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Overview. Past research has shown that a top-down parser for Minimalist grammars [MGs; 1] captures sen-
tence processing preferences across an array of languages and phenomena, when combined with complexity
metrics connecting its behavior to memory usage [2, 3, 4, a.0.]. This approach (henceforth: MG Model) helps
probe the link between generative syntactic theory and sentence processing, by offering a fully-specified the-
ory of how fine-grained grammatical structure affects cognitive cost. While work in this framework has focused
on modeling off-line asymmetries, here we show how measures of effort that explicitly consider minimalist-like
structure-building operations can account for word-by-word (online) behavioral data.
The MG Model. We adopt a model linking structural details to processing load by associating the stack states
of a (deterministic) top-down parser [1] to memory burden [5]. This parser is string-driven: when encountering a
displaced word (e.g., “who”), it prioritizes finding a path to its base position. Here, we measure memory usage
based on how long a node is kept in memory through a derivation, tracking how the derivational operations
interact with fine-grained structural details to affect linear word order (Tenure). The annotation schema of Fig. 1
captures how the parser’s tree traversal strategy affects memory: the superscript (index) of a node n encodes
the moment n was predicted and put in memory. The subscript (outdex) encodes the moment n is confirmed
and frees up memory. Tenure for n is outdex(n) —index(n): e.g. Tenure(do) = 10 —3 = 7. While past work has
leveraged offline metrics estimating effort for a full derivation, it is straightforward to derive online measures by
extracting Tenure values for every (pronounced) lexical item (Fig. 1).
Evaluating Tenure Online. Offline subject/object relative clause (SRC/ORC) asymmetries have been exten-
sively probed with the MG Model [3, 4]. Because of this, we ask whether structure-building effort as captured
by Tenure improves model fit to the self-paced reading data made available for English SRCs/ORCs in the
Syntactic Ambiguity Processing Benchmark [6], beyond established expectation-based predictors. First, we fit
a baseline linear mixed-effects model to the RTs, with several lexical control predictors as in [6]. We then add
to the baseline model surprisal predictors, fitting two models with surprisal values derived either from an LSTM
[7] or GPT-2 small [8]. Then, we add to the baseline model word-by-word Tenure values computed via the MG
model for each RC item in the benchmark. The MG trees follow standard generative assumptions for the main
clause of each sentence, and a wh-movement analysis for the structure of RCs [9]. Finally, we fit two models
adding these MG Tenure values to the two surprisal models. We found that the Tenure-only model outperforms
both surprisal-only models, and that best-fit comes from the GPT-surprisal + Tenure model (Table 1). Taking
Tenure into account significantly improves model fit to RT data, as we found Tenure (of both the current word
and the preceding two words) associated with significantly slower RTs independently of surprisal (Table 2).
Discussion. Our results show that predictors explicitly sensitive to structure building models of word-by-word
RTs, beyond the contribution of surprisal measures — providing support to a growing body of computational
work arguing for the role of structure-building operations in developing plausible cognitive models of human
sentence comprehension, and to the use of the MG Model in investigating the interaction of generative syntax
and human sentence processing. As the model’s sensitivity to grammatical assumptions implies that analytical
choices have a significant impact on the derived Tenure values, future work could exploit online behavioral data

to distinguish competing syntactic proposals (and different syntactic formalisms) based on their psycholinguistic



predictions, thus clarifying how/which aspects of sentence structure modulate processing difficulty.
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***p < 0.001; **p < 0.01; “p < 0.05

Table 1: Lmer summary for the best fitting model (GTP Sur-

prisal + Tenure).

df AIC BIC
Baseline 14 9771225 977250.8
+ LSTM Surprisal 19 976309.1 976483.1
-+ GPT-2 Small Surprisal 19 9763019 976475.9
+ Tenure 19 974413.7 974587.7
+ LSTM Surprisal + Tenure 23 974174.8 974385.5
+ GPT Surprisal + Tenure 24 974106.3 974326.2

Table 2: Model Comparison.
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