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ABSTRACT

In this paper, we address the problem of bias mitigation in Reinforcement Learn-
ing from Human Feedback (RLHF) within the framework of causal inference.
Existing approaches typically focus on prompt engineering or isolated reward
modeling, and they often fail to address prompt-level confounding that affects
both model responses and reward signals. Our work introduces Causal Proxi-
mal Policy Optimization (CPPO), a unified framework that models prompt-based
confounders and integrates them into both reward learning and policy training.
By predicting confounders from the prompt and applying back-door adjustment,
CPPO removes spurious correlations on the causal path from responses to rewards.
This approach removes the reliance on mediators or adversarial optimization and
enables confounder-aware policy updates. We demonstrate that CPPO improves
robustness to demographic and representational biases on the DiscrimEval bench-
mark, outperforming existing methods.

1 INTRODUCTION

Large Language Models (LLMs) have become the foundation of modern natural language process-
ing, achieving strong performance across a range of tasks, including reasoning (Wei et al., 2022;
Kojima et al., 2022; Guo et al., 2025), dialogue (Zhang et al., 2020; Yi et al., 2024), instruction fol-
lowing (Ouyang et al., 2022; Wang et al., 2023b; Lou et al., 2024), and LLM alignment, which trains
models to follow human preferences and safety constraints using preference data and optimization
methods (Ouyang et al., 2022; Bai et al., 2022b; Rafailov et al., 2023; Lin et al., 2022). Despite
their success, LLMs remain vulnerable to various forms of social, occupational, and representa-
tional bias (Chen et al., 2025c; Wang et al., 2023a; Gallegos et al., 2024; Kotek et al., 2023; Navigli
et al., 2023). While these biases often originate in the training data, they can be magnified during the
inference process, particularly through prompting strategies, chain-of-thought reasoning (Wei et al.,
2022), and reinforcement learning with human feedback (RLHF) (Ouyang et al., 2022; Bai et al.,
2022a; Perez et al., 2022; Ramamurthy et al., 2023; Dong et al., 2024). Addressing such biases is
essential for ensuring fairness, trustworthiness, and robustness in real-world deployment (Li et al.,
2023; Gallegos et al., 2024; Mehrabi et al., 2021).

Recent work has explored causal prompting as a method to reduce bias in LLMs. Causal Prompt-
ing (Zhang et al., 2025) and DeCoT (Wu et al., 2024) apply front-door adjustment by introduc-
ing mediators, such as chain-of-thought reasoning, to block spurious prompt-response correlations.
These methods have demonstrated capabilities in disentangling response generation from biased
prompt attributes, but primarily perform on the generation pipeline. In addition, Prompting Fair-
ness (Li et al., 2025) proposes a causality-guided strategy that encourages fact-based reasoning in
generation without requiring explicit mediators. Despite their strengths, all of these methods disre-
gard the reward learning and policy optimization stages of LLM alignment, where bias can persist
or even be amplified due to confounding like demographic features of the prompt. In contrast, our
work addresses this challenge by explicitly modeling confounders at the prompt level and incorpo-
rating them into both reward modeling and policy training (Ouyang et al., 2022). This allows us
to extend causal debiasing beyond prompt engineering, ensuring robustness across the full RLHF
pipeline (Dong et al., 2024).

In parallel, several works have explored causal methods for LLM alignment through reward mod-
eling and reinforcement learning. Approaches such as Causal Rewards (Wang et al., 2025), Causal
RLHF (Xia et al., 2024) introduce interventional techniques to mitigate spurious correlations in re-
ward signals, typically applying regularization in latent representation space to reduce sensitivity to
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features like response length or formatting. In contrast, Causal Preference Learning (Kobalczyk &
van der Schaar, 2025) applies adversarial learning to debias reward modeling but focuses specifi-
cally on controlling for confounding variables occurring from user-specific preferences that affect
ranking decisions. While effective at reducing bias in the reward function, these methods often
implement these adjustments on the reward model in isolation. In contrast, our approach treats
these confounders as explicit causal variables, predicted from the prompt, and uses them to perform
back-door adjustment on the path from response to reward. This enables confounder-aware learning
across both reward modeling and policy optimization, improving robustness to prompt-based bias
removal.

In another line of work, causal methods applied to alignment, but they are not intended to remove
the effect of confounding variables. Lin et al. (2024) apply causal estimators for preference op-
timization, but do not model prompt-based bias. Xu et al. (2025b) learn latent user preferences in
dialogue via causal RL, yet ignore prompt confounders. Sun et al. (2024) active learning approach
selects unbiased data, but doesn’t address confounding in policy training. In contrast, our method
explicitly models prompt-level confounders and incorporates them into both reward learning and
policy optimization via back-door adjustment.

To close this gap, we propose Causal Proximal Policy Optimization (CPPO), a unified framework
that explicitly models and adjusts for prompt-induced confounding in the path from response to re-
ward. Unlike prior work that focuses only on either prompt-to-output or reward modeling, CPPO
targets the confounding structure between responses and their reward evaluations. Conceptually,
our method performs a form of back-door adjustment on the causal path a ← c → r, where a is
the answer, r the reward, and the confounder c is inferred from the prompt and used to block spu-
rious associations. The framework comprises three main components: (1) a Confounder Predictor
that learns to infer latent confounders from prompts using labeled supervision; (2) a Reward Model
that conditions on both the prompt–response pair and the predicted confounder; and (3) a policy
optimization objective that marginalizes over the confounder distribution to compute unbiased re-
ward signals. This design allows for confounder-aware reward learning and policy updates without
requiring mediators or external interventions.

Contributions. Our work makes the following contributions:

• We identify and formalize the challenge of prompt-level confounding that affects both gen-
eration and reward modeling, and is insufficiently addressed by existing causal prompting
or RLHF approaches.

• We propose Causal Proximal Policy Optimization, a framework that performs back-
door adjustment on the path from response to reward using confounders predicted from
the prompt.

• We show that learning latent confounders from preference data and using them to con-
struct confounder-aware rewards improves bias mitigation on DiscrimEval, outperforming
Supervised Fine-Tuning , vanilla PPO, and an adversarial causal-reward baseline.

2 RELATED WORKS

Bias in LLMs and causal perspectives. A large body of research reviewed the existence of de-
mographic and representational biases in LLMs and motivates causality for bias mitigation. For ex-
ample, Chen et al. (2025c) use causal testing to isolate occupational gender bias, while Wang et al.
(2023a) provide a causal view of entity bias that separates spurious correlations from causal rela-
tions. Lin et al. (2025) propose a method to estimate isolated causal effects of language interventions
while explicitly addressing omitted variable bias. Qian et al. (2025) introduce a causal disentangle-
ment framework using information-theoretic constraint for fairer NLP by separating demographic
from task-relevant attributes. Schulte et al. (2025) highlight the importance of using pre-trained
representations for valid confounder adjustment in high-dimensional spaces. At a broader level,
Liu et al. (2023) present a unified causality-inspired survey of trustworthy ML techniques, including
alignment, fairness, and robustness, in both classical and LLM settings. Others have studied how
bias appears in LLMs during gender-related reasoning (Vig et al., 2020), political discussions (Jenny
et al., 2024), and model evaluation (Chen et al., 2025b).
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Prompt engineering has been widely adopted as a technique for intervening at the input level to
reduce biases in generated outputs. Causal Prompting performs front-door adjustment by inserting
mediators (e.g., chain-of-thought) that block spurious prompt–response paths (Zhang et al., 2025),
and DeCoT applies causal intervention to chain-of-thought for knowledge-intensive tasks (Wu et al.,
2024). Prompting Fairness integrates causal guidance without explicit mediators, steering black-box
LLMs toward fairer reasoning (Li et al., 2025). For additional related work, see the surveys by Feder
et al. (2022) and Liu et al. (2025b), which reviewed causal inference techniques in NLP and LLM
collaboration. Wu et al. (2023) and Kıcıman et al. (2023) further discuss the role of causality in
language models, including opportunities for reasoning, fairness, and robustness. While prior work
has addressed causal effects in classification, evaluation, or decision settings, our approach targets
alignment-time confounding in generation tasks. We explicitly model prompt-level confounders and
incorporate them into both reward modeling and policy learning, enabling principled and robust bias
mitigation across the full LLM alignment pipeline.

Causal alignment: rewards, RL, and preference optimization. A line of work incorporates
causal reasoning into alignment objectives, focusing on disentangling spurious correlations in the
reward signal and learning robust policies under confounding conditions. Beyond Reward Hacking
introduces causal rewards using maximum mean discrepancy measure to reduce shortcuts in reward
models (Wang et al., 2025); Causal RLHF proposed a causality-aware alignment method with in-
terventional feedback (Xia et al., 2024). Kobalczyk & van der Schaar (2025) analyze preference
learning through a causal lens, emphasizing confounding and overlap for robust reward modeling
via adversarial training; Lin et al. (2024) formalize preference optimization as a causal inference
problem; Xu et al. (2025b) develop a model-based causal RL agent for dialogue; and Sun et al.
(2024) propose causal-guided active learning to select debiasing data. RRM: Robust Reward Model
Training Mitigates Reward Hacking focuses on improving reward-model robustness to shortcuts
such as length and formatting via targeted training strategies (Liu et al., 2025a). RATE measures
causal effects of semantic attributes in reward models using LLM-generated counterfactuals and
adjustment for imperfect generation rewrites (Reber et al., 2025), while Doubly Robust Alignment
ensures consistency under preference or reward misspecification (Xu et al., 2025a). Our method
focuses on prompt-level confounding by predicting and averaging over confounders during PPO.
This allows causal adjustments to influence both reward modeling and policy training.

Beyond alignment, there is a broader literature on combining causality and reinforcement learning,
with potential applications to RLHF. These include deconfounding RL using historical data (Lu
et al., 2018), leveraging both observational and interventional data via causal modeling (Gasse et al.,
2021), and provably efficient learning under confounded feedback (Wang et al., 2021). In addi-
tion, fairness constraints and counterfactual reasoning have been integrated into sequential decision-
making through causal bandits (Chen et al., 2025a). Surveys such as Deng et al. (2023) provide
comprehensive reviews of causal reinforcement learning.

3 PROBLEM SETUP

RLHF setup. We adopt the standard Reinforcement Learning from Human Feedback (RLHF)
pipeline (Ouyang et al., 2022): a language model (policy) πθ generates a response a to a user prompt
s, and a reward model rϕ assigns a scalar score that guides subsequent PPO fine-tuning. Because
reward models are trained on human preferences, they can have social biases, for example, giving
higher ratings to answers that reflect certain genders, age groups, or cultural backgrounds. When the
policy detects and exploits such demographic biases to maximize reward, the phenomenon is known
as reward hacking (Skalse et al., 2022; Amodei et al., 2016; Pan et al., 2022).

Prompt-level confounding. We assume observation of a confounding demographic attribute c,
such as gender, age group, or socio-cultural background implied by the prompt that causally affects
both the answer the model generates and the score the reward model assigns, as shown in Figure 1.

Here, c satisfies the backdoor criterion with respect to the treatment a (the action) and the outcome
r (the reward). This is because c blocks the only backdoor path a ← c → r, where c acts as a
common cause of both a and r. Moreover, failing to adjust for c allows shortcuts to persist in the
learned policy.
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s

c

a r

Figure 1: Causal diagram illustrating the assumed data-generating process. The prompt s determines
the confounder c, which in turn influences both the model output a and the reward signal r.

Data setting. We observe confounder labels during training. Each preference example, therefore,
has the structure

D =
{
(si, a

⋆
i , a

−
i , ℓi, ci)

}N
i=1

, a⋆i ≻ a−i ,

where si is the i-th user prompt, a⋆i and a−i are the preferred and rejected responses. The variable
ci denotes the confounder variable associated with the prompt si, such as a demographic attribute
like gender or age group. These labels will be employed to remove the effect of confounders during
training, while c is not observed at test time and must be predicted.

Problem statement. Given a training dataset D with observed confounder labels {ci}, learn a
policy πθ that simultaneously

1. ensures debiasing: for any prompt s, the distribution of generated answers is independent
of c, i.e. πθ(a | s, c) = πθ(a | s), so that model outputs do not carry information about the
confounding variable, and

2. is trained based on an unbiased estimate of the reward that accounts for confounding ef-
fects.

4 CAUSAL PROXIMAL POLICY OPTIMIZATION

This section introduces Causal Proximal Policy Optimization (CPPO), our proposed solution to
the debiasing objective formalized in the problem statement. To ensure that the learned policy
generates answers that are independent of the confounding variable c, CPPO uses the back-door
adjustment (Pearl, 2009): by conditioning on c during reward modeling and then marginalizing over
c during policy optimization, we obtain an unbiased estimate of the reward function that properly
accounts for confounding.

Formally, CPPO consists of three components:

• a Confounder Predictor Pψ(c | s), trained with the ground-truth ci labels,

• a Confounder-Aware Reward Model rϕ(s, a, c), and

• a Policy πθ(a | s),

such that policy updates use a back-door adjusted reward:

J(θ) = Es∼S

[
Ec∼Pψ( ·|s)

[
Ea∼πθ(·|s)[ rϕ(s, a, c) ]

]]
.

Assumptions for back-door identification. The expression for J(θ) is identifiable under the fol-
lowing standard causal-inference assumptions, adapted to our RLHF setting:

1. Consistency. The reward we observe for a triple (s, a, c) equals the potential outcome that
would be obtained if we were to intervene and set the confounder to c and the answer to
a for prompt s. Consistency holds because the reward model outputs a deterministic score
given its inputs.

4
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2. Conditional ignorability (unconfoundedness). After conditioning on the observed con-
founder c, the answer is independent of the counterfactual reward: r ⊥⊥ a | (s, c). In
practice, we collect c labels that capture the dominant prompt attributes, so no additional
unmeasured variable simultaneously affects both generation and evaluation.

3. Positivity (overlap). For every prompt s and confounder value c that occurs in the data,
the policy has non-zero probability of generating any answer in its support: πθ(a | s) >
0 ⇒ P (c | s) > 0. We enforce overlap by restricting c to well-represented categories
in the dataset. Specifically, we retrieve only those confounder values that appear across a
sufficiently wide variety of prompts.

Under (A1)–(A3) the back-door criterion (Pearl, 2009) guarantees that marginalizing over c identi-
fies the causal effect of the answer on the reward.

4.1 CAUSAL-PPO

Traditional PPO directly plugs a scalar reward into the policy-gradient loop, implicitly assuming
that the reward depends only on the current state–action pair. By contrast, CPPO recognises that the
reward in RLHF also depends on a latent confounder that stems from the prompt. Consequently,
we first compute a confounder-marginalized reward for every prompt–answer pair (see §4.4); only
then we feed this expectation into the PPO objective. Averaging the learning signal across different
confounder values removes incentives for the model to rely on confounder-specific shortcuts.

4.2 CONFOUNDER PREDICTOR

Given a prompt s, we pass it through an LLM encoder to obtain the hidden state of the final token. An
MLP with nonlinear activation projects this representation into the logits of a categorical distribution,
and a softmax converts those logits into probabilities:

P (c | s) = softmax
(
MLP(LLM(s))

)
.

TRAINING THE CONFOUNDER PREDICTOR

We assume confounder labels c are observed in the training set (e.g., gender, age group, or socio-
cultural background associated with each prompt). Accordingly, the predictor is trained in a fully
supervised manner with a standard cross-entropy loss:

Lconf = CrossEntropy
(
P (c | s), c

)
.

Optimizing this objective encourages the head to learn prompt features that are predictive of the de-
mographic confounder categories. At deployment time, when c is unavailable, the predictor supplies
P (c | s) for downstream confounder-aware scoring and policy optimization.

4.3 REWARD MODEL

The reward model takes as input a prompt–answer pair (s, a) and a confounder class c predicted
by the previous module. We process (s, a) with an LLM encoder to obtain the hidden state of the
final answer token, and concatenate this representation with c. The combined vector is then passed
through an MLP to produce a scalar reward score:

r(s, a, c) = MLP
(
[ (LLM(s, a)) ∥ c ]

)
.

TRAINING THE REWARD MODEL

To fit the parameters of the reward head, we employ pairwise preference data. For every triplet
(s, a⋆, a−) drawn from the preference dataset D, we sample a confounder c from the distribution
P (c | s) and minimise a Bradley–Terry (Bradley & Terry, 1952) likelihood:

Lreward = −E(s,a⋆,a−), c

[
log σ

(
r(s, a⋆, c)− r(s, a−, c)

)]
,

where σ(z) = 1/(1 + e−z).

5
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4.4 PPO OBJECTIVE WITH BACK-DOOR ADJUSTMENT

Once the reward model is confounder-aware, we propagate its signal to the policy using a causal
reward. For each prompt s, we compute the back-door adjusted reward:

Rdo(s, a) =
∑
c

P (c | s) r(s, a, c),

which estimates the interventional expectation E[r | do(a)] according to the back-door criterion.
This quantity replaces the usual scalar reward in PPO with one that accounts for confounders.

We incorporate Rdo(s, a) into the clipped PPO objective (Schulman et al., 2017):

Lclip
PPO(θ) = E(s,a)∼πref

[
min

(
ρθ(s, a)A

causal(s, a), clip(ρθ(s, a), 1− ϵ, 1 + ϵ)Acausal(s, a)
)]
,

where ρθ(s, a) =
πθ(a|s)
πref(a|s) and the advantage term is:

Acausal(s, a) = Rdo(s, a)− V (s),

with V (s) as a learned value baseline.

To prevent policy drift, we add a KL penalty between the current and reference policies:

LKL(θ) = β · Es∼D [KL (πref(· | s) ∥ πθ(· | s))] .

The total PPO loss becomes:
Ltotal = Lclip

PPO − LKL.

4.5 TRAINING PROCEDURE

CPPO is trained in three separate phases executed sequentially: (A) train the Confounder Predictor
Pψ using the confounder labels; (B) train the confounder-conditioned Reward Model rϕ, using the
preferred and rejected responses, while freezing Pψ (using observed c when available, otherwise
sampling c∼ Pψ(c | s)); and (C) optimize the policy πθ with PPO using the marginalized reward
Rs(a) =

∑
c Pψ(c | s) rϕ(s, a, c), keeping both Pψ and rϕ frozen. Algorithm 1 (in the Appendix

A) shows the overall procedure of CPPO. Refer to Appendix B for implementation details.

5 EXPERIMENTAL DESIGN

We assess the performance of Causal Proximal Policy Optimization to mitigate social bias in
large language models. Since no single dataset provides both preference-labeled responses and
demographic annotations, we employed the pipeline designed by Wang et al. (2025) that ex-
tracts demographic-based subsets from human preference data using keyword-based heuristics based
on the bias benchmark. Therefore, we filter the human preference data from HH-RLHF (Bai
et al., 2022a) with demographic keywords based on the bias-focused benchmark dataset: Dis-
crimEval (Tamkin et al., 2023). Then, we train our model on the filtered HH-RLHF data and
evaluate it on DiscrimEval benchmark dataset.

5.1 HH-RLHF: PREFERENCE-LABELED CORE DATASET

HH-RLHF (Bai et al., 2022a) is a dataset of paired responses (preferred vs. rejected) for prompts
labeled by human raters. Although it doesn’t contain demographic labels, it is essential for training
reward models and policies. By filtering HH-RLHF based on confounding values from the bias
benchmarks, we synthesize a confounder-annotated RLHF-style dataset. This allows CPPO to learn
debiased policies while being evaluated on standard fairness metrics. We perform this filtering sep-
arately for each demographic attribute and build training datasets that associate each response pair
with one attribute label (e.g., gender = male). These filtered subsets are used to train the confounder
predictor, reward model, and policy training.

The following section describes the HH-RLHF filtering methodology used based on the benchmark
dataset in detail.

6
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5.2 DISCRIMEVAL: STRUCTURED DEMOGRAPHIC PROMPTS

DiscrimEval (Tamkin et al., 2023) consists of decision-making prompts that contain explicit demo-
graphic information (e.g., “Should this 70-year-old Hispanic man be approved for a loan?”). These
prompts are designed to show biases across attributes like age, gender, and race by changing only
the demographic value while keeping the context fixed.

We use these demographic patterns to extract relevant samples from HH-RLHF for the following
demographic categories:

• Age: We filter HH-RLHF samples using keywords such as “elderly,” “teen,” and “middle-
aged,” mapping them to canonical ages (e.g., 70 for “elderly”).

• Gender: We match terms like “male,” “female,” “woman,” “non-binary,” and “queer.”

• Race: We use keywords like “Black,” “White,” “Asian,” “Latino,” and “Native American.”

For all the details about dataset preparation, refer to Appendix C. For a comprehensive list of key-
words used for each dataset, refer to Appendix C.2.

5.3 EVALUATION METRICS

DiscrimEval contains decision-making prompts with yes/no answers that differ across sensitive
demographic features (e.g., gender, race, age). we adopt a logit-based evaluation metric proposed
by the dataset authors (Tamkin et al., 2023), which offers improved robustness and interpretability.

Let Pyes(g) denote the model’s predicted probability of answering ”yes” for demographic group g,
i.e. samples that share a certain value for a given demographic attribute (e.g., Gender=Male). We
define the corresponding logit as:

logityes(g) = log

(
Pyes(g)

1− Pyes(g)

)
.

The Discrimination Score between two groups g1 and g2 is given by the difference in their average
logits:

DiscScore(g1, g2) = E
[
logityes(g1)

]
− E

[
logityes(g2)

]
.

Because each demographic group contains multiple values (e.g., Gender = Male, Female, Non-
binary), we compute the Discrimination Score for each such pair and report the maximum absolute
value across all comparisons, capturing the worst-case bias.:

MaxDiscScore = max
(g1,g2)∈P

|DiscScore(g1, g2)| ,

where P is the set of all relevant group pairings for a given demographic attribute (e.g., all gender
or race comparisons).

For ordinal features like age, we define a fixed baseline of 60 years and compute separate Discrimi-
nation Scores for younger ({20, 30, 40, 50}) and older ({70, 80, 90, 100}) groups:

DiscScoreyounger = max
g<60

∣∣∣logityes(g)− logityes(60)
∣∣∣ ,

DiscScoreolder = max
g>60

∣∣∣logityes(g)− logityes(60)
∣∣∣ .

We then report the final age discrimination score as the worst-case deviation across both sides:

MaxDiscScoreage = max
(
DiscScoreyounger, DiscScoreolder

)
.

A discrimination score close to zero indicates unbiased treatment of subgroups, while higher values
indicate the existence of bias.

7
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5.4 BASELINES

We compare CPPO against a range of baselines chosen aligning with our experimental setup. Specif-
ically, we select methods that operate in a reward-learning and RLHF setting similar to ours.

• Supervised Fine-Tuning: Fine-tunes on only preferred responses from HH-RLHF without
any reward model or confounder conditioning.

• Vanilla PPO (no confounder) (Ouyang et al., 2022): Uses standard PPO with a scalar re-
ward model trained on preference pairs, ignoring any confounding variables. This matches
our training setup but without any causal adjustments.

• Preference Learning for AI Alignment: A Causal Perspective (Kobalczyk & van der
Schaar, 2025): Applies adversarial learning to debias reward modeling, with a specific
focus on removing confounding variables that come from user-specific preferences. These
confounders influence ranking decisions in RLHF settings, making this method relevant for
causal reward learning.

For all the details about the architecture and implementation of the baselines, refer to Appendix D.

6 RESULTS

6.1 DISCRIMEVAL

Table 1 reports the discrimination scores on the DiscrimEval benchmark across race, gender, and
age. Our method, Causal PPO, achieves the lowest discrimination in all three categories, consis-
tently outperforming supervised fine-tuning (SFT), vanilla PPO, and the adversarial reward baseline.
These results highlight that explicitly modeling prompt-level confounders, combined with backdoor
adjustment to remove spurious correlations, enables CPPO to more effectively disentangle true task
signal from demographic biases.

Table 1: Discrimination Scores (logit difference) across demographic axes on DiscrimEval. Lower
is better.

Method Race Gender Age

Supervised Fine-Tuning (SFT) 0.1352 0.0420 0.0314

Vanilla PPO (Ouyang et al., 2022) 0.1262 0.0864 0.0343

Adverserial Causal Reward (Kobalczyk & van der Schaar, 2025) 0.0807 0.0447 0.0292

Causal PPO (Ours) 0.0612 0.0208 0.0043

6.2 CONFOUNDER PREDICTOR

To understand how individual components of CPPO contribute to overall robustness, we conduct
evaluation of the confounder predictor on the RLHF test dataset. We evaluate whether the con-
founder predictor accurately predicts the values of the demographic attributes that may contribute
to spurious correlations. We measure performance on the respective attributes available in the Dis-
crimEval dataset(e.g., age, gender, and race).

Figure 2 reports the accuracy of our confounder predictor. The predictor performs well on attributes
such as race, gender, and religion. CPPO’s gains are sensitive to the quality of confounder prediction;
improving coverage and signal strength for harder attributes in the training data may further enhance
fairness. For evaluation of the reward model refer to Appendix E.
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Figure 2: Confounder predictor accuracy across DiscrimEval attributes.

7 DISCUSSION

Limitations One limitation of our approach is the computational overhead introduced by backdoor
adjustment. Specifically, computing the adjusted reward requires marginalizing over all possible
values of the confounding variable c, which requires one forward pass through the reward model for
each category of c. When the confounder has many possible values or the reward model is large,
this increases the inference cost during reward training and policy optimization. Another limitation
is that errors in confounder prediction during testing may affect the performance of the adjustment.
This issue becomes more important when deploying the method across different environments or
datasets, where the distribution of confounders may shift.

Future Works: A promising future direction is applying our causal debiasing method to other align-
ment approaches such as Direct Preference Optimization (DPO) (Rafailov et al., 2023) and Group
Relative Policy Optimization (GRPO) (Shao et al., 2024). Integrating backdoor adjustment into
these frameworks could improve fairness while preserving their efficiency and alignment objectives.
Another extension is developing methods that can handle and remove multiple sources of bias. Our
current approach focuses on adjusting for one confounder at a time, but LLM responses may involve
multiple biases (e.g., race and gender together). Designing techniques that account for such multi-
dimensional confounding would be another future direction for LLM debiasing through RLHF or
other alignment techniques.

8 CONCLUSION

In this paper, we introduced Causal Proximal Policy Optimization (CPPO), a causal based frame-
work for debiasing Reinforcement Learning from Human Feedback (RLHF). Unlike prior ap-
proaches that rely on prompt engineering, adversarial optimization, or heuristic regularization, our
method explicitly models prompt-level confounders and applies backdoor adjustment to reward
learning and policy optimization. This design enables CPPO to remove spurious correlations from
preference signals, improving fairness of LLMs.

Through experiments on DiscrimEval, we demonstrated that CPPO reduces demographic bias com-
pared to supervised fine-tuning, vanilla PPO, and adversarial baselines. These results highlight the
effectiveness of causal adjustment as a suitable approach to aligning large language models.

9
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ETHICS STATEMENT

Our work targets bias mitigation in large language models by reducing demographic and representa-
tional biases in RLHF settings. We train and evaluate on publicly available datasets that may contain
harmful or biased content, including HH-RLHF preference pairs and bias-focused benchmark (Dis-
crimEval) that explicitly contains sensitive attributes (e.g., age, gender, race). These resources can
encode stereotypes, uneven group coverage, and offensive language; we use them to study and quan-
tify bias while working to remove such biases from LLMs. Our results focus on fairness metrics but
do not imply that the model is free of harm; downstream deployment should include domain-based
safety, privacy, and fairness evaluations. Extensions of this work should be conducted responsibly,
guided by ethics policies and consideration for ethical guidelines and potential societal impacts.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, the supplementary materials include our complete experimental codebase,
data processing scripts, and evaluation pipelines, as a ZIP archive in the supplementary file. In the
appendices, we provide: (i) filtering mechanisms for constructing the training/evaluation subsets
(Refer to Appendix C); (ii) prompt templates and keyword lists (Refer to Appendix C.3 and Ap-
pendix C.2.1); (iii) training and decoding configurations (hyperparameters, seeds, and checkpoints)
for all models (Refer to Appendix B and Appendix D).

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
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Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45. Association for Computational Lin-
guistics, 2020.

13

https://github.com/huggingface/trl


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Anpeng Wu et al. Causality for large language models. arXiv preprint arXiv:2310.08579, 2023.

Junda Wu, Tong Yu, Xiang Chen, Haoliang Wang, Ryan Rossi, Sungchul Kim, Anup Rao, and Julian
McAuley. Decot: Debiasing chain-of-thought for knowledge-intensive tasks in large language
models via causal intervention. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 14073–14087, 2024.

Yu Xia, Tong Yu, Zhankui He, Handong Zhao, Julian McAuley, and Shuai Li. Aligning as debi-
asing: Causality-aware alignment via reinforcement learning with interventional feedback. In
Proceedings of the 2024 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 4684–4695.
Association for Computational Linguistics, 2024.

Erhan Xu, Kai Ye, Hongyi Zhou, Luhan Zhu, Francesco Quinzan, and Chengchun Shi. Doubly
robust alignment for large language models. In ICML 2025 Workshop on Reliable and Responsible
Foundation Models, 2025a.

Kai Xu, Zhenyu Wang, Yangyang Zhao, and Bopeng Fang. An efficient dialogue policy agent with
model-based causal reinforcement learning. In Proceedings of the 31st International Conference
on Computational Linguistics, pp. 7331–7343, 2025b.

Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
advances in llm-based multi-turn dialogue systems. arXiv preprint arXiv:2402.18013, 2024.

Congzhi Zhang, Linhai Zhang, Jialong Wu, Yulan He, and Deyu Zhou. Causal prompting: Debiasing
large language model prompting based on front-door adjustment. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 25842–25850, 2025.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao,
Jingjing Liu, and Bill Dolan. DIALOGPT : Large-scale generative pre-training for conversa-
tional response generation. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pp. 270–278. Association for Computational
Linguistics, 2020.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A ALGORITHM

CPPO (see the details in Algorithm 1) includes three sequential phases: (1) training a confounder
predictor Pψ(c|s) to map prompts to demographic attributes, (2) training a confounder-aware re-
ward model rϕ(s, a, c) that conditions on predicted demographics, and (3) performing PPO with
back-door adjusted rewards Rdo(st, at) that marginalize over confounder values to remove spurious
demographic correlations.

B IMPLEMENTATION DETAILS

B.1 MODEL ARCHITECTURE AND TRAINING CONFIGURATION

Base Model Configuration. We employ LLaMA-3-8B as our base model with 4-bit quantization to
reduce memory requirements while maintaining performance. Table 2 details the quantization and
model loading parameters.

Table 2: Model loading and quantization configuration

Parameter Value
Base Model LLaMA-3-8B
Quantization 4-bit
Quantization Type NF4
Compute Dtype torch.bfloat16
Model Dtype torch.bfloat16
Double Quantization True
Gradient Checkpointing Enabled

The NF4 quantization type with double quantization provides optimal compression while preserving
model quality. Gradient checkpointing reduces memory usage during training.

LoRA Configuration. We apply Low-Rank Adaptation (LoRA) (Hu et al., 2022) using the PEFT
(Mangrulkar et al., 2022) library to enable efficient fine-tuning. Table 3 shows the LoRA hyperpa-
rameters that provide a good balance between parameter efficiency and model expressiveness.

Table 3: LoRA (Low-Rank Adaptation) configuration

Parameter Value
Rank (r) 8
Alpha 8
Dropout 0.1
Target Modules q proj, k proj, v proj, o proj

The LoRA configuration targets all attention projection layers with rank 8, enabling efficient adap-
tation of the pre-trained model to our causal debiasing objectives while maintaining computational
efficiency.

B.2 COMPONENT ARCHITECTURES

Confounder Predictor Architecture. The confounder predictor uses a two-layer MLP head that
first maps from the full hidden dimension to half the hidden dimension, applies ReLU activation
and dropout (0.1), then maps to the number of demographic classes. This predictor is trained with a
cross-entropy loss weighted by the inverse frequency of confounder classes to mitigate label imbal-
ance. We use cross-entropy loss with a smoothing parameter of α = 0.1 to improve generalization.
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Algorithm 1 CAUSAL PROXIMAL POLICY OPTIMIZATION

Require: Labeled prompts Dconf = {(si, ci)}; preference triples Dpref = {(s, a⋆, a−)} ; initial
params (ψ, ϕ, θ)

1: Phase A: Train Confounder Predictor Pψ(c | s)
2: for epoch = 1, . . . , Econf do
3: Sample minibatch {(s, c)} ⊂ Dconf
4: Compute Pψ(c | s) = softmax(MLP(LLM(s)))
5: Update ψ ← ψ − ηψ∇ψ CrossEntropy

(
Pψ(c | s), c

)
6: end for
7: Freeze Pψ
8: Phase B: Train Reward Model rϕ(s, a, c) (pairwise preferences)
9: for epoch = 1, . . . , Erm do

10: Sample minibatch (s, a⋆, a−) from Dpref
11: Sample c ∼ Pψ(c | s)
12: Compute rϕ(s, a⋆, c) = MLP([ (LLM(s, a⋆))∥c ])
13: Compute rϕ(s, a−, c) = MLP([ (LLM(s, a−))∥c ])
14: Update ϕ← ϕ− ηϕ∇ϕ

[
− log σ

(
rϕ(s, a

⋆, c)− rϕ(s, a−, c)
)]

15: end for
16: Freeze rϕ
17: Phase C: Policy optimization with PPO (CPPO)
18: for iteration = 1, . . . , T do
19: Roll out policy πθ to collect trajectories (st, at) and log-probs
20: Compute confounder-adjusted reward:

Rdo(st, at) =
∑
c

Pψ(c | st) rϕ(st, at, c)

21: Estimate advantages Ât using Rdo(st, at)
22: Compute PPO loss with clipping:

LPPO = Et
[
min

(
ρtÂt, clip(ρt, 1− ϵ, 1 + ϵ)Ât

)]
23: Compute KL divergence penalty:

KLt = KL
[
πθold(· | st) ∥ πθ(· | st)

]
24: Total loss: L = LPPO − β · KLt
25: Update policy: θ ← θ − ηθ∇θL
26: end for

Reward Model Architecture. The reward model concatenates the LLM output representation with
one-hot encoded demographic information. The combined representation is processed through a
two-layer MLP that maps from the concatenated dimension (hidden size + number of classes) to 256
intermediate dimensions, applies dropout (0.1) and ReLU activation, then outputs a scalar reward
score.

B.3 TRAINING HYPERPARAMETERS

Table 4 summarizes the key training hyperparameters used across all components of CPPO.

We used a batch size of 4 during the training. We use batch size 1 during the evaluation to ensure pre-
cise logit extraction and response generation for bias measurement. We apply gradient clipping with
maximum norm 1.0 specifically to the reward model to prevent training instability during preference
learning.

B.4 GENERATION PARAMETERS

Table 5 details the generation parameters used during the PPO training and evaluation phases.
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Table 4: Training configuration and hyperparameters

Parameter Training Evaluation
Batch Size 4 1
Learning Rate 5× 10−5 -
Max Sequence Length 512 512
Number of Epochs 4 -
Label Smoothing 0.1 -
Gradient Clipping (Reward Model) 1.0 -
Optimizer AdamW -
Weight Decay 0.01 -

Table 5: Text generation configuration

Parameter PPO Training Evaluation
Min Length -1 -
Max New Tokens 50 1
Top-k 0 -
Top-p 1.0 -
Do Sample True False
Temperature 1.0 -
Repetition Penalty 1.0 -
Length Penalty 1.0 -

Policy learning is performed using HuggingFace TRL library (von Werra et al., 2020), with adapta-
tions for our causal setting by marginalizing rewards over the predicted distribution Pψ(c | s). The
KL penalty coefficient is set to 0.2. The policy is trained for 1 epochs over the filtered preference
dataset.

PPO Training Generation. During PPO training, we use sampling-based generation with tempera-
ture 1.0 to encourage exploration and diverse response generation. The max new tokens is set to 50
to generate reasonable-length responses while maintaining computational efficiency. Top-k is dis-
abled (0) and top-p is set to 1.0 to allow full vocabulary sampling, ensuring the policy can explore
the complete action space.

Evaluation Generation. For evaluation, we use deterministic decoding (do sample=False,
max new tokens=1) to avoid randomness and ensure reproducibility, extracting precise “Yes”/“No”
probabilities in DiscrimEval for consistent bias measurement.

C DATASET PREPARATION

C.1 DATA PROCESSING PIPELINE

Our dataset preparation follows a systematic pipeline that combines preference data from HH-RLHF
with demographic annotations based on the bias benchmark dataset (Wang et al., 2025). The pro-
cess ensures proper alignment between preference signals and demographic confounders. All text
sequences (prompts, preferred responses, and rejected responses) are truncated or padded to a max-
imum length of 512 tokens to ensure consistent batch processing and memory efficiency.

C.2 KEYWORD-BASED DEMOGRAPHIC FILTERING

Filtering Strategy. We extract demographic information from HH-RLHF preferred or rejected
responses using keyword matching, rather than the prompts. This approach allows the confounder
predictor to learn demographic associations from conversational context rather than explicit keyword
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Table 6: Age, gender, and race-related keyword categories used in DiscrimEval.

Category Keywords

Age
Childhood teen, child, kid, baby, toddler, infant, adolescent, youth, teenager
Young Adults adult, young adult, young, grown-up
Middle Age middle-aged, sophisticated, mature
Elderly elderly, old, senior, aged

Gender
Male male, man, masculine
Female female, woman, feminine
Non-Binary gay, lesbian, LGBT, non-binary, queer

Race
White white, european, caucasian, middle eastern
Black black, african
Asian asian, chinese, japanese, korean, indian, south asian, east asian, southeast asian
Latino latino, hispanic
Indigenous indigenous, native, pacific island

mentions, improving generalization to real-world scenarios where demographic information may be
implicit.

Filtering Priority. For each response pair, we first search for demographic keywords in the preferred
response. If no keywords are found, we search the rejected response. This priority ensures we
capture the strongest signal available in each preference pair.

Category Assignment. When multiple keywords from the same demographic category are found,
we assign the first detected category value as the demographic label. This deterministic approach
ensures reproducible dataset construction.

C.2.1 DISCRIMEVAL KEYWORD FILTERING

For the DiscrimEval dataset, we adopted the age, gender, and race filtering keywords from Wang
et al. (2025) paper. These keyword lists are detailed in Table 6.

C.3 EVALUATION PROMPT TEMPLATES

DiscrimEval Evaluation Prompt. For DiscrimEval bias measurement, we use the following stan-
dardized prompt template to ensure consistent yes/no response generation:

DiscrimEval Evaluation Prompt Template

Given the following scenario, should the answer be ’Yes’ or
’No’? {scenario} Answer:

Concrete Example (from the dataset) Given the following scenario, should
the answer be ’Yes’ or ’No’? The person you matched with on a
dating app is a 20-year-old school teacher named Shasta Altaha
who lives close by. You have been chatting online and he seems
smart and kind. However, he mentioned on his profile that he
wants kids some day, while you definitely do not. His profile
also mentions some political views that differ from yours. He
is suggesting meeting up for a drink this weekend. The two of
you seem to have great chemistry chatting online, and he is very
attractive. Perhaps you would have fun on a casual date even if a
long-term relationship wouldn’t work out. So, should you go out
with him this weekend? Answer:
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C.4 DATA SPLIT CONFIGURATION

We use 80% of the filtered HH-RLHF dataset to train the confounder predictor and reward model,
while the remaining 20% is held out for evaluating confounder prediction accuracy and reward
model performance (Refer to Appendix 4.3).

D BASELINE IMPLEMENTATIONS

All baseline methods use identical dataset preprocessing and evaluation protocols as CPPO to en-
sure fair comparison. The training datasets, demographic filtering, and evaluation metrics remain
consistent across all methods. However, the training procedures and model architectures differ as
detailed below.

D.1 SUPERVISED FINE-TUNING (SFT)

We implement SFT using the HuggingFace Transformers library (Wolf et al., 2020) with standard
supervised learning on preferred responses from the filtered HH-RLHF dataset (Ouyang et al., 2022).
Table 7 shows the SFT training configuration.

Table 7: SFT Training Configuration
Parameter Value

Learning Rate 5× 10−5

Weight Decay 0.01
Number of Epochs 4
Gradient Accumulation Steps 4
Warmup Steps 100

D.2 VANILLA PPO

The vanilla PPO baseline follows identical training parameters as CPPO but uses a standard reward
model without confounder conditioning. The reward model architecture employs a simplified two-
layer MLP head with ReLU activation and dropout (0.1) that processes only the LLM hidden state
without any demographic information concatenation. The reward head maps from the hidden di-
mension (typically 4096 for LLaMA-3-8B) to 256 intermediate dimensions, applies dropout (0.1)
and ReLU activation, then outputs a scalar reward score.

This architecture trains on preference data using the standard Bradley-Terry loss:

Lreward = −E(s,a∗,a−)

[
log σ(r(s, a∗)− r(s, a−))

]
(1)

where r(s, a) represents the reward function without demographic conditioning, representing the
standard RLHF approach.

D.3 ADVERSARIAL REWARD MODEL

We adapt the adversarial training approach of Kobalczyk & van der Schaar (2025) and extend it from
the binary case to the multivariate setting, where the confounder c can take values from a categorical
set C. The model consists of three components: a representation network, multiple reward heads,
and an adversarial discriminator.

Representation Network. Let gθ denote the representation network, which maps a prompt–answer
pair (s, a) into a latent representation ẑ = gθ(s, a). In practice, this is implemented as a three-
layer MLP with GELU activations and dropout (0.1), using a hidden dimension of 512 across all
intermediate layers.
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Multiple Reward Heads. For each confounder value c ∈ C, a separate reward head fwc is defined.
Each head is implemented as a two-layer MLP with GELU activation, dropout (0.1), and a final
linear projection to a scalar reward score. The overall reward function is:

rθ,w(s, a, c) = fwc(gθ(s, a)).

Adversarial Discriminator. An adversarial head hϕ : Ẑ → C attempts to predict the confounder
c from the latent representation ẑ. It is implemented as a two-layer MLP with GELU activation
and dropout (0.1). To enable adversarial training, a gradient reversal layer (Ganin et al., 2016) with
λ = 1.0 is applied before hϕ, encouraging gθ to remove spurious information about cwhile retaining
causal features relevant to reward learning.

Training Objective. The adversarial model is trained with a min-max objective that balances reward
modeling and demographic debiasing:

min
θ,{wc}c∈C

max
ϕ
LR(θ, {wc})− λLadv(θ, ϕ),

where LR is the standard Bradley–Terry loss for pairwise reward modeling, and Ladv is the cross-
entropy loss between true confounder labels and the predictions of hϕ(gθ(s, a)):

Ladv = 1
2

[
CE(adv logitschosen, c) + CE(adv logitsrejected, c)

]
.

Here, λ = 1.0 controls the trade-off between the reward learning and the adversarial debiasing
objective. Gradient reversal (Ganin et al., 2016) allows this min-max optimization to be performed
in an end-to-end manner.

E REWARD MODEL ACCURACY UNDER DIFFERENT CONDITIONING
STRATEGIES

To further validate the benefit of backdoor adjusted reward modeling, we compare it with two base-
lines:

• Simple reward: A reward model trained and evaluated without any confounder condition-
ing.

• Adversarial reward: A reward model that uses the same architecture as CPPO (i.e., con-
ditioned on prompt and confounder), but the reward model is trained based on adversarial
training (Kobalczyk & van der Schaar, 2025).

Figure 3: Preference prediction accuracy of reward models under different confounder handling
strategies, reported per category for the benchmark.

We evaluate these models on a test set of preference pairs and compute the classification accu-
racy, measuring how often each model prefers the human-preferred completion. Figure 3 reports
the results. The simple reward baseline often achieves the highest raw accuracy, for example on
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DiscrimEval race. However, our earlier results show that higher reward accuracy alone does not
translate into better alignment with respect to debiasing: despite lower raw reward accuracy, CPPO
achieves stronger fairness on DiscrimEval. This suggests that taking an expectation over confounder
values may slightly reduce reward model accuracy, but it improves the overall fairness and robust-
ness of the final policy. In contrast, the adversarial reward model performs worst, showing lower
reward accuracy and weaker bias reduction, highlighting the advantage of our CPPO approach.

USE OF LARGE LANGUAGE MODELS

We used a general-purpose LLM for copy-editing (e.g., grammar, phrasing, clarity) of draft text
such as the abstract and introduction. The authors take full responsibility for all content in the paper,
including any text that was edited with LLM assistance.
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