li et al.,
2023b) on CIFAR-10. However, we demonstrate significant performance improvements, both in terms of
accuracy and effective timesteps, for CIFAR-100 and ImageNet. This trend is also observed when comparing
our method with more recent works in Table 6: PASCAL remains competitive on smaller datasets and
achieves superior results on larger ones. The efficacy of PASCAL improves with dataset complexity since it
relies on mathematically equivalent ANN-SNN conversion.

5 Conclusion

In this paper, we proposed PASCAL, which is a precise and temporally efficient ANN-SNN conversion method.
We showed that the proposed methodology enables ANNs to be converted into SNNs with a guarantee of
mathematical equivalence, leading to near-zero conversion loss. We formally proved that the converted SNN
performs the same computations, unrolled over timesteps, as the source ANN with QCFS activation. We
demonstrated the energy efficiency of the proposed approach using an analytical model. In addition, we also
proposed an Adaptive Layerwise (AL) activation methodology to further improve temporal efficiency during
SNN inference. We presented an algorithmic approach to choose an optimal precision for each layer, which
reduces the effective number of inference timesteps while providing competitive accuracy.
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A Appendix

A.1 Proof for equivalence between the PASC formulation and an ANN with QCFS activation

Proof for Theorem 3.5.

For the input layer, the MatMul operation performed in the PASC formulation is the same as the corresponding
ANN with QCFS activation. Let the output after the MatMul Operation be X. Consider a single element
x ∈ X. In the case of ANN, the output after QCFS is

ĥ(x) = θn clip
(

1
Ln

⌊
XLn

θn
+ φ

⌋
, 0, 1

)
= c · θn

Ln
. (17)

Upon further simplification, we obtain

c =


k if 0 < k < Ln, and

(k − 1
2 ) θn

Ln
≤ x < (k + 1

2 ) θn

Ln

Ln if x ≥ (Ln − 1
2 ) θn

Ln

0 if x < θn

2·Ln

(18)

Algorithm 2 specifies the Integrate-and-Fire algorithm for the input layer. It also first generates ĥ(X) = zl

(refer to Line 3). Subsequently, it generates the final spike train sl. We denote the spike train for a given
input x ∈ X by sl

x. Note that zl only consists of integral multiples of θ∗ = θn

Ln
. Therefore, after repeated

application of the Heaviside step function on x, and stacking the output over time, we get

sl
x(i) =

{
θn

Ln
if i ≤ c

0 otherwise
(19)

Now,
∑Ln

i=1 sl
x(i) = c · θn

Ln
= ĥ(x), ∀x ∈ X. Therefore,

∑Ln

i=1 sl(i) = zl, proving part (a). Using Equation 19,
we can see that sl

x contains values from the set {0, θn

Ln
} for all values of x ∈ X. This proves part (b) of the

theorem.

Proof for Theorem 3.4. We begin with the remark that θn = λl after the training is complete. Consider a
single element x ∈ zl and the corresponding elements xi ∈ zl

i, ∀i ∈ {1, 2, · · · Ln−1}. In an ANN with QCFS
activation (see Figure 2),

ĥ(x) =


k · θn

Ln
if 0 < k < Ln, and
(k − 1

2 ) θn

Ln
≤ x < (k + 1

2 ) θn

Ln

θn if x ≥ (Ln − 1
2 ) θn

Ln

0 if x < θn

2·Ln

(20)

Table 7: Mapping between the value of s at the end of stage 2, and the final number of spikes at the end of
stage 3.

Value of s Number of Spikes
2Ln − 1 ≥ s ≥ Ln Ln

Ln > s > 0 s
0 ≥ s ≥ −(Ln − 1) 0
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Figure 2: A sample QCFS activation layer with L = 4 and θn = 0.25.

After the first stage of Algorithm 1, let the value of s be k1 · θn

Ln
. If there was a spike in the last timestep,

then we obtain an inequality of the form θn

2·Ln
+
∑

i xi − k1 · θn

Ln
≥ θn

Ln
. Upon simplification, we get

Ln−1∑
i=1

xi ≥ (k1 + 1
2) · θn

Ln
(21)

On the other hand, if there was no spike in the last timestep, we instead obtain
Ln−1∑
i=1

xi < (k1 + 1
2) · θn

Ln
(22)

Although we have a one-directional inequality in either case, we nevertheless need more processing to obtain
the second direction of the inequality to choose the correct level. We consider the aforementioned two cases.
Case 1. Let Inequality 21 be the final inequality after stage 1. Inhibitory spikes are not possible in this
case. The QCFS function clips the activation if the accumulated input

∑
i xi is greater than (Ln − 1

2 ) · θn

Ln
.

Therefore, the IF step needs to be done without input at least T1 = Ln − 1 times to ensure that the correct
level is obtained for all inputs. The bound arises because the minimum value of k1 = 0. At the end of stage
2, let the value of s be k2 · θn

Ln
. Since an inhibitory spike is not possible, we get

θn

2 · Ln
+
∑

i

xi − k2 · θn

Ln
≥ 0 (23)

Also, if k2 < Ln, then we also have the following inequality.
θn

2 · Ln
+
∑

i

xi − k2 · θn

Ln
<

θn

Ln
(24)

Otherwise, we only have the inequality specified in Equation 23. In effect,

s =


k · θn

Ln
, k < Ln if (k − 1

2 ) θn

Ln

≤
∑

i xi < (k + 1
2 ) θn

Ln

k · θn

Ln
, k ≥ Ln if

∑
i xi ≥ (Ln − 1

2 ) θn

Ln

(25)

Case 2. If Inequality 22 is the final inequality, we need inhibitory spikes to determine the correct level.
This is different from Case 1, because we have an upper bound on the value of

∑Ln−1
i=1 xi. In effect, any level

below k1 should be possible. Since k1 ≤ Ln−1 − 1, this stage requires T2 = Ln−1 − 1 timesteps. Here, normal
spikes are not possible. Using a similar analysis as presented in Case 1, we obtain

s =


k · θn

Ln
, k > 0 if (k − 1

2 ) θn

Ln

≤
∑

i xi < (k + 1
2 ) θn

Ln

k · θn

Ln
, k ≤ 0 if

∑
i xi < θn

2·Ln

(26)
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Considering Cases 1 and 2, we run stage 2 for max(T1, T2) = max(Ln−1, Ln) − 1 timesteps.

Stage 3 is used to generate a final spike train from the value of s obtained after stage 2. This layer is used to
generate a stacked output h̃(X). As a result of this computation, we get that

∑
j h̃(X)[j] = min(max(s, 0), Ln).

The final number of spikes, parametrized by the value of s at the end of stage 2, is given in Table 7. Using 25
and 26, we can conclude that

∑
j

h̃(x)[j] =



k · θn

Ln
if 0 < k < Ln, and
(k − 1

2 ) θn

Ln

≤ x < (k + 1
2 ) θn

Ln

θn if x ≥ (Ln − 1
2 ) θn

Ln

0 if x < θn

2·Ln

= ĥ(x) (27)

∀x ∈ X. This proves part (a). sl(t) is the output of the Heaviside function, i.e. h̃(x)[j] ∈ {0, θ∗ = θn

Ln
} ∀j,

thus proving part (b).

Proof for Theorem 3.3 We begin by simplifying the right-hand side.

L∑
i=1

zl+1
i =

L∑
i=1

(γ ·
(zl

i ∗ W + b
L − µ

L )
√

σ2 + ϵ
+ β

L
) (28)

=
L∑

i=1
γ · zl

i ∗ W√
σ2 + ϵ

+ 1√
σ2 + ϵ

L∑
i=1

b − µ

L
+

L∑
i=1

β

L
(29)

= S1 + S2 + S3 (30)

Here,

S1 = γ√
σ2 + ϵ

· (
L∑

i=1
zl

i) ∗ W (31)

= γ√
σ2 + ϵ

· zl ∗ W (32)

= γ√
σ2 + ϵ

· (zl+1 − β) ·
√

σ2 + ϵ

γ
− b + µ (33)

= zl+1 − β − b + µ (34)

Also,

S2 =
L∑

i=1

b

L
= b − µ (35)

S3 =
L∑

i=1

β

L
= β (36)

Therefore,
S1 + S2 + S3 = zl+1 − β − b + µ + b − µ + β (37)

= zl+1 (38)

Proof for Theorem 3.6

Consider an input z to the models M and N . We invoke Theorems 3.5, 3.4 and 3.3 to show that Invariant 2
holds after the final layer. In other words, after the final layer, zl =

∑L
i=1 zl

i, where L is the quantization step
of the final layer l. In an SNN, the output probabilities are derived by taking the mean over timesteps after the
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final layer. Therefore, the tensor used for classification in the PASC formulation is z∗ = 1
L ·
∑L

i=1 zl
i = 1

L · zl.
Therefore,

fz
M(c) = z∗[c]∑

c z∗[c] (39)

=
zl[c]

L∑
c

zl[c]
L

(40)

= zl[c]∑
c zl[c] (41)

= fz
N (c) (42)

∀c ∈ C. Thus, M and N are mathematically equivalent.

A.2 Effect of threshold of Van Der Eijk’s A on the Final Metric

The effect of A is pronounced in datasets such as CIFAR-100. It primarily affects the value of the metric in
the input layer. The effect can be seen in Figure 3.
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Figure 3: Layerwise AL-metric for different models and datasets, with the threshold α = k
|Ltot| for Agreement,

where Ltot is the number of layers, computed using VGG-16 for CIFAR-100. (a) k = 1 (b) k = 0.75 (c)
k = 0.5.

A.3 Introduction of Datasets

CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 60000 32 × 32 images in 10 classes.
There are 50000 training images and 10000 test images.

CIFAR-100. The CIFAR-100 dataset (Krizhevsky et al., 2009) consists of 60000 32 × 32 images in 100
classes. There are 50000 training images and 10000 test images.

ImageNet. We use the ILSVRC 2012 dataset (Russakovsky et al., 2015), which consists of 1,281,167 training
images and 50000 testing images.

A.4 Comparison of the number of MACs and ACs between ANN and SNN

The table below shows the number of operations for both convolution and fully connected layers. Table 8
shows the notation used for this analysis. The energy cost of addition and multiplication in 45nm CMOS is
shown in Table 10.

Type of Layer Nature of Activation #MACs #ACs
Fully Connected ANN Ci × Co 0
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Type of Layer Nature of Activation #MACs #ACs
Fully Connected QCFS Activation with L

levels, inferred using PAS-
CAL

0 Ci × Co × SpikeRatel,
along with Co ×
SpikeRatel multiplies
for threshold scaling

Convolution ANN Ci ×Co ×Kh ×Kw ×Wo ×
Ho

0

Convolution QCFS Activation with L
levels, inferred using PAS-
CAL

0 Ci ×Co ×Kh ×Kw ×Wo ×
Ho × SpikeRatel (along
with Co × Ho × Wo ×
SpikeRatel multiplies for
threshold scaling)

A.5 Layerwise count of operations in the VGG-16 architecture for CIFAR-10 and CIFAR-100

Layer Input Size Output Size #MACs
Conv1_1 (Convolution) 32 × 32 × 3 32 × 32 × 64 32 × 32 × 3 × 3 × 3 × 64 =

1, 769, 472
Conv1_2 (Convolution) 32 × 32 × 64 32 × 32 × 64 32 × 32 × 64 × 3 × 3 × 64 =

37, 748, 736
MaxPool1 32 × 32 × 64 16 × 16 × 64 —
Conv2_1 (Convolution) 16 × 16 × 64 16 × 16 × 128 16×16×64×3×3×128 =

18, 874, 368
Conv2_2 (Convolution) 16 × 16 × 128 16 × 16 × 128 16×16×128×3×3×128 =

37, 748, 736
MaxPool2 16 × 16 × 128 8 × 8 × 128 —
Conv3_1 (Convolution) 8 × 8 × 128 8 × 8 × 256 8 × 8 × 128 × 3 × 3 × 256 =

18, 874, 368
Conv3_2 (Convolution) 8 × 8 × 256 8 × 8 × 256 8 × 8 × 256 × 3 × 3 × 256 =

37, 748, 736
Conv3_3 (Convolution) 8 × 8 × 256 8 × 8 × 256 8 × 8 × 256 × 3 × 3 × 256 =

37, 748, 736
MaxPool3 8 × 8 × 256 4 × 4 × 256 —
Conv4_1 (Convolution) 4 × 4 × 256 4 × 4 × 512 4 × 4 × 256 × 3 × 3 × 512 =

18, 874, 368
Conv4_2 (Convolution) 4 × 4 × 512 4 × 4 × 512 4 × 4 × 512 × 3 × 3 × 512 =

37, 748, 736
Conv4_3 (Convolution) 4 × 4 × 512 4 × 4 × 512 4 × 4 × 512 × 3 × 3 × 512 =

37, 748, 736
MaxPool4 4 × 4 × 512 2 × 2 × 512 —
Conv5_1 (Convolution) 2 × 2 × 512 2 × 2 × 512 2 × 2 × 512 × 3 × 3 × 512 =

9, 437, 184
Conv5_2 (Convolution) 2 × 2 × 512 2 × 2 × 512 2 × 2 × 512 × 3 × 3 × 512 =

9, 437, 184
Conv5_3 (Convolution) 2 × 2 × 512 2 × 2 × 512 2 × 2 × 512 × 3 × 3 × 512 =

9, 437, 184
MaxPool5 2 × 2 × 512 1 × 1 × 512 —
FC1 (Fully Connected) 1 × 1 × 512 = 512 4096 512 × 4096 = 2, 097, 152
FC2 (Fully Connected) 4096 4096 4096 × 4096 = 16, 777, 216
FC3 (Fully Connected) 4096 100 (CIFAR-100), 10

(CIFAR-10)
40,960 (CIFAR-10)
409,600 (CIFAR-100)
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Layer Input Size Output Size #MACs
Total Operations 332,480,512 (CIFAR-

100)
332,111,872 (CIFAR10)

A.6 Layerwise count of operations in the VGG-16 architecture for ImageNet

Layer Input Size Output Size #MACs
Conv1_1 (Convolution) 224 × 224 × 3 224 × 224 × 64 224 × 224 × 3 × 3 × 3 × 64 = 86, 704, 128
Conv1_2 (Convolution) 224 × 224 × 64 224 × 224 × 64 224 × 224 × 64 × 3 × 3 × 64 = 1, 849, 688, 064
MaxPool1 224 × 224 × 64 112 × 112 × 64 —
Conv2_1 (Convolution) 112 × 112 × 64 112 × 112 × 128 112 × 112 × 64 × 3 × 3 × 128 = 924, 844, 032
Conv2_2 (Convolution) 112 × 112 × 128 112 × 112 × 128 112 × 112 × 128 × 3 × 3 × 128 = 1, 849, 688, 064
MaxPool2 112 × 112 × 128 56 × 56 × 128 —
Conv3_1 (Convolution) 56 × 56 × 128 56 × 56 × 256 56 × 56 × 128 × 3 × 3 × 256 = 924, 844, 032
Conv3_2 (Convolution) 56 × 56 × 256 56 × 56 × 256 56 × 56 × 256 × 3 × 3 × 256 = 1, 849, 688, 064
Conv3_3 (Convolution) 56 × 56 × 256 56 × 56 × 256 56 × 56 × 256 × 3 × 3 × 256 = 1, 849, 688, 064
MaxPool3 56 × 56 × 256 28 × 28 × 256 —
Conv4_1 (Convolution) 28 × 28 × 256 28 × 28 × 512 28 × 28 × 256 × 3 × 3 × 512 = 924, 844, 032
Conv4_2 (Convolution) 28 × 28 × 512 28 × 28 × 512 28 × 28 × 512 × 3 × 3 × 512 = 1, 849, 688, 064
Conv4_3 (Convolution) 28 × 28 × 512 28 × 28 × 512 28 × 28 × 512 × 3 × 3 × 512 = 1, 849, 688, 064
MaxPool4 28 × 28 × 512 14 × 14 × 512 —
Conv5_1 (Convolution) 14 × 14 × 512 14 × 14 × 512 14 × 14 × 512 × 3 × 3 × 512 = 462, 422, 016
Conv5_2 (Convolution) 14 × 14 × 512 14 × 14 × 512 14 × 14 × 512 × 3 × 3 × 512 = 462, 422, 016
Conv5_3 (Convolution) 14 × 14 × 512 14 × 14 × 512 14 × 14 × 512 × 3 × 3 × 512 = 462, 422, 016
MaxPool5 14 × 14 × 512 7 × 7 × 512 —
FC1 (Fully Connected) 7 × 7 × 512 = 25088 4096 25088 × 4096 = 102, 760, 448
FC2 (Fully Connected) 4096 4096 4096 × 4096 = 16, 777, 216
FC3 (Fully Connected) 4096 1000 4096 × 1000 = 4, 096, 000
Total Operations 15,470,264,320

A.7 Layerwise count of operations in the ResNet-18 architecture for CIFAR-10 and CIFAR-100

Layer Input Size Output Size #MACs
Initial Conv 3 × 32 × 32 64 × 32 × 32 1,769,472
Residual Block 1.1 Conv1 64 × 32 × 32 64 × 32 × 32 37,748,736
Residual Block 1.1 Conv2 64 × 32 × 32 64 × 32 × 32 37,748,736
Residual Block 1.2 Conv1 64 × 32 × 32 64 × 32 × 32 37,748,736
Residual Block 1.2 Conv2 64 × 32 × 32 64 × 32 × 32 37,748,736
Residual Block 2.1 Conv1 64 × 32 × 32 128 × 16 × 16 18,874,368
Residual Block 2.1 Conv2 128 × 16 × 16 128 × 16 × 16 9,437,184
Residual Block 2.1 Shortcut 64 × 32 × 32 128 × 16 × 16 2,097,152
Residual Block 2.2 Conv1 128 × 16 × 16 128 × 16 × 16 9,437,184
Residual Block 2.2 Conv2 128 × 16 × 16 128 × 16 × 16 9,437,184
Residual Block 3.1 Conv1 128 × 16 × 16 256 × 8 × 8 4,718,592
Residual Block 3.1 Conv2 256 × 8 × 8 256 × 8 × 8 2,359,296
Residual Block 3.1 Shortcut 128 × 16 × 16 256 × 8 × 8 524,288
Residual Block 3.2 Conv1 256 × 8 × 8 256 × 8 × 8 2,359,296
Residual Block 3.2 Conv2 256 × 8 × 8 256 × 8 × 8 2,359,296
Residual Block 4.1 Conv1 256 × 8 × 8 512 × 4 × 4 1,179,648
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Layer Input Size Output Size #MACs
Residual Block 4.1 Conv2 512 × 4 × 4 512 × 4 × 4 589,824
Residual Block 4.1 Shortcut 256 × 8 × 8 512 × 4 × 4 262,144
Residual Block 4.2 Conv1 512 × 4 × 4 512 × 4 × 4 589,824
Residual Block 4.2 Conv2 512 × 4 × 4 512 × 4 × 4 589,824
Final FC Layer 512 100 (CIFAR-100) 51,200 (CIFAR-100)

10 (CIFAR-10) 5,120 (CIFAR-10)
Total Operations 217,630,720 (CIFAR-100)

217,584,640 (CIFAR-10)

A.8 Training Configurations

In order to implement PASCAL, we adopt the code framework of QCFS Bu et al. (2023). We use the
Stochastic Gradient Descent optimizer (Bottou, 2012) with a momentum parameter of 0.9. The initial learning
rate is set to 0.1 for CIFAR-10 and ImageNet, and 0.02 for CIFAR-100. A cosine decay scheduler (Loshchilov
& Hutter, 2016) is used to adjust the learning rate. We apply a 5 × 10−4 weight decay for CIFAR datasets
while applying a 1 × 10−4 weight decay for ImageNet.

A.9 Layerwise spike rate over the test set

We plot the spike rate over the entire test set for various model architectures and datasets in Figure 4.
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Figure 4: Layerwise Spike Rate over the test-set, (a) for L = 4 using VGG-16 for both CIFAR-10 and
CIFAR-100, (b) for L = 8 using ResNet-18 for both CIFAR-10 and CIFAR-100, and (c) for L = 16 using
VGG-16 for ImageNet.

22



Under review as submission to TMLR

Table 8: Notation used in computing MACs and ACs.

Notation Meaning
Ci Number of Input Channels/Features
Co Number of Output Channels/Features
Kh Convolution Kernel Height
Kw Convolution Kernel Width
Wo Output matrix width (after convolution)
Ho Output matrix height (after convolution)

Table 10: Energy cost of addition and multiplication in 45nm CMOS (Horowitz, 2014).

FP ADD (32 bit) 0.9pJ

FP MULT (32 bit) 3.7pJ

FP MAC (32 bit) (0.9 + 3.7)
= 4.6pJ

A.10 Hardware Quantification

We implemented a custom SNN accelerator in-house to quantify the energy consumed per inference with
and without the PASC IF layer. The accelerator is a modified version of the LoAS accelerator (Yin et al.,
2024), enhanced to support the PASC IF layer. We report the energy metrics for the VGG-16 SNN, over the
CIFAR-10 test set.

Table 14: Energy metrics of VGG-16 SNN with and without PASC IF.
Type of IF Total Inference Energy Energy Contributed by the IF Layer

Default IF (T = 4) 445.47 mJ 0.08 mJ
PASC IF (T = 4) 446.02 mJ 0.63 mJ

Our results show that the VGG-16 SNN with PASC IF neurons consumes only 0.1% more energy compared
to the default IF implementation.
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