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ABSTRACT

Multimodal foundation models, particularly those instruction fine-tuned for
vision-language tasks, have recently gained prominence for their ability to parse
and analyze complex video streams. Despite their effectiveness for broad, general-
purpose queries, these models often struggle with domain-specific questions that
demand deeper contextual understanding. The core limitation lies in their reliance
on vision-language grounding extracted from raw video frames, which does not
adequately capture nuanced context when the task is more specialized. In this
paper, we introduce a method for ”selective association in context memory” that
addresses this shortcoming. Our approach leverages a targeted “association block”
drawn from the extensive content in the model’s context window, focusing atten-
tion on the most relevant sub-scenes. By selectively filtering and organizing the
visual stream, we enable more precise alignment of textual and visual cues for
task-specific understanding. This mirrors the human cognitive strategy of asso-
ciating smaller, relevant incidents to effectively recall and interpret them. We
state examples to demonstrate the utility of our approach using examples from the
medical domain—specifically, in analyzing videos of neurological movement dis-
orders, where identifying subtle clinical cues requires robust context awareness.

1 INTRODUCTION

Multimodal foundation models, such as large language models (LLMs) trained to parse extensive
video data, are increasingly capable of addressing a range of vision-language tasks. Recent research
has placed growing emphasis on associative memory—the capacity of systems to recall and leverage
domain-specific information in context—both in understanding how humans learn from limited cues
and in implementing more robust, adaptable AI architectures. For instance, the Neuro-Symbolic
Concept Learner demonstrates how bridging object-based visual representations with executable
symbolic programs can yield strong performance on visual question answering by learning a com-
positional structure of scenes, words, and questions from natural supervision Mao et al. (2019). Par-
allel lines of research draw from associative memory principles to tackle in-context learning (ICL),
enabling Transformers to respond adaptively to new prompts that vary from the data observed dur-
ing training Burns et al. (2024). Additionally, theories of entropic associative memory highlight
the importance of handling partial or noisy cues in a structured, memory-like system that unifies
sub-symbolic and symbolic representations Pineda et al. (2021). The state-of-the-art models still
face limitations when they are confronted with specialized or domain-intensive tasks. Their general-
purpose training often overlooks subtle cues that experts prioritize, especially in domains like neu-
rology, where detecting disorders such as essential tremor or dystonia demands close attention to
particular, nuanced features of patient movements. Simple vision-language grounding—where the
model merely maps raw frames to text—falls short for queries like “Is essential tremor present?”
or “Do you see signs of dystonia?” because it cannot readily associate local sub-scenes of clinical
interest (for instance, short bursts of a patient’s hand tremor) with the complex diagnostic criteria
embedded in expert knowledge.

This paper addresses the necessity of a more specialized context-association mechanism for video-
based understanding tasks that demand domain-specific reasoning. Building on neuro-symbolic
methods, in-context associative memory architectures, and the concept of entropic representation,
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we propose a system that isolates sub-scenes or “mini-episodes” of interest for each clinical query.
In doing so, it not only improves interpretability—much like a human expert recalling the salient
details of a past incident—but also substantially reduces the noise in video-based feature extrac-
tion. Although still a proposal, this selective association framework offers a pathway toward robust,
context-rich video understanding in specialized areas, including medical diagnostics, where subtle
visual cues carry critical diagnostic importance.

2 RELATED WORKS

The continued expansion of large-scale, multimodal datasets and high-capacity architectures has
driven significant advances in video foundation models (ViFMs). As highlighted in a recent survey,
these models aim to learn universal representations from massive video collections, often incorpo-
rating additional modalities such as text or audio to improve temporal grounding and semantic align-
ment Madan et al. (2024). In particular, the shift toward contrastive pretraining strategies has enabled
ViFMs to map corresponding multimodal cues—like frames and textual captions—into a shared em-
bedding space, facilitating tasks such as video retrieval, captioning, and question-answering. These
developments lead to the state-of-the-art ViFMs increasingly tackling long-form and multimodal
reasoning. For instance, InternVideo2 adopts a progressive training paradigm—combining masked
video modeling, contrastive alignment, and next-token prediction—to yield flexible representations
that can handle both short clips and prolonged video streams Wang et al. (2024). Such techniques
parallel broader trends in computer vision and natural language processing, where unifying cross-
modal learning objectives often leads to improved performance across diverse downstream applica-
tions.

3 METHODOLOGY

3.1 OVERVIEW OF SELECTIVE ASSOCIATIVE MEMORY

We propose a memory-enabled framework that progressively extracts and stores relevant sub-scenes
from a video into a dedicated associative memory block, with the goal of performing more robust,
context-aware tasks (e.g., detecting subtle clinical cues in neurological disorders). Let V be a video
decomposed into frames or short clips {v1, v2, . . . , vT }, each of which is encoded by a backbone
network Fθ, commonly a CNN+Transformer or a 3D CNN, yielding frame-wise embeddings {et} ∈
Rd. To incorporate domain knowledge such as “look for signs of essential tremor or dystonia,” we
introduce a context vector c ∈ Rd that summarizes high-level task-specific instructions or prior
knowledge. Our method maintains K memory slots {mk}Kk=1, each also in Rd, representing sub-
scenes judged to be relevant for the task. Each video segment’s storage score St governs whether it
is added or whether an existing slot is replaced.

3.2 MEMORY CREATION AND UPDATE

The decision to store a given segment embedding et is determined by balancing domain relevance
(matching the context vector c) and novelty (avoiding duplication). First, we compute a contextual
relevance:

r(et, c) =
e⊤t c

∥et∥∥c∥
, (1)

which is a standard cosine similarity that measures how well the segment aligns with the domain
or task cues. Second, we quantify novelty by comparing et to the closest memory slot in M =
{m1, . . . ,mK}:

novelty(et,M) = 1− max
1≤k≤K

e⊤t mk

∥et∥∥mk∥
. (2)

By subtracting the maximum similarity from 1, high values indicate et does not closely resemble
any stored items, fostering a more diverse set of memory entries. Combining these two terms yields:

St = α r(et, c) + (1− α) novelty(et,M), (3)

where α ∈ [0, 1] controls the trade-off. If St > τs, the model either adds et as a new slot (if space
remains) or replaces the least recently accessed slot. This can be done by overwriting the slot with
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the lowest usage frequency or the smallest long-term relevance score. For efficient operation in
longer videos, one may implement additional heuristics such as soft updates, where mk is blended
with et:

mk ← γmk + (1− γ) et, (4)
for some γ ∈ [0, 1]. This avoids discarding similar embeddings altogether and allows the memory
representation to evolve over time. In practice, we also track a recency weight or usage counter to
avoid continually replacing the same slot and to better handle repetitive segments.

3.3 CONTEXT-AWARE RETRIEVAL

When processing queries at inference or encountering a test segment that must be analyzed in-depth,
we retrieve from the associative memory to form a context-enriched representation. A query em-
bedding q may come from: (1) the current video segment et′ , or (2) an external question embedding
(in medical settings, e.g. “Is there a tremor in the patient’s hand?”). We compute softmax-based
similarities:

αk =
exp

(
q⊤mk/τr

)∑K
j=1 exp

(
q⊤mj/τr

) , r =

K∑
k=1

αk mk, (5)

where τr is a softmax temperature that controls how concentrated or diffuse the retrieval distribution
is. The retrieved vector r is then concatenated with q to form [q; r] ∈ R2d, which is fed into a
classification, detection, or regression head, depending on the task. This retrieval emphasizes content
actually stored in memory—e.g., frames capturing visible tremors or relevant motions—yielding a
context-aware feature that augments the original embedding. For interpretability, we can visualize
which memory slots receive the highest αk weights, linking final decisions back to critical sub-
scenes.

3.4 TRAINING OBJECTIVE

In addition to the standard task loss, Ltask
(
[q; r], y

)
, we incorporate a memory-utility regularizer

Lmem that encourages the model to correctly prioritize segments deemed crucial by a ground-truth
label or heuristic. Let I[important(vt)] indicate that vt is labeled (in training) as essential for the
downstream query. We define:

Lmem =

T∑
t=1

max
(
0, τs − St

)
I[important(vt)], (6)

which penalizes cases where the computed St is below τs despite vt being an important segment.
Thus, whenever an essential segment is overlooked by the memory gating, the penalty grows. The
overall objective is then:

L = Ltask + λLmem, (7)
where λ moderates the emphasis on correct memory decisions. Training can be end-to-end, back-
propagating through Fθ, the memory gating rules (implemented via differentiable approximations or
carefully managed straight-through updates), and the final classifier head. Alternatively, parts of Fθ

may be frozen if the domain embeddings are already robustly pre-trained, focusing learning capacity
on refining the gating rules and task head. By jointly optimizing for both accuracy on the domain
task and the selective memory process, the model learns to highlight precisely those sub-scenes that
matter most, thereby improving both performance and interoperability.

4 CONCLUSION AND FUTURE WORKS

We have introduced a selective associative memory framework that stores task-relevant sub-scenes
from a video stream into a dedicated memory block, dynamically guided by contextual relevance
and novelty. Our proposed memory-utility regularizer further drives the model to store important
frames and enhances interpretability, creating a direct link between task outputs and associated sub-
scenes. We aim to extend the memory representation to capture temporal linkages among stored
frames, enabling more robust reasoning over multi-step processes. Incorporating additional modali-
ties (e.g., audio or sensor data) could also improve retrieval precision in tasks demanding multimodal
evidence, such as neurological assessments involving motion and speech cues.
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