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Abstract

We introduce DOMAIN2VEC, a novel approach
that decomposes any dataset into a linear combi-
nation of several meta-domains, a new concept
designed to capture the key underlying features of
datasets. DOMAIN2VEC maintains a vocabulary
of meta-domains and uses a classifier to decom-
pose any given dataset into a domain vector that
corresponds to a distribution over this vocabulary.
These domain vectors enable the identification of
optimal data mixture for language model (LM)
pretraining in a training-free manner under the
Distribution Alignment Assumption (DA?%), which
suggests that when the data distribution of the
training set and the validation set is more aligned,
a lower validation loss is achieved. Moreover,
DOMAIN2VEC can be seamlessly integrated into
previous works to model the relationship between
domain vectors and LM performance, greatly en-
hancing the efficiency and scalability of previ-
ous methods. Extensive experiments demonstrate
that DOMAIN2VEC helps find the data mixture
that enhances downstream task performance with
minimal computational overhead. Specifically,
DOMAIN2VEC achieves the same validation loss
on Pile-CC using only 51.5% of the compute re-
quired when training on the original mixture of
The Pile Dataset. Under equivalent compute bud-
get, DOMAIN2VEC improves downstream perfor-
mance by an average of 2.83%.

1. Introduction

Through training on large-scale text corpora, Large Lan-
guage Models (LLMs) have demonstrated remarkable gen-
eralization capabilities (Touvron et al., 2023; OpenAl, 2024;
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Qwen Team, 2024; DeepSeek-Al, 2024). The training
datasets for LLMs are typically composed of multiple do-
mains, each derived from different sources. Recent research
has shown that the mixture proportions of these domains
(named as the data mixture) can significantly influence the
effectiveness of LMs (Hoffmann et al., 2022b; Xie et al.,
2023b), with data from one domain potentially affecting
the performance in others (Guo et al., 2022). Typically, the
data mixtures used for training LLMs are often determined
heuristically or based on downstream performance metrics.
However, these methods are not scalable and always result
in a suboptimal data mixture. Thus, identifying the optimal
data mixture in a scalable and efficient manner remains a
critical and challenging research question.

Recently, researchers have proposed various methods to pre-
dict the optimal data mixture. The first line of prior works
implicitly adjusts the data mixture by selecting high-quality
data from different domains or datasets (Lin et al., 2024,
Ankner et al., 2024; Thakkar et al., 2023). The second line
of work focuses on modeling the relationship between the
data mixture and the performance of LLMs, and explic-
itly adjusts the data mixture across different datasets (Rae
et al., 2022; Xie et al., 2023a; Sagawa* et al., 2020; Fan
et al., 2023; Ye et al., 2024; Ge et al., 2024; Gu et al.,
2024a; Que et al., 2024). While prior work has shown
promising results, there are some key issues: 1) Computa-
tional Efficiency: For example, although the proxy model
in DoReMi (Xie et al., 2023a) has only 280M parameters,
its estimated FLOPs are high to 3.7 x 10'? for calculating
only 22 datasets. Moreover, The computational complexity
of these methods will grow non-linearly as the number of
datasets increases. 2) Lack of Scalability: After establish-
ing the functional relationship between data mixtures and
model performance (Ye et al., 2024; Liu et al., 2024), if the
dataset composition changes (e.g., by adding new datasets
or filtering low-quality data, etc), previously fitted functions
cannot be directly applied. This requires resampling new
data mixtures, retraining proxy models, and refitting the
functions, severely limiting the scalability of these methods.

To address these issues, we introduce DOMAIN2VEC, a
novel framework designed to vectorize datasets. This en-
ables us to perform all operations for computing optimal
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mixing ratios in domain vector space, which has broad appli-
cability when datasets change. Specifically, DOMAIN2VEC
maintains a vocabulary of meta-domains, and we hypothe-
size that any dataset can be approximated as a linear combi-
nation of several meta-domains with a specific distribution.
This distribution could serve as the vector representation
(domain vector) of a given dataset.

To efficiently identify the meta-domain composition of any
given dataset, we propose to use a meta-domain classifier to
generate the corresponding domain vector. Building upon
DOMAIN2VEC, we introduce the Distribution Alignment
Assumption (DA?) to find optimal data mixtures for LM
pretraining. DA? states that lower validation loss can be
achieved when the domain vector of the training dataset bet-
ter aligns with the domain vector of the validation dataset.
Based on DA?, we can easily find the optimal data mixture
without training.

Moreover, DOMAIN2VEC can be seamlessly integrated into
prior works like RegMix (Liu et al., 2024). Unlike previous
methods that model the relationship between data mixtures
and language model performance (Liu et al., 2024; Ye et al.,
2024), we model the relationship between domain vectors
provided by DOMAIN2VEC and model performance, further
enhancing efficiency and scalability of previous works.

In summary, we highlight our contributions as follows:

1. We introduce DOMAIN2VEC to vectorize datasets and
propose viewing datasets as combinations of meta-
domains. We present an efficient pipeline for vectoriz-
ing datasets using a meta-domain classifier.

2. We propose the Distribution Alignment Assumption
(DA?), a training-free method for identifying the op-
timal data mixture. We further demonstrate how DoO-
MAIN2VEC can be seamlessly integrated into prior
work to improve efficiency and scalability.

3. We validate the effectiveness of DOMAIN2VEC+DA?
and +RegMix in text generation and downstream tasks.
Experimental results show that our method can accu-
rately predict the performance of various data mix-
tures without training proxy models. Moreover, we can
identify data mixtures that achieve downstream per-
formance comparable to DoReMi (Xie et al., 2023a),
using only 0.26% of its computational cost.

2. Domain2Vec

In this section, we introduce DOMAIN2VEC, an algorithm
that decomposes a dataset into a linear combination of var-
ious meta-domains and allows us to represent underlying
features of datasets through a normalized vector. We also
outline a pipeline for constructing the vocabulary of DO-
MAIN2VEC and training a meta-domain classifier.

Key Assumption. DOMAIN2VEC maintains a vocabulary,
a set of meta-domains. Assume we have n meta-domains
DJ’»‘ (1 <j <n), where D;‘ is represented as e;, a one-hot
vector where only the j-th element is 1. We hypothesize
that, for any given dataset D, it could be represented as
a domain vector v, by linear combination of these meta-
domains. Specifically,

n
v e 1)
j=1

where each element v; of v represents the projection
(weight) of the dataset D on D}. Thus, v = [vy, va, ..., va] T
can be a representation (distribution) of the dataset D over
the meta-domains. However, an ideal approach for con-
structing these meta-domains remains to be established.
Next, we will introduce how we construct meta-domains
from large-scale unlabeled text corpora.

Constructing the Vocabulary of DOMAIN2VEC. With
the above key assumption, we define meta-domains as a
collection of actual datasets (or a set of domains) that serve
as a basis in the domain vector space, allowing for linear
combinations of these concrete datasets to represent any
unknown domain in this space. These constructed meta-
domains, which could represent datasets from any source,
should satisfy the following three properties, similar to the
properties of a basis in linear algebra:

1. Spanning Set. The domains that compose meta-
domains should be as diverse and comprehensive as
possible.

2. Linear Independence. There should be distinct differ-
ences between these constructed meta-domains.

3. Computational Efficiency (Optional). The method
for constructing meta-domains should be computation-
ally efficient.

For diverse and comprehensive meta-domains, we collect
data from more than 100 coarse sources across English,
Chinese', and Code. After deduplication, we obtain around
5.2 TB text data including more than 1 billion documents.
The large corpora have a similar source composition as the
standard large-scale LLM pretraining, including common
crawl (CC), Wikipedia, social media platform, arXiv, code,
news, books, etc. One could assume that the corpora already
include as diverse and comprehensive contents as possible,
corresponding to the requirement “spanning set” 2.

'In this paper, we primarily aim at languages of English and
Chinese.

Due to deduplication pre-processing and the native difference
among the corpora, the requirement “linear independence” is also
naturally satisfied.
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Figure 1. The domain vector of each sub-dataset of The Pile (Gao et al., 2021), where each row corresponds to a sub-dataset and each
column corresponds to a meta-domain. The higher the proportion of data belonging to a particular meta-domain, the closer the color of
the corresponding cell is to blue. We display distribution on some English meta-domains for clarity. The full picture is shown in Figure 7.
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Figure 2. The number of meta-domains vs. Inertia.

After getting the corpora, we aim to extract the meta-
domains in the corpora, that is, to divide the corpora into
some (semantically) different clusters, to serve as the meta-
domains. We employ k-means (Macqueen, 1967; Arthur
& Vassilvitskii, 2006) clustering algorithm to implement
the separation and utilize bge-small-en-v1.5 and
bge-small-zh-v1.5 (Xiao et al., 2023) to compute
embeddings for the English and Chinese documents, respec-
tively. See Figure 2 for the relationship between the number
of meta-domains and Inertia (measuring the distance be-
tween each data point and its centroid). Besides, we divide
the code data directly according to the programming lan-
guage. Ultimately, we construct 260 (120 Chinese + 120
English + 20 Code) unique meta-domains. Each document
in the corpora is labeled which meta-domain it originates
from.

Meta-Domain Classifier. We now present our approach
for representing an unseen dataset using the previously estab-
lished meta-domains. The methodology is straightforward
yet effective: we assign each document in the unseen dataset
to its corresponding meta-domains and then calculate the
aggregate distribution across all documents. This compre-

hensive representation captures the overall domain charac-
teristics of the entire dataset. Formally, assume that there is
a meta-domain classifier, for any given document doc € D,

P = [p1, P2, D3, ~-~7pn]T = Classifier(doc), (2)

where p; represents the probability that doc belongs to the i-
th meta-domain such that ||p||; = 1. For the unseen dataset
D, we could sample N documents® then take the average
of domain vector of these samples. Formally, the domain
vector v of dataset D is,

1 N
v~ﬁ§pi, 3)

Then, we could use the vector v to approximately represent
the feature of any unseen dataset D. Meanwhile, during
the pretraining phase of LLMs, we typically have training
datasets from many sources Dyyqin = {D1,Da, ..., D }.
We can convert each of these datasets into domain vec-
tors following Equation 2 and 3. Therefore, Dy.qi, can
be approximately represented as Viyqin = [V1, V2, ..., Un],
where Vigin € R™ ™ and n is the number of meta-
domains.

Specifically, we train a 260-class classifier to determine
which meta-domain a given document originates from.
We finetune a Qwen2-1.5b-base (Qwen Team, 2024)
to balance accuracy and efficiency. After training, the
meta-domain classifier achieves a classification accuracy
of 74.73% in our constructed test set. For further evalu-
ating the performance of the meta-domain classifier, we
also sample 1, 000 examples from each sub-dataset of The
Pile (Gao et al., 2021). Following Equation 3, we obtain
domain vectors predicted by the meta-domain classifier for
each sub-dataset, as shown in Figure 1. The distributions
of sub-datasets of The Pile over meta-domains exhibit dis-
tinctive patterns. This phenomenon indicates not only that

*In this paper, we set N = 1000, which is enough for an
accurate and stable domain vector.
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the various meta-domains have significant semantic differ-
ences, but also that our classifier can accurately distinguish
semantic features from different unseen datasets.

3. Methodology

In this section, we first introduce the task formulation of
optimal data mixture discovery. We then present methodolo-
gies for identifying the optimal data mixture using DO-
MAIN2VEC without requiring additional training. We
introduce two approaches: the first is grounded in the
Distribution Alignment Assumption (DA?). Moreover, we
demonstrate how our DOMAIN2VEC can be integrated with
previous works that model the relationship between mixture
ratios and final performance, significantly enhancing the
scalability of these existing approaches.

3.1. Task Formulation

During the pretraining phase of LLMs, we typically col-
lect training datasets Dyy.qin, = {D1, D2, ..., Dy, } from m
sources (e.g., arXiv, Wikipedia, etc.). We also pre-define
a validation set D,4;;4, Which is of high quality and cor-
responding to the final performance. Note that D4 iS
often independently and identically distributed with D4,
For example, Liu et al. (2024) adopts Pile-CC (Gao et al.,
2021) as the validation set and Gu et al. (2024b) adopts
LIMA (Zhou et al., 2023) as the validation set. Accord-
ingly, the data mixture ©» = [ry,79,...,7,] 1,0 < 7y <
1,5 r; = 1 specifies the mixture ratio of the m datasets.
Let the trained LM be denoted as 6, and the validation loss
of the LM be denoted as Ly. The objective of finding the
optimal data mixture r* is usually to minimize the vali-
dation loss, as shown formally in Equation 4. We denote
LPvatia () as the validation loss of a LM pretrained on the
data mixture r.

r* =arg min(mein EGD”"'“"I (1)) £ argmin £LPvetie(y)
T r

“

3.2. Pilot Study: Mixture Ratio Ranking Holds across
Model Sizes

We first conduct a pilot study for a critical research question:
Could the optimal data mixture generalize across different
model sizes? If the answer is Yes, it opens up the promising
possibility that we could determine the optimal mixture ra-
tio by simply training a small proxy model—or even more
efficiently, without training any model at all. To answer
the questions, we mix C4 (Raffel et al., 2020) and Knowl-
edge Pile (Fei et al., 2024) with different data mixtures
(0,0.2,---1.0) in Table 1. We pretrain two LMs with 83M
and 1.6B parameters from scratch using the standard LM
loss. During pretraining, we evaluate the validation loss of
models trained with different mixture ratios on 20 subsets

of The Pile (Gao et al., 2021) and RedPajama (Weber et al.,
2024), as shown in Figure 3. The results of more validation
sets can be seen in Figures 8 and 9. There are two findings:

* Given a validation set, there exists an optimal mix-
ture ratio. For different validation sets, the ranking of
mixture ratios varies significantly.

* For the same validation set, the data mixture ratio rank-
ing does not (nearly) change across model sizes. We
calculate the correlation coefficients of data mixture
rankings between the 83M model and the 1.6B model
across diverse validation sets. The analysis yields a
Spearman coefficient of 0.9743 and a Pearson coeffi-
cient of 0.9947, providing robust statistical evidence
for this consistency. These exceptionally high correla-
tion values strongly support our finding that optimal
mixture ratios are largely invariant to model size when
evaluated on the same validation benchmark.

These finding aligns with prior work by Liu et al. (2024),
which indicates that it is possible to find the optimal data
mixture without training (Section 3.3) or simply training
small models (Section 3.4).

3.3. Distribution Alignment Assumption (DA?)

We introduce how we directly apply our proposed DO-
MAIN2VEC on finding optimal data mixture. We notice
an intuitive law, that a lower validation loss £Pvatid is
achieved when the data distribution of the training set is
better aligned with the given validation set*. One essential
question is that How do we model the data distribution of
various datasets? Fortunately, according to Section 2, for
the training dataset Dy,.4;,,, We obtain the vector represen-
tation Vi,.qin € R™ ™, which models semantic features
of Diyqin. Correspondingly, for the validation set Dy,q:4,
we also have its vector representation v,q;;q4. After mixing
Dirain With a data mixture 7, the final distribution over
meta-domains of Dy,qin 1S Virain = Virain - T. Therefore,
based on the distribution alignment assumption, Equation 4
can be equivalently written as:

’I'* = arg ITlTiIl DiSt(‘/trm'n - T, vvalid) (5)

where Dist(-, -) is a distance function used to measure the
similarity between two vectors. Theoretically, numerous dis-
tance function options are available, including Wasserstein
(optimal transport) distance, Euclidean distance, etc. In this
paper, we use Huber Loss (Huber, 1964; Hastie et al., 2009)
between two vectors to measure the distance. We also dis-
cuss the choice of different distance functions in Appendix E.
We present the pseudo code of DOMAIN2VEC+DA? in Ap-
pendix B.

*We provide the detailed description in the Appendix A.
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Figure 3. The validation loss on the EuroParl (The Pile) and Stackexchange (RedPajama) of models trained using data mixture in Table 1.
The validation loss on other validation sets are shown in Appendix D.

3.4. Applying Domain2Vec to Prior Work

There is one typical line of research focused on determining
optimal mixture ratios, which aims to model the relationship
between these ratios and the final validation loss using vari-
ous functional approaches. That is, these approaches model
LPvatia(p) = f(r) where f(-) can take various reasonable
forms as proposed in previous works. For example,

» Data Mixing Law (Ye et al., 2024) adopts f(r) =

c; + k; - exp (ZT:I tij
loss on training domain ¢, where c;, k;, t;; are all unde-
termined parameters to fit.

. rj> to predict the validation

* RegMix (Liu et al., 2024) initially adopts a Linear
Regression approach, modeling the validation loss as
f(r) = w'r where w needs fitting. Furthermore, it
advances this concept by employing LightGBM (Ke
et al., 2017) to more effectively fit the function f ().

We can directly integrate DOMAIN2VEC with these ap-
proaches without modifying their core function, but in-
stead perform the computations in the domain vector space.
Thereby, we address two inherent limitations of these ap-
proaches: (1) Efficiency: for modeling f(-) with m vari-
ables r1....,, °, it is expected to run experiments O (m?) times
for different r to collect fitting points; (2) Scalability: When
a new training source is introduced, one must re-collect fit-
ting points and re-fit f(-), which lacks of scalability.

Specifically, we novelly build the relationship f;(-) between
the validation loss on the i-th meta-domain D] (notated as
L7 ) and the domain vector v4,q;, after mixing training
datasets by ratio r, that is, V},4;, - r. Formally, for each
meta-domain, we have

Lr (r) = fi(Vtrain) = fi(Virain - 7),1 <0 <n. (6)

>m can scale to to 10? in modern LLM training. For example,

Fineweb (Penedo et al., 2024) consists of over 30k data dumps.

Equation 6 enables the prediction of validation loss on any
meta-domain given a data mixture, which is also the function
that we aim to fit. For unseen validation dataset, recall that
any dataset including D,4;;4 can also be viewed as a linear
addition of meta-domains and the domain vector of D, 414
is denoted as Vya1id = [q1,G2, -+ ,qn] " Therefore, we
have

[ Dvatid (r) = Z ¢ - rPi (r) = Z G * fi(Vtrain)
iil i=1 (7)
= Z(h . fi(‘/;frain : T‘).

i=1

Now, we connect validation loss to the mixture ratio in the
the domain vector space via our proposed DOMAIN2VEC.
It is feasible to search the optimal mixture ratio r* by mini-
mizing £Pvaii (7). Note that this connection is built only
on the top of the meta-domains (i.e., f; for 1 < i < n),
and can adapt with no cost to (1) any unseen validation
set; (2) any unseen training set; (3) any number of training
sets. Thanks to this property, we realize the efficiency and
scalability by DOMAIN2VEC for prior approaches.

Following RegMix (Liu et al., 2024), we use LightGBM (Ke
etal., 2017) as f(-) to fit Equation 6 for each meta-domain
(named as DOMAIN2VEC+RegMix). The pseudo code of
DOMAIN2VEC + RegMix are shown in Appendix B. We
sample 10, 500 diverse mixture ratios from a Dirichlet dis-
tribution and we get the validation losses on each meta-
domains by training 10, 500 small LMs. We also reserve
some mixture ratios as testset and run experiments for eval-
uating whether fitted function f(-) can accurately predict
the validation loss for unseen mixture ratios. For various
mixture ratios in the testset, we use the Spearman coefficient
to measure the correlation between the predicted ranking
and the actual ranking of performance under unseen mixture
ratios. Note that we adopt correlation coefficient because it
is a more general metric than mean loss error with the goal
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Figure 4. Relationship between the number of trained data mix-
tures and the Spearman correlation.

to find the better mixture ratio than others. Moreover, the
pilot study suggests that the predicted ranking holds across
model sizes while the predicted loss becomes meaningless
for inconsistent model sizes. As shown in Figure 4, the
Spearman coefficient increases with the number of mixture
ratios that we use for training and collecting fitting points.
And finally we get an over 90% Spearman coefficient, which
is quite accurate for predicting a good mixture ratio for vari-
ous meta-domains.

4. Experiments

In this section, we elaborate the implementation and exper-
imental results to show how our proposed DOMAIN2VEC
helps find the optimal data mixture with less computation.
The goal of optimizing the data mixture is to enhance the
performance of LMs. The performance of LMs can be
evaluated from two perspectives: 1) Text generation, often
measured by LM loss on a validation set. We aim to min-
imize the validation loss through finding the optimal data
mixture; 2) Downstream task performance. The objective is
to optimize task performance. As an overview for exprimen-
tal results, by applying DOMAIN2VEC, we can accurately
predict the ranking of data mixtures under various settings
(e.g., training and validation sets). We also achieve a compa-
rable validation loss with the original data mixture from The
Pile but only spend 51.5% training computational resources.
Moreover, we use only 0.26% of the computational costs re-
quired by DoReMi to find a data mixture with performance
comparable to strong baselines like DoReMi.

4.1. Validation Loss Minimization

Dataset & Data Mixture. We design some training and
validation datasets to evaluate the performance to minimize
the validation loss of our methods. Our training datasets

include C4 (Raffel et al., 2020) and Knowledge Pile (Fei
et al., 2024). C4 is a colossal and cleaned version of Com-
mon Crawl corpus. Knowledge Pile is a high-quality dataset
that significantly improves the performance of LLMs in
knowledge-related and mathematical reasoning tasks. We
conduct our experiments on various validation datasets to
perform comprehensive evaluation. We select 20 valida-
tion datasets from The Pile (Gao et al., 2021) and RedPa-
jama (Weber et al., 2024). Since the optimal mixture ratio
varies among the validation datasets, we instead predict the
performance ranking across different preset mixture ratios.
Specifically, we mix C4 and Knowledge Pile with different
data mixtures as the training set as shown in Table 1.

Table 1. The preset data mixture ratios.
Dataset Data Mixture
C4 ‘ 0 02 04 06 08 1.0
Knowledge Pile ‘ 1.0 08 06 04 02 00

Training & Evaluation Setup. We pretrain LLaMA-
like (Grattafiori et al., 2024) models with 83M and 1.6B
parameters from scratch using standard language modeling
loss. Both models have a batch size of 1.5M tokens and a
maximum sequence length of 4, 096. We use the AdamW
optimizer (Loshchilov & Hutter, 2017) with gradient clip-
ping at 1.0. The learning rate linearly warms up to 2e-4 over
the first 100 steps, then decays to 2e-5 using a cosine sched-
uler over 10, 000 steps. More parameters are detailed in Ta-
ble 7. Then, we evaluate DOMAIN2 VEC using the Spearman
and Pearson correlation coefficient between the predicted
ranking and the actual ranking. We compare DOMAIN2VEC
with randomly ranking and an embedding-based baseline,
denoted as kNN. Specifically, we use bge-small-v1.5
to obtain embeddings and apply mean pooling to generate
unique embeddings for each dataset and meta-domain. We
then apply kNN based on Euclidean distance to compute the
probability distributions of training and test datasets origi-
nating from each meta-domain, treating these distributions
as new domain vectors.

Experimental Results. We present the validation loss
curves for various data mixtures in Figure 3 and Appendix D.
It can be observed that, on most validation sets, incorpo-
rating a certain amount of Knowledge Pile significantly re-
duces the validation loss, even on the C4 validation set from
RedPajama. We apply two DOMAIN2VEC-based methods
described in Section 3 to rank the data mixture from Table 1.

As demonstrated in Table 2, the ranking predicted by DoO-
MAIN2VEC exhibits a strong positive correlation with the
actual ranking, significantly outperforming random guess-
ing and kNN. The effectiveness of the kNN method partially
validates the rationale behind our meta-domain vocabulary
construction. It is also important to note that our method
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Figure 5. The validation loss on the Pile-CC subset. DOMAIN2VEC achieves the comparable validation loss of Human (The model using
original data mixture from The Pile), which only uses almost 51.5% training computational costs of Human. Using the same training cost,
DOMAIN2VEC can reduce the validation loss by approximately 4.72% compared to Human.

is a training-free approach, unlike prior works that rely on
training small proxy models to rank data mixtures. Despite
the more challenging setup, our method accurately predicts
the rankings of different data mixtures.

Table 2. The results of deploying the DOMAIN2VEC to predict the
ranking of different Validation sets.

Metrics Random kNN  DOMAIN2VEC+DA? DOMAIN2VEC+RegMix
Pearson | 0.0300 04014 0.5833 0.3881
Spearman ‘ 0.0497  0.3543 0.6657 0.4629

4.2. Downstream Task Performance Maximization

In this section, we demonstrate how DOMAIN2VEC can be
used to identify the optimal data mixture for maximizing
downstream task performance. One challenge is modeling
the relationship between data mixture and downstream per-
formance. Fortunately, Liu et al. (2024) finds that validation
loss on Pile-CC correlates most strongly with downstream
performance across their evaluations. To align with prior
work, we follow and use the same validation datasets as Liu
et al. (2024). Thus, our goal is to identify a data mixture that
minimizes validation loss on Pile-CC. Experimental results
show that DOMAIN2VEC predicts a data mixture with per-
formance comparable to DoReMi (Xie et al., 2023a), while
using only 0.26% computational cost.

Datasets & Baselines. We follow RegMix (Liu et al.,
2024) and use The Pile (Gao et al., 2021) as our training
datasets. The Pile is an 825 GB English text corpus used
for LLM pretraining. In line with RegMix, we use only
the 17 components of The Pile that do not have copyright
issues. Our goal is to identify the data mixture that min-
imizes validation loss on the Pile-CC subset to improve
downstream task performance. We compare our approach
with several baselines, including Human (the original data
mixture), DoReMi (Xie et al., 2023a), and RegMix (Liu

et al., 2024). The Pile-CC Only baseline (which trains the
model solely on the Pile-CC subset) is included to verify
the strong correlation between Pile-CC validation loss and
downstream performance. The data mixtures for each base-
line are shown in Table 5.

Training & Evaluation Setup. We pretrain LLaMA-
like (Grattafiori et al., 2024) models from scratch using
standard language modeling loss with model sizes ranging
from 106M to 1B parameters. Following Hoffmann et al.
(2022a), the token count for each model is 20 times corre-
sponding parameter size. All models adopt a batch size of
1M tokens and a maximum sequence length of 4, 096. We
apply the AdamW (Loshchilov & Hutter, 2017) optimizer
with gradient clipping at 1.0. The learning rate linearly
warms up to 6e-4 over 1, 000 steps, then decays to 0 using a
cosine scheduler at the end of training. More parameters are
detailed in Table 7. For evaluation, we track the performance
on Pile-CC validation loss across different model sizes. Be-
sides, we evaluate the performance of different data mixture
using following benchmarks: Social IQA (Sap et al., 2019),
HellaSwag (Zellers et al., 2019), PiQA (Bisk et al., 2019),
OpenBookQA (Mihaylov et al., 2018), Lambada (Paperno
et al., 2016), SciQ (Welbl et al., 2017), ARC Easy (Clark
et al., 2018), COPA (Gordon et al., 2012), RACE (Lai et al.,
2017), LogiQA (Liu et al., 2021), WinoGrande (Sakaguchi
et al., 2021), and MultiRC (Khashabi et al., 2018). We uti-
lize LM Evaluation Harness (Gao et al., 2024) to evaluate
these models and report the average score across 0-shot to
5-shot settings in Table 3.

Implementation Details. We predict the optimal data
mixture by applying Equation 5 (DOMAIN2VEC+DA?)
and Equation 7 (DOMAIN2VEC+RegMix). We generate
100, 000 data mixtures from a Dirichlet distribution based
on the token distribution of these components. Using these
mixtures, we predict the optimal data mixture by our pro-
posed two methods. We select top-100 predicted data mix-
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Table 3. Average downstream task performance of different models pretrained on different data mixtures. Similar to Liu et al. (2024),
Human refers the original data mixture from The Pile. Pile-CC is a golden training set which can 100% correspond to validation set to
validate our propose D A2. All the data mixtures are shown in Table 5 and Table 6. The calculated data mixture are shown in Table 8.

Benchmark Human DoReMi Pile-CC Only RegMix DOMAIN2VEC + DA2  DOMAIN2VEC + RegMix
Social IQA 0.367 0.380 0.381 0.382 0.372 0.375
HellaSwag 0.319 0.346 0.351 0.351 0.335 0.338
PiQA 0.615 0.639 0.644 0.647 0.635 0.639
OpenBookQA 0.264 0.275 0.276 0.276 0.275 0.272
Lambada 0.199 0.240 0.247 0.241 0.219 0.232
SciQ 0.710 0.695 0.688 0.708 0.701 0.701
ARC Easy 0411 0.428 0.436 0.438 0.427 0.426
COPA 0.621 0.651 0.660 0.653 0.638 0.641
RACE 0.274 0.291 0.288 0.288 0.279 0.282
LogiQA 0.272 0.275 0.272 0.272 0.269 0.278
WinoGrande 0.512 0.516 0.515 0.513 0.513 0.510
MultiRC 0.521 0.528 0.515 0.529 0.524 0.534
Average Performance 0.424 0.439 0.439 0.441 0.432 0.436
) 3.7 x 10%° 3.5 x 10*® 9.66 x 10'° 9.66 x 10'°

Estimated FLOPs 0 (100%) 0 (9.46%) (0.26%) (0.26%)

tures and average them as the final data mixture. This trick
is aligned with previous work (Liu et al., 2024) for more ac-
curate and stable results. As a stardard practice, each subset
of The Pile is trained for at most one epoch. When opti-
mizing the mixture ratio r = [ry,79,--- , ;] |, other than
m
the trivial restriction Y r; = 1, note that there is another
i=1
data amount restriction, that is #TotalTokens - r; < |D;|,
which is to remove data mixtures which require exceeding
tokens in some subsets. Therefore the optimal data mixture
predicted by DOMAIN2VEC may vary depending on the
number of trained tokens, as well as the size of the model.
This restriction is different with Section 4.1 where each
dataset size is seen as unlimited.

Experimental Results. As shown in Figure 5, our pro-
posed DOMAIN2VEC + DA? and DOMAIN2VEC + REG-
MiX significantly improve training efficiency on Pile-CC
compared to Human. Specifically, DOMAIN2VEC + DA?
and DOMAIN2VEC + REGMIX require only about 55.38%
and 51.50% of the training steps, respectively, to achieve
the same validation loss as Human. Compared to Human
under the same compute budget, DOMAIN2VEC + DA? and
DOMAIN2VEC + REGMIX reduce validation loss by ap-
proximately 4.04% and 4.64%, and improves downstream
performance by an average of 1.89% and 2.83%, respec-
tively. In Table 3, we report the average performance of
LMs trained on data mixtures from various baselines across
arange of downstream tasks. “Pile-CC only” shows a 3.54%
average accuracy improvement over Human, indicating that
training on more tokens from Pile-CC enhances downstream
performance. Importantly, “Pile-CC only” is good when
we regard Pile-CC as validation set. However, in a more
practical scenario where validation set is somewhat else,
we cannot manually find such a golden training set which
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Figure 6. Visualization (t-SNE) of domain vectors of The Pile.

can 100% correspond to validation set. To this end, we can
use our proposed Domain2Vec to get a comparable down-
stream performance with lowest cost by mixing datasets
from different sources. Notably, DOMAIN2VEC + DA?
and DOMAIN2VEC + REGMIX, using only about 0.26%
of the FLOPs required by DoReMi, achieve performance
comparable to DoReMi, RegMix, which demonstrates the
computational efficiency of DOMAIN2VEC.

Visualization. To investigate further, we employ t-
SNE (Van der Maaten & Hinton, 2008) to visualize the
domain vectors of each component in The Pile, as shown
in Figure 6. This visualization reveals several desirable
properties of the learned vectors. The representation space
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exhibits strong clustering behavior where semantically re-
lated datasets naturally group together, indicating effective
capture of domain-specific characteristics. Related domains
such as academic literature (PubMed, arXiv) and techni-
cal repositories (GitHub, StackExchange) demonstrate spa-
tial coherence, while maintaining well-defined yet flexible
boundaries between different domains. The representation
spans diverse domains in The Pile, demonstrating robust
generalization capabilities across heterogeneous data types.

4.3. Discussion on Overfitting

We noticed that some readers interpret our approach DA? as
a form of “overfitting”: optimizing on a selected validation
set. We offer the following explanations:

* The validation set that we define is actually a guide
dataset, which is a necessary requirement for optimiza-
tion data mixture and a common setting in related
works (see Section 3.1).

e In Section 4.1, we conduct experiments on various
validation sets, and the performance demonstrates good
stability. In fact, our proposed DA? does not even
require training, thus “overfitting” is not applicable.

¢ In Section 4.2, we choose Pile-CC as the validation
set but ultimately test model performance on bench-
marks from 12 downstream tasks, further preventing
overfitting risks.

5. Related Work

Recent research on optimizing data mixture can be broadly
divided into two lines. The first line implicitly adjusts data
mixture by down-sampling from various datasets based on
data quality. For example, Lin et al. (2024) propose RHO-
1, which uses Selective Language Models to select tokens
that align the data mixture with the ideal ratio. Instead of
token-level selection, Ankner et al. (2024) filter low-quality
samples using the perplexity of small reference models.
Thakkar et al. (2023) demonstrate that the Influence Score
can guide data re-weighting, while their subsequent work
introduces an online data selection method that eliminates
the need for reference models.

The second line focuses on explicitly adjusting data mix-
ture by modeling the relationship between data mixture and
language model performance. The simplest approach is to
observe the performance of various data mixtures and se-
lect the optimal one, as done during Gopher training (Rae
et al., 2022). This is costly and difficult to scale for larger
models. Xie et al. (2023a) propose DoReMi and use a
small proxy model to re-weight data from different domains,
improving training efficiency for larger models. However,
DoReMi still requires a pre-trained reference model, adding

computational costs and making it hard to define an ideal
reference model. Some works aim to model the functional
relationship between data mixture and the LM performance.
Inspired by scaling laws (Kaplan et al., 2020; Hoffmann
et al., 2022a), Ye et al. (2024) introduce Data Mixing Laws,
which describe this relationship using an exponential form.
Ge et al. (2024) propose BiMix, a scaling law that considers
both compute and data mixture. Que et al. (2024) and Wang
et al. (2025) develop scaling laws for continual pretraining,
and how mixture ratio as one variable impacts LM loss is
modeled. Recently, Liu et al. (2024) propose Linear Re-
gression to model the validation loss across different data
mixtures, showing a strong and promising performance.

All these prior works face two main issues: 1) Computa-
tional Efficiency: For example, the estimated FLOPs for
DoReMi and RegMix are high to 3.7 x 10! and 3.5 x 108,
respectively, for calculating less than 22 datasets. More-
over, the computational complexity of these methods will
grow non-linearly as the number of datasets increases. 2)
Lack of Scalability: When the components of the training
dataset change (e.g., adding some new datasets), previous
methods (Ye et al., 2024; Liu et al., 2024) require resam-
pling data mixtures, retraining proxy models, and then re-
performing the fitting process. In this paper, we introduce
DOMAIN2VEC to decompose any dataset into a linear com-
bination of meta-domains. DOMAIN2VEC shares some
concepts with prior meta-learning works, such as Jomaa
et al. (2021) and Chen et al. (2024), which explore dataset
representation in latent spaces. While sharing this concept,
DOMAIN2VEC differs in both purpose and implementation,
and we focus on the data mixture in LM pretraining.

6. Conclusion

In this work, we introduce DOMAIN2VEC, a novel method
to capture the underlying features of datasets by decom-
posing datasets into a linear combination of several meta-
domains. It enables us to acquire vectorized representa-
tion for arbitrary datasets. Building on these domain vec-
tors, we introduce a training-free approach by Distribu-
tion Alignment Assumption (DA?) to identify optimal data
mixtures for language model pretraining Furthermore, DO-
MAIN2VEC seamlessly integrates with existing methods,
significantly enhancing their efficiency and scalability while
establishing a direct relationship between model perfor-
mance and computed domain vectors—all without requiring
retraining when training datasets change. Our experimental
results demonstrate that both DOMAIN2VEC+DA? and Do-
MAIN2VEC+RegMix achieve comparable text generation
and downstream task performance with reduced compu-
tational overhead compared to existing approaches. We
believe this work offers valuable insights into optimizing
data mixtures for language model pretraining and paves the
way for more efficient training strategies.
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A. Detailed Description of the Distribution Alignment Assumption

In this section, we will introduce the detailed description of the Distribution Alignment Assumption for language model
pretraining.
In the scenario of finding the optimal data mixture for language model pretraining, the validation set D,,q;4 is fixed, and we
should adjust the data mixture to construct the training set Dy;.q;y, to achieve lower validation loss calculated by Equation 8,
where 6 is parameters of a pretrained language model.
~ |X ‘ ~
EX~D, 010 — 108 P(X10) = EX~D,a1ia Z —log(P(x;]z<;,0)) ®)
i=1
Typically, we pretrain language models via next token prediction (Radford, 2018) like Equation 9.
6 = argmaxEx.p,,, log P(X|6)

1] )
= arg m;lx EXNDtmm Z; log(P(xi|I<i7 9))

That is, we need to find a 6 that maximizes the expected probability of X ~ Dy,..n, Which is also known as Maximum
Likelihood Estimation (MLE). When the data distributions of Dy, and Di,jiq are aligned, the optimization target of language
models pretraining process equals find a 6 that maximizes the expected probability of X ~ D,,,;;4. Therefore, we introduce
the Distribution Alignment Assumption for language model pretraining, a novel method to find the optimal data mixture
without training.

B. Algorithm

In Algorithm 1, we show the pseudo code for acquiring the domain vector for pretraining datasets.

In Algorithm 2 and 3, we show the pseudo code for how to use DOMAIN2VEC to find the optimal data mixture, including
Distribution Alignment Assumption, and applying DOMAIN2VEC to RegMix.

Note that when applying DOMAIN2VEC+DA? or DOMAIN2VEC+RegMix , for getting more stable and accurate results,
one could also average the k-best ratios in the K sampled candidates data mixture. We present top-1 as one example in the
pseudo codes. We adopt top-1 for direct comparison in Section 4.1, while we adopt top-100 in Section 4.2, which is aligned
with RegMix (Liu et al., 2024).

Algorithm 1 DOMAIN2VEC

Require: Training datasets Dy qin, = {D1, D2, ..., D} , validation dataset D,q;;4, meta-domain classifier Classifier
1: Domain vectors Viy.qin = []
2: fori = 1tomdo

3 Sample N documents doc; .y from D;

4 v=4 Z;vzl Classifier(doc; ), where doc; € D;

5 Virain = [Wraina ’Ui]

6

7

8

9

: end for

: Sample N data J\;)oints from Dy 4144

D Vyalid = % =1 Classifier(doc; ), where doc; € Dyqiia
. Return: Vi,qin = [U1,02, ..., Um], Uyalid

C. Data Mixture of Different Methods

In this section, we will show the data mixture on The Pile (Gao et al., 2021) of different methods we used in this paper
for reproduction. In Table 5, we show the optimal data mixture predicted by DOMAIN2VEC + DA? and DOMAIN2VEC +
RegMix. It should be noted that, to avoid the over-fitting problem, any subset of The Pile (Gao et al., 2021) will be only
trained at most one epoch. Because we adopt rejection sampling to filter out certain unreasonable data mixtures. The data
mixture predicted may change as model sizes change.
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Algorithm 2 DOMAIN2VEC+DA?
Require: Domain vectors of training datasets Vi,.qi, = [v1, V2, ..., Uy, ], domain vectors of validation dataset v,,q;;4, token
distribution of training datasets a;,qn-
: Sample K candidates data mixture 7; from Dirichlet(atrqin)

1

2: The optimal data mixture r* = 7

3: fori =2to K do

4 if DiSt(‘/train T, vvalid) < DiSt(‘/;frain . T‘*, vvalid) then
5: r*=r;

6 end if

7: end for

8: Return: the optimal data mixture r*

Algorithm 3 DOMAIN2VEC+RegMix

Require: Domain vectors of training datasets Vi qin = [V1, 2, -+ , ¥p], domain vectors of validation dataset v, =
[q1,G2," " ,qn] ", token distribution of training datasets @,q;,, fitted model for each meta-domain f;(-).

Sample K candidates data mixture r; from Dirichlet(@yqin)

The optimal data mixture r* = r;

Def E(T‘) = i qi - fi(‘/train : T)

fori=2to }{ldo
if £(r;) < L(r*) then
rt=r;
L(r*) = L(r;)
end if
end for

Return: the optimal data mixture r*

R A A S o ey

_
e

D. Experimental Results of Pilot Study

In this section, we report the validation loss on various datasets arXiv, C4, Book3, PG19 from RedPajama (Weber et al., 2024),
and BookCorpus2, DM Mathematics, Enron Emails, FreeLaw, HackerNews, NIH ExPorter, OpenSubtitles, OpenWebText2,
PhilPapers, PubMed Abstracts, PubMed Central, USPTO Backgrounds, Ubuntu IRC, Youtube Subtitles from The Pile (Gao
et al., 2021) in Figure 3, Figure 8 and Figure 9.

E. Comparative Study on Different Distributional Measures of DA?

In Section 3.3, we use Huber Loss to measure the similarity of domain vectors. Technically, Huber loss combines the
advantages of L1 and L2 distance. In Table 4, we add the results of different distributional measures. As shown in the
Table 4, Huber Loss shows better performance than L1/L.2/JS Distance. Additionally, Wasserstein distance is a very great
option. However, it would require an extra metric space matrix, M, to measure the distance between two domain vectors. In
this work, the metric space, M € R260%260 g actually the “dataset transition cost” between each two meta-domains, and is
non-trivial. Each element in M. c; ; could be estimated via £; ; , the loss at meta-domain j after training on meta-domain ¢,
which requires additional computational resources. Considering that Huber Loss already achieved very positive results, we
did not conduct this experiment. We believe that Wasserstein distance can also present a positive result (even better) if the
metric space is well estimated, and we leave this for future work.
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Table 4. Huber Loss shows better performance than L.1/L.2/JS Distance.

Distributional Measure \ Pearson Spearman

Huber Loss 0.5833 0.6657
JS Distance 0.4527 0.5000
L1 Distance 0.4830 0.5400
L2 Distance 0.5720 0.6429

Table 5. The data mixture of The Pile (Gao et al., 2021) from different baselines, which aligns with the data mixture used in Liu et al.
(2024).

Data Mixture | Human DoReMi Pile-CC Only RegMix
ArXiv 0.134 0.004 0.0 0.001
FreeLaw 0.049 0.005 0.0 0.001
NIH ExPorter 0.007 0.008 0.0 0.001
PubMed Central 0.136 0.006 0.0 0.003
Wikipedia (en) 0.117 0.086 0.0 0.016
DM Mathematics 0.025 0.002 0.0 0.0
Github 0.054 0.022 0.0 0.0
PhilPapers 0.003 0.034 0.0 0.0
Stack Exchange 0.118 0.019 0.0 0.0
Enron Emails 0.004 0.009 0.0 0.002
Gutenberg (PG-19) 0.025 0.009 0.0 0.002
Pile-CC 0.142 0.743 1.0 0.87
Ubuntu IRC 0.009 0.011 0.0 0.064
EuroParl 0.005 0.008 0.0 0.0
HackerNews 0.01 0.016 0.0 0.012
PubMed Abstracts 0.107 0.014 0.0 0.024
USPTO Backgrounds 0.053 0.004 0.0 0.002

Figure 7. The Domain Vector of each sub-dataset of The Pile (Gao et al., 2021), where each row corresponds to a sub-dataset and each
column corresponds to a meta-domain. The higher the proportion of data belonging to a particular meta-domain, the closer the color of
the corresponding cell is to blue). Additionally, since The Pile primarily consists of English texts, we only display the distribution on
English meta-domains for clarity.
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Table 6. The optimal data mixture predicted by DOMAIN2VEC + DA? and DOMAIN2VEC + RegMix. To avoid the over-fitting problem,
any subset of The Pile (Gao et al., 2021) will be trained at most one epoch. And we adopt rejection sampling to filter out certain
unreasonable data mixtures. Thus, the data mixture predicted may change as model sizes change.

Data Mixture | DOMAIN2VEC+DA? | DOMAIN2VEC+RegMix
| 106M 290M 595M 1B | 106M 290M 595M 1B

ArXiv 0.0131 00131 0.0389 0.0431 | 0.0152 0.0070 0.0114 0.0103
FreeLaw 0.0076  0.0076  0.0316  0.0305 | 0.0395 0.0267 0.0339  0.0268
NIH ExPorter 0.0008  0.0008 0.0028 0.0023 | 0.0000 0.0199  0.0000 0.0000
PubMed Central 0.0773  0.0773  0.0519 0.0704 | 0.0343 0.0576 0.0099 0.0518
Wikipedia (en) 02970 02970 02049 0.2126 | 0.0847 0.0101 0.1014 02577
DM Mathematics 0.0003  0.0003 0.0056 0.0026 | 0.0177 0.0018 0.0011  0.0008
Github 0.0096  0.0096 0.0290 0.0298 | 0.0034 0.0538 0.0500 0.0138
PhilPapers 0.0018  0.0018 0.0093  0.0025 | 0.0118 0.0005 0.0333  0.0401
Stack Exchange 0.0464  0.0464 0.0661 0.0585 | 0.0698 0.0430 0.1199  0.0262
Enron Emails 0.0000  0.0000 0.0009  0.0000 | 0.0018 0.0000 0.0000 0.0000
Gutenberg (PG-19) | 0.0217  0.0217  0.0484  0.0370 | 0.0467 0.0223 0.0007  0.0252
Pile-CC 04338 04338 03191 03814 | 0.5370 0.6323 0.5546 0.4704
Ubuntu IRC 0.0022  0.0022 0.0063 0.0072 | 0.1019 0.0123 0.0161  0.0069
EuroParl 0.0003  0.0003 0.0042  0.0040 | 0.0070 0.0037 0.0116  0.0000
HackerNews 0.0154 00154 0.0521 0.0199 | 0.0028 0.0551 0.0170 0.0673
PubMed Abstracts 0.0596  0.0596 0.0739  0.0532 | 0.0259 0.0102 0.0190 0.0017
USPTO Backgrounds | 0.0130  0.0130  0.0549  0.0449 | 0.0004 0.0438 0.0201  0.0010

Table 7. The parameters of different models we used in Section 4.1 and Section 4.2. When calculating the model parameters, we do not
take into account the embedding layer and the language model head layer.

Parameter \ Text Generation \ Downstream Task

\ 83M 1.6B 106M 290M 595M 1B
Hidden Size 768 2,048 768 1,280 1,536 2,048
FFN Hidden Size 2,048 5,504 2,048 3,392 4,096 5,440
Num of Layers 12 24 15 15 21 21
Num of Heads 12 16 12 10 12 32
Max Seq Length 4,096 4,096 4,096 4,096 4,096 4,096
Vocab Size 128,256 128,256 | 151,936 151,936 151,936 151,936
RoPE Base 10,000 10,000 10,000 10,000 10,000 10,000
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Table 8. Downstream Task Performance of different data mixture on 106M Model. Similar to Liu et al. (2024), Human refers the original
data mixture from The Pile. Pile-CC Only refers only training on the Pile-CC subset. The data mixture and estimated flops of DoReMi
and RegMix are from Liu et al. (2024).

Benchmark Human DoReMi Pile-CC Only RegMix DOMAIN2VEC + DA?  DOMAIN2VEC + RegMix
106M Model Pretrained on 2B Tokens
Social IQA 0.340 0.349 0.353 0.356 0.339 0.342
HellaSwag 0.268 0.268 0.269 0.269 0.267 0.264
PiQA 0.573 0.584 0.580 0.586 0.579 0.583
OpenBookQA 0.245 0.251 0.249 0.242 0.245 0.249
Lambada 0.065 0.099 0.102 0.091 0.091 0.090
SciQ 0.550 0.520 0.509 0.537 0.549 0.518
ARC Easy 0.329 0.339 0.335 0.337 0.334 0.331
COPA 0.525 0.570 0.572 0.585 0.578 0.557
RACE 0.236 0.254 0.246 0.251 0.240 0.244
LogiQA 0.282 0.280 0.271 0.274 0.268 0.286
WinoGrande 0.516 0.516 0.502 0.508 0.506 0.499
MultiRC 0.539 0.520 0.515 0.533 0.541 0.544
Average Performance 0.372 0.379 0.375 0.381 0.378 0.376
290M Model Pretrained on 6B Tokens
Social IQA 0.364 0.373 0.374 0.371 0.371 0.368
HellaSwag 0.295 0.312 0.317 0.315 0.307 0.312
PiQA 0.605 0.631 0.639 0.642 0.624 0.633
OpenBookQA 0.261 0.271 0.271 0.262 0.268 0.266
Lambada 0.175 0.208 0.206 0.210 0.182 0.208
SciQ 0.711 0.682 0.663 0.674 0.670 0.697
ARC Easy 0.395 0.410 0.419 0.417 0.420 0412
COPA 0.632 0.660 0.682 0.657 0.627 0.642
RACE 0.265 0.280 0.280 0.276 0.283 0.281
LogiQA 0.283 0.293 0.296 0.276 0.277 0.292
WinoGrande 0.511 0.506 0.509 0.524 0.498 0.504
MultiRC 0.507 0.555 0.513 0.545 0.521 0.517
Average Performance 0.417 0.432 0.431 0.431 0.421 0.428
595M Model Pretrained on 12B Tokens
Social IQA 0.378 0.387 0.390 0.394 0.383 0.388
HellaSwag 0.338 0.377 0.386 0.385 0.355 0.366
PiQA 0.624 0.656 0.663 0.667 0.651 0.659
OpenBookQA 0.273 0.279 0.283 0.294 0.288 0.271
Lambada 0.255 0.294 0.332 0.310 0.269 0.292
SciQ 0.777 0.757 0.770 0.791 0.763 0.769
ARC Easy 0.439 0.453 0.478 0.481 0.453 0.460
COPA 0.642 0.680 0.672 0.663 0.668 0.667
RACE 0.289 0.309 0.311 0.311 0.288 0.303
LogiQA 0.263 0.268 0.252 0.267 0.263 0.267
WinoGrande 0.509 0.515 0.506 0.509 0.512 0.503
MultiRC 0.516 0.533 0.522 0.507 0.506 0.527
Average Performance 0.442 0.459 0.464 0.465 0.450 0.456
1B Model Pretrained on 20B Tokens
Social IQA 0.387 0.411 0.406 0.406 0.394 0.401
HellaSwag 0.375 0.427 0.431 0.436 0.410 0.410
PiQA 0.658 0.684 0.693 0.691 0.684 0.680
OpenBookQA 0.278 0.298 0.300 0.304 0.299 0.302
Lambada 0.301 0.359 0.348 0.353 0.334 0.339
SciQ 0.802 0.822 0.809 0.828 0.821 0.818
ARC Easy 0.482 0.508 0.512 0.518 0.500 0.499
COPA 0.683 0.692 0.713 0.708 0.678 0.698
RACE 0.306 0.319 0.313 0.314 0.305 0.300
LogiQA 0.259 0.258 0.269 0.272 0.268 0.267
WinoGrande 0.513 0.527 0.541 0.512 0.535 0.533
MultiRC 0.523 0.504 0.510 0.530 0.529 0.548
Average Performance 0.464 0.484 0.487 0.489 0.480 0.483
. 3.7 x 10" 3.5 x 10'® 9.66 x 10'° 9.66 x 10'°
Estimated FLOPs 0 (100%) 0 (9.46%) (0.26%) (0.26%)
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Figure 8. The validation loss on different dataset of models trained using data mixture in Table 1.
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Figure 9. The validation loss on different dataset of models trained using data mixture in Table 1.
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