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Abstract

Mixed Binary Quadratic Programs (MBQPs) are classic problems in combinato-1

rial optimization. As solving large-scale combinatorial optimization problems is2

challenging, primal heuristics have been developed to quickly identify high-quality3

solutions within a short amount of time. Recently, a growing body of research has4

also used machine learning to accelerate solution methods for challenging combina-5

torial optimization problems. Despite the increasing popularity of these ML-guided6

methods, a large body of work has focused on Mixed-Integer Linear Programs7

(MILPs). MBQPs are challenging to solve due to the combinatorial complexity8

coupled with nonlinearities. This work proposes ML-guided primal heuristics for9

Mixed Binary Quadratic Programs (MBQPs) by adapting and extending existing10

work on ML-guided MILP solution prediction to MBQPs. We propose a new neu-11

ral network architecture for MBQP solution prediction and a new data collection12

procedure for training. Moreover, we propose to combine Binary Cross-Entropy13

loss and Contrastive Loss in solution prediction. We compare the methods on14

standard and real-world MBQP benchmarks and show that our proposed methods15

significantly outperform state-of-the-art solvers and existing primal heuristics.16

1 Introduction17

Mixed Binary Quadratic Programs (MBQPs) are discrete optimization problems with quadratic18

terms in the objective function subject to a set of linear constraints. MBQPs encode many important19

problems in Combinatorial Optimization (CO) [20, 27, 18] and cover a wide range of applications,20

including finance [25], machine learning [5], as well as chemical [23] and energy systems [29]. A21

significant body of research on CO algorithms has focused on primal heuristics, which are algorithms22

designed to find good feasible solutions quickly and without optimality guarantees [3].23

Despite development in solvers and heuristics, solving large-scale COs remains challenging. In recent24

years, Machine Learning (ML) has been proposed to accelerate solution methods for CO problems.25

Motivated by the fact that CO problems sharing similar structures are solved repeatedly in many26

applications [16, 28], a growing body of research uses ML to guide algorithmic policies or to build27

new policies customized to instances that appear in specific applications. For example, [14, 24, 15]28

proposed ML-guided primal heuristics for Mixed Integer Linear Programs (MILPs), wherein they29

they predict the optimal assignment for a subset of the variables. While prior work on ML-guided30

CO methods has shown success across multiple algorithmic components on many challenging CO31

problems, existing work in this area has mainly focused on MILPs. A small body of research has32

used ML to advance solution methods for general nonlinear programming problems [8, 1, 13, 11],33

but ML-guided methods in this space are not as well developed as in MILPs.34

MBQPs are even more challenging to solve than MILPs due to the combinatorial nature [22] coupled35

with nonlinearities. In this work, we develop ML-guided primal heuristics for MBQPs by adapting36
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and extending existing work on ML-guided MILP solution methods. We adapt the Weighted Cross-37

Entropy-based and Contrastive Learning-based methods which are used in MILP solution prediction38

to MBQPs. We propose a novel neural network architecture that extracts MBQP features and produces39

variable embeddings, and a new data collection procedure that generates high-quality solutions as40

ground truth data for training. Furthermore, we extend existing loss functions used in solution41

prediction and propose to combine Binary Cross-Entropy loss and Contrastive Loss. We compare42

the proposed methods on standard and real-world MBQP benchmarks and show that our methods43

outperform state-of-the-art solvers and non-ML primal heuristics.44

2 Background and Related Work45

2.1 Mixed Binary Quadratic Programs46

A Mixed Binary Quadratic Program (MBQP) with n decision variables is defined as47

minxTHx+ cTx s.t. Ax ≤ b and xj ∈ {0, 1},∀j ∈ B (1)

where H ∈ Rn×n, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. H is a real symmetric matrix that encodes48

quadratic terms in the objective function and is not necessarily positive semidefinite, allowing for49

nonconvex objective functions. B ⊆ {1, ..., n} is the set of binary decision variables.50

Solution methods MBQPs are NP-hard in general [26]. The Branch-and-Bound (BnB) algorithm51

is an exact tree search algorithm to solve MILPs, MBQPs and more general Mixed-Integer Nonlinear52

Programming problems. As large-scale MBQPs are challenging to solve with exact methods, a53

significant body of research has focused on primal heuristics, which are algorithms designed to54

quickly identify high-quality feasible solutions for a given optimization problem without optimality55

guarantees [3]. These heuristics typically involve solving a relaxation of the original problem and56

then creating a subproblem by fixing a subset of integer variables by rounding the relaxation values57

to the nearest integer values, such as RENS [3], Undercover [4], and Relax-Search [17].58

2.2 Solution Prediction for MILPs59

Previous work on using ML to accelerate solving CO problems has been focused on Mixed Integer60

Linear Programming (MILP). An MILP can be viewed as the subclass of MBQPs in Eqn. 1 where61

the quadratic term matrix H is the zero matrix. The goal of an MILP is to find x such that cTx is62

minimized, subject to Ax ≤ b and integrality constraints xj ∈ {0, 1},∀j ∈ B. A large body of63

ML-guided primal heuristics for MILPs are based on predicting partial solutions [24, 14, 15].64

Solution prediction Nair et al. [24] and Han et al. [14] use Weighted Cross-Entropy (WCE) loss65

to learn the probability distribution of the solution space of an MILP instance M . The goal is to66

learn from a set of multiple solutions, weighted by the quality of the solution. Specifically, for a67

solution x, the energy function E(x;M) is defined as cTx if x is feasible, or∞ otherwise, assuming68

minimization. Given M , the conditional distribution of a solution x is modeled as69

p(x|M) ≡ exp(−E(x;M))∑
x′ exp(−E(x′;M))

(2)

, so that solutions with better objective values have higher probability. The learning task is to train a70

model pθ(x|M) parameterized by θ that approximates p(x|M). To collect training data, [24] and [14]71

obtain the set of solutions by running state-of-the-art MILP solvers for a large amount of time. Instead72

of using WCE loss, Huang et al. [15] learn pθ(x|M) using Contrastive Learning (CL). The CL-based73

method makes discriminative predictions by contrasting the positive samples (i.e., good solutions)74

and negative samples (i.e., bad solutions). Positive samples are obtained by running MILP solvers,75

similar to [24] and [14]. Negative samples are obtained by solving another MILP that searches for76

bad variable assignments within some Hamming distance of the good solutions.77

Inference Since the full prediction might not be feasible, ML-guided primal heuristics for MILPs78

involve solving another MILP at inference time. Nair et al.[24] use Neural Diving (ND), which uses79

the prediction of a subset of the variables and creates a smaller sub-MILP that is easier to solve after80

fixing the subset. The size of this sub-MILP is controlled by the ratio of variables that are fixed. Han81
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et al. [14] and Huang et al. [15] use a Predict-and-Search (PaS) framework that searches for feasible82

solutions within some neighborhood of the full prediction by adding a cut to the original MILP. The83

degrees of freedom in PaS are controlled by the number of variables that are allowed to be different84

from the prediction. The ND approach allows for faster runtime at inference time as the subproblem85

contains a small number of variables, but the solutions returned can be more suboptimal. PAS has86

more freedom to correct errors from the ML predictions, but can be harder to optimize because the87

size of the MILP to solve at inference contains the same number of variables as the original MILP.88

3 Methods89

We develop an ML-guided primal heuristic for MBQPs based on solution prediction, as shown in90

Fig. 1. An input MBQP is represented as a tripartite graph (Fig. 1 (B)) and then passed to a Graph91

Attention Network module (Fig. 1 (C)) which produces solution predictions. At inference time, the92

predicted solutions are used to create a sub-MBQP (Fig. 1 (F)). We introduce a new method for93

collecting training data for MBQPs (Fig. 1 (D)). In training the models, we adapt the WCE and CL94

losses which have been used in solution prediction in MILPs to MBQPs and propose to combine95

Binary Cross-Entropy (BCE) and CL losses (Fig. 1 (E)).96

Figure 1: Training/Inference pipeline for ML-guided MBQP solving via solution prediction.

3.1 Neural Network architecture97

We propose a tripartite graph representation of MBQP instances (Fig. 1 (B)). The tripartite graph98

contains three sets of nodes: the constraint nodes (C), variable nodes (V ), and quadratic term nodes99

(Q). A C − V edge connects a variable and a constraint if the variable has a non-zero coefficient in100

the constraint. A Q− V edge connects two V nodes if the two variables appear in the same quadratic101

term. The sets of features in the C and V nodes are adapted from solution prediction for MILPs in102

[14]. For the Q nodes, we propose a custom feature set that captures the characteristics of the H103

matrix in Eqn. (1). We learn a policy pθ(x|M) parameterized by θ, using a Graph Attention Network104

(GAT) [9] that processes the featured tripartite graph to obtain an embedding of the variables. The105

GAT performs four rounds of message passing, as shown in Fig. 1 (C). The message passing outputs106

are then passed through a Multi-Layer Perceptron (MLP) followed by an activation layer to obtain107

the final output pθ(x|M). The input features and ML module details are deferred to Appendix B.108

3.2 Loss function109

The policy pθ(x|M) that produces solution predictions can be learned with different approaches (Fig.110

1 (E)). In this work, we first adapt the WCE and CL losses that have been used for MILPs to MBQPs.111

Then, we propose an extension that combines BCE and CL losses.112

Weighted Cross-Entropy Following the Weighted Cross-Entropy (WCE) [14] approach, we113

create a training dataset that contains N MBQPs instances
{(

M i, Li
)}N

i=1
, where Li ≡

{
xi,j

}Ni

j=1
114

is a set of unique Ni solutions for the instance Mi. Let Pθ

(
xi,j |M i

)
denote the probability of115

solution xi,j given instance M i as the input. We adapt the energy function E(x;M) in Eqn. (2)116

to the case of MBQPs to assign higher probability for better solutions. For a solution x, the117
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energy function E(x;M) is defined as xTHx+ cTx if x is feasible. During training, for instance118

Mi with quadratic term matrix Hi and cost vector ci, the weight applied to the solution xi,j is119

wi,j ≡
exp

(
−xi,jTHixi,j−ci

⊤
xi,j

)
∑Ni

k=1 exp (−xi,kTHixi,k−ci⊤xi,k)
. Based on the Kullback-Leibler divergence which measures120

the distance between the conditional distribution in Equation 2 and the learned policy, the loss121

function to be minimized is:122

LWCE (θ) ≡ −
N∑
i=1

Ni∑
j=1

wi,j logPθ

(
xi,j |M i

)
. (3)

Contrastive Learning Following the CL-based approach [15], let
{(

SMi
+ , SMi

−

)}N

i=1
be a training123

dataset of N MBQP instances, where SMi
+ and SMi

− are the sets of positive and negative samples for124

instance Mi, respectively. We use a form of the NT-Xent Loss [10] to learn to distinguish between125

positive and negative samples. We use the the · operator to denote the dot-product similarity. Let126

pθ(M
i) be the predicted solution given instance M i as the input. The loss function to be minimized127

is128

LCL(θ) =
∑

{(SMi
+ ,SMi

− )}N
i=1

1∣∣SMi

+

∣∣ ∑
x+∈SMi

+

L+
(
θ | x+,M

i
)
, (4)

where129

L+
(
θ | x+,M

i
)
= − log

exp
(
x+ · pθ(M i)/τ(x+|M i)

)∑
x̃∈SMi

− ∪{x+} exp (x̃ · pθ(M i)/ τ(x̃|M i))
. (5)

Based on the dot-product similarity, the value of the loss L+
(
θ | x+,M

i
)

is low when pθ(M
i) is130

similar to the positive sample x+ and dissimilar to negative samples x̃ ∈ SMi

− . In the case of MILPs131

in [15], a sample weight of 1
τ(x|Mi) = ciTx/w where w < 0 is applied to minimization problems132

with a negative objective values, so that positive samples with lower (i.e., better) objective values133

are assigned higher weights. We adapt the weights and capture the objective values of MBQPs.134

Moreover, to also account for minimization problems with positive objective values, we transform the135

weights using the exponential function and set 1
τ(x|Mi) = exp(x

THix+ciT x
w ) where w < 0, so that136

better positive samples have lower weights in both minimization problems with positive objective137

and minimization problems with negative objective values. A discussion of sample weights applied138

to problems with different objective values is deferred to Appendix D.139

Combining Contrastive Learning and Binary Cross-Entropy In addition to adpating the WCE140

and CL losses to MBQPs, we propose to combine CL and Binary Cross-Entropy (BCE) loss in solution141

prediction. It has been observed that a subset of variables often have the same assignments across142

different positive and negative samples in the CL-based approach. This motivates a classification143

approach for this unique subset of variables. Formally, given an MBQP instance M i with the set144

of positive and negative samples
(
SMi

+ ,SMi

−

)
, let Bi = {1, ..., n} be the index set of all binary145

decision variables. Let x+ ∈ SM
i

+ be any positive sample. Let xi
d denote the solution assignment for146

the dth variable for instance i. Let U i ⊆ Bi be an index set for which xi
d takes the same solution147

value for any x ∈ SMi

− ∪ {x+}. We propose to directly learn the set of variable assignments in U i148

by classification of whether the variable takes 1 or 0 as the solution. Let p̂id ≡ pθ
(
xi
d = 1|M i

)
be149

the probability that xi
d takes a solution value of 1 predicted by the ML model. Based on a binary150

classification approach, the classification loss for instance M i is151

LUi

BCE(θ) = −
N∑
i=1

∑
d∈Ui

[
tid log(p̂

i
d) + (1− tid) log(1− p̂id)

]
where tid is the ground truth value for xi

d in M i. For variables in Bi \ U i, we apply CL loss. Let152

LBi\Ui

CL (θ) be the same CL loss function defined in Eqn. (4) but operates on the subset of variables153

Bi \ U i instead. Considering both CL and BCE losses, the combined loss to be minimize is154

LCL+BCE(θ) = λCLLBi\Ui

CL (θ) + LUi

BCE(θ)

, where λCL is a hyperparameter that controls the weight of CL loss.155

4



3.3 Training data collection for MBQPs156

Training data collection (Fig. 1 (D)) consists of compiling multiple good solutions that can be used157

for solution prediction in MBQPs. We propose Randomized Relax-Search, a novel heuristic that158

produces a set of diverse high-quality solutions for MBQPs. Randomized Relax-Search is extended159

from the Relax-Search [17] heuristic, which uses a suboptimal relaxation solution of the MBQP as160

the basis, fixes a subset of variables using the rounded relaxation, and searches over a sub-MBQP.161

Randomized Relax-Search introduces randomization to create K sub-MBQPs, as shown in Algorithm162

1. In solving the kth sub-MBQP, the best solution xk
+ and the worst solution xk

− are stored. The163

procedure returns the set of best solutions S+ and worst solutions S− after solving K sub-MBQPs.164

Algorithm 1 Randomized Relax-Search for training data collection

Require: A MBQP P with set of binary variables B, relaxation time limit Tr, subproblem time limit
Ts, number of random seeds K, candidate fixing ratio p1, final fixing ratio p2 (p1>p2)

1: Relaxed solutions x̄← Compute the Nonlinear Programming relaxation of P given time limit Tr

2: Set of good solutions S+ ← ∅
3: Set of bad solutions S− ← ∅
4: Candidate set C ← select p1 ∗ |B| variables that are least fractional variables in x̄.
5: for k ∈ 1, 2, ...,K do
6: Uk ← Randomly and uniformly select p2 ∗ |B| variables from C
7: for i ∈ Uk do
8: Fix xi = ⌊x̄i⌉ by rounding to the nearest integer
9: end for

10: xk
+, x

k
− ← Best and worst solutions obtained by solving the kth sub-MBQP with a complete

solver, given time limit Ts.
11: S+ ← S+ ∪ {xk

+}
12: S− ← S− ∪ {xk

−}
13: end for
14: return S+, S−

For training with WCE loss, the set of good solutions S+ is used. For CL losses, S+ is used as the set165

of positive samples. We denote the worst solution value from S+ as v′ = maxx∈S+ xTHx+ cTx.166

For the set of negative samples in CL, we use {x|(xTHx+ cTx) > v′, x ∈ S−}. In other words, we167

only include solutions in S− that have worse objective values than the worst solutions in S+.168

3.4 Inference169

At inference time, we choose to use the ND-based method discussed in Subsection 2.2 which reduces170

the original problem to a smaller sub-MBQP (Fig. 1) (F), as our goal is to develop fast primal171

heuristics. The PaS-based method is challenging for MBQPs because it requires solving another172

MBQP of the same size. After obtaining the variable predictions, we create a sub-MBQP by fixing173

the top p percent of variables for which the ML model is most confident with (i.e., least fractional in174

the predictions). The sub-MBQP is then solved with a CO solver.175

4 Computational Experiments176

Benchmarks We evaluate the methods on three standard benchmarks: the Cardinality-constrained177

Binary Quadratic Programs (CBQP) [30], Cardinality-constrained Quadratic Knapsack Problem178

(CQKP) [19], and the Quadratic Multidimensional Knapsack Problem (QMKP) [12]. All standard179

benchmark instances contain 1000 binary variables and have quadratic term density of 0.25. Moreover,180

we test on a real-world Wind Farm Layout Optimization (WFLOP) problem. WFLOP seeks to identify181

the placement of a set of wind turbines within a fixed area to maximize power generation across182

all turbines and over all wind scenarios while also satisfying minimum separation constraints. We183

generate the WFLOP instances based on the MBQP formulation in [17], using wind data from the184

NOW-23 offshore wind dataset at selected locations in the California offshore region [7].185

Evaluation Metrics We use the following metrics to evaluate the effectiveness of different methods:186

(1) The Primal Gap (PG) [2] is the normalized difference between the objective value v found by a187
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method and a best known objective value v∗, defined as PG = |v−v∗|
max(|v|,|v∗|) , when vv∗ > 0. When188

no feasible solution is found or when vv∗ < 0, PG is defined to be 1. PG is 0 when |v| = |v∗| = 0.189

(2) The Primal Integral (PI) [2] is the integral of the primal gap over time, which captures the speed190

at which better solutions are found.191

Baselines First, we compare with the SCIP solver [6] with primal heuristics integrated. SCIP uses192

BnB as its core component and includes primal heuristics as supplementary procedures to improve the193

primal bound during BnB. We turn on the aggressive mode in SCIP to focus on improving the primal194

bound instead of proving optimality. We also compare with non-ML primal heuristics discussed in195

Section 2.1, including RENS [3], Undercover [4], and Relax-Search [17].196

Computational Setup For all methods, we set the time limit to 300s. Inference results are197

conducted on 100 test instances. Testing (ML inference and non-ML primal heuristics) is conducted198

on 2.90 GHz AMD epyc-7542 CPUs with 10 GB RAM. For the ML methods, we create sub-MBQPs199

by fixing the top p = 0.7 percent of variables that are least fractional in the predictions at inference200

time and use SCIP (v8.0.1) [6] to solve the sub-MBQPs. We also perform a sensitivity analysis201

of p ∈ {0.65, 0.75} (Appendix A). Data collection and ML model training details are deferred to202

Appendix C. For the combined loss proposed in 3.2, we experiment with λCL ∈ {1, 2, 5, 7}.203

4.1 Results and Discussion204

Table 1: Primal Gap (PG) and Primal Integral (PI) results. WCE and CL are ML-guided MBQP
primal heuristics adapted from MILPs. BCE+CL, λCL ∈ {1, 2} are the extended ML methods with
the proposed combined loss. SCIP, RENS, Undercover and Relax-Search are baselines. † indicates
benchmarks where there are instances for which the method did not produce a feasible solution. For
CL, the number of feasible instances (out of 100) are 2, 0, and 16 for QMKP, CQMKP, and WFLOP.
For RENS, the number of feasible instances for CBQP and CQMKP are 65 and 89, respectively. For
all other methods and benchmarks, the number of feasible instances are 100. We did not include the
results with λCL ∈ {5, 7} for BCE+CL, as we observe infeasible instances with higher λCL.

CBQP QMKP CQMKP WFLOP
Method PG PI PG PI PG PI PG PI

Adapted WCE 0.04 50.2 0.17 78.22 0.09 68.38 0.05 66.28
CL 0.28 109.62 0.98† 294.77† 1† 300† 0.78† 274.94†

Extended BCE+CL (λCL = 1) 0.04 52.53 0.15 67.16 0.11 74.84 0.04 65.6
BCE+CL (λCL = 2) 0.04 52.25 0.11 55.17 0.06 62.13 0.05 64.98

Baselines SCIP 0.89 278.22 0.85 265.9 0.99 298.27 0.12 153.69
RENS 0.76† 276.02† 0.85 282.59 0.93† 292.86† 0.23 116.25
Undercover 1 300 0.99 299.79 0.99 298.36 0.49 262.56
Relax-Search 0.57 183.6 0.53 182.76 0.49 163.56 0.35 150.09

As shown in Table. 1, all the ML-guided MBQP primal heuristics other than pure CL-based method205

outperform the best-performing non-ML baseline. The extended methods with combined BCE and206

CL losses perform best in terms of PG for all benchmarks. The best choice of the λCL hyperparameter207

differs for each benchmark. In terms of PI, BCE+CL (λCL = 2) performs the best in three of the208

four benchmarks (QMKP, CQMKP, and WFLOP). Compared to the adapted pure CL approach, our209

extension that combines CL and BCE significantly improves both feasibility and solution quality.210

5 Conclusion211

We present ML-guided primal heuristics for MBQPs based on solution prediction. We adapt existing212

methods on ML-guided MILP primal heuristics to MBQPs by introducing a new neural network213

architecture for feature extraction and a new data collection procedure for collecting high-quality214

training data for MBQPs. Moreover, we extend existing loss functions used in CO solution prediction215

and propose to combine Binary Cross-Entropy loss and Contrastive Loss. Experimental results show216

that the adapted and extended ML-guided methods significantly outperform non-ML primal heuristics217

in primal gap and primal integral. More importantly, our extended loss function significantly improves218

the feasibility and solution quality compared to the pure Contrastive Learning method.219
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A Sensitivity Analysis299

We perform a sensitivity analysis of p ∈ {0.65, 0.75}, as shown in Table 2 and Table 3.300

B Neural network architecture301

List of features The full list of features for the tripartite graph is shown in Table 6.302

GAT module details For the embedding layers, we use 2-layer MLPs with 64 hidden units per303

layer and ReLU as the activation function to map the node and edge features (C,E, V,E′, Q) to304

new embeddings (C1, E1, V1, E
′
1, Q1) in Rd where d = 64. The GAT performs four rounds of305

message passing, as shown in Fig. 1 (C). In round one, each quadratic term node in Q1 attends over306

its neighbors in V1 using H attention heads to produce updated quadratic term embeddings Q2. In307

round two, each variable node in V1 attends over its neighbors (using a separate set of H heads) to308

produce updated variable embeddings V2. In round three, each constraint node in C1 attends over its309

neighbors in V2 to produce updated constraint embeddings C2. In the final round, each variable node310

in V2 attends over its neighbors in C2 to produce the final variable embeddings V3. We use H = 8311

attention heads.312
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Table 2: Primal Gap (PG) and Primal Integral (PI) results with p = 0.65. For CL, the number
of feasible instances (out of 100) are 2, 0, and 19 for QMKP, CQMKP, and WFLOP. For RENS,
the number of feasible instances for CBQP and CQMKP are 65 and 89, respectively. For all other
methods and benchmarks, the number of feasible instances are 100. We did not include the results
with λCL ∈ {5, 7} for BCE+CL, as we observe infeasible instances with higher λCL.

CBQP QMKP CQMKP WFLOP
Method PG PI PG PI PG PI PG PI

Adapted WCE 0.05 67.94 0.14 82.26 0.11 91.54 0.06 97.89
CL 0.22 96.96 0.98† 294.85† 1† 300† 0.77† 270.21†

Extended BCE+CL (λCL = 1) 0.04 69.01 0.12 70.91 0.1 86.1 0.06 94.64
BCE+CL (λCL = 2) 0.04 69.75 0.08 60.35 0.09 77.66 0.06 96.85

Baselines SCIP 0.89 278.22 0.85 265.9 0.99 298.27 0.12 153.69
RENS 0.76† 276.02† 0.85 282.59 0.93† 292.86† 0.23 116.25
Undercover 1 300 0.99 299.79 0.99 298.36 0.49 262.56
Relax-Search 0.57 183.6 0.53 182.76 0.49 163.56 0.35 150.09

Table 3: Primal Gap (PG) and Primal Integral (PI) results with p = 0.75. For CL, the number
of feasible instances (out of 100) are 2, 1, and 14 for QMKP, CQMKP, and WFLOP. For RENS,
the number of feasible instances for CBQP and CQMKP are 65 and 89, respectively. For BCE+CL
(λCL = 2), the number of feasible instances in QMKP is 92. For all other methods and benchmarks,
the number of feasible instances are 100. We did not include the results with λCL ∈ {5, 7} for
BCE+CL, as we observe infeasible instances for higher λCL.

CBQP QMKP CQMKP WFLOP
Method PG PI PG PI PG PI PG PI

Adapted WCE 0.03 39.86 0.16 75.17 0.09 61.78 0.06 84.4
CL 0.34 115.12 0.98† 294.77† 1† 300† 0.79† 277.54†

Extended BCE+CL (λCL = 1) 0.04 45.55 0.13 67.32 0.1 71.39 0.06 83.23
BCE+CL (λCL = 2) 0.04 51.25 0.19† 77.57† 0.06 54.39 0.07 83.73

Baselines SCIP 0.89 278.22 0.85 265.9 0.99 298.27 0.12 153.69
RENS 0.76† 276.02† 0.85 282.59 0.93† 292.86† 0.23 116.25
Undercover 1 300 0.99 299.79 0.99 298.36 0.49 262.56
Relax-Search 0.57 183.6 0.53 182.76 0.49 163.56 0.35 150.09

C Data collection and training313

For each MBQP benchmark, 800 instances are used for training and 100 are used for validation. For314

data collection, we set a relaxation time limit of Tr = 1000s, a subproblem time limit of Ts = 1000s,315

number of random seeds K = 10, candidate fixing ratio of p1 = 0.9, and final fixing ratio of316

p2 = 0.7.317

Trainings are done on an NVIDIA A100 GPU with 40 GB of memory. For training, we use the318

AdamW optimizer [21] with learning rate 10−5. We use a batch size of 16 and train for 2000 epochs.319

D Sample weights in contrastive learning320

We denote the objective value of instance M i given x as the solution as obj(x|M i), so that this321

discussion applies to both MILP and MBQPs. For MILPs, obj(x|M i) = cTi x. For MBQPs,322

obj(x|M i) = xTHix+ ciTx.323

We assume minimization problems and consider two positive samples x1
+ and x2

+ for the same324

instance M i, with obj(x1
+|M i) < obj(x2

+|M i). Since this is a minimization problem, the solution325

quality of x1
+ is higher than x2

+. Let pθ(M i) be the prediction from the ML model. According326

to Eqn. 5, the value of the loss L+
(
θ | x+,M

i
)

should be low when the values of x1
+ · pθ(M i)327

and x2
+ · pθ(M i) are high, so that the predictions become similar to the positive samples when328

the training loss decreases. Moreover, the sample weight function 1
τ(x|Mi) should be set so that329

L+
(
θ | x1

+,M
i
)
> L+

(
θ | x2

+,M
i
)
. In other words, positive samples with higher objective values330
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are assigned higher weights during training. In the case when x1
+ · pθ(M i) > x2

+ · pθ(M i) > 0, it331

should hold that332

x1
+ · pθ(M i)

1

τ(x1
+|M i)

> x2
+ · pθ(M i)

1

τ(x|M i)
≥ 0 (6)

so that the function 1
τ(x|Mi) does not change the signs of dot product, and that the weighted dot333

product for x1
+ is higher than x2

+.334

Now we compare the effects of different choices of the 1
τ(x|Mi) function. We consider two scenarios:335

(1) minimization problems with negative objective values (i.e., obj(x1
+|M i) < obj(x2

+|M i) ≤ 0) and336

(2) minimization problems with positive objective values (i.e., 0 ≤ obj(x1
+|M i) < obj(x2

+|M i)).337

Sample weights in [15]. 1
τ(x|Mi) = obj(x|M i)/w with w < 0.338

Scenario Sample weight Weighted dot product
obj(x1

+|M i) < obj(x2
+|M i) ≤ 0 1

τ(x1
+|Mi)

> 1
τ(x2

+|Mi)
≥ 0 x1

+ · pθ(M i) 1
τ(x1

+|x1
+,Mi)

> x2
+ · pθ(M i) 1

τ(x|Mi) ≥ 0

0 ≤ obj(x1
+|M i) < obj(x2

+|M i) 1
τ(x2

+|Mi)
< 1

τ(x1
+|Mi)

≤ 0 x1
+ · pθ(M i) 1

τ(x|Mi) ≷ x2
+ · pθ(M i) 1

τ(x|Mi) ≤ 0

Table 4: Relationship between sample weight and weighted dot product in [15].

Proposed sample weights. 1
τ(x|Mi) = exp( obj(x|Mi)

w ) with w < 0.339

Scenario Sample weight Weighted dot product
obj(x1

+|M i) < obj(x2
+|M i) ≤ 0 1

τ(x1
+|Mi)

> 1
τ(x2

+|Mi)
≥ 0 x1

+ · pθ(M i) 1
τ(x1

+|x1
+,Mi)

> x2
+ · pθ(M i) 1

τ(x|Mi) ≥ 0

0 ≤ obj(x1
+|M i) < obj(x2

+|M i) 1
τ(x1

+|Mi)
> 1

τ(x2
+|Mi)

≥ 0 x1
+ · pθ(M i) 1

τ(x1
+|x1

+,Mi)
> x2

+ · pθ(M i) 1
τ(x|Mi) ≥ 0

Table 5: Relationship between sample weight and weighted dot product with proposed sample weight
function.

As shown in Table. 4, Eqn. 6 fails to hold in scenario (2) with the function 1
τ(x|Mi) = obj(x|M i)/w,340

as the relationship between sample weights are filpped for minimization problems with positive341

objective values. Our proposed τ(x|M i) function addresses this issue by converting the weights to342

positive values, regardless of the signs of obj(x|M i).343
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Nodes Features Source
C avg. coefficients in the constraint [14]

min. coefficients in the constraint new
max. coefficients in the constraint new
variance of coefficients in the constraint new
# of variables in the constraint [14]
left-hand side or right-hand side [14]
constraint sense in one-hot encoding (3) (=, >,<) new

V-C edge coefficient of variables in constraints [14]

V normalized coefficient in obj (among linear terms) [14]
avg. coefficient in constraints [14]
# of times it appear in linear constraints [14]
variance of. coefficient in constraints new
max. coefficient in constraints [14]
min. coefficient in constraints [14]
binary variable indicator [14]
LP relaxation value in MILP reformulation new
# times it appears in quadratic terms new
avg. coefficient in quadratic terms that it appears in new
max. coefficient in quadratic terms that it appears in new
min. coefficient in quadratic terms that it appears in new
variance of coefficient in quadratic terms that it appears in new
avg. # times its neighbors appears in quadratic terms new
max. # times its neighbors appears in quadratic terms new
min. # times its neighbors appears in quadratic terms new
variance of # times its neighbors appears in quadratic terms new
Eigenvalue centrality in Hessian graph new

Q coefficient of quadratic term in objective function new
LP relaxation value of reformulated variable zij = xixj new
LP relaxation violation new
Edge centrality in Hessian graph new

V-Q edge None new
Table 6: Features of MBQP tripartite graph representation.

NeurIPS Paper Checklist344

1. Claims345

Question: Do the main claims made in the abstract and introduction accurately reflect the346

paper’s contributions and scope?347

Answer: [Yes]348

Justification: This paper introduces a ML-guided primal heuristics for MBQPs. The abstract349

and introduction (Section 1) reflects this.350

Guidelines:351

• The answer NA means that the abstract and introduction do not include the claims352

made in the paper.353

• The abstract and/or introduction should clearly state the claims made, including the354

contributions made in the paper and important assumptions and limitations. A No or355

NA answer to this question will not be perceived well by the reviewers.356

• The claims made should match theoretical and experimental results, and reflect how357

much the results can be expected to generalize to other settings.358

• It is fine to include aspirational goals as motivation as long as it is clear that these goals359

are not attained by the paper.360

2. Limitations361

Question: Does the paper discuss the limitations of the work performed by the authors?362

Answer: [No]363
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Justification: We do not have enough space for this discussion. However, one of the364

limitations is that feasibility is not guaranteed with ML-methods.365

Guidelines:366

• The answer NA means that the paper has no limitation while the answer No means that367

the paper has limitations, but those are not discussed in the paper.368

• The authors are encouraged to create a separate "Limitations" section in their paper.369

• The paper should point out any strong assumptions and how robust the results are to370

violations of these assumptions (e.g., independence assumptions, noiseless settings,371

model well-specification, asymptotic approximations only holding locally). The authors372

should reflect on how these assumptions might be violated in practice and what the373

implications would be.374

• The authors should reflect on the scope of the claims made, e.g., if the approach was375

only tested on a few datasets or with a few runs. In general, empirical results often376

depend on implicit assumptions, which should be articulated.377

• The authors should reflect on the factors that influence the performance of the approach.378

For example, a facial recognition algorithm may perform poorly when image resolution379

is low or images are taken in low lighting. Or a speech-to-text system might not be380

used reliably to provide closed captions for online lectures because it fails to handle381

technical jargon.382

• The authors should discuss the computational efficiency of the proposed algorithms383

and how they scale with dataset size.384

• If applicable, the authors should discuss possible limitations of their approach to385

address problems of privacy and fairness.386

• While the authors might fear that complete honesty about limitations might be used by387

reviewers as grounds for rejection, a worse outcome might be that reviewers discover388

limitations that aren’t acknowledged in the paper. The authors should use their best389

judgment and recognize that individual actions in favor of transparency play an impor-390

tant role in developing norms that preserve the integrity of the community. Reviewers391

will be specifically instructed to not penalize honesty concerning limitations.392

3. Theory assumptions and proofs393

Question: For each theoretical result, does the paper provide the full set of assumptions and394

a complete (and correct) proof?395

Answer: [NA]396

Justification: We do not have theoretical results in this paper.397

Guidelines:398

• The answer NA means that the paper does not include theoretical results.399

• All the theorems, formulas, and proofs in the paper should be numbered and cross-400

referenced.401

• All assumptions should be clearly stated or referenced in the statement of any theorems.402

• The proofs can either appear in the main paper or the supplemental material, but if403

they appear in the supplemental material, the authors are encouraged to provide a short404

proof sketch to provide intuition.405

• Inversely, any informal proof provided in the core of the paper should be complemented406

by formal proofs provided in appendix or supplemental material.407

• Theorems and Lemmas that the proof relies upon should be properly referenced.408

4. Experimental result reproducibility409

Question: Does the paper fully disclose all the information needed to reproduce the main ex-410

perimental results of the paper to the extent that it affects the main claims and/or conclusions411

of the paper (regardless of whether the code and data are provided or not)?412

Answer: [Yes]413

Justification: Details on training the ML model architecture are provided in Section 3 and414

Appendix B. Details on data collection, ML model training, and inference are provided in415

Section 4 and Appendix C.416
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Guidelines:417

• The answer NA means that the paper does not include experiments.418

• If the paper includes experiments, a No answer to this question will not be perceived419

well by the reviewers: Making the paper reproducible is important, regardless of420

whether the code and data are provided or not.421

• If the contribution is a dataset and/or model, the authors should describe the steps taken422

to make their results reproducible or verifiable.423

• Depending on the contribution, reproducibility can be accomplished in various ways.424

For example, if the contribution is a novel architecture, describing the architecture fully425

might suffice, or if the contribution is a specific model and empirical evaluation, it may426

be necessary to either make it possible for others to replicate the model with the same427

dataset, or provide access to the model. In general. releasing code and data is often428

one good way to accomplish this, but reproducibility can also be provided via detailed429

instructions for how to replicate the results, access to a hosted model (e.g., in the case430

of a large language model), releasing of a model checkpoint, or other means that are431

appropriate to the research performed.432

• While NeurIPS does not require releasing code, the conference does require all submis-433

sions to provide some reasonable avenue for reproducibility, which may depend on the434

nature of the contribution. For example435

(a) If the contribution is primarily a new algorithm, the paper should make it clear how436

to reproduce that algorithm.437

(b) If the contribution is primarily a new model architecture, the paper should describe438

the architecture clearly and fully.439

(c) If the contribution is a new model (e.g., a large language model), then there should440

either be a way to access this model for reproducing the results or a way to reproduce441

the model (e.g., with an open-source dataset or instructions for how to construct442

the dataset).443

(d) We recognize that reproducibility may be tricky in some cases, in which case444

authors are welcome to describe the particular way they provide for reproducibility.445

In the case of closed-source models, it may be that access to the model is limited in446

some way (e.g., to registered users), but it should be possible for other researchers447

to have some path to reproducing or verifying the results.448

5. Open access to data and code449

Question: Does the paper provide open access to the data and code, with sufficient instruc-450

tions to faithfully reproduce the main experimental results, as described in supplemental451

material?452

Answer: [No]453

Justification: As for now, we cannot provide open access to the data and code before a454

software disclosure request is approved. But the data and code will be publicly available455

once the disclosure request is approved.456

Guidelines:457

• The answer NA means that paper does not include experiments requiring code.458

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/459

public/guides/CodeSubmissionPolicy) for more details.460

• While we encourage the release of code and data, we understand that this might not be461

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not462

including code, unless this is central to the contribution (e.g., for a new open-source463

benchmark).464

• The instructions should contain the exact command and environment needed to run to465

reproduce the results. See the NeurIPS code and data submission guidelines (https:466

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.467

• The authors should provide instructions on data access and preparation, including how468

to access the raw data, preprocessed data, intermediate data, and generated data, etc.469

• The authors should provide scripts to reproduce all experimental results for the new470

proposed method and baselines. If only a subset of experiments are reproducible, they471

should state which ones are omitted from the script and why.472
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• At submission time, to preserve anonymity, the authors should release anonymized473

versions (if applicable).474

• Providing as much information as possible in supplemental material (appended to the475

paper) is recommended, but including URLs to data and code is permitted.476

6. Experimental setting/details477

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-478

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the479

results?480

Answer: [Yes]481

Justification: Details on training data collection, ML model training, and inference are482

provided in Section 4 and Appendix C.483

Guidelines:484

• The answer NA means that the paper does not include experiments.485

• The experimental setting should be presented in the core of the paper to a level of detail486

that is necessary to appreciate the results and make sense of them.487

• The full details can be provided either with the code, in appendix, or as supplemental488

material.489

7. Experiment statistical significance490

Question: Does the paper report error bars suitably and correctly defined or other appropriate491

information about the statistical significance of the experiments?492

Answer: [No]493

Justification: We did not provide error bars, but we performed a sensitivity analysis in494

Appendix A.495

Guidelines:496

• The answer NA means that the paper does not include experiments.497

• The authors should answer "Yes" if the results are accompanied by error bars, confi-498

dence intervals, or statistical significance tests, at least for the experiments that support499

the main claims of the paper.500

• The factors of variability that the error bars are capturing should be clearly stated (for501

example, train/test split, initialization, random drawing of some parameter, or overall502

run with given experimental conditions).503

• The method for calculating the error bars should be explained (closed form formula,504

call to a library function, bootstrap, etc.)505

• The assumptions made should be given (e.g., Normally distributed errors).506

• It should be clear whether the error bar is the standard deviation or the standard error507

of the mean.508

• It is OK to report 1-sigma error bars, but one should state it. The authors should509

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis510

of Normality of errors is not verified.511

• For asymmetric distributions, the authors should be careful not to show in tables or512

figures symmetric error bars that would yield results that are out of range (e.g. negative513

error rates).514

• If error bars are reported in tables or plots, The authors should explain in the text how515

they were calculated and reference the corresponding figures or tables in the text.516

8. Experiments compute resources517

Question: For each experiment, does the paper provide sufficient information on the com-518

puter resources (type of compute workers, memory, time of execution) needed to reproduce519

the experiments?520

Answer: [Yes]521

Justification: Details on training resources are provided in Section 4 (CPUs) and Appendix522

C (GPUs).523
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Guidelines:524

• The answer NA means that the paper does not include experiments.525

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,526

or cloud provider, including relevant memory and storage.527

• The paper should provide the amount of compute required for each of the individual528

experimental runs as well as estimate the total compute.529

• The paper should disclose whether the full research project required more compute530

than the experiments reported in the paper (e.g., preliminary or failed experiments that531

didn’t make it into the paper).532

9. Code of ethics533

Question: Does the research conducted in the paper conform, in every respect, with the534

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?535

Answer: [Yes]536

Justification: We have reviewed and followed the NeurIPS Code of Ethics.537

Guidelines:538

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.539

• If the authors answer No, they should explain the special circumstances that require a540

deviation from the Code of Ethics.541

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-542

eration due to laws or regulations in their jurisdiction).543

10. Broader impacts544

Question: Does the paper discuss both potential positive societal impacts and negative545

societal impacts of the work performed?546

Answer: [Yes]547

Justification: The experiments (Section 4) in this paper include a real-world wind farm layout548

optimization problem. Methods in this work has the potential to increase the efficiency of549

wind energy production. Authors are not aware of negative societal impact of this work.550

Guidelines:551

• The answer NA means that there is no societal impact of the work performed.552

• If the authors answer NA or No, they should explain why their work has no societal553

impact or why the paper does not address societal impact.554

• Examples of negative societal impacts include potential malicious or unintended uses555

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations556

(e.g., deployment of technologies that could make decisions that unfairly impact specific557

groups), privacy considerations, and security considerations.558

• The conference expects that many papers will be foundational research and not tied559

to particular applications, let alone deployments. However, if there is a direct path to560

any negative applications, the authors should point it out. For example, it is legitimate561

to point out that an improvement in the quality of generative models could be used to562

generate deepfakes for disinformation. On the other hand, it is not needed to point out563

that a generic algorithm for optimizing neural networks could enable people to train564

models that generate Deepfakes faster.565

• The authors should consider possible harms that could arise when the technology is566

being used as intended and functioning correctly, harms that could arise when the567

technology is being used as intended but gives incorrect results, and harms following568

from (intentional or unintentional) misuse of the technology.569

• If there are negative societal impacts, the authors could also discuss possible mitigation570

strategies (e.g., gated release of models, providing defenses in addition to attacks,571

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from572

feedback over time, improving the efficiency and accessibility of ML).573

11. Safeguards574
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Question: Does the paper describe safeguards that have been put in place for responsible575

release of data or models that have a high risk for misuse (e.g., pretrained language models,576

image generators, or scraped datasets)?577

Answer: [NA]578

Justification: As far as the authors are aware, the paper poses no such risks.579

Guidelines:580

• The answer NA means that the paper poses no such risks.581

• Released models that have a high risk for misuse or dual-use should be released with582

necessary safeguards to allow for controlled use of the model, for example by requiring583

that users adhere to usage guidelines or restrictions to access the model or implementing584

safety filters.585

• Datasets that have been scraped from the Internet could pose safety risks. The authors586

should describe how they avoided releasing unsafe images.587

• We recognize that providing effective safeguards is challenging, and many papers do588

not require this, but we encourage authors to take this into account and make a best589

faith effort.590

12. Licenses for existing assets591

Question: Are the creators or original owners of assets (e.g., code, data, models), used in592

the paper, properly credited and are the license and terms of use explicitly mentioned and593

properly respected?594

Answer: [Yes]595

Justification: We generate the WFLOP instances based on the MBQP formulation in [17], us-596

ing wind data from the NOW-23 offshore wind dataset at selected locations in the California597

offshore region [7]. We credited these sources.598

Guidelines:599

• The answer NA means that the paper does not use existing assets.600

• The authors should cite the original paper that produced the code package or dataset.601

• The authors should state which version of the asset is used and, if possible, include a602

URL.603

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.604

• For scraped data from a particular source (e.g., website), the copyright and terms of605

service of that source should be provided.606

• If assets are released, the license, copyright information, and terms of use in the607

package should be provided. For popular datasets, paperswithcode.com/datasets608

has curated licenses for some datasets. Their licensing guide can help determine the609

license of a dataset.610

• For existing datasets that are re-packaged, both the original license and the license of611

the derived asset (if it has changed) should be provided.612

• If this information is not available online, the authors are encouraged to reach out to613

the asset’s creators.614

13. New assets615

Question: Are new assets introduced in the paper well documented and is the documentation616

provided alongside the assets?617

Answer: [NA]618

Justification: The paper does not release new assets.619

Guidelines:620

• The answer NA means that the paper does not release new assets.621

• Researchers should communicate the details of the dataset/code/model as part of their622

submissions via structured templates. This includes details about training, license,623

limitations, etc.624

• The paper should discuss whether and how consent was obtained from people whose625

asset is used.626
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• At submission time, remember to anonymize your assets (if applicable). You can either627

create an anonymized URL or include an anonymized zip file.628

14. Crowdsourcing and research with human subjects629

Question: For crowdsourcing experiments and research with human subjects, does the paper630

include the full text of instructions given to participants and screenshots, if applicable, as631

well as details about compensation (if any)?632

Answer: [NA]633

Justification: This paper does not involve research with human subjects.[TODO]634

Guidelines:635

• The answer NA means that the paper does not involve crowdsourcing nor research with636

human subjects.637

• Including this information in the supplemental material is fine, but if the main contribu-638

tion of the paper involves human subjects, then as much detail as possible should be639

included in the main paper.640

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,641

or other labor should be paid at least the minimum wage in the country of the data642

collector.643

15. Institutional review board (IRB) approvals or equivalent for research with human644

subjects645

Question: Does the paper describe potential risks incurred by study participants, whether646

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)647

approvals (or an equivalent approval/review based on the requirements of your country or648

institution) were obtained?649

Answer: [NA]650

Justification: This paper does not involve research with human subjects.651

Guidelines:652

• The answer NA means that the paper does not involve crowdsourcing nor research with653

human subjects.654

• Depending on the country in which research is conducted, IRB approval (or equivalent)655

may be required for any human subjects research. If you obtained IRB approval, you656

should clearly state this in the paper.657

• We recognize that the procedures for this may vary significantly between institutions658

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the659

guidelines for their institution.660

• For initial submissions, do not include any information that would break anonymity (if661

applicable), such as the institution conducting the review.662

16. Declaration of LLM usage663

Question: Does the paper describe the usage of LLMs if it is an important, original, or664

non-standard component of the core methods in this research? Note that if the LLM is used665

only for writing, editing, or formatting purposes and does not impact the core methodology,666

scientific rigorousness, or originality of the research, declaration is not required.667

Answer: [NA]668

Justification: LLMs were only used for formmating purposes in this paper.669

Guidelines:670

• The answer NA means that the core method development in this research does not671

involve LLMs as any important, original, or non-standard components.672

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)673

for what should or should not be described.674
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