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Abstract

Training a large-scale deep neural network in a large-scale dataset is challeng-
ing and time-consuming. The recent breakthrough of large-batch optimization
is a promising way to tackle this challenge. However, although the current ad-
vanced algorithms such as LARS and LAMB succeed in classification models,
the complicated pipelines of dense visual predictions such as object detection
and segmentation still suffer from the heavy performance drop in the large-batch
training regime. To address this challenge, we propose a simple yet effective
algorithm, named Adaptive Gradient Variance Modulator (AGVM), which can
train dense visual predictors with very large batch size, enabling several benefits
more appealing than prior arts. Firstly, AGVM can align the gradient variances
between different modules in the dense visual predictors, such as backbone, feature
pyramid network (FPN), detection, and segmentation heads. We show that training
with a large batch size can fail with the gradient variances misaligned among them,
which is a phenomenon primarily overlooked in previous work. Secondly, AGVM
is a plug-and-play module that generalizes well to many different architectures
(e.g., CNNs and Transformers) and different tasks (e.g., object detection, instance
segmentation, semantic segmentation, and panoptic segmentation). It is also com-
patible with different optimizers (e.g., SGD and AdamW). Thirdly, a theoretical
analysis of AGVM is provided. Extensive experiments on the COCO and ADE20K
datasets demonstrate the superiority of AGVM. For example, it can train Faster R-
CNN+ResNet50 in 4.2 minutes without losing performance. AGVM demonstrates
more stable generalization performance than prior arts under extremely large batch
size (i.e., 10k). It enables training an object detector with one billion parameters in
just 3.5 hours, reducing the training time by 20.9×, whilst achieving 62.2 mAP on
COCO. The deliverables are released at https://github.com/Sense-X/AGVM.

*Work done during an internship at Sensetime Research.
†Corresponding authors.
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Figure 1: First row: Comparisons of the gradient variances (omitting learning rate in Φ
(i)
t referred to Eq. (3))

of different network modules in Mask R-CNN, including backbone, FPN, RPN, and heads. From left to right, the
models are trained using SGD with a mini-batch size of 32, 256, 512, and 1024, respectively. Note that smaller
batch size (32 in the first figure) produces similar Φ(i)

t between different modules. When the batch size increases
from 256 to 1024 (2nd ∼ 4th figures), the gradient variance curves suffer from heavy misalignment between
modules. Specifically, the gradient variances are significantly small in the RPN, FPN, detection head, and mask
head. We find that the larger the variance gap, the lower the model performance (the best performance is achieved
when batch size equals 32). Second row: In figures from left to right, we compare the performance (right vertical
axis) and training time of AGVM (bar diagram, left vertical axis) in different visual tasks, including object
detection (1st figure), instance segmentation (2nd), panoptic segmentation (3rd), and semantic segmentation
(4th), where the models are trained using different methods with different batch sizes. The “×” indicates training
failure when using previous methods. Our method outperforms the recent approaches in all tasks with various
batch sizes, significantly reducing training time.

1 Introduction

The recent successes in many tasks of dense visual predictions rely on the large-scale datasets [1, 2, 3],
the increase of computational power (e.g., GPUs), and the parallel training paradigm with large
sample batches. Sufficient computational resource enables large-batch training, greatly reducing the
training time [4]. However, although simply scaling the batch size allows fewer iterations to update
the parameters of deep neural networks, it often leads to dramatic drop of generalization performance
[5, 6, 7].

To reduce the generalization gap in the large-batch training paradigm, LARS [8] scales the batch
size of a plain ResNet50 from 8k to 32k without losing accuracy, enabling to train an image
classification model on ImageNet in a few minutes. However, different from the plain network
architectures in ImageNet classification [9, 10, 11], many tasks of dense visual predictions, such as
object detection [12, 13, 14, 15, 16] and segmentation [17, 18, 19, 20], are solved by more complicated
pipelines, which consist of multiple different modules, such as region proposal network (RPN) [12],
feature pyramid network (FPN) [21], detection head, and segmentation head. Nevertheless, the
recent advanced large-batch optimization methods such as LARS [8] and LAMB [6] are typically
not sufficient to achieve good generalization performance in dense visual predictions. The long
training time of dense predictors greatly limits the researchers from making full use of the increasing
computational power and large-scale datasets.

To address the above challenge, we present a novel large-batch training algorithm, named Adaptive
Gradient Variance Modulator (AGVM), which can train different complicated dense predictors with
very large batch size, significantly reducing their training time while maintaining the generalization
performance. The design of AGVM is motivated by a training phenomenon overlooked in prior
arts. We call it gradient variance misalignment, which would present when a visual dense prediction
pipeline contains many different modules and is trained with a large mini-batch, where different
modules (e.g., backbone, RPN, FPN, and heads) can have different gradient variance magnitudes,
impeding the generalization ability.
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As shown in the first row of Fig.1, where Mask R-CNN [17] with ResNet50 [22] as the backbone is
trained using different batch sizes, we compare the gradient variances of different network modules,
including backbone, FPN, RPN, detection head, and mask head. We see that when the batch size
is small (32 in the first figure), the gradient variances of different network modules are similar
throughout the training process. When the batch size increases from 256 to 1024 (2nd ∼ 4th

figures), the gradient variances misalign in different modules whose variance gap enlarges during
training. Training fails when batch size equals 1024. More importantly, the gradient variances have
significantly smaller values in the RPN, FPN, detection head, and mask head compared to that in the
backbone, and their gradient variances change sharply in the late stage of training (two figures in
the middle). We find that such misalignment undesirably burdens the large-batch training, leading to
severe performance drop and even training failure. More observations on various visual tasks and
networks can be found in Appendix A.2.

The above empirical analysis naturally inspires us to design a simple yet effective method AGVM for
training dense visual predictors with multiple modules using very large batch size. AGVM directly
modulates the misaligned variance of gradient, making it consistent between different network
modules throughout training. As shown in the second row of Fig.1, AGVM significantly outperforms
the recent approaches of large-batch training in four different visual prediction tasks with various
batch sizes from 32 to 2048. For example, AGVM enables us to train an object detector with a huge
batch size 1536 (where prior arts may fail), reducing training time by more than 35× compared to
the regular training setup.

This work makes three main contributions. Firstly, we carefully design AGVM, which to our
knowledge, is the first large-batch optimization method for various dense prediction networks and
tasks. We evaluate AGVM in different architectures (e.g., CNNs and Transformers), solvers (e.g., SGD
and AdamW), and tasks (e.g., object detection, instance segmentation, semantic segmentation, and
panoptic segmentation). Secondly, we provide a convergence analysis of AGVM, which converges
to a stable point in a general non-convex optimization setting. We also conduct an empirical analysis
that reveals an important insight: the inconsistency of effective batch size between different modules
would aggravate the gradient variance misalignment when batch size is large, leading to performance
drop and even training failure. We believe this insight may facilitate future research for large-scale
training of complicated vision systems. Thirdly, extensive experiments are conducted to evaluate
AGVM, which achieves many new state-of-the-art performances on large-batch training. For example,
AGVM demonstrates more stable generalization performance than prior arts under extremely large
batch size (i.e., 10k). In particular, it enables training of the widely-used Faster R-CNN+ResNet50
within 4 minutes without performance drop. More importantly, AGVM can train a detector with one
billion parameters within just 3.5 hours, which reduces the training time by 20.9×, while achieving a
top-ranking mAP 62.2 on the COCO dataset.

2 Preliminary and Notation

Let S = {(xi, yi)}ni=1 denote a dataset with n training samples, where xi and yi represent a data
point and its label respectively. We can estimate the value of a loss function L : Rd → R using
a mini-batch of samples that are randomly sampled, and obtain l(wt) =

1
b

∑
j∈St

L (wt, (xj , yj)),
where St denotes the mini-batch at the t-th iteration with batch size |St| = b and wt represents the
parameters of a deep neural network. We can apply stochastic gradient descent (SGD), one of the
most representative algorithms, to update the parameters wt. The SGD update equation with learning
rate ηt is:

wt+1 = wt − ηt∇l(wt), (1)

where ∇l(wt) represents the gradient of the loss function with respect to wt.

Layerwise Scaling Ratio. In large-batch training, You et al. [8] observe that the ratio between the
norm of the layer weights and the norm of the gradients is unstable (i.e., oscillate a lot), leading to
training failure. You et al. [8] present the LARS algorithm, which adopts a layerwise scaling ratio,
∥w(i)

t ∥/∥∇l(w
(i)
t )+λw

(i)
t ∥, to modify the magnitude of the gradient of the i-th layer∇l(w(i)

t ), where
w

(i)
t and λ indicate the parameters of the i-th layer and the weight decay coefficient, respectively.

Furthermore, LAMB [6] improves LARS by combining the AdamW optimizer with the layerwise
scaling ratio. It can be formulated as rt = mt/

√
vt + ϵ, where mt = β1mt−1 + (1 − β1)∇l(wt)
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and vt = β2vt−1 + (1 − β2)∇l(wt)
2. The layerwise scaling ratio of LAMB can be computed by

∥w(i)
t ∥/∥r

(i)
t + λw

(i)
t ∥.

Sharpness-aware Minimization. Large-batch training often converges to a sharp local minima,
resulting in undesired generalization performance. The sharpness-aware minimization (SAM) [23]
algorithm explicitly penalizes the sharp minima and finds the parameters whose neighbors (in an
lp-ball) have low training loss function values using the following objective function:

lSAM(wt) = max
∥ϵ∥p≤ρ

l(wt + ϵ). (2)

To solve the above equation, SAM applies one-step gradient ascent to determine ϵ =
ρ∇l(wt)/∥∇l(wt)∥. Its gradient is then approximated by ∇lSAM (wt) ≈ ∇l(wt)|wt+ϵ. How-
ever, SAM involves two sequential gradient computations at each iteration and thus doubles the
computational cost.

Gradient Variance Estimation. Qin et al. [24] utilize the cosine similarity between two aggregated
gradients from the replicas in a distributed training system, to estimate the gradient variance between
SGD and GD efficiently. Specifically, we can compute the gradient for each sample in the t-th
mini-batch St of batch size b, denoted by r1,t, ..., rj,t, ..., rb,t. We have∇l(wt) =

1
b

∑b
j=1 rj,t. We

split the above gradients into two groups and average each group, obtaining Gt,1 = 2
b

∑ b
2
j=1 r2j−1,t

and Gt,2 = 2
b

∑ b
2
j=1 r2j,t, respectively. Then the gradient variance can be measured by Φt =

1− cos(Gt,1, Gt,2), where cos(·, ·) is the cosine similarity function.

3 Our Approach

Our goal is to perform large-batch training for dense visual predictors with many different network
modules. As illustrated in Fig.1, the inconsistency of gradient variances among different modules
need to be modulated.

Gradient Variance across Modules. We derive an updated (considering learning rate) gradient
variance to delve into the difference of network modules in complicated dense visual prediction
pipelines. The updated gradient variance of the i-th network module at the t-th iteration can be
formulated as:

Var(ηtg
(i)
t ) =

n− b

2n− b
η2t (1− E[cos(G(i)

t,1, G
(i)
t,2)])︸ ︷︷ ︸

Φ
(i)
t

E[∥g(i)t ∥2], (3)

where n and b are the number of training samples and the mini-batch size, respectively. ηt is
the learning rate. g

(i)
t indicates the gradient of the i-th network module. G

(i)
t,1 and G

(i)
t,2 are two

groups of the gradient estimation as discussed above. Since each entry in the vector g(i)t could be
assumed i.i.d. in a massive dataset following [24, 25], Φ(i)

t is thus proportional to the above updated
gradient variance. At each training iteration, we can approximate the updated gradient variance by
Φ

(i)
t = η2t (1− cos(G

(i)
t,1, G

(i)
t,2)). Note that Φ(i)

t for i-th module has been normalized by the number

of parameters, so Φ
(i)
t of different modules are comparable. For consistency of presentation, we

still call Φ(i)
t gradient variance, which enables us to estimate the gradient variance of each network

module at each training iteration. More discussions can be found in Appendix A.1.

Adaptive Gradient Variance Modulator (AGVM). Let M be a set of modules in a complicated
dense prediction pipeline, where M has h different modules. At the t-th iteration, we have a set of
learning rates, {η̂(i)t |i ∈ {1, 2, ..., h}}, corresponding to different modules. We treat the Backbone
(i = 1) as the anchor and modulate other modules making their gradient variances consistent with the
Backbone. Specifically, we adjust the module learning rates η̂(i)t by using the ratio between Φ

(1)
t and

Φ
(i)
t . The update rule for each network module can be written as:

w
(i)
t+1 = w

(i)
t − η̂

(i)
t g

(i)
t , where η̂

(i)
t = ηtµ

(i)
t and µ

(i)
t =

√√√√Φ
(1)
t

Φ
(i)
t

, (4)

4



Table 1: Comparisons between different methods. “Generalization” indicates the methods’ generalization
ability for dense visual prediction tasks. The number of “+” in the column “stable to batch size scaling” means
the degree of stability when batch size is increased, whereas the number in the bracket means the maximum
applicable batch size without divergence on object detection. We measure the average extra overhead of the
Faster R-CNN+ResNet50 detector at each iteration using 128 NVIDIA A100 GPUs (total batch size is 1024).
The number in the column “extra overhead” indicates the ratio of extra overhead (an extra all-reduce call)
compared to the original computations. “N/A” means no extra overhead.

Method Solution Generalization Less hyperparam.
tuning

Stable to batch
size scaling

Extra
overhead

MegDet [28] Accumulate statistics of BN " " + (1024) N/A
SAM [23] Penalize sharp minima % % + (2048) 100%
LARS [8] Rectify layerwise gradient % % + (1024) N/A
LAMB [6] Rectify layerwise gradient % % ++ (4096) N/A

PMD-LAMB [29] Reduce historical effect " % ++ (4096) N/A
AGVM Balance gradient variance " " +++ (10k) 0.12%

where ηt is the global learning rate. However, simply adjusting the learning rates on-the-fly would
easily yield training failure due to the transitory large variance ratio that impedes the optimization.
We propose a momentum update to address this problem. Let α ∈ [0, 1) be a momentum coefficient,
we have:

µ
(i)
t ← αµ

(i)
t−1 + (1− α)µ

(i)
t , (5)

which can reduce the influence of unstable variance. Note that we update µ
(i)
t each τ iterations.

Discussion on Momentum and Weight Decay. In practice, the weight decay is widely used as a
regularizer and is tightly coupled with the learning rate and the momentum. For instance, the gradient
g
(i)
t will be replaced by the momentum, such as m(i)

t = β1m
(i)
t−1 + (1− β1)(g

(i)
t + λw

(i)
t ) [6, 26],

where β1 and λ indicate the momentum coefficient and the weight decay coefficient, respectively.
We observe that it’s also important to modulate the learning rate by Eq.(4) when weight decay is
presented. In addition, since the above mt is a momentum-based moving average of (g(i)t + λw

(i)
t ),

we can directly apply η̂
(i)
t onto m

(i)
t .

Extensions to Different Optimization Algorithms. AGVM can be easily embedded into different
optimization algorithms such as SGD and AdamW. We demonstrate the details in Appendix A.6:
Alg.1 and Alg.2, respectively. They can be easily implemented using a deep learning framework
e.g., PyTorch [27].

Discussion on Convergence Rate. With AGVM, the SGD and the AdamW optimizers still have
appealing convergence properties in the general non-convex settings. Considering some mild as-
sumptions in stochastic optimization and the case without heavy-ball momentum (β1 = 0), SGD
and AdamW achieve O(1/

√
T ) and O(ln(T )/

√
T ) convergence rate respectively with appropriate

choice of the learning rate ηt. We present the analysis in Appendix A.4.

Comparisons with Existing Works. The purpose of exploring large-batch training is to speed up
model training with increasing computational power, as well as enabling us to explore the larger
dataset. As shown in Table 1, the seminal works such as LARS [8], LAMB [6], and SAM [23] have
made great contributions to large-batch training for plain vision pipelines e.g., image-level prediction,
despite that they often require hyper-parameter tuning by experienced engineers. For complicated
pipelines of dense visual predictions, they are typically not sufficient to achieve desired generalization
performance. MegDet [28] and PMD-LAMB [29] contribute the preliminary attempts by applying
large-batch training on object detection. Different from these approaches, we revisit the design
paradigm of the complicated dense visual perception pipelines and present a simple yet effective
solution, AGVM, which is insensitive to hyperparameter tuning and can be easily plugged into many
visual perception pipelines. For example, AGVM can perform stable training with an unprecedented
batch size 10K, which could greatly reduce the training time. Moreover, AGVM adds a negligible
computational overhead in training, unlike SAM which involves two sequential (non-parallelizable)
gradient computations at each iteration, resulting in a significant increase of the training time.
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Table 2: Comparisons in different tasks (i.e., object detection, instance segmentation, semantic segmentation,
and panoptic segmentation) and pipelines (i.e., Faster R-CNN, Mask R-CNN, Semantic FPN, and Panoptic
FPN). All pipelines use ResNet50 as the backbone and we use SGD as optimizer. We see that previous methods’
performances drop a lot when scaling the batch size and even result in training failure when batch size is 1024
(“NaN”). Since LARS always leads to huge performance drop in large-batch settings, so we only report its
performance on Mask R-CNN. We also report the comparisons with MegDet and SAM. The best-performing
models are shown in bold. Surprisingly, AGVM can alleviate the training difficulties in large-batch settings.

Pipeline Dataset Task Batch size Performance Iterations
MegDet SAM LARS Ours

Faster R-CNN COCO Detection

32 36.8 36.0 - 36.8 58640
256 36.1 36.5 - 36.7 7344
512 35.8 35.7 - 36.7 3680

1024 34.2 33.0 - 35.4 1840

Mask R-CNN COCO Instance Seg

32 33.9 33.7 34.0 33.9 51310
256 33.7 33.9 32.0 34.1 6426
512 33.1 33.0 30.4 33.9 3220

1024 NaN 31.0 25.1 32.6 1610

Semantic FPN ADE20K Semantic Seg

32 37.5 38.8 - 37.5 160000
512 36.7 37.6 - 37.3 10000

1024 36.4 37.5 - 37.3 5000
2048 36.2 36.2 - 37.0 2500

Panoptic FPN COCO Panoptic Seg

32 38.9 39.0 - 38.9 51310
256 39.2 39.3 - 39.3 6426
512 38.7 38.7 - 39.5 3220

1024 NaN NaN - 38.8 1610

4 Experiments

Dataset. We conduct comprehensive experiments on the MS-COCO 2017 [2] and the ADE20K [30]
datasets. Specifically, we perform various tasks of object detection, instance segmentation, and
panoptic segmentation on COCO, and conduct semantic segmentation on ADE20K.

Baselines. Since the prior arts of large-batch optimization methods can be divided into two types,
SGD-based methods (i.e., LARS [8], MegDet [28]) and AdamW-based methods (i.e., LAMB [6],
PMD-LAMB [29]). For fair comparison, we introduce two training configurations using SGD and
AdamW with AGVM, respectively. The details of the hyper-parameter settings can be found in
Appendix A.5.

Pipelines and Models. To evaluate the generalization ability of AGVM, we conduct extensive
experiments on different pipelines, including RetinaNet [31], Faster R-CNN [12], Mask R-CNN [17],
Panoptic FPN [32], and Semantic FPN [32]. For the backbone networks, we use ResNet [22] and
Swin Transformer [33]. We strictly follow the official implementations of these pipelines and models.

Implementation Details. We implement AGVM in PyTorch and reproduce PMD-LAMB with the
official implementation of LAMB [6]. We also evaluate LARS [8] and SAM [23] by borrowing their
official implementations. To make fair comparisons, we follow the same learning rate scaling method
in all experiments. For SGD optimizer, we use linear learning rate scaling when batch size is less than
128 (256 on semantic segmentation). When the batch size is greater than 128, we use the square root
of learning rate scaling to avoid divergence in the training process. For PMD-LAMB and LAMB, we
follow the learning rate scaling scheme in [29]. We apply a learning rate warm-up scheme to avoid
divergence when the learning rate is large. The implementation details can be found in Appendix A.5.

4.1 Comparisons to the State-of-The-Art Methods

Table 3 compares the results of object detection on the COCO dataset with different backbones and
batch sizes. We compare the mAP and the number of iterations of LAMB, PMD-LAMB, and AGVM
using the AdamW optimizer. To our knowledge, AGVM reports the first result that successfully
scales the batch size to 1536 with negligible performance drop compared to small-batch training using
LAMB. We also see that AGVM contributes significant improvements along with the continuous
increase of the batch size. By scaling the batch size larger than 1024 for different backbones, AGVM
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Table 3: Comparisons of performance for object detection on the COCO dataset with different backbones
and batch sizes. We compare the mAP and the number of iterations of AdamW, LAMB, PMD-LAMB, and
AGVM+AdamW. The best-performing models are shown in bold. The underlined numbers indicate the results
are borrowed directly from [29].

Pipeline Backbone Batch size Performance Iterations
AdamW LAMB PMD-LAMB AGVM (ours)

Faster R-CNN ResNet50

32 37.1 36.7 36.7 37.1 43980
256 36.9 36.2 36.7 37.2 5508
512 36.2 35.5 36.5 36.8 2760

1024 36.2 34.8 35.3 37.0 1380
1536 35.9 33.2 33.5 36.6 924

Faster R-CNN Swin-Tiny

32 43.6 42.9 40.2 43.7 47645
256 43.4 43.5 42.4 43.5 5967
512 42.7 42.9 41.3 43.2 2990

1024 42.4 41.6 39.4 42.8 1495

can still achieve 36.6 and 42.8 mAP without heavy hyper-parameter tuning. In conclusion, compared
with LAMB and PMD-LAMB, AGVM achieves more accurate results whilst reducing training
iterations and runtime. AGVM can be embedded in CNN and Transformer models.

Generalize to various pipelines, architectures, and optimizers. AGVM can be generalized to
different tasks, pipelines, architectures, and optimizers. Table 2 compares MegDet, SAM, LARS, and
AGVM in different dense visual prediction tasks, including object detection, instance segmentation,
semantic segmentation, and panoptic segmentation on COCO and ADE20K. We evaluate four
representative pipelines (e.g., Faster R-CNN, Mask R-CNN, Semantic FPN, and Panoptic FPN) with
different batch sizes from 32 to 1024. We see that scaling the batch size only allows fewer iterations
to update weights in previous methods, whose performances drop a lot and even have training failure
when the batch size is 1024 (denoted by “NaN”). In contrast, AGVM yields surprising results in
all tasks when increasing the batch size. Table 6 reports the performances of AGVM trained with
different optimizers, SGD and AdamW. AGVM works well with both of them.

Table 4: Training time of Faster R-CNN with batch
size 2 per NVIDIA A100.

Batch size 32 256 512 1024 1536

GPUs 16 128 256 512 768

Time (min) 148 20.8 11.8 6.0 4.2

Table 5: Scaling the batch size to 10k on RetinaNet
with ResNet18.

Batch size 32 4k 10k

PMD-LAMB 31.4 23.5 NaN

Ours 32.8 28.7 26.7

Table 6: AGVM+different optimizers on Faster R-
CNN. AGVM works well with both these optimizers.

Optimizer AGVM Batch size Backbone mAP

SGD % 512 ResNet50 35.8
SGD " 512 ResNet50 36.7

AdamW % 512 ResNet50 36.2
AdamW " 512 ResNet50 36.8

AdamW % 512 Swin-Tiny 42.7
AdamW " 512 Swin-Tiny 43.2

Table 7: Anchor module selection. We report the
segmentation mAP with different anchor modules.

Pipeline Modules mAP

Backbone 33.9
FPN 33.3

Mask R-CNN Detection Head 33.1
RPN 33.1

Mask Head 32.9

Training COCO in 4.2 minutes. With AGVM, we can push the frontier of fast training time on
COCO. We employ Faster R-CNN with ResNet50-FPN as the detector and use the same experimental
setting as [29]. Then we explore how fast AGVM can reach the 36.6 mAP@0.5:0.95 reported in
[29] (which needs 12 minutes to train). Different from the hardware setup in Fig. 1 (batch size 8 per
GPU), this experiment is conducted on 768 NVIDIA A100 GPUs. As shown in Table 4, we reduce
the original small-batch training time from 2.5 hours to only 4.2 minutes, which is the fastest record
to our knowledge.

Scaling the batch size to 10k. We also try to push the frontier of large batch size in dense visual
prediction tasks. We choose RetinaNet with ResNet18 as the detector, which is trained for 24 epochs
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Table 8: Extending UniNet [34] to one billion parameters. Both AdamW and PMD-LAMB do not converge
when the batch size is 960. On the contrary, our method achieves a top-ranking mAP 62.2 on the COCO dataset,
while reducing the training time by 20.9×.

Optimizer Batch size Box mAP Seg mAP Iterations Wall-clock time

AdamW 32 62.6 53.8 43980 73 hours
AdamW 960 NaN NaN - -

PMD-LAMB 960 NaN NaN - -
Ours 960 62.2 53.4 1349 3.5 hours

Table 9: Insensitive to hyper-parameter τ and α. We gradually decrease the update frequency of µ(i)
t from

left to right and report the Detection mAP and Segmentation mAP of Mask R-CNN. These results indicate
AGVM is not sensitive to these two hyper-parameters. However, when we don’t introduce moving average
coefficient, the training fails in the early stage.

τ / α None 5 / 0.95 5 / 0.97 10 / 0.97 20 / 0.97 20 / 0.98
mAP NaN 37.5 / 33.9 37.5 / 34.0 37.5 / 33.9 37.6 / 33.9 37.5 / 34.0

(2×) using the AdamW optimizer. For batch size 4k and 10k, the learning rates are 0.001 and 0.0015,
respectively. The mAP results on COCO are shown in Table 5. Without bells and whistles, the batch
size is successfully scaled to 10k while maintaining generalization ability, but PMD-LAMB fails
(“NaN”).

Scaling the detector to 1-Billion parameters. We evaluate AGVM on an extremely-large detector
using the UniNet [34]. We extend it to one billion parameters by following the design in [34].
The detailed settings are released in Appendix A.5. Table 8 shows that AGVM still stabilizes and
accelerates the training process in such a large model regime. Both AdamW and PMD-LAMB diverge
in the early training stage. AGVM can reduce the training time from 3 days (batch size 32) to 3.5
hours using 480 NVIDIA A100 GPUs, achieving a 62.2 box mAP on COCO test-dev benchmark,
whilst reducing the training wall-clock time by more than 20 times.

4.2 Ablation Study

Insensitive to hyper-parameter τ and α. We study the effect of the interval parameter τ , which
means we update µ

(i)
t every τ iterations, as well as the coefficient of moving average α using Mask

R-CNN. The experimental results in Table 9 indicate that AGVM is not sensitive to these two
hyper-parameters. In practice, we employ τ = 10 and α = 0.97 by default. When the batch size is
significantly large (e.g., larger than 1K), we reduce the interval to τ = 5 to update µ

(i)
t faster.

Anchor module selection. In AGVM, we choose the backbone network as the anchor and modulate
other modules to make their gradient variances consistent with the backbone. To deeply investigate
this selection, we choose different modules as the anchors. As shown in Table 7, we see that the
backbone is the optimal anchor because the backbone network plays the most important role in dense
visual predictions.

Delving into the gradient variance misalignment. We answer an important question: what causes
the gradient variance misalignment for dense visual predictors? To tackle this question, we revisit
the data flow of dense prediction pipelines and find that the effective batch size is not consistent
between different network modules. For instance, due to the shared detection head (i.e., classifiers
and regressors) in all the levels of the FPN and different region proposals, the detection head has a
different effective batch size compared to the backbone. Similarly, the RPN (or detection head in
RetinaNet) shared by all FPN levels and pixel-wise loss computation lead to the increased effective
batch size in RPN. Similar to a previous work [25], we find that a larger effective batch size leads to
lower gradient variance of modules (e.g., RPN, detection head).

To explore these analyses, we conduct a progressive ablation study using the RetinaNet, as shown
by the different gradient variance curves in Fig.2. We have three observations. (1) Intuitively, the
shared head leads to the unavoidable batch size misalignment between the backbone and the detection
head. For example, given an input mini-batch size B, the valid mini-batch size for the detection head
is NB, where N is the pyramidal feature number. This motivates us to directly replace the shared
detection head by independent detection heads. As illustrated by the second figure in Fig.2, the
gradient variance misalignment between the detection head and the backbone has been significantly
reduced. (2) Furthermore, compared with the plain network architecture, we argue that the effective
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Figure 2: Ablative experiments on exploring the gradient variance misalignment. To validate our result
on effective batch size, we progressively use independent detection heads, remove FPN, and mask 75% pixels
to reduce the effective batch size on the detection head. Finally, we find a near-constant trend of variance
throughout training towards convergence between the backbone and the detection head.

batch size is also related to the bottom-up and top-down pathways in FPN. To evaluate this, we
remove FPN and only adopt the final-level feature map to perform detection. As shown in the third
figure in Fig.2, this alleviates the variance difference between the backbone and the detection head.
(3) In the fourth figure, we randomly ignore 75% pixels for loss computation in the predictions
generated by detection head. This leads to a near-constant trend of variance throughout training
towards convergence between the backbone and the detection head. We have done a similar study
using Faster R-CNN, whose results and discussions can be found in Appendix A.3.

5 Related Work

We review related work on two aspects including dense visual predictions and large-batch optimization.
We defer the related work on dense visual predictions to Appendix A.7.

Large-batch Optimization. For large scale deep model training, it is significant to adopt a larger
batch size for better hardware utilization and system scalability. However, large-batch training is
prone to converge to a sharp minima, resulting in undesired generalization ability [7]. The main reason
is that the number of iterations will decrease when we fix the number of epochs in large-batch settings.
Researchers [35, 36] try to carefully tune the hyper-parameters to narrow this generalization gap. In
detail, by incorporating learning rate warm-up and linear scaling, Goyal et al. [5] successfully train
ResNet50 with batch size 8192 without loss in generalization performance. Recently, to avoid these
hand-tuned methods, the adaptive learning rate on large-batch training has gained enormous attention
from researchers. For example, LARS and LAMB algorithms [8, 6] enable researchers to scale the
batch size for ResNet50/BERT to 32k/64k. Both LARS and LAMB leverage the norm of weights
and gradients to adjust the learning rate of each layer. These adaptive methods enable researchers to
train ImageNet in a few minutes [37, 38, 39]. Johnson et al. [40] propose AdaScale SGD, a novel
learning rate schedule rule for stabilizing the warm-up stage. However, it highly depends on the
parallelism degree of the system. Liu et al. [41] use adversarial learning to further scale the batch
size to 96k. More recently, sharpness-aware minimization (SAM) [23] introduces a procedure to
minimize the loss value and loss sharpness to close the generalization gap. However, SAM suffers
from training efficiency since the update rule of SAM involves two sequential gradient computation
at each iteration. There are few works [42, 43] towards improving the efficiency of SAM. Recently,
effort [44] has been made on how to choose an appropriate batch size and corresponding learning
rate for large-batch training. And Qin et al. [24] propose Simigrad, which utilizes a lightweight and
automated adaptive batching method to enable fine-grained adaptive batch size. However, rather than
classification tasks, there are few works towards large-batch training for object detection. Peng et al.
[28] implement cross-GPU batch normalization to stabilize the training process and Wang et al. [29]
propose PMD-LAMB to reduce the negative effects of the lagging historical gradients. They can
scale the training of widely used Faster R-CNN+ResNet50 Detector with batch size 256/1056 with
small performance drop.
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6 Conclusion

The complicated pipelines of dense visual predictions suffer from heavy performance drop in large-
batch training. In this paper, we propose and fully study AGVM, which enables module-wise learning
rate scaling and successfully scales the batch size to larger than 10K with desired generalization per-
formance. We also provide a convergence analysis, showing that AGVM+SGD and AGVM+AdamW
both converge to a stable point in the general non-convex setting. Furthermore, we have conducted
extensive experiments to show that AGVM can generalize to different complicated pipelines and
challenging tasks, including object detection, instance segmentation, semantic segmentation, and
panoptic segmentation. We report unprecedented better performance on large-batch training with
very large batch size. For example, AGVM trains Faster R-CNN+ResNet50 using batch size of 1536
in 4.2 minutes without loss of performance. By increasing the object detector UniNet to one billion
parameters, AGVM can achieve 62.2 mAP on COCO using a batch size of 960 in just 3.5 hours,
reducing the training time by 20.9× compared to the normal small-batch training.

Limitation and Potential Negative Societal Impact. Module partitioning is important to estimate
the effective batch size quantitatively. For some pipelines without explicit modularity such as the
heatmap-based pose estimation, we need to do more empirical analysis. We will investigate it in the
future. The potential negative social impact is to use the proposed algorithm to speed up the training
of fraud models such as DeepFake [45].

Acknowledgments and Disclosure of Funding

Ping Luo is supported by the General Research Fund of HK No.27208720, No.17212120, and
No.17200622.

References
[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248–255.

[2] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick,
“Microsoft coco: Common objects in context,” in European Conference on Computer Vision,
2014, pp. 740–755.

[3] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[4] Y. You, I. Gitman, and B. Ginsburg, “Large batch training of convolutional networks,” arXiv
preprint arXiv:1708.03888, 2017.

[5] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
and K. He, “Accurate, large minibatch sgd: Training imagenet in 1 hour,” arXiv Preprint
arXiv:1706.02677, 2017.

[6] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli, X. Song, J. Demmel, K. Keutzer,
and C.-J. Hsieh, “Large batch optimization for deep learning: Training bert in 76 minutes,” in
International Conference on Learning Representations, 2020.

[7] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On large-batch train-
ing for deep learning: Generalization gap and sharp minima,” arXiv Preprint arXiv:1609.04836,
2016.

[8] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Imagenet training in minutes,” in
Proceedings of the 47th International Conference on Parallel Processing, 2018, pp. 1–10.

[9] L. Chen, Y. Lou, J. He, T. Bai, and M. Deng, “Geometric anchor correspondence mining with
uncertainty modeling for universal domain adaptation,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2022, pp. 16 134–16 143.

10



[10] L. Chen, Q. Du, Y. Lou, J. He, T. Bai, and M. Deng, “Mutual nearest neighbor contrast and
hybrid prototype self-training for universal domain adaptation,” in Proceedings of the AAAI
Conference on Artificial Intelligence, 2022.

[11] L. Chen, Y. Lou, J. He, T. Bai, and M. Deng, “Evidential neighborhood contrastive learning for
universal domain adaptation,” in Proceedings of the AAAI Conference on Artificial Intelligence,
2022.

[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with
region proposal networks,” in Advances in Neural Information Processing Systems, vol. 28,
2015.

[13] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” in
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[14] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage object detection,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp.
9627–9636.

[15] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end
object detection with transformers,” in European Conference on Computer Vision, 2020, pp.
213–229.

[16] G. Song, Y. Liu, and X. Wang, “Revisiting the sibling head in object detector,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11 563–
11 572.

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 2961–2969.

[18] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance segmentation,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9157–
9166.

[19] Y. Fang, S. Yang, X. Wang, Y. Li, C. Fang, Y. Shan, B. Feng, and W. Liu, “Instances as queries,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp.
6910–6919.

[20] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, “Segformer: Simple
and efficient design for semantic segmentation with transformers,” in Advances in Neural
Information Processing Systems, vol. 34, 2021.

[21] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid
networks for object detection,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 2117–2125.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, 2016,
pp. 770–778.

[23] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-aware minimization for effi-
ciently improving generalization,” in International Conference on Learning Representations,
2021.

[24] H. Qin, S. Rajbhandari, O. Ruwase, F. Yan, L. Yang, and Y. He, “Simigrad: Fine-grained
adaptive batching for large scale training using gradient similarity measurement,” in Advances
in Neural Information Processing Systems, vol. 34, 2021.

[25] J. Wu, W. Hu, H. Xiong, J. Huan, V. Braverman, and Z. Zhu, “On the noisy gradient descent that
generalizes as sgd,” in International Conference on Machine Learning, 2020, pp. 10 367–10 376.

[26] L. N. Smith, “A disciplined approach to neural network hyper-parameters: Part 1–learning rate,
batch size, momentum, and weight decay,” arXiv Preprint arXiv:1803.09820, 2018.

11



[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems, vol. 32, 2019.

[28] C. Peng, T. Xiao, Z. Li, Y. Jiang, X. Zhang, K. Jia, G. Yu, and J. Sun, “Megdet: A large
mini-batch object detector,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, pp. 6181–6189.

[29] T. Wang, Y. Zhu, C. Zhao, W. Zeng, Y. Wang, J. Wang, and M. Tang, “Large batch optimization
for object detection: Training coco in 12 minutes,” in European Conference on Computer Vision,
2020, pp. 481–496.

[30] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene parsing through
ade20k dataset,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2017, pp. 633–641.

[31] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in
Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2980–2988.

[32] A. Kirillov, R. Girshick, K. He, and P. Dollár, “Panoptic feature pyramid networks,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
6399–6408.

[33] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer:
Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 10 012–10 022.

[34] J. Liu, H. Li, G. Song, X. Huang, and Y. Liu, “Uninet: Unified architecture search with
convolution, transformer, and mlp,” arXiv Preprint arXiv:2110.04035, 2021.

[35] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dahl, “Measuring the
effects of data parallelism on neural network training,” Journal of Machine Learning Research,
vol. 20, pp. 1–49, 2019.

[36] D. Masters and C. Luschi, “Revisiting small batch training for deep neural networks,” arXiv
preprint arXiv:1804.07612, 2018.

[37] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y. Yang, L. Yu et al.,
“Highly scalable deep learning training system with mixed-precision: Training imagenet in four
minutes,” arXiv preprint arXiv:1807.11205, 2018.

[38] C. Ying, S. Kumar, D. Chen, T. Wang, and Y. Cheng, “Image classification at supercomputer
scale,” arXiv preprint arXiv:1811.06992, 2018.

[39] M. Yamazaki, A. Kasagi, A. Tabuchi, T. Honda, M. Miwa, N. Fukumoto, T. Tabaru, A. Ike, and
K. Nakashima, “Yet another accelerated sgd: Resnet-50 training on imagenet in 74.7 seconds,”
arXiv preprint arXiv:1903.12650, 2019.

[40] T. Johnson, P. Agrawal, H. Gu, and C. Guestrin, “Adascale sgd: A user-friendly algorithm for
distributed training,” in International Conference on Machine Learning, 2020, pp. 4911–4920.

[41] Y. Liu, X. Chen, M. Cheng, C.-J. Hsieh, and Y. You, “Concurrent adversarial learning for
large-batch training,” in International Conference on Learning Representations, 2022.

[42] Y. Liu, S. Mai, X. Chen, C.-J. Hsieh, and Y. You, “Towards efficient and scalable sharpness-
aware minimization,” arXiv Preprint arXiv:2203.02714, 2022.

[43] J. Du, H. Yan, J. Feng, J. T. Zhou, L. Zhen, R. S. M. Goh, and V. Y. Tan, “Efficient sharpness-
aware minimization for improved training of neural networks,” in International Conference on
Learning Representations, 2022.

[44] S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team, “An empirical model of large-batch
training,” arXiv Preprint arXiv:1812.06162, 2018.

[45] S. Lyu, “Deepfake detection: Current challenges and next steps,” in 2020 IEEE International
Conference on Multimedia & Expo workshops (ICMEW), 2020, pp. 1–6.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Please see
Appendix A.4.

(b) Did you include complete proofs of all theoretical results? [Yes] Please see Appendix
A.4.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [No] Codes and
models will be released in the future.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please see Section 4 and Appendix A.5.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] All our results are using fixed seed since the uncertainty
in dense visual predictions is very small.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please see Section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Please see Section 4.
(b) Did you mention the license of the assets? [Yes] The data used in our work is open

source and can be used for adademic research.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


	Introduction
	Preliminary and Notation
	Our Approach
	Experiments
	Comparisons to the State-of-The-Art Methods
	Ablation Study

	Related Work
	Conclusion

