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ABSTRACT

Recent advancements in text-attributed graphs (TAGs) have significantly improved
the quality of node features by using the textual modeling capabilities of language
models. Despite this success, utilizing text attributes to enhance the predefined
graph structure remains largely unexplored. Our extensive analysis reveals that
conventional edges on TAGs, treated as a single relation (e.g., hyperlinks) in
previous literature, actually encompass mixed semantics (e.g., "advised by" and
"participates in"). This simplification hinders the representation learning process
of Graph Neural Networks (GNNs) on downstream tasks, even when integrated
with advanced node features. In contrast, we discover that decomposing these
edges into distinct semantic relations significantly enhances the performance of
GNNs. Despite this, manually identifying and labeling of edges to corresponding
semantic relations is labor-intensive, often requiring domain expertise. To this end,
we introduce RoSE (Relation-oriented Semantic Edge-decomposition), a novel
framework that leverages the capability of Large Language Models (LLMs) to
decompose the graph structure by analyzing raw text attributes - in a fully automated
manner. RoSE operates in two stages: (1) identifying meaningful relations using
an LLM-based generator and discriminator, and (2) categorizing each edge into
corresponding relations by analyzing textual contents associated with connected
nodes via an LLM-based decomposer. Extensive experiments demonstrate that our
model-agnostic framework significantly enhances node classification performance
across various datasets, with accuracy improvements of up to 16%.

1 INTRODUCTION

Text-attributed graphs (TAGs) (Yang et al., 2021), which combine graph structures with textual
data, are frequently used in diverse real-world applications, including fact verification (Zhou et al.,
2019; Liu et al., 2019), recommendation systems (Zhu et al., 2021), and social media analysis (Li
et al., 2022). In TAGs, texts are incorporated as node descriptions such as paper abstracts in citation
networks (McCallum et al., 2000; Sen et al., 2008; Hu et al., 2020a) or web page contents in hyperlink
networks (Mernyei & Cangea, 2007; Craven et al., 1998). By leveraging the rich information present
in both the graph topology and its associated text attributes, substantial advancements have been
achieved in graph representation learning. Among them, numerous studies have been proposed to
enhance the node representation quality of TAGs by leveraging features generated from light-weighted
pre-trained language models (PLMs) (Yang et al., 2021; Chien et al., 2021; Zhao et al., 2022; Dinh
et al., 2023; Duan et al., 2023; Jin et al., 2023a; Chen et al., 2024) such as Sentence-BERT (Reimers
& Gurevych, 2019), or by refining raw texts using the general knowledge of Large Language Models
(LLMs) (He et al., 2023; Chen et al., 2024).

Despite their success, the potential of utilizing text attributes to enhance the predefined graph
structure remains largely under-explored. Existing approaches have treated the edges in TAGs as a
uniform relation, overlooking the diverse inherent semantics they convey. For instance, in the WebKB
dataset (Craven et al., 1998), nodes denote web pages with their textual content as node features
while their edges are formed by hyperlinks. Despite the presence of varying semantic meanings such
as "node A is advised by node B" or "node A participates in node C", the relationships are bundled as
a single relation type ("hyperlinks"), inadvertently entangling their semantic meanings.
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Our comprehensive analysis reveals that the downstream task performance of GNNs is hindered by
these oversimplified graph structures, even when integrating node features obtained from PLMs. On
the other hand, disentangling edges into multiple semantic types — analogous to the knowledge
graph format — yields more distinguishable representations and significantly enhances performance.
However, such conversion of conventional graphs is extremely labor-intensive, as it requires both the
identification of semantic edge types and the classification of numerous edges into their corresponding
types.

To address these challenges, we propose RoSE (Relation-oriented Semantic Edge-decomposition),
a novel framework that utilizes LLMs to decompose predefined edges into semantic relations via
textual information of nodes in a fully-automated manner. Given the graph description and textual
content, RoSE carefully identifies a concise set of meaningful relation types through the interaction
between an LLM-based generator and a discriminator. Subsequently, the LLM-based decomposer
disentangles each edge into predefined relation types by analyzing raw textual contents associated
with its connected nodes. The versatility of our proposed framework is readily extended to varying
architectures, encompassing edge-featured GNNs (Hu et al., 2020c; Shi et al., 2020; Rampášek et al.,
2022) and multi-relational GNNs (Schlichtkrull et al., 2018; Wang et al., 2019; Yang et al., 2023).
In essence, RoSE is a data enhancement method tailored for real-world TAGs that frequently lack
edge-wise information, in alignment with prior works that leverage the textual reasoning capabilities
of LLMs for data augmentation in other domains (Yang et al., 2024; Chen et al., 2023; Dixit et al.,
2022; Korenčić et al., 2022).

Our contributions are summarized as follows:

• We reveal that the oversimplified graph structure in TAGs hinders the performance of GNNs on
downstream tasks despite the integration of informative node features. On the other hand, mitiga-
tion through decomposing graph edges lead to significant enhancements in GNN performance.

• We present RoSE, a novel edge decomposition framework that utilizes the general reasoning
capability of LLMs. RoSE identifies semantic relations through the interaction between an
LLM-based generator and discriminator, and categorizes each edge into these relation types by
analyzing node textual contents via LLM-based decomposer. All these processes are automated,
eliminating the need for extensive human analysis and annotation.

• Extensive evaluations on diverse TAGs and GNN architectures demonstrate the effectiveness of
RoSE in improving node classification performance. Notably, our framework achieves improve-
ments of up to 16% on the Wisconsin dataset.

2 PRELIMINARIES

Node classification with graph neural networks. We study a TAG G = (V, E , T ), comprising
N nodes in V along with a node-wise text attribute T = {ti|i ∈ V} and M = |E| undirected edges
connecting nodes. Nodes are characterized by a feature matrix X = [x1,x2, ...,xN ]T = gϕ(T ) ∈
RN×F , where their text attributes are encoded using a PLM gϕ which is typically frozen. Edges
are described by a binary adjacency matrix A ∈ RN×N , with A[i, j] = 1 if an edge (i, j) ∈ E , and
A[i, j] = 0 otherwise.

Our focus lies on a node classification task using a GNN fθ . The GNN learns representation of each
node i by iteratively aggregating representations of its neighbors in the neighborhood set Ni in the
previous layer, formulated as:

h
(l+1)
i = ψ

(
h
(l)
i , AGG({h(l)

j ,∀j ∈ Ni})
)
. (1)

Here, AGG denotes an aggregation function and ψ combines the node’s prior representation with that
of its aggregated neighbors. The initial representation is h

(0)
i = xi for notational simplicity and

the overall multi-layered process can be expressed as fθ(X,A). The objective function L used
for training the GNN is defined as the cross-entropy loss between the predicted class probabilities
P = Softmax(Z) = Softmax

(
fθ(X,A)

)
∈ RN×K and the ground-truth labels Y ∈ RN×K :

Lθ = − 1

N

N∑
i∈V

K∑
k=1

Yik logPik, (2)

where Z represents the logit produced by the GNN and K represents the total number of classes.
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Table 1: Node classification accuracy (%) on WebKB and IMDB datasets, trained with single and
multi-type relations, averaged over 10 runs (± SEM). The best performances are represented by bold.

Datasets Cornell Texas Wisconsin IMDB

RGCN Single Type 57.60 ± 1.78 65.88 ± 1.86 59.22 ± 1.70 62.96 ± 0.44
Multi Type 68.80 ± 1.88 76.47 ± 1.82 83.28 ± 1.64 68.66 ± 0.57

HAN Single Type 56.00 ± 1.67 68.82 ± 2.12 58.28 ± 1.99 63.24 ± 0.54
Multi Type 60.40 ± 1.91 71.37 ± 2.24 76.09 ± 1.88 68.39 ± 0.62

Prompting large language models. LLMs pre-trained on a vast amount of text corpora have demon-
strated remarkable general reasoning capabilities proportional to their number of parameters (Brown
et al., 2020; Ouyang et al., 2022; Touvron et al., 2023; Chowdhery et al., 2023). This advancement
has led to a new approach to task alignment, allowing for the direct output obtainment from natural
language prompts without the need for additional fine-tuning (Kojima et al., 2022; Wei et al., 2022;
Liu et al., 2023b). In practice, a natural language text prompt s is concatenated with a given input
sequence q = {qi}ni=1 to form a new sequence q̃ = {s} ∪ q. Subsequently, an LLMM receives q̃
as its input and generates an output comprising a sequence of tokens a = {ai}mi=1 =M(q̃).

3 ANALYSIS: UNCOVERING THE IMPORTANCE OF SEMANTIC EDGE
DECOMPOSITION

In this section, we analyze the potential performance improvements of GNNs when applied to TAGs
with available semantic edge types. Toward this, we choose three TAG datasets of a small size
enough to manually classify the semantic types of edges. First, we perform our analysis on WebKB
hyperlink graphs (Cornell, Texas, Wisconsin) (Craven et al., 1998), where nodes represent web pages
and edges indicate hyperlinks between nodes. Despite traditionally being treated as single relation
graphs, their edges can be mainly categorized into multiple semantic types, such as "participates
in", "advises/advised by", "being part of", and "supervised by". To the best of our knowledge,
this is the first analysis to broadly create and label relation types in such graphs to verify GNNs’
performance in a multi-relational scenario. Additionally, we include the IMDB graph (Fu et al.,
2020), which consists of movie nodes with edges reflecting overlaps between movie professionals.
In contrast to the WebKB graphs, the edges in the IMDB graph have been consistently regarded
as multi-relations (Wang et al., 2019; Yun et al., 2019), differentiated into "actor/actress overlap"
and "director overlap". By incorporating this dataset into our analysis, we demonstrate the potential
performance degradation when inherent relations are simplified as a single relation.

We evaluate the efficacy of relation labeling under the node classification task, with two multi-
relational GNN architectures; namely RGCN (Schlichtkrull et al., 2018) and HAN1 (Wang et al.,
2019). Each is an extension of GCN (Kipf & Welling, 2016) and GAT (Veličković et al., 2017) to
multi-relational scenarios, equipped with an edge type-specific neighborhood aggregation scheme
(detailed formulation is outlined in Section 4.3). Note that in the case of training with a single relation,
RGCN and HAN function similarly to asymmetric GCN and GAT, correspondingly. We train these
GNNs in two different approaches: processing edges as a single and multiple types of relation.

As demonstrated in Table 1, decomposing edges into multiple semantic relations leads to significant
performance improvements across all datasets and GNN architectures. This enhancement is particu-
larly pronounced in the Wisconsin dataset, where accuracy improvements of 26.56% and 19.37% are
achieved for RGCN and HAN, respectively. Furthermore, our analysis reveals that neglecting the
entangled semantics in multi-relational benchmark results in suboptimal performance. The benefits
of decomposition are also evident at the representation level, showing more distinguishable and
clustered node representations, as illustrated in Figure 3 and Figure 4 in Appendix B. Hence, our
observation highlights the suboptimality present within the graph structure due to its oversimplifica-
tion of edges, which can be adequately addressed through the decomposition of edges into distinct
semantic relations.

1Due to the scope of our research on semantic edge decomposition, we do not consider node type-wise
aggregation in HAN.
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Figure 1: Overall framework of our RoSE. RoSE automaticaly decomposes graph edges into multiple
semantic relations using a two-stage process: (1) identifying candidate relation types via relation
generator-discriminator interaction and (2) assigning each edge to its appropriate relation type based
on its associated nodes’ textual attributes analyzed by relation-decomposer.

4 ROSE: RELATION-ORIENTED SEMANTIC EDGE-DECOMPOSITION

Despite the efficacy of semantic edge decomposition introduced in Section 3, the practical imple-
mentation of semantic edge decomposition presents several challenges. To begin with, defining the
appropriate semantic relation type is a non-trivial task that often requires domain expertise. Addi-
tionally, creating annotations for the numerous edge types is extremely labor-intensive. In turn, this
limits the application of fine-tuned PLMs for edge decomposition, as they necessitate the identified
list of edge types and the ground-truth edge labels for fine-tuning.

To address this, we present RoSE, an innovative framework that leverages the advanced textual
reasoning capabilities of LLMs to automate the decomposition of edges into their inherent semantic
relations based on their corresponding text attributes. RoSE is structured into two main phases: (1)
Relation Type Identification (Section 4.1), and (2) Semantic Edge Decomposition (Section 4.2). The
edges decomposed by RoSE can be seamlessly integrated with conventional GNN architectures in
a plug-and-play manner (Section 4.3). This is facilitated either through direct edge type-specific
neighborhood aggregation in multi-relational GNNs or by assigning relation types as edge features
in edge-featured GNNs. In addition, to enhance efficiency, we introduce an edge sampling strategy
that reduces the number of queries required for LLM-based edge type annotation (Section 4.4). It
is worth noting that our edge decomposition is accomplished within single-round LLM queries,
eliminating the necessity for re-computation or further fine-tuning required by previous LLM-based
feature enhancement methods (He et al., 2023; Duan et al., 2023; Chien et al., 2021). The overall
framework of RoSE is illustrated in Figure 1.

4.1 RELATION TYPE IDENTIFICATION

To decompose each edge into underlying semantic relations, it is essential to identify relation types
that are: (1) meaningful, capturing the inherent context of predefined edges; (2) feasible, determinable
based solely on textual attributes; and (3) distinct, ensuring clarity and avoiding redundancy within
the graph.

We use a combination of an LLM-based relation generator and relation discriminator for this task.
The relation generator addresses the requirement for meaningfulness by generating a set of plausible
candidate relations based on the graph composition. The relation discriminator ensures feasibility and
distinctiveness by filtering out candidate relation types that exceed the analytical capability of LLMs
or exhibit excessive redundancy. The effectiveness of this generator - discriminator framework is
outlined in Section 5. We provide detailed information of each component in the following paragraphs.
All prompt templates fixed throughout our experiments is specified in Appendix A.

4
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Relation generator. To obtain a set of edge types relevant to the given graph, we provide the
relation generatorMg with detailed information about the graph in the input prompt sg, which is
mathematically formulated asMg(sg). This information includes specifying node’s textual attributes
along with a corresponding sample (e.g., paper abstracts), predefined rules for node connectivity (e.g.,
co-citation), and category names (e.g., rule learning). Subsequently, we outline the role ofMg and
specifies the preliminary requirements for identifying meaningful relations within the graph. Based
on the provided graph composition and task description, the relation generator generates a list of
candidate relation types in a zero-shot manner, without any additional fine-tuning.

Relation discriminator. To ensure the feasibility and distinctiveness of the generated relation types,
we employ a relation discriminatorMd. The discriminatorMd takes the relation types generated by
Mg as input and filters out those that are irrelevant or infeasible to infer given the textual attributes
and the analytical capabilities of LLMs. Given the set of candidate relation types outputMg(sg) by
prompting relation generator, we concatenateMg(sg) with the task description prompt sd and pass
the combined prompt to the relation discriminator.

The overall process can be formulated as obtaining a relation set R = {R1,R2, ...,RR} from the
two-stage LLM outputs, represented as Md

(
{sd} ∪ Mg(sg)

)
, where Rr represents the textual

description of r-th semantic relation.

4.2 SEMANTIC EDGE DECOMPOSITION

Given the set of semantic relation types R identified in Section 4.1, we deploy an LLM-based relation
decomposer Mc tasked with assigning relevant relations to each edge (i, j). A major advantage
of utilizing LLMs in this context is their capability to perform multi-label classification, useful in
realistic scenarios where a single edge often convey multiple semantic meanings. For instance, in an
IMDB graph, two connected movie nodes might share both a common director and actor. Reflecting
such real-world complexities, we instructMc to determine all possible relations that the given edge
can be categorized under. Equipped with raw texts ti and tj associated with nodes vi and vj , the
decomposition process is expressed asMc

(
{sc}∪{ti, tj}

)
with sc indicating the instruction prompt

forMc.

4.3 INTEGRATION WITH CONVENTIONAL GNNS

The edges disentangled by the relation decomposer can be flexibly integrated into either multi-
relational GNNs (Schlichtkrull et al., 2018; Wang et al., 2019; Yang et al., 2023) or edge-featured
GNNs (Hu et al., 2020c; Shi et al., 2020; Rampášek et al., 2022), highlighting its versatility.

Multi-relational GNNs. When paired with multi-relational GNNs, the decomposed edges catego-
rized into R types of relations are treated as R distinct sub-structures {E1, E2, ..., ER}. When a single
edge is assigned with multiple relation types, it is included in several corresponding Er. Each set Er
is utilized to perform type-specific neighborhood aggregation. For a given node i at the l-th layer,
these multi-relational GNNs are mathematically formulated as follows:

h
(l+1)
i = ψrel

(
h
(l)
i ,

{
AGG({h(l)

j ,∀j ∈ N (r)
i })

}R

r=1

)
, (3)

where N (r)
i denotes the set of neighbors of i connected via type-r relation. Here, ψrel represents the

update function that combines outputs from edge type-wise aggregation (and optionally, the hidden
representation of itself (Schlichtkrull et al., 2018)). In general, ψrel is implemented using mean,
(weighted) sum, or attention operators.

Edge-featured GNNs. In addition, the decomposed edges facilitated by RoSE can be incor-
porated as edge features for edge-featured GNNs. Specifically, given relation type descriptions
R = {R1,R2, ...,RR} curated from relation generator and discriminator, we utilize the same
PLM gϕ employed for encoding node features to embed each type description Rr, yielding a set
of relational features. Subsequently, for each edge (i, j), the edge feature eij is assigned as the
relational feature corresponding to the specific relation type associated with that edge, as determined
by the relation decomposer. In cases where multiple edge types are applicable to a single edge, we

5
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incorporate all relevant edge features by duplicating the edge with each corresponding type. The
operations for an individual node i at the l-th layer in edge-featured GNNs are formulated as follows:

h
(l+1)
i = ψ

(
h
(l)
i , AGG

(
{h(l)

j , ξ(l+1)(eij)|∀j ∈ Ni}
))
, (4)

where ξ(l+1) denotes a function that linearly maps euv to the same representational space as h(l)
u .

4.4 EFFICIENT RELATION TYPE ANNOTATION

Algorithm 1 Efficient Relation Type Annotation

1: Input: Node i, Neighborhood Ni

2: Output: List of relationship labels L
3:
4: Sng ← [] # List of encountered neighbors
5: Slb ← [] # Labels of encountered edges
6: c← 0 # Initialize patience
7: for j in Ni do
8: if (|Set(Slb)| ≥ R) or (c ≥ γ) then
9: # Upon satisfying (i) or (ii), escape

10: break
11: else
12: Add j to Sng

13: AddMc ({sc} ∪ {ti, tj}) to Slb

14: c← c+ 1
15: end if
16: end for
17:
18: # Initialize with labels of encountered edges
19: L← Slb

20: for u in Ni \ Set(Sng) do
21: l← argminv∈{0,1,...,|Sn|} (dist(Sng[v], u))

22: Add Slb[l] to L
23: end for

When dealing with graphs with dense edges, the
number of edges to be annotated significantly in-
creases, which may incur expensive costs when
using non-free LLMs as the backbone. To this
end, we introduce an efficient node-wise query
edge sampling strategy that reduces the num-
ber of queries required for LLM-based relation
type classification. We assume that neighboring
nodes j1 and j2 of a node i, which are close in
the feature space, are likely to have similar se-
mantic relationships with i. Building upon this
intuition, for each node i, we randomly traverse
its neighbors and query their relationships until
either (i) all kinds of edge types are discovered
or (ii) a predefined patience threshold γ for per-
node LLM queries is reached. For the remaining
unqueried neighbors, we find their closest an-
notated neighbor and assign the same relation
types as the corresponding annotation, akin to
a pseudo-labeling approach. This approach can
greatly reduce the number of queries associated
with LLM-based edge classification, particularly
on graphs with dense edges. The overall proce-
dures is detailed in Algorithm 1. We illustrate
the performance and efficiency of this approach
in large-scale experiments and Appendix B.

5 EXPERIMENTS

In our experiments, we evaluate our proposed framework on the node classification task using
seven well-established benchmarks: Cora (McCallum et al., 2000), Pubmed (Sen et al., 2008), Wi-
kiCS (Mernyei & Cangea, 2007), IMDB (Fu et al., 2020), Cornell, Texas, and Wisconsin (Craven
et al., 1998). To assess the effectiveness of our approach, we compare RoSE with a wide range of
existing GNN architectures, including both traditional and popular GNNs (Kipf & Welling, 2016;
Veličković et al., 2017; Xu et al., 2018; Schlichtkrull et al., 2018; Wang et al., 2019; Hu et al., 2020c),
as well as transformer-based GNNs (Shi et al., 2020; Rampášek et al., 2022; Yang et al., 2023).
The GNNs considered in our experiments can be broadly categorized as (1) Multi-relational GNNs,
such as RGCN (Schlichtkrull et al., 2018), HAN (Wang et al., 2019), and SeHGNN (Yang et al.,
2023); (2) Edge-featured GNNs, including GIN (Hu et al., 2020c), UniMP (Shi et al., 2020), and
GraphGPS (Rampášek et al., 2022); and (3) Single-type edge processing GNNs, such as GCN (Kipf
& Welling, 2016), GAT (Veličković et al., 2017), and JKNet (Xu et al., 2018). For the edge decompo-
sition in our framework, we adopted LLaMA3-8b and 70b (Touvron et al., 2023) as foundational
LLMs. Detailed dataset descriptions and experimental configurations are specified in Appendix C.

5.1 MAIN RESULTS

Table 2 presents the node classification accuracy results of integrating various GNN architectures with
our proposed RoSE, across various datasets. The experiments demonstrate that our method achieves

6
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Table 2: Node classification accuracy (%) on various datasets and GNN architectures, averaged over
10 runs (± SEM). The best and second best performances are represented by bold and underline.

Type Model Pubmed IMDB Cornell Texas Wisconsin Cora WikiCS Avg Gain

Single-type
GCN 89.32 ± 0.11 64.04 ± 0.43 48.20 ± 2.18 62.94 ± 2.49 51.56 ± 1.79 88.05 ± 0.40 82.58 ± 0.27 -

GAT 88.64 ± 0.11 64.39 ± 0.44 57.00 ± 1.56 66.86 ± 1.48 56.25 ± 2.29 87.74 ± 0.38 82.79 ± 0.16 -

JKNet 89.68 ± 0.14 63.00 ± 0.54 56.00 ± 1.52 61.57 ± 2.92 57.50 ± 1.19 87.16 ± 0.41 82.94 ± 0.28 -

Multi-relational

RGCN 87.98 ± 0.14 62.96 ± 0.44 57.60 ± 1.78 65.88 ± 1.86 59.22 ± 1.70 88.01 ± 0.47 82.02 ± 0.23 -

+ RoSE (8b) 90.23 ± 0.10 67.77 ± 0.60 61.40 ± 2.06 71.96 ± 1.82 70.78 ± 1.45 90.28 ± 0.45 86.81 ± 0.16 + 5.08

+ RoSE (70b) 89.68 ± 0.14 71.57 ± 0.42 63.80 ± 1.86 73.53 ± 1.42 75.31 ± 1.48 91.77 ± 0.38 88.52 ± 0.19 + 7.22
HAN 88.68 ± 0.15 63.24 ± 0.54 56.00 ± 1.67 68.82 ± 2.12 58.28 ± 1.99 87.55 ± 0.37 83.32 ± 0.26 -

+ RoSE (8b) 90.09 ± 0.15 66.83 ± 0.48 60.00 ± 1.47 72.94 ± 1.64 72.50 ± 1.78 89.23 ± 0.28 86.12 ± 0.15 + 4.55

+ RoSE (70b) 89.77 ± 0.12 69.55 ± 0.43 62.80 ± 1.86 72.94 ± 1.58 74.38 ± 1.49 90.31 ± 0.38 87.49 ± 0.15 + 5.91

SeHGNN 87.97 ± 0.19 62.72 ± 0.52 60.00 ± 1.30 71.37 ± 1.28 65.31 ± 1.95 86.58 ± 0.39 82.53 ± 0.19 -

+ RoSE (8b) 89.93 ± 0.18 68.27 ± 0.51 62.00 ± 1.41 73.33 ± 1.86 77.34 ± 1.04 89.53 ± 0.32 86.94 ± 0.18 + 4.41

+ RoSE (70b) 89.50 ± 0.23 70.99 ± 0.44 64.60 ± 2.12 77.45 ± 1.15 76.09 ± 1.31 91.38 ± 0.50 87.96 ± 0.20 + 5.93

Edge-featured

UniMP 89.92 ± 0.16 69.98 ± 0.58 63.40 ± 1.79 71.18 ± 2.00 78.44 ± 1.50 87.20 ± 0.59 84.29 ± 0.23 -

+ RoSE (8b) 90.21 ± 0.12 69.55 ± 0.62 67.80 ± 2.13 76.08 ± 1.79 80.94 ± 1.12 89.17 ± 0.54 86.33 ± 0.21 + 2.24

+ RoSE (70b) 90.37 ± 0.18 70.41 ± 0.64 67.80 ± 1.78 76.47 ± 1.73 79.84 ± 1.54 89.52 ± 0.41 87.69 ± 0.18 + 2.52

GIN 89.77 ± 0.15 67.59 ± 0.41 64.60 ± 2.08 68.63 ± 1.73 73.28 ± 2.06 87.05 ± 0.36 83.03 ± 0.21 -

+ RoSE (8b) 89.68 ± 0.15 68.27 ± 0.69 68.20 ± 1.48 74.51 ± 2.13 79.22 ± 1.19 88.55 ± 0.30 83.32 ± 0.29 + 2.54

+ RoSE (70b) 89.55 ± 0.15 69.12 ± 0.68 66.20 ± 1.18 72.75 ± 1.45 77.03 ± 2.05 88.93 ± 0.32 84.84 ± 0.17 + 2.07

GraphGPS OOM 66.85 ± 0.48 60.80 ± 1.73 70.20 ± 1.84 74.53 ± 0.77 85.14 ± 0.45 83.05 ± 0.26 -

+ RoSE (8b) OOM 67.69 ± 0.56 66.60 ± 1.88 73.14 ± 2.13 76.56 ± 1.90 87.53 ± 0.30 83.48 ± 0.23 + 2.41

+ RoSE (70b) OOM 68.48 ± 0.54 64.00 ± 1.60 72.75 ± 2.24 77.34 ± 1.49 88.10 ± 0.45 85.24 ± 0.17 + 2.56

marked improvements in accuracy across multi-relational GNN architectures. Notably, lightweight
architectures such as RGCN and HAN, when integrated with RoSE, achieve performance comparable
to complex transformer-based architectures like UniMP and GraphGPS. For instance, on the WikiCS
dataset, RGCN with RoSE surpasses the vanilla UniMP architecture, setting a new state-of-the-art
performance. Edge-featured architectures also exhibit significant improvements, with gains of up to
6% on Texas and Wisconsin datasets with GIN.

It is worth emphasizing that the integration of RoSE consistently enhances performance in 40 out of
41 settings, regardless of the original accuracy. Particularly impressive improvements are observed on
datasets such as IMDB, Cornell, Texas, and Wisconsin, where GNNs have typically struggled. These
results underscore the versatility of RoSE in improving node classification performance, irrespective
of the original dataset composition. Furthermore, the scalability of RoSE with larger language
models (e.g., RoSE 70b) is evident, further boosting performance in most scenarios, highlighting the
effectiveness of leveraging advanced reasoning capabilities within the proposed pipeline.

Table 3: Semantic relation types generated from the relation generator and filtered from the relation
discriminator. Short description of each relation is highlighted in bold and underline.

Semantic Relations of Cora Dataset
Retained Relations Filtered Relations

• Methodology Similarity: Link papers that utilize similar methodological
approaches, algorithms, or architectures to tackle their research objectives.
This groups papers based on their technical commonalities.

• Contrasting Approaches: Connect papers that explore divergent or con-
trasting approaches to a similar problem. This could surface insightful
comparisons and foster a more holistic understanding of the problem space.

• Theoretical Foundation: Link papers that build upon the same funda-
mental theories, principles or mathematical formulations. This traces the
theoretical lineage and underpinnings across papers.

• Sequential Refinement: Connect papers where one incrementally im-
proves or optimizes the techniques proposed by the other. This captures the
evolutionary trajectory of methods within a research area.

• Shared Application Domain: Associate papers that apply their techniques
to the same application domain or real-world problem, such as image
classification, natural language processing, robotics, etc. This highlights
practical use-case similarities.

• Problem Similarity: Connect papers that address similar research prob-
lems or questions, even if they use different approaches. This captures
papers that are thematically related.

• Performance Benchmark: Associate papers that utilize the same bench-
mark dataset, evaluation metric, or performance comparison framework.
This allows for standardized comparisons across models.

• Shared Challenges: Group papers that grapple with similar challenges,
limitations or open problems yet to be fully addressed. This synthesizes
common hurdles faced by different techniques.

• Conceptual Parallels: Link papers that draw conceptual parallels, analo-
gies or inspiration from techniques in other domains and adapt them to the
problem at hand. This captures cross-pollination of ideas.

• Complementary Insights: Connect papers that offer complementary in-
sights, where the findings of one augment the understanding or interpreta-
tion of the results in another. This provides a more comprehensive picture.

5.2 ADDITIONAL EXPERIMENTS
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Table 5: Node classification accuracy (%) and computation time analysis on large-scale datasets,
averaged over 10 runs (± SEM). The best and second best performances are represented by bold and
underline. The computation time was measured using NVIDIA GeForce RTX 3090 GPU/Intel(R)
Xeon(R) Gold 5215 CPU @2.50GHz and LLaMA3 8b Instruct with 8-bit quantization.

Type Model Amazon-History OGBN-Products OGBN-Arxiv Avg Gain

Multi-relational

RGCN 81.27 ± 0.13 69.34 ± 0.09 68.31 ± 0.03 -
+ RoSE-efficient (8b) 84.87 ± 0.09 74.25 ± 0.19 73.35 ± 0.05 + 4.52
+ RoSE-original (8b) 85.06 ± 0.11 75.26 ± 0.17 73.82 ± 0.05 + 5.07
HAN 81.78 ± 0.12 69.29 ± 0.11 68.82 ± 0.06 -
+ RoSE-efficient (8b) 84.98 ± 0.12 73.26 ± 0.32 73.78 ± 0.05 + 4.04
+ RoSE-original (8b) 85.00 ± 0.10 74.02 ± 0.22 73.80 ± 0.06 + 4.31
SeHGNN 81.89 ± 0.11 66.59 ± 0.08 68.90 ± 0.06 -
+ RoSE-efficient (8b) 85.38 ± 0.10 72.04 ± 0.20 73.41 ± 0.06 + 4.48
+ RoSE-original (8b) 85.49 ± 0.13 73.00 ± 0.11 74.03 ± 0.04 + 5.05

Edge-featured

UniMP 80.32 ± 0.11 68.87 ± 0.10 OOM -
+ RoSE-efficient (8b) 83.78 ± 0.42 72.84 ± 0.15 OOM + 3.72
+ RoSE-original (8b) 84.19 ± 0.10 73.59 ± 0.20 OOM + 4.30
GIN 81.54 ± 0.14 63.09 ± 0.07 64.95 ± 0.09 -
+ RoSE-efficient (8b) 82.90 ± 0.14 71.98 ± 0.25 70.89 ± 0.08 + 5.40
+ RoSE-original (8b) 83.67 ± 0.09 72.21 ± 0.12 73.20 ± 0.06 + 6.50
GraphGPS OOM OOM OOM -
+ RoSE-efficient (8b) OOM OOM OOM -
+ RoSE-original (8b) OOM OOM OOM -

#(Queries) RoSE-original (8b) 358,574 74,420 1,166,243 -
RoSE-efficient (8b) 58,545 (16.3%) 24,024 (32.2%) 480,014 (41.1%) + 29.87

Duration (min.) RoSE-original (8b) 199.12 43.04 686.73 -
RoSE-efficient (8b) 32.71 (16.4%) 13.49 (31.3%) 277.16 (40.4%) + 29.37

Table 4: Step-wise evaluation on Texas and Cora in
comparison without relation discriminator, averaged
over 10 runs (± SEM). The best and second-best per-
formances are represented by bold and underline.

LLaMA3 8b LLaMA3 70b
GNNs Texas Cora Texas Cora Avg Gain

RGCN
w/oMd 70.00 ± 2.27 87.66 ± 0.42 73.14 ± 1.39 87.94 ± 0.42

RoSE 71.96 ± 1.82 90.28 ± 0.45 73.53 ± 1.42 91.77 ± 0.38 + 2.20

HAN
w/oMd 71.37 ± 1.47 86.23 ± 0.31 71.57 ± 1.69 86.52 ± 0.40

RoSE 72.94 ± 1.64 89.23 ± 0.28 72.94 ± 1.58 90.31 ± 0.38 + 2.43

SeHGNN
w/oMd 72.54 ± 1.49 86.15 ± 0.47 74.51 ± 1.92 86.98 ± 0.38

RoSE 73.33 ± 1.86 89.53 ± 0.32 77.06 ± 0.68 91.38 ± 0.50 + 2.78

UniMP
w/oMd 73.92 ± 2.59 87.55 ± 0.49 75.10 ± 1.67 87.40 ± 0.50

RoSE 76.08 ± 1.79 89.17 ± 0.54 76.47 ± 1.73 89.52 ± 0.41 + 1.82

GIN
w/oMd 70.59 ± 2.20 86.85 ± 0.41 69.61 ± 1.58 86.52 ± 0.41

RoSE 74.51 ± 2.13 88.55 ± 0.30 72.75 ± 1.45 88.93 ± 0.32 + 2.79

GraphGPS
w/oMd 73.33 ± 1.65 85.76 ± 0.19 70.39 ± 2.90 86.72 ± 0.50

RoSE 73.14 ± 2.13 87.53 ± 0.30 72.75 ± 2.24 88.10 ± 0.45 + 1.33

Effect of relation discriminator. In this
experiment, we analyze the necessity and
effectiveness of relation discriminator. We
begin with a case study on the Cora dataset
to demonstrate its necessity. Then, we
perform an ablation study on node clas-
sification performance on Cora and Texas
datasets with and without relation discrim-
inator to exhibit its effectiveness.

Table 3 presents the set of retained and
excluded relation types from the Cora co-
citation dataset, where nodes represent sci-
entific publications with paper abstracts as
their text attribute. The relations curated
from relation generator are generally plau-
sible; however, some generated types are
either difficult to determine through textual
analysis of node attributes or exhibit significant overlap with each other. For instance, the rela-
tion type Performance Benchmark (second relation in the rightmost column) is not easily identified
based on paper abstracts, as these abstracts often do not enumerate each benchmark used within
the paper. Thus, determining such relations exceeds the capability of language models. Addi-
tionally, Complementary Insights (last element of the filtered relations) overlaps significantly with
Contrasting Approaches, introducing redundancy. Consequently, such relations are filtered out by
the relation discriminator. Further case studies and of relation types and decomposed examples are
provided in Appendix B.

We also empirically validate the efficacy of this filtration on the Texas and Cora datasets by evaluating
the node classification performance with and without the relation discriminator, as shown in Table 4.
Consistent improvements are observed with relation discriminator across 23 out of 24 settings,
showing an average 2.23% increase in accuracy.

Effect of relation decomposer. Table 6 compares the performance of RoSE with rule-based
decomposition methods on the IMDB, Texas, and Cora datasets. The baselines are formulated as
follows: (1) Random, which randomly decomposes edges into different relations; (2) Distance,
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Table 6: Node classification accuracy (%) on IMDB, Texas, and Cora with multi-relational and
edge-featured GNNs, averaged over 10 runs (± SEM). The best and second best performances for
each architecture are represented by bold and underline.

Multi-relational GNNs IMDB Texas Cora

RGCN

Random 62.90 ± 0.50 66.47 ± 1.67 87.00 ± 0.29

Distance 66.99 ± 0.48 66.67 ± 2.15 88.03 ± 0.46

RoSE (8b) 67.77 ± 0.60 71.96 ± 1.82 90.28 ± 0.45

RoSE (70b) 71.57 ± 0.42 73.53 ± 1.42 91.77 ± 0.38

G.T. 68.66 ± 0.57 76.47 ± 1.82 -

HAN

Random 62.76 ± 0.59 67.65 ± 1.85 86.19 ± 0.42

Distance 66.66 ± 0.50 68.63 ± 2.09 87.13 ± 0.49

RoSE (8b) 66.83 ± 0.48 72.94 ± 1.64 89.23 ± 0.28

RoSE (70b) 69.55 ± 0.43 72.94 ± 1.58 90.31 ± 0.38

G.T. 68.39 ± 0.62 71.37 ± 2.24 -

SeHGNN

Random 62.46 ± 0.56 70.98 ± 2.09 86.00 ± 0.36

Distance 67.97 ± 0.43 71.57 ± 1.15 87.07 ± 0.32

RoSE (8b) 68.27 ± 0.51 73.33 ± 1.86 89.53 ± 0.32

RoSE (70b) 70.99 ± 0.44 77.45 ± 1.15 91.38 ± 0.50

G.T. 69.00 ± 0.48 78.04 ± 1.07 -

Edge-featured GNNs IMDB Texas Cora

UniMP

Random 68.65 ± 0.40 71.18 ± 1.90 87.02 ± 0.30

Distance 69.12 ± 0.68 72.94 ± 1.88 87.94 ± 0.41

RoSE (8b) 69.55 ± 0.62 76.08 ± 1.79 89.17 ± 0.54

RoSE (70b) 70.41 ± 0.64 76.47 ± 1.73 89.52 ± 0.41

G.T. 69.87 ± 0.57 77.84 ± 1.94 -

GIN

Random 67.23 ± 0.42 69.22 ± 1.90 79.96 ± 0.93

Distance 68.27 ± 0.37 70.59 ± 1.96 86.92 ± 0.50

RoSE (8b) 68.27 ± 0.69 74.51 ± 2.13 88.55 ± 0.30

RoSE (70b) 69.12 ± 0.68 72.75 ± 1.45 88.93 ± 0.32

G.T. 68.54 ± 0.43 74.12 ± 1.59 -

GraphGPS

Random 67.23 ± 0.44 69.41 ± 2.15 85.80 ± 0.25

Distance 66.98 ± 0.75 69.22 ± 1.76 86.46 ± 0.44

RoSE (8b) 67.69 ± 0.56 73.14 ± 2.13 87.53 ± 0.30

RoSE (70b) 68.48 ± 0.54 72.75 ± 2.24 88.10 ± 0.45

G.T. 67.07 ± 0.78 72.75 ± 1.70 -

which decomposes edges into two relations based on the cosine distance between the associated
node features obtained from pre-trained language models (PLMs), categorizing them as semantically
similar or different edges. The ground-truth decomposition (GT) obtained through manual annotation
is also presented for comparison. It is important to note that the ground-truth decomposition consists
of mutually exclusive relations, and for the Cora dataset, ground truth information is not available.

The results demonstrate the superior performance of RoSE compared to basic rule-based methods,
highlighting the necessity of leveraging LLMs for intricate semantic decomposition. Moreover,
RoSE achieves the best or second-best performance on all ablative datasets, even when compared
to the ground truth decomposition. This underscores the effectiveness of our relation decomposer
component, which identifies all relations that accurately describe a given edge, thereby providing a
richer source of information for GNN architectures to exploit.

Scalability to large-scale datasets. We extended our evaluations on large-scale datasets for RoSE
(RoSE-original) and RoSE with the efficient query technique (RoSE-efficient) in Table 5. The
benchmark datasets employed in this study include Amazon-History (Yan et al., 2023), a subset of
OGBN-Products, and OGBN-arXiv (Hu et al., 2020b). Across these datasets, both RoSE-original and
RoSE-efficient demonstrated consistent performance improvements, achieving average enhancements
of 4.48% and 5.10%, respectively.

Furthermore, we compared the total number of queries sent to the relation decomposer by RoSE-
original and RoSE-efficient. The results indicate that RoSE-efficient reduces the number of queries
by up to 41%, underscoring its efficiency while maintaining robust performance. Notably, these
improvements are realized through single-round LLM queries, thereby eliminating the need for
re-computation or additional fine-tuning required by previous LLM-based feature enhancement
methods (He et al., 2023; Duan et al., 2023; Chien et al., 2021). Consequently, the scalability of
RoSE allows practitioners to select an LLM that aligns with their computational constraints without
compromising the method’s effectiveness.

Table 7: Node classification accuracy (%) of RoSE,
TAPE, and OFA, averaged over 10 runs. The best per-
formance in each architecture is represented by bold.

Setting Methods Cora Pubmed WikiCS
w/ Deberta

node feature
TAPE 90.15 ± 0.32 89.42 ± 0.17 82.81 ± 0.24

RoSE (8b) 92.47 ± 0.50 95.59 ± 0.16 91.78 ± 0.36

w/ sparse
split

OFA 75.90 ± 1.26 75.54 ± 0.05 78.34 ± 0.35

RoSE (8b) 84.37 ± 0.90 79.05 ± 0.71 82.35 ± 0.28

Comparison with node feature enhance-
ment methods. To further validate the
effectiveness of our proposed method, we
compared RoSE against recent node fea-
ture enhancement techniques, specifically
TAPE (He et al., 2023) and OFA (Liu et al.,
2023a), utilizing RGCN as the backbone.
The experiments were conducted on the
same datasets employed by the baseline
methods, namely Cora, Pubmed, and WikiCS. Since TAPE employs a fine-tuned DeBERTa as the
feature encoder for nodes’ text attributes, we also adopted the same model to encode the original
node attributes. Additionally, we evaluate RoSE under a sparse label setting when comparing with
OFA, adhering to the experimental configuration outlined in Liu et al. (2023a).
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As presented in Table 7, our method outperforms TAPE across all datasets, achieving a maximum
improvement of 8.97% on WikiCS. Furthermore, RoSE consistently exceeds the performance of
OFA, with an average improvement of 5.33%, highlighting the robustness of our method even in
sparse label scenarios. These results demonstrate the efficacy of decomposing edges into multiple
semantic relations, outperforming methods that rely on LLM-enhanced node features. Additionally,
we provide a comparison with the graph prompting approach in Appendix B.

6 RELATED WORKS

Node feature-level enhancement. The presence of textual content in TAGs has inspired researchers
to explore beyond traditional feature encoding methods such as bag-of-words (Harris, 1954) and
skip-grams Mikolov et al. (2013). Consequently, numerous studies have been proposed to gener-
ate semantically rich node features by employing relatively smaller pretrained language models
(PLMs) (Yang et al., 2021; Chien et al., 2021; Zhao et al., 2022; Dinh et al., 2023), including
DeBERTa (He et al., 2020), Sentence-BERT (Reimers & Gurevych, 2019), E5 (Wang et al., 2022),
and OpenAI’s text-ada-embedding-002 (Neelakantan et al., 2022), alongside larger LLMs such as
GPT (Brown et al., 2020) and LLaMA (Touvron et al., 2023). These efforts can be broadly catego-
rized into three approaches: (1) Cascading structure receives initial node features from the output
embeddings of PLMs and LLMs, followed by the deployment of GNNs to obtain final representations.
This independent framework has been widely adopted across various studies in TAG literature (Zhou
et al., 2019; Zhu et al., 2021; Li et al., 2021; Hu et al., 2020d; Liu et al., 2019; Chien et al., 2021;
Duan et al., 2023; Liu et al., 2024). (2) Co-training structure involves the joint training of PLMs and
GNNs within an interactive workflow. This facilitates a dynamic and correlated workflow of semantic
information across connected nodes (Yang et al., 2021; Zhao et al., 2022; Dinh et al., 2023). (3)
Enhanced text augmentation focuses on enriching the raw textual contents with PLMs and LLMs,
such as by replacing text attributes with textual explanations generated by LLMs during its node
classification (He et al., 2023) or augmenting external knowledge within a knowledge graph (Sun
et al., 2019; Liu et al., 2020). However, these studies often overlook the diverse semantics inherent
in graph structures and characterize edges as a binary adjacency matrix of uniform relation, thus
leading to structural oversimplification. Although there exist few works aiming to enhance edge
attributes (Jin et al., 2023b;a), these works are only applicable in settings where edge-attributed texts
and ground truth relation types exist.

LLMs with graph structural information. Another line of research investigates the potential
of LLMs for addressing graph problems by injecting graph structural information into the input
prompt of LLMs. This incorporation is achieved through various methods, including describing node
adjacency in natural language (Ye et al., 2023; Guo et al., 2023; Wang et al., 2024; Fatemi et al.,
2024), utilizing syntax tree into natural language representations (Zhao et al., 2023), and leveraging
structural tokens (Tang et al., 2023). Although these approaches integrate structural data into LLMs,
they treat graph edges as binary connections, presenting a clear distinction from our work of utilizing
LLMs to automatically decompose graph structures into multiple semantic relation types.

7 CONCLUSION

Given the limitation of existing TAG literature in simplifying the entangled semantics in graph
structure, we introduced RoSE, an innovative framework that leverages the analytical capabilities of
LLMs to disentangle edges in a fully automated manner, based on the textual contents of connected
nodes. As a pioneering effort in revealing and addressing the structural oversimplification, we believe
our contributions provide valuable insights into this field. However, one limitation of our framework
is its reliance on the general knowledge of LLMs for identifying relation types, which may not fully
capture domain-specific relationships when applied to graphs from highly specialized domains that
are not well-represented in the LLMs’ training data. As future work, we plan to explore techniques
such as retrieval-augmented generation (RAG) to effectively incorporate domain knowledge.
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SUPPLEMENTARY MATERIALS

A DETAILED PROMPT TEMPLATES

In this section, we provide the fixed prompt templates used in our experiments for the relation generator,
discriminator, and decomposer.

To decompose edges into various relation types, we first identify candidate semantic relation types in the given
graph using a relation generator and a relation discriminator. To begin with, the relation generator produces a
set of plausible candidate relations based on the following prompt components: (1) Description of what each
node and edge represents, (2) A sample text attribute for a node, (3) Predefined categories of nodes, (4) Initial
guidelines for generating relations. The prompt template for the generator used in the Cora dataset is as follows:

# Graph Composition Description
You are tasked with analyzing a graph consisting of nodes representing papers and edges representing
co-citation.
The predefined categories of nodes are: [Rule Learning, Neural Networks, Case Based, Genetic
Algorithms, Theory, Reinforcement Learning, Probabilistic Methods].
Each paper node contains paper abstract as a text attribute. An example text attribute is:

Stochastic pro-positionalization of non-determinate background knowledge. : It is a well-known fact
that (...)

# Task Description
Your objective is to design a set of unique semantic edge types that capture meaningful relationships
between the nodes based on their text attributes.
Focus on revealing semantic connections that captures unique patterns between specific nodes. These
edge types should be inferred from the textual content.

Create edge types as many as you feel are absolutely necessary to decompose, while maintaining a
manageable number of edge types for practical decomposition.

Subsequently, the relation discriminator filters the candidate relations generated, ensuring that only relevant
and feasible relations are retained. This step addresses the noisy candidates in the initial set, which may be
irrelevant or infeasible to infer given the textual attributes and the analytical capabilities of LLMs. The prompt
for the relation discriminator is composed of: (1) a description of what each node and edge represents, (2)
a sample text attribute for a node, (3) predefined categories of nodes, (4) preliminary guidelines for filtering
candidate relations, and (5) candidate relations produced by the relation generator. The prompt template for the
discriminator utilized in the Cora dataset is detailed below:

# Task Description
You are tasked with verifying the quality and relevance of proposed semantic edge types in a graph
representing nodes as papers and edges as co-citation.

Your objective is to identify and retain only the essential edge types for improving the performance of
Graph Neural Networks (GNNs) in node classification tasks.
The predefined categories of nodes are: [Rule Learning, Neural Networks, Case Based, Genetic
Algorithms, Theory, Reinforcement Learning, Probabilistic Methods].
Each paper node contains paper abstract as a text attribute. An example text attribute is:

Stochastic pro-positionalization of non-determinate background knowledge. : It is a well-known fact
that (...)

# Task Requirements
When discriminating the edge types, consider the following guidelines:
1. Exclude criteria if they are beyond LLM’s analytical capability such as hyperlinks, co-authorship,
and common references.
2. Retain only criteria that are absolutely necessary for generating significant performance-enhancing
edges on node classification task.

# Proposed Semantic Edge Types
[Relation types curated from the relation generator]
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During the semantic edge decomposition phase, we query the relation decomposer to determine all possible
relations that the given edge can be categorized under. To accomplish this, we concatenate the instruction prompt
with the text attributes of the associated nodes in the input prompt for the relation decomposer. The input prompt
template used in the Cora dataset is provided as follows:

# Task Description
You are an helpful assistant, that classifies an edge connection between two nodes into one or more of
the following relation types. Note that it is a multiple-choice classification.

# Relation Specification
Relation types are as follows: [List of relation types]

Node 1: [Raw text attribute of Node 1], Node 2: [Raw text attribute of Node 2]
Question: The two nodes are connected via co-citation. Carefully choose relation types that likely
represent the semantic relation between the two nodes.

Table 8: Case study of edge decomposition on the Cora dataset, classified by relation decomposer.

Classified relation types of an edge (v1, v2)

• Methodology Similarity: Link papers that utilize similar methodological approaches,
algorithms, or architectures.

• Shared Application Domain: Associate papers that apply their techniques to the same
application domain.

Text attribute of node v1
Stochastic pro-positionalization of non-determinate background knowledge. : It is a well-known
fact that propositional learning algorithms require "good" features to perform well in practice.
So a major step in data engineering for inductive learning is the construction of good features by
domain experts. These features often represent properties of structured objects, where a property
typically is the occurrence of a certain substructure having certain properties. To partly automate
the process of "feature engineering", we devised an algorithm that searches for features which are
defined by such substructures. The algorithm stochastically conducts a top-down search for
first-order clauses, where each clause represents a binary feature. It differs from existing
algorithms in that its search is not class-blind, and that it is capable of considering clauses
("context") of almost arbitrary length (size). Preliminary experiments are favorable, and support
the view that this approach is promising.

Text attribute of node v2
Learning Trees and Rules with Set-valued Features. : In most learning systems examples are
represented as fixed-length "feature vectors", the components of which are either real numbers or
nominal values. We propose an extension of the feature-vector representation that allows the value
of a feature to be a set of strings; for instance, to represent a small white and black dog with the
nominal features size and species and the set-valued feature color, one might use a feature vector
with size=small, species=canis-familiaris and color={white,black}. Since we make no
assumptions about the number of possible set elements, this extension of the traditional
feature-vector representation is closely connected to Blum’s "infinite attribute" representation. We
argue that many decision tree and rule learning algorithms can be easily extended to set-valued
features. We also show by example that many real-world learning problems can be efficiently and
naturally represented with set-valued features; in particular, text categorization problems and
problems that arise in propositionalizing first-order representations lend themselves to set-valued
features.

B FURTHER ANALYSIS AND EXPERIMENTS

B.1 CASE STUDY ON EDGE DECOMPOSITION

To verify the effectiveness of our edge decomposition, we provide examples of decomposition results on the
Cora and Texas datasets. As shown in the case study on the Cora dataset, both nodes propose extensions and
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Table 9: Case study of edge decomposition on the Texas dataset, classified by relation decomposer.

Classified relation types of an edge (v3, v4)

Advised_By/Advises Edge: Connects a student node and a faculty node (faculty advises or
mentors that student).

Text attribute of node v3
Simon S. Lam
Professor of Computer Sciences
Department of Computer Sciences
University of Texas Austin, Texas 78712-1188

email: lam@cs.utexas.edu
phone: (512) 471-9531
fax: (512) 471-8885
office: Taylor Hall 3.112
campus mail: Computer Science C0500

Photo and Profile
Networking Research Laboratory
CS 395T (Fall 1996)
CS 356 (Spring 1996)

Administrative Assistant (also editorial assistant for IEEE/ACM Transactions on Networking)
Kata Carbone
email: kata@cs.utexas.edu
phone: (512) 471-9524
fax: (512) 471-8885

Text attribute of node v4
Chung Kei Wong
last modified: Dec 11, 1996

About Me
I am a graduate student in the Department of Computer Sciences, The University of Texas at
Austin. I am a member of the Networking Research Lab which is headed by Prof. Simon S.
Lam.

Research Related links...
Java Security Project
NIST Computer Security Division
Computer Security Resource Clearinghouse
Role Based Access Control (RBAC)
Prof. Ron Rivest’s Cryptography and Security page

To Contact Me
EMAIL [ckwong@cs.utexas.edu]
POSTAL Computer Sciences C0500 TAY 2.124, U.T. Austin Austin TX 78712 USA

improvements to feature representations in learning systems. Additionally, both nodes apply their techniques to
the feature engineering domain. Consequently, the relation decomposer’s predicted relations as “methodological
similarity” and “shared application” are appropriate.

For the Texas dataset, we observe that graduate student v4 is under the guidance of professor v3 according to the
textual contents. Therefore, the relation decomposer’s predicted relation of (v3, v4) as “Advised-By/Advises” is
correct, highlighting the textual reasoning capability of the decomposer.
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Table 10: Semantic relation types generated from the relation generator and filtered from the relation
discriminator. Short description of each relation is highlighted in bold and underline.

Semantic Relations of Texas Dataset
Retained Relations Filtered Relations

• Teaches/Teaches_Under Edge: Connects a faculty node and a course node
(faculty teaches that course).

• Researches/Research_Contributes_To Edge: Connects a faculty or stu-
dent node with a project node (they conduct research related to that project).

• Advised_By/Advises Edge: Connects a student node and a faculty node
(faculty advises or mentors that student).

• Enrolled_In/Enrolls Edge: Connects a student node and a course node
(student is enrolled in that course).

• TA_For/Has_TA Edge: Connects a student node and a course node (stu-
dent is a teaching assistant for that course).

• Studies_Under/Has_Student Edge: Connects a student node to a faculty
node suggesting that the student studies under that professor’s guidance,
without an explicit advising relationship stated.

• Staff_Supports/Supported_By_Staff Edge: Connects a staff node to
other nodes (faculty/student/course/project) implying that the staff pro-
vides some type of administrative or technical support for that entity.

• Affiliated_With Edge: Connects faculty/student/staff nodes to their pri-
mary associated entity like a lab, center, department or institute mentioned
in their text.

Table 11: Node classification accuracy and the number of queries sent to relation-decomposer of
RoSE and RoSE with efficient querying technique, averaged over 10 runs (± SEM). The best
performance in each architecture is represented by bold.

GNN Architectures IMDB WikiCS

RGCN
Vanilla 62.96 ± 0.44 82.02 ± 0.23
RoSE-efficient (8b) 67.22 ± 0.33 86.42 ± 0.18
RoSE-original (8b) 67.77 ± 0.60 86.81 ± 0.16

HAN
Vanilla 63.24 ± 0.54 83.32 ± 0.26
RoSE-efficient (8b) 66.52 ± 0.64 85.81 ± 0.21
RoSE-original (8b) 66.83 ± 0.48 86.12 ± 0.15

SeHGNN
Vanilla 62.72 ± 0.52 82.53 ± 0.19
RoSE-efficient (8b) 66.31 ± 0.37 86.16 ± 0.20
RoSE-original (8b) 68.27 ± 0.51 86.94 ± 0.18

UniMP
Vanilla 69.98 ± 0.58 84.29 ± 0.23
RoSE-efficient (8b) 69.36 ± 0.52 86.09 ± 0.19
RoSE-original (8b) 69.55 ± 0.62 86.33 ± 0.21

GIN
Vanilla 67.59 ± 0.41 83.03 ± 0.21
RoSE-efficient (8b) 67.15 ± 0.56 84.20 ± 0.28
RoSE-original (8b) 68.27 ± 0.69 83.32 ± 0.29

GraphGPS
Vanilla 66.85 ± 0.48 83.05 ± 0.26
RoSE-efficient (8b) 67.41 ± 0.73 85.14 ± 0.18
RoSE-original (8b) 67.69 ± 0.56 83.48 ± 0.23

#(Queries)
RoSE-original (8b) 45698 215603
RoSE-efficient (8b) 15391 40055
Decrement 61.58%↓ 78.80%↓

B.2 ADDITIONAL CASE STUDIES

In extension from Section 5, we present the retained and filtered relation types for Texas datasets in Ta-
ble 10. In the Texas dataset, the Studies_Under/Has_Student Edge is identified as nearly redundant with the
Advised_By/Advises Edge, leading to its exclusion to avoid redundancy. Additionally, the Affiliated_With Edge
is deemed too ambiguous, as it can encompass various edges generated from the Texas dataset, and is therefore
removed. Hence, these findings demonstrate the effectiveness of the relation discriminator in identifying
and filtering out relations that lack feasibility or distinctiveness, ensuring the retention of meaningful and
non-redundant edges.

B.3 EXPERIMENTS ON EFFICIENT RELATION TYPE ANNOTATION

To demonstrate the efficacy of the proposed efficient query edge sampling strategy discussed in Section 4.4, we
conduct further experiments with RoSE using our efficient relation type annotation (denoted as RoSE-efficient)
on graphs with the largest number of edges: WikiCS (Mernyei & Cangea, 2007) and IMDB (Fu et al., 2020).
Table 11 displays the node classification performance of multi-relational and edge-featured GNNs, utilizing
LLaMa3-8b (Touvron et al., 2023) as a base LLM. As demonstrated in Table 11, RoSE-efficient can still improve
the performance of original GNNs across 10 out of 12 settings, with less than half the number of queries than
RoSE-original. Notably, it even surpasses the performance of RoSE with full edge annotation (RoSE-original)
when incorporated with GIN (Hu et al., 2020c) and GraphGPS (Rampášek et al., 2022).
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Table 12: Link prediction performance (%) of RoSE on Cora, Pubmed, and WikiCS, averaged over
10 runs (± SEM). The best performance in each architecture is represented by bold.

Methods Cora Pubmed WikiCS
RGCN 86.52 ± 0.31 89.00 ± 0.25 58.56 ± 2.63 75.30 ± 1.50 45.26 ± 1.13 56.02 ± 0.15

+ RoSE (8b) 87.75 ± 0.67 92.87 ± 0.06 75.71 ± 0.82 87.20 ± 0.40 52.12 ± 0.55 66.21 ± 0.32

To verify the efficiency of our sampling strategy, we also compare the total number of queries sent to the relation
decomposer by RoSE and RoSE-efficient. Remarkably, our method reduces the number of queries by more than
half, while maintaining comparable performance.

B.4 RESULTS ON LINK PREDICTION

We extended our evaluations to link prediction to further verify the versatility of RoSE. Using RGCN as a
backbone architecture, we conducted link prediction experiments on the Cora, Pubmed, and WikiCS datasets by
adopting the training/validation/test split ratio as [70, 10, 20], following the convention in Chamberlain et al.
(2022). We maintained the same edge decomposition framework via LLMs and only changed the prediction
head tailored for the link prediction. Specifically, we obtained the edge representations by concatenating the
GNN representations of corresponding node pairs. These edge representations were then fed into a link predictor
(a 2-layer MLP with a sigmoid function at the end) to predict edge existence. We evaluated the prediction
performance using the Hits@K metric, which measures the proportion of ground-truth links ranked among the
top K predictions. The K was set to 50 and 100.

As shown in Table Table 12, our method achieves performance improvements across all settings. Notably, we
observe significant gains on the Pubmed and WikiCS datasets, with improvements of up to 17.15% and 10.19%,
respectively. These results highlight the versatility of our method in link prediction tasks, as RoSE helps GNNs
achieve better feature disentanglement.

B.5 COMPARISON WITH GRAPH PROMPTING APPROACH

Table 13: Node classification performance (%) of
RoSE and ProG on Cora, Pubmed, and WikiCS,
averaged over 10 runs (± SEM). The best perfor-
mance in each architecture is represented by bold.

Methods Cora Pubmed WikiCS
ProG 74.24 ± 0.77 77.47 ± 0.27 64.02 ± 0.54

RoSE (8b) 90.28 ± 0.45 90.23 ± 0.10 70.78 ± 1.45

In this section, we present additional comparison of
our method against graph prompting learning frame-
work, ProG (Sun et al., 2023). We reproduced ProG
under our experimental configuration of supervised
learning under the same RGCN backbone and bench-
marks utilized in Table 7. The results in Table 13
indicate that RoSE achieves superior performance
compared to the graph prompting approach. We hy-
pothesize that this notable performance gap is due to
ProG’s conversion of node classification tasks into graph classification tasks for multi-task learning. In the node
classification task, the final node representation is obtained by performing a global pooling operation over hidden
representations of all nodes in the subgraph. This may make the node representation ambiguous, as its K-hop
neighbors can have diverging node labels, leading to suboptimal performance.

B.6 SENSITIVITY TO LLM TEMPERATURE

Figure 2 compares the performance of RoSE with respect to the decoding temperature. Higher temperature results
in higher randomness in the outputs of LLMs, and may influence the performance of the relation decomposer.
We choose two representative GNN architectures for our evaluation, RGCN from multi-relational GNNs and
GIN from edge-featured GNNs. Our experiments on IMDB, Texas, and Cora reveal that the improvements of
RoSE are consistent across varying temperatures.

B.7 IMPORTANCE OF SEMANTIC EDGE DECOMPOSITION - REPRESENTATIONAL ANALYSIS

We further analyze the enhancements provided by edge-decomposition strategy(presented in Section 3), in a
representation learning perspective. Specifically, we analyze the UMAP visualizations of node representations
obtained from RGCN (Schlichtkrull et al., 2018) and HAN (Wang et al., 2019), trained with single and multiple
types of relations. Figures 3 and 4 illustrate these visualizations, each rows representing: (1) initial node features,
(2) node representations learned from RGCN, and (3) node representations learned from HAN, respectively.
The results demonstrate that decomposing conventional edges into multiple relation types yields more distinct,
clustered representations. Conversely, simplifying the inherent and diverse semantics leads to less distinguishable
representations, particularly on the WebKB datasets (Cornell, Texas, and Wisconsin) (Craven et al., 1998) when
using RGCN as the backbone.
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Figure 2: Sensitivity to temperature when prompting relation decomposer. Varied temperature (0.2 -
0.8) is denoted on the x-axis, while node classification accuracy(%) is denoted on the y-axis. Red,
yellow and brown each denote RoSE (LLaMA3-70b), RoSE (LLaMA3-8b), and vanilla GNNs
(RGCN and GIN), respectively.

We observe similar trends with respect to the inter-prototype similarity between representation prototypes.
Specifically, we calculate per-class prototype vector pk = 1

|Ck|
∑

i∈Ck
zi, where Ck denotes the set of

nodes belonging to class k. Then we evaluate the average cosine similarity between class prototypes as
Simmean = Ek1 ̸=k2,{k1,k2}⊆C

(
pk1

·pk2
∥pk1

∥∥pk2
∥

)
, with C denoting the set of class labels. Intuitively, a smaller

Simmean implies more distinct class prototypes within the feature space. We plot the Simmean along the y-axis
of Figure 5. As evident in the figure, our results indicate that simplifying diverse edge semantics results in
less distinguishable class representations (i.e. high similarity between class prototypes). This is particularly
pronounced in RGCN on Cornell and Texas dataset, where Simmean of learned representations on a single
relation type is higher than inter-prototype similarities of raw features. In contrast, disentangling these semantics
into multiple edge types can achieve significant improvements in inter-class separation. Specifically, for the
Cornell dataset, Simmean of multi-relation type processing achieves a reduction in similarity of at least 43%
across all GNNs, compared to those obtained from raw features and uniform edge type processing.

C EXPERIMENTAL SETTINGS

C.1 DATASET STATISTICS

In this section, we provide an overview of the graph compositional information for our benchmark datasets:

Pubmed (Sen et al., 2008) is a co-citation network in which nodes represent scientific publications and
edges denote co-citations. The textual content of each node comprises the paper’s abstract. The predefined
categories are Diabetes Experimental, Diabetes Type I, and Diabetes Type II.

IMDB (Fu et al., 2020) is a movie graph where nodes represent movies and edges indicate the overlap of
movie professionals. The textual content of each node corresponds to the summarized movie description. The
predefined genres are Action, Comedy, and Drama.

WebKB1 (Cornell, Texas, Wisconsin) (Craven et al., 1998) are hyperlink networks in which nodes
represent web pages and edges are hyperlinks. The text attribute of each node represents the web page content.
The predefined categories are Student, Faculty, Staff, Course, and Project.

Cora (McCallum et al., 2000) is a co-citation network where nodes represent scientific papers and edges
indicate co-citations. The textual content of each node comprises the paper’s abstract. The predefined categories
are Case-based, Genetic algorithms, Neural networks, Probabilistic methods, Reinforcement learning, Rule
learning, and Theory.

1https://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Figure 3: UMAP visualization analysis between raw features and representations of RGCN trained
with single and multiple types of relations.

Figure 4: UMAP visualization analysis between raw features and representations of HAN trained
with single and multiple types of relations.

WikiCS (Craven et al., 1998) is a hyperlink network in which nodes represent web pages and edges are
hyperlinks. The text attribute of each node represents the web page content. The predefined categories are
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Figure 5: Comparison of average inter-prototype similarity (i.e., average cosine similarity between
per-class mean representation vectors) between raw features and representations of GNNs trained
with single and multiple types of relations.

Computational linguistics, Databases, Operating systems, Computer architecture, Computer security, Internet
protocols, Computer file systems, Distributed computing architecture, Web technology, and Programming
language topics.

Amazon-History (Yan et al., 2023) is a shopping network where nodes correspond to different types
of history books, and edges indicate items that are often purchased or viewed together. Each node is labeled
according to its product category.

OGBN-arXiv (Hu et al., 2020a) is a citation network consisting of Computer Science (CS) papers from
arXiv. Nodes represent individual papers, and directed edges denote citations between them. The node labels
correspond to 40 subject categories on arXiv, such as cs.AI, cs.LG, and cs.OS, assigned by the authors and arXiv
moderators.

OGBN-Products (Hu et al., 2020a) is a product co-purchase network on Amazon, where nodes represent
Amazon products, and edges reflect products commonly bought together. The node labels are predefined and
represent 47 major product categories.

Table 14: Statistics of TAG benchmark datasets.

Dataset Pubmed IMDB Cornell Texas Wisconsin Cora WikiCS Amazon-History OGBN-Products OGBN-arXiv
#Nodes 19,717 4,182 247 255 320 2,708 11,701 41,551 54,025 169,343

#Edges 44,338 47,789 213 119 449 5,278 216,123 358,574 74,420 1,166,243

#Classes 3 3 5 5 5 7 10 12 47 40

Domain Citation Movie Hyperlinks Hyperlinks Hyperlinks Citation Hyperlinks Shopping Shopping Citation

Comprehensive statistics of the datasets used in our experiments, including the graph domain and the number of
nodes, edges, classes, are provided in Table 14.

C.2 IMPLEMENTATION DETAILS

We adopted Sentence-BERT (Reimers & Gurevych, 2019) to encode node features and relational features when
using edge-featured GNNs. To carefully identify qualified relation types, we employ Claude Opus2 (Chat
version) from Anthropic as the relation generator and discriminator. The edge decomposition is performed
using a LLaMA3 (Touvron et al., 2023)-based relation decomposer, which is a free, open-sourced model. In
our experiments, we utilize LLaMA3-8b and 70b as base LLMs, with a fixed temperature of 0.2 across all
settings. Adhering to the same evaluation protocols of existing TAG works (Chen et al., 2024; He et al., 2023),
we adopt the same train/validation/test splits of 60%/20%/20%, respectively. For training the GNN models, all
architectures are implemented using PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen,
2019). All experiments are conducted on RTX Titan, RTX 3090 (24GB), A6000 GPU machines. Throughout all
experiments, we set the hidden dimension to 64 and employ the Adam optimizer with a weight decay of 0. The
best validation performance is selected within the following hyperparameter search space:

• Learning rate: [0.001, 0.005, 0.05, 0.01]
• Number of layers: [2, 3]
• Dropout: [0, 0.1, 0.5, 0.8]

2https://www.anthropic.com/claude

22

https://www.anthropic.com/claude


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D BROADER IMPACTS

Our work identifies a novel bottleneck in GNN performance for downstream tasks, specifically highlighting the
oversimplification of graph structures. To address this, we introduce RoSE, a framework that decomposes edges
to enhance the representational learning capabilities of GNNs. This shift in focus from node attributes, which
dominated prior studies, to the structure itself represents a significant paradigm shift. By leveraging the general
knowledge of LLMs, our approach opens new research avenues for improving graph structures. Our analysis
demonstrates that RoSE significantly enhances classification performance of GNNs, particularly in datasets
where GNNs have traditionally underperformed. Consequently, our work extends the applicability of GNN
architectures to a broader spectrum of datasets, overcoming previous performance limitations and expanding
their utility in various domains.

Cora Pubmed Texas

Figure 6: Comparison of raw features and learned features between Cora and Pubmed datasets versus
the Texas dataset, trained with the original graph composition.
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