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Abstract

Mixed Binary Quadratic Programs (MBQPs) are classic problems in combinato-
rial optimization. As solving large-scale combinatorial optimization problems is
challenging, primal heuristics have been developed to quickly identify high-quality
solutions within a short amount of time. Recently, a growing body of research has
also used machine learning to accelerate solution methods for challenging combina-
torial optimization problems. Despite the increasing popularity of these ML-guided
methods, a large body of work has focused on Mixed-Integer Linear Programs
(MILPs). MBQPs are challenging to solve due to the combinatorial complexity
coupled with nonlinearities. This work proposes ML-guided primal heuristics for
Mixed Binary Quadratic Programs (MBQPs) by adapting and extending existing
work on ML-guided MILP solution prediction to MBQPs. We propose a new neu-
ral network architecture for MBQP solution prediction and a new data collection
procedure for training. Moreover, we propose to combine Binary Cross-Entropy
loss and Contrastive Loss in solution prediction. We compare the methods on
standard and real-world MBQP benchmarks and show that our proposed methods
significantly outperform state-of-the-art solvers and existing primal heuristics.

1 Introduction

Mixed Binary Quadratic Programs (MBQPs) are discrete optimization problems with quadratic
terms in the objective function subject to a set of linear constraints. MBQPs encode many important
problems in Combinatorial Optimization (CO) [20,[27, 18] and cover a wide range of applications,
including finance [25]], machine learning [3]], as well as chemical [23] and energy systems [29]. A
significant body of research on CO algorithms has focused on primal heuristics, which are algorithms
designed to find good feasible solutions quickly and without optimality guarantees [3].

Despite development in solvers and heuristics, solving large-scale COs remains challenging. In recent
years, Machine Learning (ML) has been proposed to accelerate solution methods for CO problems.
Motivated by the fact that CO problems sharing similar structures are solved repeatedly in many
applications [16, 28], a growing body of research uses ML to guide algorithmic policies or to build
new policies customized to instances that appear in specific applications. For example, [14} 24, [15]
proposed ML-guided primal heuristics for Mixed Integer Linear Programs (MILPs), wherein they
they predict the optimal assignment for a subset of the variables. While prior work on ML-guided
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CO methods has shown success across multiple algorithmic components on many challenging CO
problems, existing work in this area has mainly focused on MILPs. A small body of research has
used ML to advance solution methods for general nonlinear programming problems [8 [1, [13} [11]],
but ML-guided methods in this space are not as well developed as in MILPs.

MBQPs are even more challenging to solve than MILPs due to the combinatorial nature [22] coupled
with nonlinearities. In this work, we develop ML-guided primal heuristics for MBQPs by adapting
and extending existing work on ML-guided MILP solution methods. We adapt the Weighted Cross-
Entropy-based and Contrastive Learning-based methods which are used in MILP solution prediction
to MBQPs. We propose a novel neural network architecture that extracts MBQP features and produces
variable embeddings, and a new data collection procedure that generates high-quality solutions as
ground truth data for training. Furthermore, we extend existing loss functions used in solution
prediction and propose to combine Binary Cross-Entropy loss and Contrastive Loss. We compare
the proposed methods on standard and real-world MBQP benchmarks and show that our methods
outperform state-of-the-art solvers and non-ML primal heuristics.

2 Background and Related Work

2.1 Mixed Binary Quadratic Programs

A Mixed Binary Quadratic Program (MBQP) with n decision variables is defined as
minz” He + ¢’z st Ar <band z; € {0,1},Vj € B )

where H € R, c € R", A € R™*" and b € R™. H is a real symmetric matrix that encodes
quadratic terms in the objective function and is not necessarily positive semidefinite, allowing for
nonconvex objective functions. B C {1,...,n} is the set of binary decision variables.

Solution methods MBQPs are NP-hard in general [26]. The Branch-and-Bound (BnB) algorithm
is an exact tree search algorithm to solve MILPs, MBQPs and more general Mixed-Integer Nonlinear
Programming problems. As large-scale MBQPs are challenging to solve with exact methods, a
significant body of research has focused on primal heuristics, which are algorithms designed to
quickly identify high-quality feasible solutions for a given optimization problem without optimality
guarantees [3]]. These heuristics typically involve solving a relaxation of the original problem and
then creating a subproblem by fixing a subset of integer variables by rounding the relaxation values
to the nearest integer values, such as RENS [3], Undercover [4], and Relax-Search [[17].

2.2 Solution Prediction for MILPs

Previous work on using ML to accelerate solving CO problems has been focused on Mixed Integer
Linear Programming (MILP). An MILP can be viewed as the subclass of MBQPs in Eqn. [T where
the quadratic term matrix H is the zero matrix. The goal of an MILP is to find z such that ¢’z is
minimized, subject to Az < b and integrality constraints z; € {0,1},Vj € B. A large body of
ML-guided primal heuristics for MILPs are based on predicting partial solutions [24} 14} [15]].

Solution Prediction Nair et al. [24] and Han et al. [14] use Weighted Cross-Entropy (WCE) loss
to learn the probability distribution of the solution space of an MILP instance M. The goal is to
learn from a set of multiple solutions, weighted by the quality of the solution. Specifically, for a
solution x, the energy function E(x; M) is defined as c¢Tx if x¢ is feasible, or 0o otherwise, assuming
minimization. Given M, the conditional distribution of a solution x is modeled as

exp(—E(x; M))

2o exp(—E(2'; M)
, so that solutions with better objective values have higher probability. The learning task is to train a
model py (x| M) parameterized by 6 that approximates p(z|M ). To collect training data, [24]] and [14]
obtain the set of solutions by running state-of-the-art MILP solvers for a large amount of time. Instead
of using WCE loss, Huang et al. [[15]] learn py (x| M) using Contrastive Learning (CL). The CL-based
method makes discriminative predictions by contrasting the positive samples (i.e., good solutions)
and negative samples (i.e., bad solutions). Positive samples are obtained by running MILP solvers,
similar to [24] and [14]]. Negative samples are obtained by solving another MILP that searches for
bad variable assignments within some Hamming distance of the good solutions.

p(z|M) = )



Inference Since the full prediction might not be feasible, ML-guided primal heuristics for MILPs
involve solving another MILP at inference time. Nair et al.[24]] use Neural Diving (ND), which uses
the prediction of a subset of the variables and creates a smaller sub-MILP that is easier to solve after
fixing the subset. The size of this sub-MILP is controlled by the ratio of variables that are fixed. Han
et al. [14] and Huang et al. [[15] use a Predict-and-Search (PaS) framework that searches for feasible
solutions within some neighborhood of the full prediction by adding a cut to the original MILP. The
degrees of freedom in PaS are controlled by the number of variables that are allowed to be different
from the prediction. The ND approach allows for faster runtime at inference time as the subproblem
contains a small number of variables, but the solutions returned can be more suboptimal. PAS has
more freedom to correct errors from the ML predictions, but can be harder to optimize because the
size of the MILP to solve at inference contains the same number of variables as the original MILP.

3 Methods

We develop ML-guided primal heuristics for MBQPs. An input MBQP (Fig. [I](A)) is represented
as a tripartite graph (Fig. [T|(B)) and then passed to a Graph Attention Network (Fig. [T](C)) which
predicts the solutions to the binary decision variables. At inference time, the predictions are used to
create a sub-MBQP (Fig. [T| (F)). We introduce a new method to collect training data for MBQPs (Fig.
[1](D)). For training, we adapt the WCE and CL losses which have been used in solution prediction in
MILPs to MBQPs and propose to combine Binary Cross-Entropy (BCE) and CL losses (Fig. [T (E)).
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Figure 1: Training/Inference pipeline for ML-guided MBQP solving via solution prediction.

3.1 Neural Network Architecture

We propose a tripartite graph representation for MBQPs (Fig. [T| (B)). It contains three sets of nodes
that represent the constraints (C'), variables (), and quadratic terms (Q). A C' — V edge connects a
variable and a constraint if the variable has a non-zero coefficient in the constraint. A () — V edge
connects two V' nodes if the two variables appear in the same quadratic term. The features for the C
and V nodes are adapted from solution prediction for MILPs in [[14]. For the () nodes, we propose a
custom feature set that captures the characteristics of the H matrix in Eqn. (I). We learn a policy
po (x| M) parameterized by 6, using a Graph Attention Network (GAT) [9]. The GAT performs four
rounds of message passing and produces an embedding for the variables (Fig. [T](C)). The embeddings
are then passed through a Multi-Layer Perceptron (MLP) followed by an activation layer to obtain
the final output py (x| M ). The input features and ML module details are deferred to Appendix

3.2 Loss Function

The policy py(z|M) that produces solution predictions can be learned with different approaches (Fig.
[T (E)). In this work, we first adapt the WCE and CL losses that have been used for MILPs to MBQPs.
Then, we propose an extension that combines BCE and CL losses.

Weighted Cross-Entropy Following the WCE approach [14]], we create a training dataset that
contains N MBQPs instances { (M*, L?) }jv:l, where L* = {z%J };V:ll is a set of unique N; solutions
for the instance M;. Let Py (2*9|M") denote the probability of solution z* given instance M’
as the input. We adapt the energy function E(x; M) in Eqn. to the case of MBQPs to assign



higher probability for better solutions. For a solution x, the energy function E(x; M) is defined

as 7 Hx + ¢z if  is feasible. During training, for instance M; with quadratic term matrix H*
exp(—wi’jTHimi’j —ciTwi’j)

ZkN;1 exp (_xi,kTHz‘xi,k_cisz‘,k

. Based on the Kullback-Leibler divergence which measures the distance between the conditional

distribution in Equation [2]and the learned policy, the loss function to be minimized is:

and cost vector c?, the weight applied to the solution z*7 is w®/ =

N N;
Lwce (0) = =Y > w'ilogPy (x| M"). )

i=1 j=1

N
Contrastive Learning Following the CL-based approach [[15], let { (Sfi, sM ) } be a training

i=1
dataset of N MBQP instances, where Sj_wi and S™7 are the sets of positive and negative samples for
instance M;, respectively. We use a form of the NT-Xent Loss [[10] to learn to distinguish between
positive and negative samples. We use the the - operator to denote the dot-product similarity. Let
po(M?) be the predicted solution given instance M as the input. The loss function to be minimized

is
1 )
Len(0) = Z TS Z LY (0] zy, M), C))

{(SMF SMIVIN |5 vy SN

where
exp (x4 - po(M*) /7 (x4 |M?))
exp (& - po(M?)/ 7(Z|M?))

cr (9 | x+,Mi) = —log 5)
Ziesﬁf"u{m+}
Based on the dot-product similarity, the value of the loss £ (9 |z, M Z) is low when py(M?) is
similar to the positive sample 2 and dissimilar to negative samples # € S™". In the case of MILPs
in [13], a sample weight of W = Tz /w where w < 0 is applied to minimization problems
with a negative objective values, so that positive samples with lower (i.e., better) objective values
are assigned higher weights. We adapt the weights and capture the objective values of MBQPs.
Moreover, to also account for minimization problems with positive objective values, we transform the

. . . . T i T
weights using the exponential function and set W = exp (L) where w < 0, so that

better positive samples have lower weights in both minimization problems with positive objective
and minimization problems with negative objective values. A discussion of sample weights applied
to problems with different objective values is deferred to Appendix D}

Combining Contrastive Learning and Binary Cross-Entropy In addition to adapting the WCE
and CL losses to MBQPs, we propose to combine CL and Binary Cross-Entropy (BCE) loss. It has
been observed that a subset of variables often have the same assignments across different positive
and negative samples in the CL-based approach. This motivates a binary classification approach for
this unique subset of variables. Formally, given an MBQP instance M* with the set of positive and

negative samples (Sy , Syi), let B® = {1,...,n} be the index set of all binary decision variables.
Letzy €S _]y " be any positive sample. Let 2, denote the solution assignment for the d*h variable
for instance 7. Let U? C B? be an index set for which J;il takes the same solution value for any
z € SM U {x,}. We learn the assignment of variables in U* by classifying whether the variable

is assigned 1 or 0. Let p; = py (2, = 1|M") be the probability that z; takes a solution value of 1
predicted by the ML model. The classification loss for instance M is

L) == > [thlog(ph) + (1 — i) log(1 — pi)]

i=1deU"
where ¢/, is the ground truth value for 2, in M*. For variables in B* \ U?, we apply CL loss. Let

£21L\U1 (0) be the same CL loss function defined in Eqn. (4)) but operate on the subset of variables
B?\ U’ instead. Considering both CL and BCE losses, the combined loss to be minimized is

Levsnce(9) = e Lo (8) + LYcg(9)
, where A¢ is a hyperparameter that controls the weight of CL loss.



3.3 Training data collection for MBQPs

Training data collection (Fig. [T] (D)) consists of compiling multiple good solutions that can be used
for solution prediction in MBQPs. We propose Randomized Relax-Search, a novel heuristic that
produces a set of diverse high-quality solutions for MBQPs. Randomized Relax-Search is extended
from the Relax-Search [[1'/] heuristic, which uses a suboptimal relaxation solution of the MBQP as
the basis, fixes a subset of variables using the rounded relaxation, and searches over a sub-MBQP.
Randomized Relax-Search introduces randomization to create K sub-MBQPs, as shown in Algorithm
In solving the kth sub-MBQP, the best solution xi and the worst solution x* are stored. The
procedure returns the set of best solutions .S and worst solutions S_ after solving K sub-MBQPs.

Algorithm 1 Randomized Relax-Search for training data collection

Require: A MBQP P with set of binary variables B, relaxation time limit 7’., subproblem time limit
T, number of random seeds [, candidate fixing ratio p;, final fixing ratio ps (p1>p2)
Relaxed solutions  <— Compute the Nonlinear Programming relaxation of P given time limit 7.
Set of good solutions S, < ()
Set of bad solutions S_ < 0
Candidate set C < select py * |B| variables that are least fractional variables in Z.
for k€1,2,.... Kdo
Uy, < Randomly and uniformly select py * |B| variables from C
for i € U, do
Fix x; = | ;] by rounding to the nearest integer
end for
2% 2% + Best and worst solutions obtained by solving the k" sub-MBQP with a complete
solver, given time limit 7.
1: Sy« Spu{h}
122 S_« S _u{zF}
13: end for
14: return S, ,S_

YRR NHERN 2

—

For training with WCE loss, the set of good solutions S is used. For CL losses, S is used as the set
of positive samples. We denote the worst solution value from S as v' = max,cs, 2THr + Tz
For the set of negative samples in CL, we use {x|(zT Hx + c¢T'x) > v,z € S_}. In other words, we
only include solutions in S_ that have worse objective values than the worst solutions in S .

3.4 Inference

At inference time, we choose to use the ND-based method discussed in Subsection [2.2] which reduces
the original problem to a smaller sub-MBQP (Fig. [T) (F), as our goal is to develop fast primal
heuristics. The PaS-based method is challenging for MBQPs because it requires solving another
MBQP of the same size. After obtaining the variable predictions, we create a sub-MBQP by fixing
the top p percent of binary decision variables for which the ML model is most confident with the
predictions (i.e., least fractional in the predictions). The sub-MBQP is then solved with a CO solver.

4 Computational Experiments

Benchmarks We evaluate the methods on three standard benchmarks: Cardinality-constrained
Binary Quadratic Programs (CBQP) [30Q], Cardinality-constrained Quadratic Knapsack Problem
(CQKP) [19], and the Quadratic Multidimensional Knapsack Problem (QMKP) [12]. All standard
benchmark instances contain 1000 binary variables and have a quadratic term density of 0.25. In
addition, we test on a real-world Wind Farm Layout Optimization (WFLOP) problem. WFLOP
seeks to identify the placement of a set of wind turbines to maximize power generation over all wind
scenarios while also satisfying minimum separation constraints. We generate the WFLOP instances
based on the MBQP formulation in [17]], using wind data from the NOW-23 offshore wind dataset at
selected locations in the California offshore region [7].

Evaluation Metrics We use the following metrics: (1) The Primal Gap (PG) [2] is the normalized
difference between the objective value v found by a method and a best known objective value v*,



defined as PG = %, when vv* > 0. When no feasible solution is found or when vv* < 0,

PG is defined to be 1. PG is 0 when |v| = |[v*| = 0. (2) The Primal Integral (PI) [2] is the integral of
the primal gap over time, which captures the speed at which better solutions are found.

Baselines First, we compare with the SCIP solver [[6] with primal heuristics integrated. SCIP uses
BnB as its core component and includes primal heuristics as supplementary procedures to improve the
primal bound during BnB. We turn on the aggressive mode in SCIP to focus on improving the primal
bound instead of proving optimality. We also compare with non-ML primal heuristics discussed in
Section@ including RENS [3]], Undercover [4], and Relax-Search [[17].

Computational Setup We set the time limit to 300s. Inference results are conducted on 100 test
instances. For the ML methods, we set p = 0.7 and use SCIP (v8.0.1) [6] to solve the sub-MBQPs.
We also perform a sensitivity analysis of p € {0.65,0.75} (Appendix . For the combined loss
proposed in we experiment with Acr, € {1,2,5,7}. More details on the computational setup are
deferred to Appendix [C]

4.1 Results and Discussion

Table 1: Primal Gap (PG) and Primal Integral (PI) results. WCE and CL are ML-guided MBQP
primal heuristics adapted from MILPs. BCE+CL, A¢y, € {1, 2} are the extended ML methods with
the proposed combined loss. SCIP, RENS, Undercover and Relax-Search are baselines. T indicates
benchmarks where there are instances for which the method did not produce a feasible solution. For
CL, the number of feasible instances (out of 100) are 2, 0, and 16 for QMKP, CQKP, and WFLOP.
For RENS, the number of feasible instances for CBQP and CQKP are 65 and 89, respectively. For all
other methods and benchmarks, the number of feasible instances are 100. We did not include the
results with Acr, € {5, 7} for BCE+CL, as we observe infeasible instances with higher Ac.

CBQP QMKP CQKP WFLOP
Method PG PI PG PI PG PI PG PI
Adapted WCE 0.04 502 0.17 7822 0.09  68.38 0.05 66.28
CL 028 109.62 0.98t 29477t 1f 300f 078" 274.94%

Extended BCE+CL (A\¢cr, =1) 0.04 5253 0.15 67.16 0.11  74.84 0.04 656
BCE+CL (A\¢, =2) 0.04 5225 0.11 5517 0.06 62.13 0.05 64.98

Baselines  SCIP 089 27822 085 2659 099 29827 0.12  153.69
RENS 076t 276.02f 0.85 28259 0.93F 29286t 023 11625
Undercover 1 300 099 29979 099 29836 049  262.56
Relax-Search 0.57 183.6 053 182776 049 16356 035 150.09

As shown in Table. (1}, all ML-guided MBQP primal heuristics other than the pure CL-based method
outperform the best-performing non-ML baseline. The extended methods with combined BCE and
CL losses perform best in terms of PG for all benchmarks. The best choice of the A¢ 1, hyperparameter
differs for each benchmark. In terms of PI, BCE+CL (A¢1 = 2) performs the best in three of the
four benchmarks (QMKP, CQKP, and WFLOP). Compared to the adapted pure CL approach, our
extension that combines CL and BCE significantly improves both feasibility and solution quality.

5 Conclusion

We present ML-guided primal heuristics for MBQPs based on solution prediction. We adapt existing
methods on ML-guided MILP primal heuristics to MBQPs by introducing a new neural network
architecture for feature extraction and a new data collection procedure for collecting high-quality
training data for MBQPs. Moreover, we extend existing loss functions used in CO solution prediction
and propose to combine Binary Cross-Entropy loss and Contrastive Loss. Experimental results show
that the adapted and extended ML-guided methods significantly outperform non-ML primal heuristics
in primal gap and primal integral. More importantly, our extended loss function significantly improves
the feasibility and solution quality compared to the pure Contrastive Learning method.
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A Sensitivity Analysis

We perform a sensitivity analysis of p € {0.65,0.75}, as shown in Tableand Table



Table 2: Primal Gap (PG) and Primal Integral (PI) results with p = 0.65. For CL, the number
of feasible instances (out of 100) are 2, 0, and 19 for QMKP, CQKP, and WFLOP. For RENS, the
number of feasible instances for CBQP and CQKP are 65 and 89, respectively. For all other methods
and benchmarks, the number of feasible instances are 100. We did not include the results with
Acr € {5, 7} for BCE+CL, as we observe infeasible instances with higher A\ p,.

CBQP QMKP CQKP WFLOP
Method PG PI PG PI PG PI PG PI
Adapted  WCE 0.05  67.94 0.14 8226 0.11  91.54 0.06 97.89
CL 022 96.96 0.98" 294857 1f 300f 0.77t 270211

Extended BCE+CL (\¢cz =1) 0.04 69.01 0.12 7091 0.1 86.1 0.06 94.64
BCE+CL (A\¢r, =2) 0.04 69.75 0.08  60.35 0.09 77.66 0.06 96.85

Baselines  SCIP 0.89 27822 0.85 2659 099 29827 0.12  153.69
RENS 076t 276.02f 0.85 28259 0.93F 29286t 023 11625
Undercover 1 300 099 29979 099 29836 049  262.56
Relax-Search 0.57 183.6 053 182776 049 16356 035  150.09

Table 3: Primal Gap (PG) and Primal Integral (PI) results with p = 0.75. For CL, the number of
feasible instances (out of 100) are 2, 1, and 14 for QMKP, CQKP, and WFLOP. For RENS, the number
of feasible instances for CBQP and CQKP are 65 and 89, respectively. For BCE+CL (A¢p, = 2), the
number of feasible instances in QMKP is 92. For all other methods and benchmarks, the number of
feasible instances are 100. We did not include the results with A¢y, € {5, 7} for BCE+CL, as we
observe infeasible instances for higher A¢ .

CBQP QMKP CQKP WFLOP
Method PG PI PG PI PG PI PG PI

Adapted WCE 0.03  39.86 0.16  75.17 0.09 61.78 0.06 844
CL 034 11512 098" 29477t 1f 3001 0.79t  277.54f

Extended BCE+CL (A¢r =1) 0.04 45.55 0.13  67.32 0.1 71.39 0.06 83.23
BCE+CL (A\cr, =2) 0.04 51.25 0.19t  77.577  0.06 54.39 0.07  83.73

Baselines  SCIP 0.89 27822 0.85 2659 099 29827 0.12  153.69
RENS 0.76t 276.02t 085 28259 0.937 292867 023 116.25
Undercover 1 300 099 29979 0.99 29836 049 26256
Relax-Search 0.57 183.6 0.53 18276 049 16356 035  150.09

B Neural Network Aarchitecture
List of features The full list of features for the tripartite graph is shown in Table [6]

GAT module details For the embedding layers, we use 2-layer MLPs with 64 hidden units per
layer and ReLU as the activation function to map the node and edge features (C, E,V, E’, Q) to
new embeddings (Cy, E1, Vi, B, Q1) in R? where d = 64. The GAT performs four rounds of
message passing, as shown in Fig. [T| (C). In round one, each quadratic term node in @ attends over
its neighbors in V; using H attention heads to produce updated quadratic term embeddings (2. In
round two, each variable node in V; attends over its neighbors (using a separate set of H heads) to
produce updated variable embeddings V5. In round three, each constraint node in C; attends over its
neighbors in V5 to produce updated constraint embeddings Cs. In the final round, each variable node
in V3 attends over its neighbors in C to produce the final variable embeddings V3. We use H = 8
attention heads.

C Training and Inference Setup

For each MBQP benchmark, 800 instances are used for training and 100 are used for validation. For
data collection, we set a relaxation time limit of 7,. = 1000s, a subproblem time limit of T = 1000s,
number of random seeds K = 10, candidate fixing ratio of p; = 0.9, and final fixing ratio of
P2 = 0.7.

Trainings are done on an NVIDIA A100 GPU with 40 GB of memory. For training, we use the
AdamW optimizer [21] with learning rate 10~°. We use a batch size of 16 and train for 2000 epochs.



Testing (ML inference and non-ML primal heuristics) is conducted on 2.90 GHz AMD epyc-7542
CPUs with 10 GB RAM.

D Sample Weights in Contrastive Learning

We denote the objective value of instance M given z as the solution as obj(x|M %), so that this
discussion applies to both MILP and MBQPs. For MILPs, obj(z|M") = ¢; x. For MBQPs,
obj(z|M?%) = 2THix 4 Tz

We assume minimization problems and consider two positive samples 33-1+ and aﬁr for the same
instance M", with obj(z} | M%) < obj(z? |M"). Since this is a minimization problem, the solution
quality of z is higher than 2. Let pg(M?) be the prediction from the ML model. According
to Eqn. || the value of the loss £ (6 | z, M?) should be low when the values of ! - pg(M*)
and xi - pp(M?) are high, so that the predictions become similar to the positive samples when
the training loss decreases. Moreover, the sample weight function W should be set so that
L0z}, M") > LT (6|22, M?). In other words, positive samples with higher objective values
are assigned higher weights during training. In the case when z} - pp(M") > 22 - pg(M*) > 0, it
should hold that

, 1 ' 1
1 i 2 i
2 po (M) = > % - py (M) ———— >0 ©)
" T(al M) T (x| M?)
so that the function —1—~ does not change the signs of dot product, and that the weighted dot

(z[M7)
product for x} is higher than z? .
Now we compare the effects of different choices of the W function. We consider two scenarios:
(1) minimization problems with negative objective values (i.e., obj(z} |M?) < obj(22 |M*) < 0) and
(2) minimization problems with positive objective values (i.e., 0 < obj(x|M*) < obj(x3 |M")).

Sample weights in [15]. = obj(z|M") /w with w < 0.

1
(x| M)

Scenario Sample weight Weighted dot product
obj(mﬁr\]wl) < obj(a:iMIl) <0 W > W >0 .77£r ~p9(]\r11)m > T?F -pg(]ﬂl)m >0
Ogobj(z#\ﬂfz)<0bj(x2+|1\[1) W < W <0 xi-pg(]\ll)wz;vi~p9(]\lf)m <0
Table 4: Relationship between sample weight and weighted dot product in [15]].

obj(z|M*?)
w

Proposed sample weights. W = exp( ) with w < 0.

Scenario Sample weight Weighted dot product
obj(z1 [M7) < obj(22 [M7) <0 77@3 2y > 77(1{‘ 20| 2k pg(]ﬂ’)iﬂz#lx}‘ > O ~pg(Ml)T§M,) >0
(el It (2 It 1 It 2 1
0 < obj(z} [M*) < obj(z7 |M") W>W20 x+~pg(ﬂl)m>ac+~pg(ﬂf)m20
Table 5: Relationship between sample weight and weighted dot product with proposed sample weight
function.

As shown in Table. @ Eqn. @fails to hold in scenario (2) with the function i = obj(z|M’)/w,
as the relationship between sample weights are filpped for minimization problems with positive

objective values. Our proposed 7(x|M*) function addresses this issue by converting the weights to
positive values, regardless of the signs of obj(xz|M?).
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Nodes Features Source
C avg. coefficients in the constraint 4]
min. coefficients in the constraint new
max. coefficients in the constraint new
variance of coefficients in the constraint new
# of variables in the constraint 4]
left-hand side or right-hand side [14]
constraint sense in one-hot encoding (3) (=, >, <) new
V-Cedge coefficient of variables in constraints [14]
\Y% normalized coefficient in obj (among linear terms) [114]
avg. coefficient in constraints [14]
# of times it appear in linear constraints [114]
variance of. coefficient in constraints new
max. coefficient in constraints 4]
min. coefficient in constraints 4]
binary variable indicator 4]
LP relaxation value in MILP reformulation new
# times it appears in quadratic terms new
avg. coefficient in quadratic terms that it appears in new
max. coefficient in quadratic terms that it appears in new
min. coefficient in quadratic terms that it appears in new
variance of coefficient in quadratic terms that it appears in ~ new
avg. # times its neighbors appears in quadratic terms new
max. # times its neighbors appears in quadratic terms new
min. # times its neighbors appears in quadratic terms new
variance of # times its neighbors appears in quadratic terms  new
Eigenvalue centrality in Hessian graph new
Q coefficient of quadratic term in objective function new
LP relaxation value of reformulated variable z;; = ;z; new
LP relaxation violation new
Edge centrality in Hessian graph new
V-Qedge None new

Table 6: Features of MBQP tripartite graph representation.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper introduces a ML-guided primal heuristics for MBQPs. The abstract

and

introduction (Section 1) reflects this.

Guidelines:

The answer NA means that the abstract and introduction do not include the claims
made in the paper.

The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer:
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Justification: We do not have enough space for this discussion. However, one of the
limitations is that feasibility is not guaranteed with ML-methods.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not have theoretical results in this paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details on training the ML model architecture are provided in Section [3and
Appendix [B] Details on data collection, ML model training, and inference are provided in
Section 4] and Appendix

12



Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: As for now, we cannot provide open access to the data and code before a
software disclosure request is approved. But the data and code will be publicly available
once the disclosure request is approved.

Guidelines:

The answer NA means that paper does not include experiments requiring code.
Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details on training data collection, ML model training, and inference are
provided in Section]and Appendix[C|

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We did not provide error bars, but we performed a sensitivity analysis in
Appendix [A]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on training resources are provided in Sectiond](CPUs) and Appendix

(GPUs).

14



0.

10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have reviewed and followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The experiments (Section[d) in this paper include a real-world wind farm layout
optimization problem. Methods in this work has the potential to increase the efficiency of
wind energy production. Authors are not aware of negative societal impact of this work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: As far as the authors are aware, the paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We generate the WFLOP instances based on the MBQP formulation in [17]], us-

ing wind data from the NOW-23 offshore wind dataset at selected locations in the California
offshore region [7]. We credited these sources.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:
* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve research with human subjects.[ TODO]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were only used for formmating purposes in this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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