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Overview. Past research has shown that a top-down parser for Minimalist grammars [MGs; 1] captures sen-

tence processing preferences across an array of languages and phenomena, when combined with complexity

metrics connecting its behavior to memory usage [2, 3, 4, a.o.]. This approach (henceforth: MG Model) helps

probe the link between generative syntactic theory and sentence processing, by offering a fully-specified the-

ory of how fine-grained grammatical structure affects cognitive cost. While work in this framework has focused

on modeling off-line asymmetries, here we show how measures of effort that explicitly consider minimalist-like

structure-building operations can account for word-by-word (online) behavioral data.

The MG Model. We adopt a model linking structural details to processing load by associating the stack states

of a (deterministic) top-down parser [1] to memory burden [5]. This parser is string-driven: when encountering a

displaced word (e.g., “who”), it prioritizes finding a path to its base position. Here, we measure memory usage

based on how long a node is kept in memory through a derivation, tracking how the derivational operations

interact with fine-grained structural details to affect linear word order (Tenure). The annotation schema of Fig. 1

captures how the parser’s tree traversal strategy affects memory: the superscript (index) of a node n encodes

the moment n was predicted and put in memory. The subscript (outdex) encodes the moment n is confirmed

and frees up memory. Tenure for n is outdex(n)− index(n): e.g. Tenure(do) = 10−3 = 7. While past work has

leveraged offline metrics estimating effort for a full derivation, it is straightforward to derive online measures by

extracting Tenure values for every (pronounced) lexical item (Fig. 1).

Evaluating Tenure Online. Offline subject/object relative clause (SRC/ORC) asymmetries have been exten-

sively probed with the MG Model [3, 4]. Because of this, we ask whether structure-building effort as captured

by Tenure improves model fit to the self-paced reading data made available for English SRCs/ORCs in the

Syntactic Ambiguity Processing Benchmark [6], beyond established expectation-based predictors. First, we fit

a baseline linear mixed-effects model to the RTs, with several lexical control predictors as in [6]. We then add

to the baseline model surprisal predictors, fitting two models with surprisal values derived either from an LSTM

[7] or GPT-2 small [8]. Then, we add to the baseline model word-by-word Tenure values computed via the MG

model for each RC item in the benchmark. The MG trees follow standard generative assumptions for the main

clause of each sentence, and a wh-movement analysis for the structure of RCs [9]. Finally, we fit two models

adding these MG Tenure values to the two surprisal models. We found that the Tenure-only model outperforms

both surprisal-only models, and that best-fit comes from the GPT-surprisal + Tenure model (Table 1). Taking

Tenure into account significantly improves model fit to RT data, as we found Tenure (of both the current word

and the preceding two words) associated with significantly slower RTs independently of surprisal (Table 2).

Discussion. Our results show that predictors explicitly sensitive to structure building models of word-by-word

RTs, beyond the contribution of surprisal measures — providing support to a growing body of computational

work arguing for the role of structure-building operations in developing plausible cognitive models of human

sentence comprehension, and to the use of the MG Model in investigating the interaction of generative syntax

and human sentence processing. As the model’s sensitivity to grammatical assumptions implies that analytical

choices have a significant impact on the derived Tenure values, future work could exploit online behavioral data

to distinguish competing syntactic proposals (and different syntactic formalisms) based on their psycholinguistic
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predictions, thus clarifying how/which aspects of sentence structure modulate processing difficulty.
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Figure 2.4: Annotated MG derivation tree for Who do the Gems love?. Boxed nodes are those with
tenure value greater than 2, following (Graf and Marcinek, 2014).

actual input received. Because of this, while do is postulated at step 3, it can only be scanned at

step 10. Similarly, T can only be scanned after who, do, and the whole DP the Gems have been

scanned. A summary of the parser’s actions for this example can be found in Table 2.1.

Essential to this procedure is the role of memory: if a node in the tree is hypothesized at step i,

but cannot be worked on (scanned) until step j, it must be stored for j� i steps in a priority queue.

Moreover, an important advantage of a top-down parser is that the input string is read as a stream,

and thus we do not require a separate memory buffer to keep hold of it while the structure is being

built.

To make the traversal strategy easy to follow, I adopt Kobele et al. (2013)’s notation, in which

each node in the tree is annotated with an index (superscript) and an outdex (subscript). Intuitively,

the annotation indicates for each node in the tree when it is first conjectured by the parser (index)

and placed in the memory queue, and at what point it is considered completed and flushed from
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Who do the Gems love

Tenure 1 7 1 2 8

Figure 1: Example of an MG derivation tree for Who do the

Gems love? with annotated parse steps, and tenure values

for pronounced lexical items. Unary branches indicate move-

ment landing sites.

RT

Predictors Estimate Std. Error df t value Pr(>|t|)

(Intercept) 404.178 5.359 45.273 75.423 <2e-16 ***

Tenure 2.920 1.327 3758.499 2.200 0.027899 *

Tenure i− 1 10.907 1.507 3223.985 7.236 5.75e-13 ***

Tenure i− 2 4.553 1.018 62441.736 4.475 7.65e-06 ***

Surprisal 13.675 1.924 9708.665 7.108 1.26e-12 ***

Surprisal i− 1 12.603 1.762 10126.632 7.154 9.03e-13 ***

Surprisal i− 2 2.656 1.861 59141.060 1.427 0.153489

Word Position -4.682 1.058 60334.657 -4.426 9.60e-06 ***

logfreq -1.782 2.102 37139.995 -0.848 0.396547

length 17.195 2.266 22649.688 7.588 3.38e-14 ***

logfreq i− 1 -4.337 2.149 24284.605 -2.018 0.043568 *

length i− 1 9.626 2.487 14971.417 3.871 0.000109 ***

logfreq i− 2 -0.909 2.136 46859.397 -0.425 0.670483

length i− 2 6.207 2.073 32905.438 2.994 0.002757 **

logfreq:length -2.488 1.470 52063.647 -1.693 0.090503 .

logfreq i− 1:length i− 1 -10.378 1.871 41785.471 -5.545 2.95e-08 ***

logfreq i− 2:length i− 2 -3.642 1.620 46877.483 -2.249 0.024533 *
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 1: Lmer summary for the best fitting model (GTP Sur-

prisal + Tenure).

df AIC BIC

Baseline 14 977122.5 977250.8

+ LSTM Surprisal 19 976309.1 976483.1

+ GPT-2 Small Surprisal 19 976301.9 976475.9

+ Tenure 19 974413.7 974587.7

+ LSTM Surprisal + Tenure 23 974174.8 974385.5

+ GPT Surprisal + Tenure 24 974106.3 974326.2

Table 2: Model Comparison.
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