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Abstract

The needle-in-a-haystack (NIAH) test, which examines the ability to re-
trieve a piece of information (the “needle”) from long distractor texts (the
“haystack”), has been widely adopted to evaluate long-context language
models (LMs). However, this simple retrieval-based test is indicative of
only a superficial form of long-context understanding. To provide a more
comprehensive evaluation of long-context LMs, we create a new synthetic
benchmark RULER with flexible configurations for customized sequence
length and task complexity. RULER expands upon the vanilla NIAH test to
encompass variations with diverse types and quantities of needles. More-
over, RULER introduces new task categories multi-hop tracing and aggre-
gation to test behaviors beyond searching from context. We evaluate 17
long-context LMs with 13 representative tasks in RULER. Despite achieving
nearly perfect accuracy in the vanilla NIAH test, almost all models ex-
hibit large performance drops as the context length increases. While these
models all claim context sizes of 32K tokens or greater, only half of them
can maintain satisfactory performance at the length of 32K. Our analysis
of Yi-34B, which supports context length of 200K, reveals large room for
improvement as we increase input length and task complexity. We open
source RULER to spur comprehensive evaluation of long-context LMs.Iﬁ

1 Introduction

Recent advancements in Al system engineering (Dao et al., 2022} Jacobs et al.| 2023} [Fu
et al., 2024) and language model designs (Chen et al., 2023; Xiong et al., 2023) have enabled
efficient scaling up of context length for language models (Liu et al.,[2024a;|Young et al.,
2024). Previous works (AI21}2024; X.Al, 2024; |Reid et al., 2024;|Anthropic, 2024) commonly
adopt synthetic tasks, such as passkey retrieval (Mohtashami & Jaggi, 2023) and needle-in-a-
haystack (Kamradt, |2023) to evaluate long-context LMs. However, these evaluations are
used inconsistently across works and reveal merely the retrieval capability, failing to gauge
other forms of long-context understanding.

In this work, we propose RULER, a new benchmark to evaluate long-context modeling capa-
bilities for language models. RULER contains four task categories to test behaviors (Ribeiro
et al.,|2020) beyond simple retrieval from context:

1. Retrieval: we extend the needle-in-a-haystack (Kamradt, 2023, NIAH) test to evaluate
retrieval capability with diverse types and quantities of needles.

2. Multi-hop Tracing: we propose variable tracking, a minimal proxy task for coreference
chain resolution to check the behavior of tracing entities with multi-hop connections.

3. Aggregation: we propose common /frequent words extraction, proxy tasks for summariza-
tion to test the ability to aggregate relevant information that spans long-range context.

* Authors contributed equally.
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Diverse Min. Parametric Controllable

Benchmark & Task ‘Avg Len Type Tasks Knowledge Context
ZeroSCROLLS ~10k  realistic 4 X X
L-Eval ~8k  realistic 4 X X
BAMBOO ~16k  realistic 4 v/ X
LongBench ~8k  hybrid 4 X X
LooGLE ~20k  hybrid v v X
InfiniteBench ~200k  hybrid 4 v X
Needle-in-a-haystack (NIAH)| any synthetic X v 4
Passkey / Line / KV Retrieval | any  synthetic X v v
RULER (Ours) | any synthetic| 4 v 4

Table 1: Comparison between existing long-context benchmarks and RULER. “Realistic” type
refers to human-annotated while “synthetic” type refers to auto-generated. RULER includes
diverse task domains beyond retrieval, reduces reliance on parametric knowledge with
synthetic input, and offers flexibility to control the contexts for different sequence lengths
and task complexities. In RULER, contexts can be adjusted by changing the volume or
placement of relevant and distracted information.

4. Question Answering: we add distracting information to the input of existing short-
context QA datasets to evaluate question answering capability at various context sizes.

Compared to existing realistic benchmarks (Table(l), RULER consists solely of synthetic tasks,
which offer the flexibility to control sequence length and task complexity. The synthetic input
in RULER reduces reliance on parametric knowledge, which interferes with the utilization
of long-context input in realistic tasks (Shaham et al.,2023;|Bai et al.}[2023).

Using RULER, we benchmark Gemini-1.5 (Reid et al}[2024), GPT-4 (OpenAl: Josh Achiam
et al.,[2023), and 15 open-source models with context length ranging from 4k to 128k. Despite
achieving nearly perfect performance on the vanilla NIAH test, almost all models exhibit
large degradation on more complex tasks in RULER as sequence length increases. While
all models claim context size of 32k tokens or greater, our results indicate that only half of
them can effectively handle sequence length of 32K by exceeding a qualitative threshold.
Moreover, almost all models fall below the threshold before reaching the claimed context
lengths. To obtain fine-grained model comparisons, we aggregate performance from 4k to
128k with two weighted average scores where the weights simulate the length distribution of
real-world use cases. The top two models - Gemini-1.5 and GPT-4, consistently outperform
other models regardless of the chosen weighting scheme.

We further analyze Yi-34B, which claims context length of 200K and achieves reasonably
good performance on RULER among open-source models. Our results demonstrate large
degradation in Yi’s performance as we increase input length and task complexity. At large
context sizes, Yi-34B often returns incomplete answers and fails to precisely locate the
relevant information. Furthermore, we observe two behaviors emerging with the scaling
of context size across multiple models: the increased reliance on parametric knowledge
and the increased tendency to copy from context for non-retrieval tasks. Our additional
ablations demonstrate that training on longer sequences does not always lead to better
performance on RULER, and that larger model sizes positively correlate with better long-
context capabilities. Finally, we show that non-Transformer architectures, such as RWKV
and Mamba, still lag behind Transformer by large margins on RULER.

Our contributions are as follows:
¢ We propose a new benchmark RULER for evaluating long-context language models via

synthetic tasks with flexible configurations.

¢ We introduce new task categories, specifically multi-hop tracing and aggregation, to test
behaviors other than retrieval from long context.

* We evaluate 17 long-context LMs using RULER and perform analysis across models and
task complexities.

We open source RULER to spur future research in long-context language modelsﬂ

Ihttps://github.com/hsiehjackson/RULER
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2 Related Work

Long-context Language Models. Numerous long-context language models have been in-
troduced lately owing to the progress in engineering, architectural, and algorithmic designs.
Flash attention (Dao et al.,[2022;|Dao) |2023) and Ring attention (Liu et al., 2023) significantly
reduce the memory footprint required for processing long context. Various sparse attention
mechanisms (Child et al., 2019; |Jaszczur et al., 2021) such as shifted sparse attention (Chen
et al., 2024), dilated attention (Ding et al.,[2023), and attention sinks (Han et al.,2023; Xiao
et al., 2024b) were employed to enable efficient context scaling. Novel position embedding
methods were proposed to improve length extrapolation in Transformers (Vaswani et al.,
2017), including ALiBi (Press et al.,2022), xPOS (Sun et al,[2023b), and RoPE (Su et al., 2023)
variants (Chen et al.,|2023; Xiong et al., 2023} Peng et al.}||[2024; Liu et al.,[2024b; Ding et al.,
2024;|Zhu et al.|[2024). Another line of research focuses on reducing context size. This can
be achieved by caching previous context using recurrence mechanism (Zhang et al.,[2024a;
Bulatov et al| 2023; Martins et al., 2022; [Wu et al| 2022), retrieving relevant information
from context (Xu et al.,[2024a; Mohtashami & Jaggi, 2023;|Wang et al.} 2024; Tworkowski
et al.,2024; Xiao et al., 2024a), or preserving the salient information via compression (Jiang
et al.,2023). Finally, novel architectures (Gu et al.| 2022;|Fu et al., 2023a} |Poli et al., [2023;
Fu et al., 2023b; [Sun et al., [2023a}; Beck et al., 2024} |Sun et al., [2024) such as Mamba (Gu
& Dao, 2023) and RWKYV (Peng et al.,2023) have also been proposed to efficiently handle
long-context input.

Long-context Benchmarks and Tasks. Our work is closely related to other works on bench-
marking long-context language models. ZeroSCROLLS (Shaham et al., 2023) covers ten real-
istic natural language tasks, such as long-document QA and (query-based) summarization.
L-Eval (An et al.,[2024) also uses realistic data, which was filtered manually to ensure quality.
LongBench (Bai et al., 2023) contains tasks in a bilingual setting. InfiniteBench (Zhang et al.,
2024b) includes tasks with length greater than 100K tokens. LTM (Castillo et al.,[2024) targets
the evaluation of long-term conversations. To isolate the effect of parametric knowledge,
previous works (Dong et al., 2023} |Li et al.|,2023b)) also propose to use documents posted
online later than a certain cutoff date, or leverage extremely low-resource materials (Tanzer
et al.,2024). Compared to realistic benchmarks, synthetic tasks are more flexible to control
the setup (e.g., sequence length and task complexity) and less affected by parametric knowl-
edge. Recent works have primarily focused on retrieval-based synthetic tasks (Kamradt,
2023; Mohtashami & Jaggi, 2023; Li et al,[2023a;|Liu et al.,2024d; Lee et al.,|2024), with a
few investigate other aspects, including fact reasoning (Kuratov et al.,[2024; Karpinska et al.,
2024), long-range discourse modeling (Sun et al.,2022), question answering (Levy et al.,
2024;|Yuan et al., 2024), many-shot in-context learning (Agarwal et al.,|2024; |Bertsch et al.,
2024; Xu et al.,[2024b), and code understanding (Liu et al.,[2024c).

3 The RULER Benchmark

RULER comprises tasks across four categories: retrieval, multi-hop tracing, aggregation, and
question answering. Evaluation examples in RULER are automatically generated based on
input configurations (see Table[2) that define the length and complexity of each input. Within
a constrained domain as in RULER, the task complexity can be thought of as a function of
the number of target output tokens and the signal-to-noise ratio in the context. We point
readers to (Goldman et al.,2024)) for more comprehensive discussion on evaluation task
design for long-context language models.

3.1 Retrieval: Needle-in-a-haystack (NIAH)

Recent works (Reid et al., 2024; |Anthropic} 2023) commonly employ the needle-in-a-
haystack (Kamradt, 2023, NIAH) test to evaluate long-context modeling capability. The
NIAH test is reminiscent of the extensively studied (Hopfield, [1982; Graves et al., 2014;
Olsson et al.,[2022; |Arora et al.,[2024) associative recall tasks, in which relevant information
needs to be retrieved from context given a sufficient query. In RULER, we include multiple
retrieval-based tasks, extending the vanilla NIAH test to evaluate models based on three
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Task Configuration Example
Single type_key = word
NIAH type_value = number One of the special magic numbers for long-context is: .
(S-NIAH) type_haystack = essay What is the special magic number for long-context mentioned in the
size_haystack o context length provided text?
Answer:
Multi-keys num_keys = 2
NIAH type key = word One of the special magic numbers for long-context is:
(MK-NIAH) type_value = number

type_haystack = essay
size_haystack o context length

What is the special magic number for long-context mentioned in the
provided text?
Answer:

Multi-values
NIAH
(MV-NIAH)

num_values = 2

type key = word

type_value = number
type_haystack = essay
size_haystack o context length

One of the special magic numbers for long-context is:
One of the special magic numbers for long-context is:

What are all the special magic numbers for long-context mentioned in the
provided text?
Answer:

Multi-queries
NIAH

num_queries = 2
type_key = word

One of the special magic numbers for long-context is:

(MQ-NIAH) type_value = number One of the special magic numbers for large-model is:
type_haystack = essay
size_haystack o context length What are all the special magic numbers for long-context and large-model
mentioned in the provided text?
Answer:
Variable num_chains = 2
Tracking num_hops =2 VAR X1 =12345
(VT) size_noises o context length VAR X2 =
VAR X3 =
Find all variables that are assigned the value 12345.
Answer:

Common Words

freq.cw =2, freq_ucw =1

Extraction num_cw = 10 What are the 10 most common words in the above list?

(CWE) num_ucw o context length Answer:

Frequent Words a =2

Extraction num_word « context length What are the 3 most frequently appeared words in the above coded text?
(FWE) Answer:

Question dataset = SQUAD

Answering num_document « context length  Document 2:

(QA)

Question: question
Answer:

Table 2: Task examples with flexible configurations in RULER. We use different colors to
highlight queries, keys, , and in our examples.

”

criteria. Concretely, the retrieval capability should be (1) agnostic to the type of the “needle
and the “haystack”, (2) strong enough to disregard hard distractors, and (3) of high recall
when multiple items need to be retrieved. Based on these criteria, we develop four NIAH
tasks. The “needle” in each of these tasks is a key-value pair inserted into the “haystack”
(long distractor texts). The query is located at the end of the sequence and serves as a cue for
matching the keys in the context and subsequently retrieving the associated values.

¢ Single NIAH (S-NIAH): This is the vanilla NIAH test where a single “needle’ﬁ] needs
to be retrieved from the “haystack”. The query/key/value can take the form of words,
numbers (7 digits), or UUIDs (32 digits). The “haystack” can be repeated noise sentenceﬂ
or Paul Graham essays (Kamradt, 2023).

¢ Multi-keys NIAH (MK-NIAH): Multiple “needles” are inserted into the “haystack”, and
only one of them needs to be retrieved. The additional “needles” are hard distractors. The
most challenging setting is a version where the “haystack” is filled with distractor needles.

2Gimilar to|Liu et al|(2024a), we use “the special magic number for XXX is: YYY” as the needle due to
its extendability instead of the sentence about San Francisco proposed by Kamradt|(2023).

3Following Mohtashami & Jaggi (2023), we use “The grass is green. The sky is blue. The sun is yellow.
Here we go. There and back again.” as noise sentences.
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Figure 1: In aggregation tasks, we sample words from a vocabulary following the two distri-
butions above. The common words extraction (CWE) samples from uniform distributions.
In the frequent words extraction (FWE), the frequency of each word is determined by its
rank in the vocabulary and the parameter « of Zeta distribution.

* Multi-values NIAH (MV-NIAH): Multiple “needles” sharing the same key are inserted
into the “haystack”. All values associated with the same key need to be retrieved.

¢ Multi-queries NIAH (MQ-NIAH): Multiple “needles” are inserted into the “haystack”.
All “needles” with distinct keys need to be retrieved. This is the same multi-query associative
recall task setup used by |Arora et al.[(2024). Together with MV-NIAH, these two tasks
evaluate the retrieval capability without missing any critical information.

3.2 Multi-hop Tracing: Variable Tracking (VT)

Effective discourse comprehension (van Dijk & Kintsch,|1983) is contingent upon successful
recognition of newly mentioned entities and establishing the chain of references co-referring
to the same entity (Karttunen), (1969) throughout the long context. We develop a new task
variable tracking to emulate a minimal coreference chain resolution (Ng, 2010) task. This
task checks the behavior of tracking relevant co-occurrence patterns and drawing skipped
connections within long input. Specifically, a variable X1 is initialized with a value V,
followed by a linear chain of variable name binding statements (e.g., X2 = X1, X3 = X2,...),
which are inserted at various positions of the input. The objective is to return all variable
names pointing to the same value V. The task complexity can be increased by adding more
hops (i.e., the times of name binding) or more chains, similar to adding hard distractors in
MK-NIAH.

3.3 Aggregation: Common Words (CWE) and Frequent Words Extraction (FWE)

In RULER, we introduce a new category as a proxy for summarization tasks where relevant
information constitutes much larger portion of the context, and the target output depends
on accurate aggregation of the relevant input. Concretely, we construct an input sequence
by sampling words from a pre-defined (synthetic) word list. In the common word extraction
task (CWE), words are sampled from discrete uniform distributions, with the number of
common words fixed while the number of uncommon words increases with the sequence
length. In the frequent words extraction task (FWE), words are sampled from Zeta distribu-
tion Cﬁlﬁgure il shows an illustration of word frequency in the constructed input. A model
needs to return the top-K frequent words in the context. In CWE, K equals to the number of
common words. In FWE, we set K to 3, as increasing K leads to poor performance even at
small context sizes for most models. The task complexity can be adjusted by varying the
number of common words or the parameter of Zeta distribution.

3.4 Question Answering (QA)

The majority of existing QA datasets (Rajpurkar et al., 2018} |Yang et al/ 2018; Trivedi
et al.} 2022)) are designed to answer questions based on short passages. These datasets

“We draw inspiration from Zipf’s Law (Kingsley Zipf,[1932). Let N be the total number of words,
which is determined by the context size, the frequency of the k-th ranked word (the k-th most frequently

appeared word) is & ¥ O} ) , where {(«) is the Zeta function. We set the top-ranked word to noise.

5
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can be extended to simulate long-context input by adding distracting information. In this
task category, we insert the golden paragraphs (i.e., the paragraphs that contain answers)
into paragraphs randomly sampled from the same dataset. This category is a real-world
adaptation (Ivgi et al., 2023) of NIAH, where the question serves as the query, the golden
paragraphs are the “needles”, and the distracting paragraphs form the “haystack”.

4 Experiments & Results

Models & Inference setup We select 17 long-context LLMs, including 15 open-source
models and two closed-source model (Gemini-1.5-Pro and GPT-4 ), covering diverse model
sizes (7B to 8x22B with MoE architecture) and claimed context lengths (32K to 1M). Com-
plete information about these models is included in Appendix|Al We evaluate all models
using vLLM (Kwon et al.,|2023), an LLM serving system with efficient KV cache memor
management. For all models, we run the inference in BFloat16 on 8 NVIDIA A100 GPUs
with greedy decoding.

Task configurations We test all models on 13 tasks ranging diverse complexities from the
four categories of RULER. The test configurations have been selected (shown in Appendix [B)
based on a task correlational study described in Appendix|C] We select these tasks as most
models perform decently at short context size of 4K tokens. Our main goal is to see whether
models can maintain such good performance with the scaling of context length. For each
task, we evaluate each model with 500 examples generated for each length from the series
(4K, 8K, 16K, 32K, 64K, 128K), while complying with each model’s necessary chat templateﬂ
To prevent the model from refusing to answer a query or generating explanations, we
append the task input with an answer prefix and check the presence of the target output
with recall-based accuracy.

Effective Context Size We notice large performance degradation in all models as we
increase input length in RULER. To determine the maximum context size a model can
effectively handle, we grade each model with a fixed threshold, passing which indicates
satisfactory performance at the length of evaluation. We use the performance of Llama2-7b
model at the 4K context length as the threshold. We report in Table (3|the maximum length
exceeding the threshold as the “effective length” along with the “claimed length”.

Model Ranking Criteria While the threshold-based grading reveals the discrepancy
between claimed and effective length, it lacks details for fine-grained model comparisons.
As such, we use a weighted average score to aggregate model performance across various
context sizes. We rank models under two weighting schemes: wAvg. (inc) and wAvg. (dec)
where the weight linearly increases and decreases with sequence length respectively. Ideally,
the weight for each length should be determined by the length distribution of model usage,
here we choose the two schemes to simulate the scenarios where longer sequences (inc) or
shorter sequences (dec) dominate the distribution.

Main Results We include the results of 17 long-context LMs in comparison with the
Llama?2-7B baseline in Table 3’| The performance at a certain length is the average of all
13 tasks in RULER. The closed-source model Gemini-1.5-Pro outperforms the rest of the
models by a large margin, with the effective length greater than the maximum length we
have tested on. Pressure testing this model with harder version of RULER can be interesting
to follow up in the future. For the rest of the models, while they achieve nearly perfect
performance on the passkey retrieval and the vanilla NIAH task (shown in Appendix [E),
all of them exhibit large degradation in RULER as sequence length increases and they
fail to maintain performance above the Llama2-7B baseline at their claimed length. The
top-ranked open-source models (Llama3.1, Qwen2 and Command-R-plus) share common
configurations, such as having larger model sizes and using larger base frequencies in

5See Appendix[D]for model and tasks templates details.
6Performance of base models and breakdown by task categories can be found in Appendix
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Models ?:;‘;‘;d EEZ‘:;;Q 4K 8K 16K 32K 64K 128K ‘ Avg. ‘ “(’ﬁ‘é‘;” ‘z’(ﬁ‘g’
Llama2 (7B) K -~ |56

Gemini-1.5-Pro M >128K | 967 98 960 99 959 944 | 958 | 95504 9610s
GPT-4 128K 64K | 966 963 952 932 870 812 | 916 | 89.0pna) 941ona)
Llama3.1 (70B) 128K 64K | 965 958 954 948 884 666 | 896 | 8550 9370
Qwen2 (72B) 128K 32K | 969 961 949 941 798 537 | 859 | 79.60m) 92.3um
Command-R-plus (104B) | 128K 32K | 956 952 942 920 843 631 | 874 | 8270w 9215
GLM4 (9B) ™M 64K | 947 928 921 899 867 831 | 89.9 | 8800 917(m
Llama3.1 (8B) 128K 32K | 955 938 916 874 847 770 | 883 | 8545m 913pum
GradientAl/Llama3 (70B) | 1M 16K | 951 944 908 854 809 721 | 865 | 8260m 903(sm
Mixtral-8x22B (39B/141B) | 64K 32K | 956 949 934 909 847 317 | 819 | 73501 9030m
Yi (34B) 200K 32K | 933 922 913 875 832 773 | 875 | 848y 90.10m
Phi3-medium (14B) 128K 32K | 933 932 911 868 786 461 | 815 | 7480m 88.3(1m)
Mistral-v0.2 (7B) 32K 16K | 936 912 872 754 490 138 | 684 | 5560130 812
LWM (7B) ™M <4K | 823 784 737 691 681 650 | 728 | 69.90m 75.7(5m)
DBRX (36B/132B) 32K 8K | 951 938 836 631 24 00 | 563 | 38.004m 74714
Together (7B) 32K 4K 882 811 694 630 00 00 | 503 | 33851 667050
LongChat (7B) 32K <4K | 847 799 708 593 00 00 | 49.1 | 331em 652em)
LongAlpaca (13B) 32K <4K | 606 570 566 436 00 00 | 363 | 24707m 47907

Table 3: Long Context Performance (%) of selected models evaluated at length from 4K to
128K. Each score is computed by averaging accuracy of 13 tasks in RULER. The performance
exceeding the Llama2-7B performance at 4K (85.6%) is underlined. The effective context
length is the maximum length passing this threshold. Weighted average score (wAvg.)
aggregates performance across all context sizes, with the weights linearly increasing (inc)
or decreasing (dec) to simulate length distribution of real-world usage. We put the rank of
each model in the subscript. More details about the selected models are in Appendix[A]

RoPE (Xiong et al,|2023). Large training context window is not always necessary for good
long context performance — top-ranked open-source models contain both brute-force context
scaling (Llama3.1 trained on 128K context length) and inference-time length extrapolation
(Qwen2 trained on 32K context length). The less performant models also include those
trained on much larger context size (e.g., LWM and GradientAl/Llama3 both on 1M context
length). Although LWM achieves a higher rank than Mistral-v0.2 when longer sequences
receive larger weight (wAvg. inc) and shows less degradation as the context size increases,
it performs worse than Llama2-7B even at 4K. This result suggests a trade-off in evaluation
between absolute performance on short sequences and the relative degradation with the
scaling of context size. We provide more analysis on the model size and maximum training
length in section 6]

5 Task Error Analysis

We evaluate Yi-34B-200K with increased input lengths (up to 256K) on more complex tasks
to understand the effect of task configurations and failure modes on RULER.

Non-robustness to “needle” types. Figure[2](left) shows that while Yi achieves almost
perfect performance when using needle of word-number pair in the standard passkey
retrieval and vanilla NIAH, performance degrades when the needle takes other forms. We
observe the largest degradation in the task of retrieving UUIDs, for which Yi sometimes fail
to return the complete 32 digits given long (>128K) input context.

Failure to ignore distractors. Figure (middle-left) shows that increasing the number of
distracting needles steadily lowers performance, with Yi dropping by ~40 points at 256K in
the extreme version, where the context is full of irrelevant needles (#K=FULL). Error analysis
reveals that Yi fails to effectively ignore the hard distractors given long input context, thus
incorrectly retrieves values associated with the distractor keys. In the extreme version, Yi
often returns values from the vicinity of the target, suggesting coarse match of the range but
the lack of precision to locate the key when the target is in-distribution of the noises.

Return incomplete information. Consistent with previous works (Liu et al.,|[2024a} |Reid
et al., 2024), we notice significant degradation in performance when the model needs to
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Sequence Length Sequence Length Sequence Length Sequence Length

Figure 2: Performance of Yi-34B in the needle-in-a-haystack (NIAH) tasks. By default, we
use word-number as the key-value pair and Paul Graham essays as the haystack. Yi is not
robust to the change of needle types and degrades with the increasing amount of distractors.
(W: words; N: numbers; U: UUIDs; Full: entire haystack).
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Figure 3: Performance of Yi-34B in variable tracking (VT), frequent words extraction (FWE),
and QA tasks across different task complexities. Yi shows large degradation and distinct
trends with scaled context size in these non-retrieval tasks, demonstrating the need to
evaluate behavior beyond retrieval from context.

retrieve multiple items from a long input. For instance, increasing the number of queries
from 1 to 8 drops the performance by ~15 points (Figure [2|right). When the model needs
to retrieve multiple values associated with the same key (Figure 2] middle-right), Yi often
outputs duplicated answers without returning the complete set of values, implying uneven
associations between the key and each of its values.

Tendency to copy from context. We notice that Yi has a strong tendency to copy from
context verbatim when scaling the input length. This tendency is most notable in variable
tracking (VT) and common words extraction (CWE) where we include one in-context demon-
stration at the beginning of the sequence. Over 80% of Yi’s output in the CWE task at 128K
is simply a string copied from the one-shot example, whereas the copying is nonexistent for
short sequences.glﬂ This copying behavior is also present in the LWM model and LongAlpaca,
however it is less prevalent in other models, such as Mixtral. This finding further reinforces
the need to test behaviors other than retrieval given long input context.

Unreliable tracking within context. For the variable tracking task, both adding more chains
and more hops contribute to large degradation in Yi’s performance. Yi consistently degrades
in the more-hops setting as we increase context size (Figure [3]left), whereas the degradation
in the more-chains setting is most significant for lengths greater than 128K (Figure [3middle-
left). Besides the aforementioned copying issue, Yi makes errors due to incorrectly returning
empty strings or variables from other chains, implying a lack of ability to reliably trace the
same entity within long context. These errors are also frequently observed in models that
do not exhibit the copying behavior.

"We also experimented with removing the one-shot example. The model will simply copy the
string of the beginning of the input, likely due to the attention sinks (Xiao et al.,{2024b).
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Figure 4: (Left & middle left): Comparison of LargeWorldModel (LWM) series trained up
to various context sizes with fixed parameter size of 7B. (Middle right): Comparison of
Yi suite models with different parameter sizes with controlled training context length of
200K. (Right): Performance of non-Transformer architectures lags behind the Transformer
baseline Llama2-7B by large margin. Length extrapolation is presented with dashed lines.

Failure to accurately aggregate. We observe two common failure modes in aggregation
tasks: incorrect use of parametric knowledge and inaccurate aggregation. Models that do
not exhibit the copying issue in the CWE task, sometimes ignore the contextual information
and instead use parametric knowledge to answer the query, especially at large context sizes.
For instance, Mistral (7b-instruct-v0.2) returns high frequency words, such as “the”, “an”,
“a”, as output without counting the words in context. For the FWE task which demonstrates
less the copying issue, Yi fails to correctly output the top frequent words as we decrease the
« in Zeta distribution (Figure [B|middle-right). Decreasing a leads to smaller difference in
frequency among words, increasing the difficulty to distinguish the top-frequent words.

Frequent hallucination in long-context QA. For the QA tasks, Yi's performance ap-
proaches its no-context baseline as we extend the context with distracting paragraphs
(Figure[3|right). The degradation stems primarily from hallucination and reduced reliance
on contextual information. We notice that, at large context sizes, model predictions some-
times are irrelevant to the question and can coincide with the answers of its no-context
baseline. The overall worse performance in QA tasks confirms that the fuzzy matching
between a query and a relevant paragraph in long context is a more challenging setting than
the simplistic NIAH tests, where keys can be exactly located in context.

6 Model Analysis

Effect of training context length. Do models trained with larger context sizes perform
better on RULER? We evaluate the suite of LargeWorldModels (Liu et al.}|2024a, LWM) of
equal parameter size and trained up to various context lengths. Figure [4| (left & middle-left)
shows that larger context sizes overall lead to better performance, but the ranking can
be inconsistent for long sequences. For instance, the model trained with 1M context size
(LWM-1M) is worse than the one with 512K at length of 256K, likely due to insufficient
training for adjusting to the new base frequency in RoPE. Moreover, we observe abrupt
performance drops when models need to extrapolate to unseen lengths (e.g.,, LMW-128K
given input of 256K), and almost linear degradation with input length on log scale within
the max training context size.

Effect of model size The top models in our main results are much larger than other models.
To ablate the effect of model size, we evaluate Yi-34B-200k, Yi-9B-200k, and Yi-6B-200k, all
trained up to the same context length using the same data blend. Figure {4 (middle-right)
shows that the 34B model is significantly better than the 6B model on RULER for both
performance at length of 4K and the relative degradation, suggesting the benefit of scaling
model sizes for better long-context modeling.

Effect of architecture We evaluate the effective context length for two models with non-
Transformer architectures: RWKV-v5 (Peng et al. 2023) and Mamba-2.8B-slimpj (Gu &
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Dao, 2023). We find that both models demonstrate significant degradation when extending
context size to 8K, and both underperform the Transformer baseline Llama2-7B by large
margins up till the length of 4K, beyond which Llama2 shows poor length extrapolation
performance (Figure [ right).

7 Conclusion

We present RULER, a synthetic benchmark for evaluating long-context language models.
RULER contains diverse task categories, retrieval, multi-hop tracing, aggregation and question
answering, providing a flexible and comprehensive evaluation of LLM’s long-context ca-
pabilities. We benchmark 17 long-context LMs using RULER with context sizes ranging
from 4K to 128K. Despite achieving perfect results in the widely used needle-in-a-haystack
test, almost all models fail to maintain their performance in other tasks of RULER as we
increase input length. We observe common failure modes at large context sizes, including
the failure to ignore distractors and ineffective utilization of long context (e.g., simply copy
from context or use parametric knowledge instead). We show that RULER is challenging
for even the top-ranked open-source models as we increase task complexity. Our analysis
further reveals the large potential for improvement on RULER and the benefit of scaling
model sizes in achieving better long context capabilities.

8 Limitations

Despite covering more task categories than retrieval-oriented benchmarks, RULER is limited
in multiple ways which we describe in detail below.

Lack of position controlling. Current RULER reports a single number metric for each input
length without providing the depth-level performance. The depth-level performance was
evaluated by the NIAH test (Kamradt, 2023) and recent works such as LV-Eval (Yuan et al.,
2024) and can be effective in revealing the lost-in-the-middle (Liu et al.|,[2024d) phenomenon.
We are aware of this issue and plan to support the position controlling of the key information
in our codebase.

Lack of correlation with realistic long-context tasks. While tasks such as variable tracking
and frequent words extraction were proposed to serve as proxies for real long-context natural
language tasks, the lack of easy-to-evaluate realistic long-context tasks prevents us from
verifying the validity of these proxies. Due to this limitation, we emphasize that RULER can
be used as convenient behavioral checks of long-context language models, however it
should not be preferred over more realistic settings, such as NoCHA (Karpinska et al.| [2024),
which also emphasize on other capabilities such as reasoning and instruction-following.

Lack of evaluation on short context. In the current RULER task suite, we include tasks that
most models perform reasonably well at 4k context size, and aim to observe performance
degradation with the scaling of context size. This should not be misread as perfect LM
capabilities at 4k context size. In fact, recent works, such as FlenQA (Levy et al}2024), have
demonstrated degrading performance when increasing their task input length to just a few
thousand tokens. While increasing the task complexity in RULER leads to much worse
performance at shorter context size, we did not include these results in this paper.

Lack of verification of prompt robustness. Language models can be sensitive to the
prompt format, however we did not extend a comprehensive study on the prompt robust-
ness beyond preliminary testing in the early stage of this work. We also did not heavily
experiment with a few fixed hyperparameters in the existing tasks, such as the length
of variable names in variable tracking and the synthetic vocabulary size in common word
extraction and frequent word extraction.
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A Models

We select in total 37 models for evaluation and analysis. Our results in the main text
only include aligned models (GPT-4, Gemini-1.5, and 15 open-source models). Besides
the aligned models, we also evaluate 7 open-source base models using RULER. We use
the performance of Llama2-7b (base) and Llama2-7b (chat) at context length of 4K as the
threshold for determining effective context size. In our analysis section, we evaluate in total
11 models, including model series Yi and LWM, as well as models of novel architectures,
including Mamba and RWKV.

Model Aligned Size Context Length Huggingface (Wolf et al.|2019) / APT

GPT-4 (OpenAl Josh Achiam et al. 2023| v - 128K gpt-4-1106-preview

Gemini-T.5(Reid et al. v - ™M gemini-1.5-pro

Llama3.1 (Meta.AI]2024b v 70B 128K meta-llama/Meta-Llama-3.1-70B-Instruct
Llama3.1 (Meta.Al}[2024b, v 8B 128K meta-llama/Meta-Llama-3.1-8B-Instruct
Command v 104B 128K CohereForAl/c4ai-command-r-plus

Qwen2 v 72B 128K Qwen/Qwen2-72B-Instruct

Yi (Young et al.J[20 v 34B 200K 01-ai/Yi-34B-200K

Mixtr: v 39B/141B 32K mistralai/Mixtral-8x22B-Instruct-v0.1
Mistral-v0.2 ( v 7B 32K mistralai/Mistral-7B-Instruct-v0.2

GLM4 4 9B ™M THUDM/ glm-4-9b-chat-1m

GradientA 4 70B M gradientai/Llama-3-70B-Instruct-Gradient-1048k
Phi3-medium (Abdin et al.| v 14B 128K microsoft/Phi-3-medium-128k-instruct
LWM (Liu et al.]2024a v 7B M LargeWorldModel /LWM-Text-Chat-1M
DBRX (Databricks)[2024} v 36B/132B M databricks/dbrx-instruct

Together (log v 7B 32K togethercomputer/Llama-2-7B-32K-Instruct
LongChat { 20 v 7B 32K Imsys/longchat-7b-v1.5-32k

LongAlpaca ( v 13B 32K Yukang/LongAlpaca-13B

Mixtral-base (Jiang X 8x7B 32K mistralai/Mixtral-8x7B-v0.1

Mistral-base ( X 7B 32K alpindale/Mistral-7B-v0.2-hf

LWM-base ( X 7B ™M LargeWorldModel /LWM-Text-1M
LongLoRA-base (Chen et al.) X 7B 100K Yukang/Llama-2-7b-longlora-100k-ft
Yarn-base(Peng et al.J[2024] X 7B 128K NousResearch/Yarn-Llama-2-7b-128k
Together-base (logether. Al X 7B 32K togethercomputer/Llama-2-7B-32K
Jamba-base (A! X 52B 256K ai2llabs/Jamba-v0.1

Llama?2 (chat) (Touvron et al.}|2023 v 7B 4K meta-llama/Llama-2-7b-chat-hf

Llamaz2 (base) (louvron et al. X 7B 4K meta-llama/Llama-2-7b-hf

Yi series (Young et al.][2024] v 6B,9B 200K 01-ai/ Yi-(6B,9B)-200K

LWM series v 7B 128K,256K,512K LargeWorldModel/ LWM-Text-Chat-(128K,256K,512K)
LWM-base series ( X 7B 32K,128K,256K,512K  LargeWorldModel /LWM-Text-(32K,128K,256K,512K)
Mamba ( X 2.8B 2K state-spaces/mamba-2.8b-slimpj

RWKYV (Peng et a X 7B 4K RWKYV /v5-Eagle-7B-HF

Table 4: Information of evaluated and analyzed models in RULER.
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B Task Configurations

RULER is designed to be configurable to allow for diverse sequence lengths and task
complexities. For each task, there arises combinatorially large number of configurations one
can adopt. In the main text, we evaluate the models with 13 representative tasks spanning
the four categories of RULER. Our task selection process is described in the next appendix
section.

Retrieval: In S-NIAH, we include the passkey retrieval (Mohtashami & Jaggi, [2023)
and the vanilla NIAH (Kamradt, [2023)), both use word-number as key-value and ditfer
only by the background haystack. Additionally, we change the value type to UUID,
for the purpose of testing model robustness at retrieving long strings from context. For
MK-NIAH, we add three distractor needles into the haystack. We also include existing
setups from previous works: line retrieval (Li et al.,[2023a) and key-value retrieval (Liu
et al., 2024d) with the haystack filled entirely with distractor needles. For MV-NIAH and
MQ-NIAH, we test 4 values and queries respectively.

Multi-hop tracing: For VT, we insert 1 chain with 4 name-binding hops, totally 5 variable
names need to be returned.

Aggregation: For CWE, in total 10 common words need to be returned, each appears 30
times whereas the uncommon words appear 3 times each. For FWE, we set « to 2.0 in
Zeta distribution for sampling synthetic words.

QA: For QA, we augment SQuAD (Rajpurkar et al.} 2018) and HotpotQA (Yang et al.,[2018)
to simulate long-context scenario. They are representative of single-hop and multi-hop
question answering tasks respectively.

Task | Configurations
| Subtask-1 Subtask-2 Subtask-3
type_key = word type_key = word type_key = word
Sinel type_value = number type_value = number type_value = uuid
I\??I;él-el type_haystack = repeat type_haystack = essay type_haystack = essay
~passkey retrieval ~vanilla NTAH
num_keys = 4 num _keys = full haystack | num_keys = full haystack
type_key = word type_key = word type_key = uuid
MK-NIAH .
type_value = number type_value = number type_value = uuid
type_haystack = essay ~line retrieval ~KV retrieval
MV-NIAH | num_values = 4, type_key = word, type_value = number, type_haystack = essay

MQ-NIAH | num_queries = 4, type key = word, type_value = number, type_haystack = essay

VT | num_chains = 1, num_hops = 4
CWE \ freq-cw = 30, freq_ucw = 3, num_cw =10
FWE | =20

QA | dataset = SQuAD | dataset = HotpotQA

Table 5: Our total 13 task configurations in RULER.
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C Task Correlation Analysis

RULER is designed under the assumption that tasks across different categories are able to
reveal distinct model behaviors. We conduct a preliminary correlational study to confirm
the validity of task categories and guide the selection of representative tasks. We evaluate
eight open-sourced models at various context sizes across 18 task configurations. Each task
can then be represented with a vector of model performance at various context sizes. The 18
task vectors are then clustered via agglomorative clustering algorithm, using correlation
coefficient as the distance metric. As shown in Figure 5| while certain tasks exhibit moderate
correlations with others, tasks in each of the four categories (NIAH, VT, AG, QA) form
cohesive clusters of their own without redundancy. We further eliminate a few tasks that
correlate highly with other tasks within the same cluster, and finalize 13 tasks for later large
scale evaluation.

a=2.0 (FWE)

a=3.5 (FWE)

squad (QA)

hotpotga (QA)

CWE

chain=2, hop=2 (VT)
chain=1, hop=4 (VT)

#q=4 (MQ-NIAH)

#v=4 (MV-NIAH)

#v=2 (MV-NIAH)

#q=2 (MQ-NIAH)

k=W, v=U, h=essay (S-NIAH)
k=W, v=W, h=essay (S-NIAH)
#k=4 (MK-NIAH)

k=W, v=N, h=essay (S-NIAH)
k=W, v=N, h=repeat (S-NIAH)
#k=full (MK-NIAH)

#k=full, k=U, v=U (MK-NIAH)
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Figure 5: Correlation heatmap among 18 tasks with diverse task configurations. We remove
redundant tasks (in red) and only preserve 13 representative tasks in RULER. (W: words; N:
numbers; U: UUIDs; Full: entire haystack)
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D Prompt Templates

We decompose the in
6]

template in Table[7]

ut prompt template into the model template in Table[f|and the task
The model template is the model chat format while the task template
combines instruction, context, and query. To prevent models from refusing to answer our
questions, we append the input with an answer prefix to elicit model responses. For VT and

CWE, we use one task sample as in-context demonstration.

Model Template

GPT-4 {task_template} Do not provide any explanation. Please directly
give me the answer.

Yi/Base {task_template}

Command-R

(BOS_TOKEN)
(|START_OF_TURN._TOKEN])
(|[USER_.TOKEN]){task_template}
{|END_OF_TURN_.TOKEN|)
(|START_.OF_TURN_TOKEN|)
(|CHATBOT_TOKEN])

LWM/LongChat

{system_prompt} USER: {task_template} = ASSISTANT:

GLM

[ gMASK] sop(|user|)
{task_template} (|assistant|)

Phi3

(|user|)
{task_template}(|end|)
(|assistant|)

Qwen/DBRX

(|im_start|)system
{system_prompt}(|im_end|)
(]im_start|yuser
{task_template}(|im_end|)
(]im_start|)assistant

Llama3/Llama3.1

(|begin_of text|) (|start_header_id|)user(|end_header_id|)

{task_template}(|eot_id|)
(|start_header_id|)assistant(|end_header_id|)

Llama2/Others

[INST] {task_template} [ /INST]

Table 6: Model chat templates. We append a task answer prefix in model response to prevent
models from refusing to answer our questions. The addition of answer prefix does not break

the models’ chat template.
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S-NIAH
Subtask-1

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize
it. I will quiz you about the numbers afterwards.

One of the special magic numbers for {word} is:
What is the special magic number for {word} mentioned in the prov1ded text?

Task Answer Prefix:
The special magic number for {word} mentioned in the provided text is

S-NIAH
Subtask-2

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize
it. I will quiz you about the numbers afterwards.

One of the special magic numbers for {word} is:
What is the special magic number for {word} mentioned in the prov1ded text?

Task Answer Prefix:
The special magic number for {word} mentioned in the provided text is

S-NIAH
Subtask-3

Task Template:
Some special magic words are hidden within the following text. Make sure to memorize it.
I will quiz you about the words afterwards.

One of the special magic words for {word} is:
What is the special magic word for {word} mentioned in the provided text?

Task Answer Prefix:
The special magic word for {word} mentioned in the provided text is

MK-NIAH
Subtask-1

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize
it. I will quiz you about the numbers afterwards.

One of the special magic numbers for {word-4} is:
What is the special magic number for {word-4} mentioned in the prov1ded text?

Task Answer Prefix:
The special magic number for {word-4} mentioned in the provided text is

MK-NIAH
Subtask-2

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize
it. I will quiz you about the numbers afterwards.

One of the special magic numbers for {word-x} is:
What is the special magic number for {word-x} mentioned in the provided text?

Task Answer Prefix:
The special magic number for {word-x} mentioned in the provided text is

MK-NIAH
Subtask-3

Task Template:
Some special magic uuids are hidden within the following text. Make sure to memorize it. I
will quiz you about the uuids afterwards.

One of the special magic uuids for {uuid-x} is:
What is the special magic number for {uuid-x} mentioned in the provided text?

Task Answer Prefix:
The special magic number for {uuid-x} mentioned in the provided text is

Table 7: S-NIAH and MK-NIAH templates.
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MV-NIAH

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize
it. I will quiz you about the numbers afterwards.

One of the special magic numbers for {word} is:
One of the special magic numbers for {word} is:
One of the special magic numbers for {word} is:
One of the special magic numbers for {word} is:
What are all the special magic numbers for {word} mentioned in the provided text?

Task Answer Prefix:
The special magic numbers for {word} mentioned in the provided text are

MQ-NIAH

Task Template:
Some special magic numbers are hidden within the following text. Make sure to memorize
it. I will quiz you about the numbers afterwards.

One of the special magic numbers for {word-1} is:

One of the special magic numbers for {word-2} is:

One of the special magic numbers for {word-3} is:

One of the special magic numbers for {word-4} is:
What are all the special magic numbers for {word-1}, {word-2}, {word 3}, and {word-4}
mentioned in the provided text?

Task Answer Prefix:
The special magic numbers for {word-1}, {word-2}, {word-3}, and {word-4} mentioned in
the provided text are

VT

Task Template:
{one task example}
Memorize and track the chain(s) of variable assignment hidden in the following text.

VAR
VAR
VAR
VAR
VAR
Question: Find all variables that are assigned the value {number} in the text above.

{number}

Task Answer Prefix:
Answer: According to the chain(s) of variable assignment in the text above, 5 variables are
assigned the value {number}, they are:

CWE

Task Template:

{one task example}

Below is a numbered list of words. In these words, some appear more often than others.
Memorize the ones that appear most often.

1. 2. 3. 4. 5. 6. 7. 8.

Question: What are the 10 most common words in the above list?

Task Answer Prefix:
Answer: The top 10 words that appear most often in the list are:

FWE

Task Template:
Read the following coded text and track the frequency of each coded word. Find the three
most frequently appeared coded words.

Question: Do not provide any explanation. Please ignore the dots "....". What are the three
most frequently appeared words in the above coded text?

Task Answer Prefix:
Answer: According to the coded text above, the three most frequently appeared words are:

Table 8: MV-NIAH, MQ-NIAH, VT, CWE, and FWE templates.
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Single
Hop
QA

Task Template:
Answer the question based on the given documents. Only give me the answer and do not
output any other words.

The following are given documents.

Document x:

Answer the question based on the given documents. Only give me the answer and do not
output any other words.

Question: question

Task Answer Prefix:
Answer:

Multi
Hop
QA

Task Template:
Answer the question based on the given documents. Only give me the answer and do not
output any other words.

The following are given documents.

Document x:

Document y:

Answer the question based on the given documents. Only give me the answer and do not
output any other words.

Question: question

Task Answer Prefix:
Answer:

Table 9: QA templates.
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E Passkey Retrieval and Vanilla NIAH Results

Models Claimed | 0 gk 16K 32K 64K 128K | Avg.
Length
Gemini-15 M | 1000 100.0 100.0 100.0 100.0 100.0 | 100.0
GPT-4 128K | 100.0 100.0 100.0 100.0 100.0 100.0 | 100.0
Llama3.1 (70B) 128K | 1000 100.0 1000 100.0 1000 97.8 | 99.6
Llama3.1 (8B) 128K | 1000 100.0 1000 100.0 1000 100.0 | 100.0
Qwen2 (72B) 128K | 1000 1000 1000 100.0 1000 96.6 | 99.4
Command-R-plus (104B) | 128K |100.0 1000 99.8 998 1000 972 | 99.5
GLM4 (9B) IM | 1000 100.0 100.0 100.0 100.0 100.0 | 100.0

GradientAl/Llama3 (70B) 1M 100.0 100.0 100.0 100.0 100.0 93.6 | 98.9
Mixtral-8x22B (39B/141B) 64K 100.0 100.0 100.0 100.0 99.6 0.0 83.3

Yi (34B) 200K 100.0 100.0 100.0 100.0 100.0 100.0 | 100.0
Phi3-medium (14B) 128K 100.0 100.0 100.0 100.0 100.0 88.0 | 98.0
Mistral-v0.2 (7B) 32K 100.0 100.0 100.0 100.0 99.6 69.6 | 949
LWM (7B) M 100.0 100.0 100.0 100.0 100.0 100.0 | 100.0
DBRX (36B/132B) 32K 100.0 100.0 100.0 100.0 0.0 0.0 66.7
Together (7B) 32K 100.0 100.0 100.0 100.0 0.0 0.0 66.7
LongChat (7B) 32K 100.0 100.0 100.0 994 0.0 0.0 66.6
LongAlpaca (13B) 32K 882 886 864 824 0.0 0.0 57.6
Mixtral-base (8x7B) 32K 100.0 100.0 100.0 100.0 100.0 46.8 | 91.1
Mistral-base (7B) 32K 100.0 100.0 100.0 1000 99.6 708 | 95.1
Jamba-base (52B) 256K 100.0 100.0 100.0 100.0 100.0 100.0 | 100.0
LWM-base (7B) M 99.8 1000 996 996 982 96.0 | 98.9
LongLoRA-base (7B) 100K 996 994 990 994 994 0.0 82.8
Yarn-base (7B) 128K 100.0 100.0 99.0 100.0 99.2 39.6 | 89.6
Together-base (7B) 32K 100.0 100.0 99.8 100.0 0.0 0.0 66.6

Table 10: Performance of selected aligned and base models across length 4K to 128K in
passkey retrieval of RULER. Almost all models have perfect score at their claimed length.

Models CLlalmed 4K 8K 16K 32K 64K 128K | Avg.
ength
Gemini-1.5 1M | 1000 100.0 100.0 98.0 100.0 100.0 | 99.7
GPT-4 128K | 100.0 100.0 100.0 100.0 100.0 100.0 | 100.0
Llama3.1 (70B) 128K | 100.0 100.0 100.0 100.0 100.0 99.6 | 99.9
Llama3.1 (3B) 128K | 100.0 100.0 100.0 100.0 100.0 99.6 | 99.9
Qwen2 (72B) 128K | 100.0 100.0 100.0 100.0 99.8 564 | 92.7
Command-R-plus (35B) 128K | 100.0 100.0 100.0 100.0 99.8 86.0 | 97.6
GLM4 (9B) 128K | 100.0 100.0 100.0 100.0 100.0 100.0 | 100.0

GradientAl/Llama3 (70B) M 100.0 100.0 1000 99.6 992 97.8 | 994
Mixtral-8x22B (39B/141B) 64K 100.0 100.0 100.0 100.0 99.6 242 | 87.3

Yi (34B) 200K 100.0 100.0 100.0 100.0 100.0 100.0 | 100.0
Phi3-medium (14B) 128K 100.0 99.8 1000 99.8 998 738 | 955
Mistral-v0.2 (7B) 32K 100.0 100.0 1000 97.0 70.0 7.4 79.1
LWM (7B) 1M 100.0 100.0 100.0 100.0 100.0 100.0 | 100.0
DBRX (36B/132B) 32K 100.0 100.0 90.0 93.2 0.8 0.0 64.0
Together (7B) 32K 100.0 100.0 100.0 99.8 0.0 0.0 66.6
LongChat (7B) 32K 100.0 100.0 976 984 0.0 0.0 66.0
LongAlpaca (13B) 32K 90.2 902 884 834 0.0 0.0 58.7
Mixtral-base (8x7B) 32K 100.0 100.0 100.0 100.0 852 348 | 86.7
Mistral-base (7B) 32K 100.0 100.0 100.0 100.0 94.8 0.4 82.5
Jamba-base (52B) 256K 100.0 100.0 988 998 998 864 | 975
LWM-base (7B) 1M 100.0 994 978 986 982 98.6 | 98.8
LongLoRA-base (7B) 100K 99.8 100.0 100.0 99.8 100.0 0.0 83.3
Yarn-base (7B) 128K 974 978 914 854 866 200 | 79.8
Together-base (7B) 32K 100.0 100.0 100.0 99.8 0.0 0.0 66.6

Table 11: Performance of selected aligned and base models across length 4K to 128K in
vanilla NIAH of RULER. Almost all models have perfect score at their claimed length.
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F Additional Results

Claimed Effective wAvg. wAvg.

Models Length Length 4K 8K 16K 32K 64K 128K ‘ Avg. (in0) (dec)
Llama2-7B (base) | 4K - | 79.4

Mixtral-base (8x7B) 32K 32K 918 91.0 895 858 669 290 | 757 | 66415y 85.0¢1sp)
Mistral-base (7B) 32K 16K | 916 898 863 772 523 80 | 675 | 547um 804pnq)
Jamba-base (52B) 256K 4K | 812 754 688 653 610 514 | 672 | 62554 7180
LWM-base (7B) ™M <4K | 775 740 696 646 613 590 | 67.7 | 64dpng) 709
LongLoRA-base (7B) | 100K 8K | 819 804 756 651 608 0.0 | 60.6 | 4925 7200
Yarn_base (7B) 128K <4K | 773 675 590 473 386 139 | 50.6 | 407(6m) 60.50m)
Together-base (7B) 32K 4K 84.6 787 683 579 00 0.0 48.2 | 3237wy  64.2(h)

Table 12: Performance of selected base models across length 4K to 128K by averaging 13
task scores in RULER.

wAvg. wAvg.

Models Cﬁ:;‘;‘fhd E{Z‘;}’f 4K 8K 16K 32K 64K 128K ‘ Avg. | Yove vovE
Llama2-7B (chat) | 4K - | 96.9

Gemini-1.5 M >128K | 998 999 996 997 997 99.6 | 99.7 | 9705y 99.7(1sp)
Llama3.1 (8B) 128K 64K | 999 999 998 996 987 926 | 984 | 95pa) 994png)
GLM4 (9B) ™ 64K | 994 992 995 994 973 944 | 982 | 95pna 9890
Llama3.1 (70B) 128K 64K 100.0 1000 999 99.6 98.5 789 | 96.1 | 93.55m) 98.8um)
GPT-4 128K 32K | 99.9 999 987 983 909 848 | 954 | 9296w 9795
Command-R-plus (104B) 128K 32K 999 999 994 979 89.6 657 | 921 | 8733wy 96.96m)
GradientAlI/Llama3 (70B) M 16K 99.0 988 983 945 912 849 | 944 | R21zgy 96.87m)
Yi (34B) 200K 16K | 982 968 973 951 930 902 | 951 | 9.8 96.4m)
Qwen? (72B) 128K 32K | 1000 999 999 99.4 845 480 | 886 | 8130110 9590m)
Phi3-medium (14B) 128K 8K 98.7 985 966 954 919 513 | 887 | 826(10th) 94-9(10th)
Mixtral-8x22B (39B/141B) | 64K 16K | 993 990 977 967 89.9 238 | 844 | 74810m) 94.1011m)
LWM (7B) M <4K | 925 921 876 837 841 834 | 872 | 8550m 89.0(12m
Mistral-v0.2 (7B) 32K 4K | 981 962 943 855 511 107 | 726 | 58803m 86.515m
DBRX (36B,/132B) 32K 8K | 994 990 935 734 05 00 | 610 | 41604 803sm)
Together (7B) 32K <4K 96.2 89.9 82.3 802 0.0 0.0 58.1 40.2(15&\) 76~0(15th)
LongChat (7B) 32K <4K | 933 922 811 673 00 0.0 | 557 | 37.606m 7376w
LongAlpaca (138) 32K <4K 749 722 70.8 53.2 0.0 0.0 452 30.7(17(11) 59-7(17th)
Llama2-7B (base) | 4K - | 90.9

Mixtral-base (8x7B) 32K 32K | 99 997 984 948 721 291 | 823 | 71.84na) 9280sy
Mistral-base (7B) 32K 16K | 993 975 957 898 568 102 | 749 | 6120 88.60nd)
Jamba-base (52B) 256K <4K | 864 805 737 723 681 569 | 730 | 685am 77-4em
LWM-base (7B) ™M <4K | 885 877 845 796 761 742 | 818 | 9.1 Shdum)
LongLoRA-base (7B) 100K 16K 953 956 927 815 762 0.0 | 735 | 60.65m) 86.53q)
Yarn-base (7B) 128K <4K | 899 861 784 590 495 175 | 634 | 517w 75.10m
Together-base (7B) 32K 8K | 954 915 861 751 00 00 | 580 | 3990w 7626m

Table 13: Performance of selected aligned and base models across length 4K to 128K by
averaging 8 task scores in Retrieval (NIAH) of RULER.
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Models ?::;‘;d E{i;cgti;e 4K 8K 16K 32K 64K 128K ‘ Avg. ‘ “(’ﬁl?); ";’g‘e‘;‘g"

Llama2-7B (chat) | 4K - | 89.7

GPT-4 128K 128K | 100.0 1000 100.0 100.0 1000 996 | 99.9 | 990na 100.0s
Gemini-1.5 M >128K | 100.0 1000 1000 1000 996 1000 | 99.9 | 9.91s 100.0pna)
Command-R-plus (104B) | 128K 128K | 100.0 1000 100.0 100.0 999 972 | 995 | 92(34) 99.8(3ra)
GLM4 (9B) M >128K | 999 996 998 998 996 977 | 994 | 99.1um 997
Qwen2 (72B) 128K 64K | 100.0 1000 100.0 100.0 952 790 | 957 | 9295w 9855
Llama3.1 (70B) 128K 64K [ 100.0 100.0 1000 100.0 99.9 592 | 932 | 883y 98.0(m)
Llama3.1 (8B) 128K 64K | 999 997 997 988 976 704 | 944 | 907w 9800
GradientAl/Llama3 (70B) | 1M 64K | 100.0 100.0 100.0 100.0 997 562 | 926 | 874wm 97.9m)
Yi (34B) 200K 64K 99.8 99.2 988 945 925 76.8 93.6 | 90.3(7tn)  96.99tn)
Mixtral-8x22B (39B/141B) | 64K 64K [ 1000 100.0 998 986 964 00 | 825 | 70.310m 947(i0m)
Phi3-medium (14B) 128K 16K | 996 992 984 821 536 260 | 765 | 6411m 88.9:1m)
Mistral-v0.2 (7B) 32K 16K | 989 960 922 850 745 00 | 744 | 60901 87902
LongChat (7B) 32K 8K | 976 935 834 624 00 00 | 562 | 3740 75.003m
DBRX (36B/132B) 32K 8K | 1000 990 725 458 00 00 | 529 | 333sm 72504m
LWM (7B) M <4K | 844 801 672 522 459 152 | 57.5 | 46513m) 68.6(15m
Together (7B) 32K <4K | 892 888 483 166 0.0 00 | 405 | 228(6m 5826m)
LongAlpaca (13B) 32K <4K | 85 21 182 170 00 00 | 7.6 | 6507 SSarm)
Llama2-7B (base) | 4K - | 58.8

Mixtral-base (8x7B) 32K 64K | 1000 999 1000 984 873 433 | 881 | 80500 9581

Mistral-base (7B) 32K 64K | 990 984 965 891 861 00 | 782 | 6540y 91.00nd)
Jamba-base (52B) 256K 128K | 87.5 876 862 881 860 778 | 855 | 8431y 86.7(vq)
LWM-base (7B) ™ 128K | 802 827 793 764 707 661 | 759 | 7333w 7850
LongLoRA-base (7B) 100K 64K 925 874 731 560 69.2 0.0 63.0 | 50.35tn)  75-8(5th)
Yarn-base (7B) 128K 4K | 846 436 248 430 209 00 | 361 | 2495 4740m
Together-base (7B) 32K 16K | 950 90.6 696 432 00 00 | 497 | 313w 681

Table 14: Performance of selected aligned and base models across length 4K to 128K in

Multi-hop tracing (VT) of RULER.

Models CLIZI‘\‘;‘;CI Efiffgti‘}f 4K 8K 16K 32K 64K 128K ‘ Avg "‘(’1‘;‘1‘2;5 ";’a‘g
Llama2-7B-chat | 4K - | 84.8

Gemini-1.5 ™M >128K | 97.7 977 976 986 973 909 | 96.6 | 958us 97-4qs
GPT-4 128K 64K | 990 983 980 950 901 797 | 934 | 9040ng) 96.30nd)
Qwen2 (72B) 128K 32K | 993 980 931 974 785 703 | 894 | 847Gy 9423
Mixtral-8x22B (39B/141B) | 64K 32K | 978 969 948 882 833 69.7 | 885 | 840um) 929um
Command-R-plus (104B) | 128K 32K | 982 969 952 903 825 595 | 87.1 | 81354, 92.85m
Llama3.1 (70B) 128K 32K | 999 983 984 971 663 39.8 | 833 | 73.8m) 92.8(sm
Phi3-medium (14B) 128K 16K | 908 951 903 824 621 438 | 774 | 6937w 85.6(m)
Yi (34B) 200K 16K | 914 909 862 753 585 434 | 743 | 66.0gm) 82.6(sm)
GLM4 (9B) ™ 8K | 935 852 785 681 583 497 | 722 | 64.80m) 79.6(9m)
GradientAl/Llama3 (70B) | 1M 8K | 964 947 749 570 451 414 | 683 | 57.700m) 788(10m)
Llama3.1 (8B) 128K 8K | 970 90.1 792 541 435 362 | 66.7 | 55.5011m) 77-8(11th)
Mistral-v0.2 (7B) 32K 8K | 943 904 774 485 424 337 | 644 | 53.130m) 75-8(12m)
DBRX (36B/132B) 32K 8K | 945 947 737 487 41 00 | 526 | 34303m) 7093m)
Together (7B) 32K <4K | 823 645 433 348 00 00 | 375 | 2296m) 52.10am)
LongChat (7B) 32K <4K | 743 507 467 511 00 00 | 371 | 248051 49.505m)
LWM (7B) ™M <4K | 613 436 383 328 291 291 | 39.0 | 34.0014m) 44.006m)
LongAlpaca (13B) 32K <4K 330 270 260 232 00 00 | 182 | 1237m) 24.1a7m)
Llama2-7B (base) | 4K - | 73.1

Mixtral-base (8x7B) 32K 32K | 965 948 931 878 68.6 243 | 775 | 6690« 88.1asy
Mistral-base (7B) 32K 16K | 948 931 816 533 367 92 | 614 | 46500 76.302nd)
Jamba-base (52B) 256K 4K | 759 635 517 385 333 280 | 485 | 403334, 56.6(xd)
LWM-base (7B) ™M <4K | 671 484 360 263 215 187 | 363 | 284pm) 44.26m)
LongLoRA-base (7B) 100K <4K | 703 644 507 399 294 00 | 424 | 313um 53.6(m)
Yarn-base (7B) 128K <4K | 706 492 289 205 170 21 | 314 | 207(sm) 42.0(m)
Together-base (7B) 32K <4K | 691 530 199 206 00 00 | 271 | 151pm 39-1gm)

Table 15: Performance of selected aligned and base models across length 4K to 128K by

averaging 2 task scores in Aggregation (CWE/FWE) of RULER.
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Claimed Effective wAvg. wAvg.

Models Length Length 4K 8K 16K 32K 64K 128K ‘ Avg. (inc) (dec)
Llama2-7B (chat) | 4K - | 49.7

Gemini-1.5 M >128K | 819 759 778 759 776 741 | 772 | 7630s 78.0usy
GPT-4 128K 128K 790 780 760 680 616 59.0 | 70.3 | 6654wy 74.002nq)
Qwen?2 (72B) 128K 64K | 80.8 769 741 669 545 472 | 667 | 61.08m 7250
GradientAl/Llama3 (70B) | 1M >128K | 756 739 724 699 660 598 | 69.6 | 67.903) 72.1am)
Llama3.1 (70B) 128K 64K | 772 748 723 704 642 476 | 678 | 634pm 721sm)
GLM4 (9B) M >128K | 747 713 719 685 663 636 | 694 | 67.6004) 711(m)
Mixtral-8x22B (39B/141B) 64K 64K 76.6 735 718 665 59.7 408 | 64.8 | 59409m) 7027w
Yi (34B) 200K 128K | 727 715 684 662 641 599 | 67.1 | 65.05m 692
Llama3.1 (8B) 128K 128K | 741 701 673 658 637 588 | 66.6 | 643(6m) 68.90m)
Command-R-plus (104B) | 128K 64K | 734 723 694 659 570 392 | 629 | 57.6(0m 68-10m)
Phi3-medium (14B) 128K 64K | 709 672 661 593 542 380 | 593 | 5430 643011
Mistral-v0.2 (7B) 32K 32K | 724 700 657 57.6 344 133 | 522 | 425013 62.0012m)
LWM (7B) M >128K | 612 578 567 554 547 526 | 564 | 55.101m) 57.7(3m)
DBRX (36B/132B) 32K 16K | 760 694 594 450 9.6 00 | 432 | 29604 5694
Together (7B) 32K 16K | 6l.1 583 542 456 0.0 0.0 | 365 | 24.9(s5m 48205m)
LongAlpaca (13B) 32K 16K | 572 535 497 390 00 00 | 332 | 2236m 44.106m)
LongChat (7B) 32K 8K | 545 536 476 340 00 00 | 316 | 21.007m 42307m)
Llama2-7B (base) | 4K - | 48.6

Mixtral-base (8x7B) 2K 4K | 508 477 453 413 344 264 | 410 | 3705 4490w
Mistral-base (7B) 32K 8K |535 510 484 447 328 22 | 388 | 3134 4630ng)
Jamba-base (52B) 256K 32K | 627 606 579 526 475 396 | 535 | 49704 573(e
LWM-base (7B) ™M <4K | 427 402 387 371 373 346 | 384 | 372000 396
LongLoRA-base (7B) 10K <4K | 345 321 336 294 261 00 | 260 | 213(gm) 30.666m)
Yarn-base (7B) 128K <4K | 297 235 286 297 255 181 | 259 | 24.65m 27.1gm
Together-base (7B) 32K 4K | 520 475 446 336 00 0.0 | 296 | 1985m 3955

Table 16: Performance of selected aligned and base models across length 4K to 128K by
averaging 2 task scores in Question Answering of RULER.
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