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ABSTRACT

The computational design of novel protein structures has the potential to impact
numerous scientific disciplines greatly. Toward this goal, we introduce FOLDFLOW
a series of novel generative models of increasing modeling power based on the
flow-matching paradigm over 3D rigid motions—i.e. the group SE(3)—enabling
accurate modeling of protein backbones. We first introduce FOLDFLOW-BASE
a simulation-free approach to learning deterministic continuous-time dynamics
and matching invariant target distributions on SE(3). We next accelerate training
by incorporating Riemannian optimal transport to create FOLDFLOW-OT leading
to the construction of both more simple and stable flows. Finally, we design
FOLDFLOW-SFM coupling both Riemannian OT and simulation-free training to
learn stochastic continuous-time dynamics over SE(3). Our family of FOLDFLOW
generative models offers several key advantages over previous approaches to the
generative modeling of proteins: they are more stable and faster to train than
diffusion-based approaches, and our models enjoy the ability to map any invariant
source distribution to any invariant target distribution over SE(3). Empirically,
we validate FOLDFLOW on protein backbone generation of up to 300 amino acids
leading to high-quality designable, diverse, and novel samples.

1 INTRODUCTION
Proteins are one of the basic building blocks of life. Their complex geometric structure enables
specific inter-molecular interactions that allow for crucial functions within organisms, such as acting
as catalysts in chemical reactions, transporters for molecules, and providing immune responses.
Normally, such functions arise as a result of evolution. With the emergence of computational
techniques, it has become possible to rationally design novel proteins with desired structures that
program their functions. Such methods are now seen as the future of drug design and can lead
to solutions to long-standing global health challenges. Some recent examples include rationally
designed protein binders for receptors related to influenza (Strauch et al., 2017), COVID-19 (Cao
et al., 2020a; Gainza et al., 2023), and cancer (Silva et al., 2019).
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RFDiffusion ✗ ✗ ✓ ✗
FrameDiff ✗ ✗ ✓ ✗
FOLDFLOW-BASE ✓ ✗ ✗ ✓
FOLDFLOW-OT ✓ ✓ ✗ ✓
FOLDFLOW-SFM ✓ ✓∗ ✓ ✓

Figure 1: Left: Conditional probability paths learned by FOLDFLOW-BASE (left), FOLDFLOW-OT (mid), and
FOLDFLOW-SFM (right). We visualize the rotation trajectory of a single residue by the action of SO(3) on its
homogenous space S2. Right: Table with the properties of each model: whether they can map from a general
source distribution, perform optimal transport, are stochastic, or require the score of the IGSO(3) density.

In protein engineering, the term de novo design refers to a setting when a new protein is designed to
satisfy pre-specified structural and functional properties (Huang et al., 2016). Chemically, a protein is
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a sequence of amino acids (residues) linked into a chain that folds into a complex 3D structure under
the influence of electrostatic forces. The protein backbone can be seen as N rigid bodies (correspond-
ing toN residues) that contain four heavy atoms N−Cα−C−O. Mathematically, each residue can be
associated with a frame that adheres to the symmetries of orientation-preserving rigid transformations
(3D rotations and translations), forming the special Euclidean group SE(3) (Jumper et al., 2021); the
entire protein backbone is described by the group product SE(3)N . The problem of protein design
can be formulated as sampling from the distribution over this group, which is a perspective used in
our paper. Recently, generative models have been generalized to Riemannian manifolds (Mathieu
& Nickel, 2020; De Bortoli et al., 2022). However, they are not purpose-built to exploit the rich
geometric structure of SE(3)N . Furthermore, several approaches require numerically expensive steps
like simulating a Stochastic Differential Equation (SDE) during training or using the Riemannian
divergence in the objective (Huang et al., 2022; Leach et al., 2022; Ben-Hamu et al., 2022).
Our approach. We introduce FOLDFLOW, a family of continuous normalizing flows (CNFs) tailored
for distributions on SE(3)

N (fig. 1). We use the framework of Conditional Flow Matching (CFM),
a simulation-free approach to learning CNFs by directly regressing time-dependent vector fields that
generate probability paths (Lipman et al., 2022; Tong et al., 2023b). In particular, we introduce three
new CFM-based models that learn SE(3)

N -invariant distributions to generate protein backbones.
In contrast to the previous SE(3) diffusion approach of Yim et al. (2023b), our FOLDFLOW is able
to start from an informative prior. This enables new applications of generative models for protein
design such as equilibrium conformation generation (Zheng et al., 2023).
Main contributions. Our first model FOLDFLOW-BASE extends the Riemannian flow matching
approach (Chen & Lipman, 2023) by introducing a closed-form expression of the ground truth condi-
tional vector field for SO(3) needed in the loss computation—thus greatly increasing speed and stabil-
ity of training. Next, in FOLDFLOW-OT, we accelerate the training of our base model by constructing
shorter and simpler flows using Riemannian Optimal Transport (OT) by proving the existence of a
Monge map on SE(3)

N . Finally, we present our most complex simulation-free model, FOLDFLOW-
SFM, which learns a stochastic bridge on SE(3)

N . Empirically, we validate our proposed models
by learning to generate protein backbones of up to 300 residues. We observe that all FOLDFLOW
models outperform the current SOTA non-pretrained diffusion model in FrameDiff (Yim et al., 2023b)
for in-silico designability with FOLDFLOW-OT being the most designable. Moreover, for novelty
FOLDFLOW-SFM is competitive with the current gold-standard RFDiffusion (Watson et al., 2023)
with a fraction of the compute and data resources. We highlight the importance of novel and designable
proteins as a key goal in AI-powered drug discovery where useful drug candidates are necessarily be-
yond the available training set (Schneider, 2018; Schneider et al., 2020; Marchand et al., 2022). Finally,
we show the utility of FOLDFLOW on equilibrium conformation generation by learning to simulate
molecular dynamics trajectories starting from a reference empirical distribution in comparison to an
uninformed prior. Our code can be found at https://github.com/DreamFold/FoldFlow.

2 BACKGROUND AND PRELIMINARIES

2.1 RIEMANNIAN MANIFOLDS AND LIE GROUPS

Riemannian manifolds. Informally, an n-dimensional manifoldM is a topological space locally
equivalent (homeomorphic) to Rn. This implies that one has the notion of ‘neighbourhood’ but not of
‘distance’ or ‘angle’ onM. The manifold is said to be smooth if it additionally has a C∞ differential
structure. At every point x ∈M, one can attach a tangent space Tx. The disjoint union of tangent
spaces forms the tangent bundle. A Riemannian manifold1 (M, g) is additionally equipped with
an inner product (Riemannian metric) gx : TxM×TxM→ R on the tangent space TxM at each
x ∈M. The Riemannian metric g allows to define key geometric quantities onM such as distances,
volumes, angles, and length minimizing curves (geodesics). We consider functions defined onM and
the tangent bundle, referred to as scalar- and vector fields, respectively. The Riemannian gradient
is an operator ∇g : C∞(M)→ X(M) between the respective functional spaces. Given a smooth
scalar field f ∈ C∞(M), its gradient∇gf ∈ X(M) is the local direction of its steepest change.
Lie groups. A Lie group is a group that is also a differentiable manifold, in which the group operations
◦ : G×G→ G of multiplication and inversion are smooth maps. It has a left action Lh : G→ G
defined by x 7→ h◦x that is a topological isomorphism and whom the derivative is also an isomorphism
between the tangent spaces on G. Since a group has an identity element, its tangent space is of special
interest and is known as the Lie algebra G. The Lie algebra is a vector space with an associated bilinear

1We tacitly assume M to be orientable, connected, and complete and admit a volume form denoted as dx.
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operation called the Lie bracket that is anticommutative and satisfies the Jacobi identity. Lie algebras
elements can be mapped to the Lie group via the exponential map exp : G→ G which has an inverse
called the logarithmic map log : G→ G. For matrix Lie groups where the group action is the matrix
multiplication, the exp and log maps correspond to the matrix exponential and matrix logarithm.
The orientation-preserving rigid motions form the matrix Lie group SE(3) ∼= SO(3)⋉ (R3,+), a
semidirect product of rotations and translations (see §A.1 §A.2, and Hall (2013) for details).

2.2 FLOW MATCHING ON RIEMANNIAN MANIFOLDS

Analogous to Euclidean spaces, probability densities can be defined on Riemannian manifolds as
continuous non-negative functions ρ :M→ R+ that integrate to

∫
M ρ(x)dx = 1.

Probability paths on Riemannian manifolds. Let P(M) be the space of probability distributions
onM. A probability path ρt : [0, 1]→ P(M) is an interpolation in probability space between two
distributions ρ0, ρ1 ∈ P(M) indexed by a continuous parameter t. A one-parameter diffeomorphism
ψt :M → M is known as a flow onM and is defined as the solution of the following ordinary
differential equation (ODE): d

dtψt(x) = ut (ψt(x)), with initial conditions ψ0(x) = x, for u :
[0, 1]×M→M a time-dependent smooth vector field. We say the flow ψt generates ρt if it pushes
forward ρ0 to ρ1 by following the time-dependent vector field ut—i.e. ρt = [ψt]#(ρ0). As ψt is a
diffeomorphism, ρt verifies the famous continuity equation and the density can be calculated using
the instantaneous change of variables formula for Riemannian manifolds (Mathieu & Nickel, 2020).
Riemannian flow matching. Given a probability path ρt that connects ρ0 to ρ1, and its associated
flow ψt, we can learn a CNF by directly regressing the vector field ut with a parametric one
vθ ∈ X(M). This technique is termed flow matching (Lipman et al., 2022, FM) and leads to a
simulation-free training objective as long as ρt satisfies the boundary conditions ρ0 = ρdata and
ρ1 = ρprior. Unfortunately, the vanilla flow matching objective is intractable as we generally do not
have access to the closed-form of ut that generates ρt. Instead, we can opt to regress vθ against a
conditional vector field ut(xt|z), generating a conditional probability path ρt(xt|z), and use it to
recover the target unconditional path: ρt(xt) =

∫
M ρt(xt|z)q(z)dz. The vector field ut can also

be recovered by marginalizing of conditional vector fields: ut(x) :=
∫
M ut(x|z)ρt(xt|z)q(z)

ρt(x)
dz. The

Riemannian CFM objective (Chen & Lipman, 2023) is then,
Lrcfm(θ) = Et,q(z),ρt(xt|z)∥vθ(t, xt)− ut(xt|z)∥

2
g, t ∼ U(0, 1). (1)

As FM and CFM objectives have the same gradients (Tong et al., 2023b), at inference, we can
generate by sampling from ρ1, and using vθ to propagate the ODE backward in time.

2.3 PROTEIN BACKBONE PARAMETRIZATION

Figure 2: Protein backbone parametrization.

Our protein backbone parameterization follows the
seminal work of AlphaFold2 (Jumper et al., 2021,
AF2) in that we associate a frame with each residue
in the amino acid sequence. For a protein of length
N this results in N frames that are SE(3)-equivariant.
Each frame maps a rigid transformation starting
from idealized coordinates of four heavy atoms
N∗,C∗

α,C
∗,O∗ ∈ R3, with C∗

α = (0, 0, 0) being
centered at the origin, and is a measurement of experimental bond angles and lengths (Engh & Huber,
2012). Thus, residue i ∈ [N ] is represented as an action of xi = (ri, si) ∈ SE(3) applied to the
idealized frame [N,Cα,C,O]i = xi ◦ [N∗,C∗

α,C
∗,O∗]. To construct the backbone oxygen atom O,

we rotate about the axis given by the bond between Cα and C using an additional rotation angle
φ. Finally, we denote the full 3D coordinates of all heavy atoms as A ∈ RN×4×3. An illustration for
this backbone parametrization is provided in fig. 2 with rotations being parametrized as r = v × w.

3 FOLDFLOW FOR CONDITION FLOW MATCHING ON SE(3)

We seek to learn an SE(3)
N invariant density ρt by training a flow using the objective in eq. (1). To

do so we can pushforward an SE(3)
N -invariant source distribution ρ1 to the empirical distribution

of proteins ρ0 using an equivariant flow. One way to guarantee the existence of a translation-invariant
measure is to construct a subspace that is invariant to global translations. This can be achieved by
simply subtracting the center of mass of all inputs to the flow (Rudolph et al., 2021; Yim et al., 2023b).
Formally, this leads to an invariant measure on SE(3)

N

0
which is a subgroup of SE(3)N . We then note

that SE(3)N
0

is a product group and thus the Riemannian metric extends in a natural way to the product
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space: the exponential and logarithmic maps decompose across each manifold, and the geodesic
distance in SE(3)

N

0
is simply the sum of each individual distance in the product. As such, a flow on

SE(3)
N

0
can be built from separate flows for each residue in the backbone, on SE(3), after centering.

Decomposing SE(3) into SO(3) and R3. As Lie groups are manifolds, they can be equipped with a
metric to obtain a Riemannian structure. In the case of SE(3) ∼= SO(3)⋉ (R3,+) there are multiple
possible choices, but a natural one is ⟨x, x′⟩SE(3) = ⟨r, r′⟩SO(3) + ⟨s, s′⟩R3 (see §A.2). Moreover,
the disintegration of measures implies that every SE(3)-invariant measure can be broken down to
a SO(3)-invariant measure and a measure proportional to the Lebesgue measure on R3 (Pollard,
2002). Thus, we may simply build independent flows on SO(3) and R3. In this section, we
focus on designing FOLDFLOW models on SO(3), as CFMs on Rd are well-studied in Albergo &
Vanden-Eijnden (2023); Lipman et al. (2022); Tong et al. (2023b) (we provide a complete description
in §B). We use the notation ρt, q, and π for densities whose support is determined by its context.

3.1 FOLDFLOW-BASE

To construct a flow on SO(3) that connects the target distribution ρ0 to a source distribution ρ1,
we must first choose a parametrization of the group elements. The most familiar and natural
parametrization is by orthogonal matrices with unit determinant (see §A.1 for a discussion on other
parametrizations e.g. rotation-vector). The Lie algebra so(3) contains skew-symmetric matrices
r that are tangent vectors at the identity of SO(3). The last important component that we require is
a choice of Riemannian metric for SO(3). A canonical bi-invariant metric for SO(3) can be derived
from the Killing form (see §A.1), and is given by: ⟨r, r′⟩SO(3) = tr(rr′T )/2.

SO(3) conditional vector fields and flows. We seek to construct a conditional vector field ut(rt|z),
lying on the tangent space TrtSO(3), that transports r0 ∼ ρ0 to r1 ∼ ρ1. Following, Tong et al.
(2023b) we set the conditioner to z = (r0, r1). Next, we construct a flow ψt that connects r0 to r1.
We follow the most natural strategy which is to build the flow using the geodesic between r0 and r1.
For generalM, the geodesic interpolant between two points, indexed by t, has the following form:

rt = expr0(t logr0(r1)). (2)
For rotation matrices, eq. (2) involves computing the exp and log maps which are both infinite matrix
power series. Unfortunately, controlling the approximation error of logr0 map is computationally
expensive as the de facto inverse scaling method for computing matrix logarithms requires estimating
and calculating fractional matrix powers (Al-Mohy & Higham, 2012). Instead, we use a numerical
trick by converting r1 to its axis-angle representation which gives a vector representation of
r1 ∈ so(3) and, by definition, lives at the tangent space at the identity and is equivalent to loge(r1).
Next, we can parallel transport r1 to the tangent space of r0 since Lie algebras of all tangent spaces
are isomorphic and SO(3) carries a free action which gives us the desired end result logr0(r1).
Given rt, we can build constant velocity vector fields by directly leveraging the ODE associated with
the conditional flow: d

dtψt(r) = ṙt (Chen & Lipman, 2023). As a result, computing ut(rt|z) boils
down to computing the point rt along the ODE and taking its time derivative. In practice, taking the
time-derivative to compute ut = ṙt amounts to using autograd to compute the gradient during a for-
ward pass. We can overcome this unnecessary overhead without relying on automatic differentiation
but instead by exploiting the geometry of the problem. Specifically, we calculate the so(3) element
corresponding to the relative rotation between r0 and rt, given by r⊤t r0. We divide by t to get a
vector which is an element of so(3) and corresponds to the skew-symmetric matrix representation of
the velocity vector pointing towards the target r1. Finally, we parallel-transport the velocity vector to
the tangent space TrtSO(3) using left matrix multiplication by rt. These operations can be concisely
written as logrt(r0), where we use our numerical trick to calculate the matrix logarithm. The closed
form expression of the loss to train the SO(3) component of FOLDFLOW-BASE is thus

LFOLDFLOW-BASE−SO(3)(θ) = Et∼U(0,1),q(r0,r1),ρt(rt|r0,r1)
∥∥vθ(t, rt)− logrt(r0)/t

∥∥2
SO(3)

. (3)

In eq. (3) the conditioning distribution q(z) = q(r0, r1) is the independent coupling q(r0, r1) = ρ0ρ1,
where ρ1 = U(SO(3)) and is left-invariant w.r.t. to the Haar measure. Also, note that the vector field
in eq. (3) is on the tangent space vθ ∈ TrtSO(3) and the norm is induced by the metric on SO(3).

3.2 FOLDFLOW-OT

The conditional vector field ut(rt|z) generates the conditional probability path ρt(rt|z) which
deterministically evolves ρ0 to ρ1. However, there is no reason to believe the conditional probability
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path is optimal in the sense that it is a length-minimizing curve, under an appropriate metric, in the
space of distributions P(SO(3)). We seek to rectify this by constructing conditional probability paths
that are not only shorter and straighter, but also more stable from an optimization perspective. This is
motivated by previous research (Tong et al., 2023b; Pooladian et al., 2023a) which has shown optimal
transport to lead to faster training with a lower variance training objective in Euclidean spaces.
To this end, we propose FOLDFLOW-OT, a model that accelerates FOLDFLOW-BASE by constructing
conditional probability paths using Riemannian optimal transport. The interpolation measure ρt con-
nects ρ0 → ρ1 and is built from Riemannian OT which solves the Monge optimal transport problem:

OT(ρ0, ρ1) = inf
Ψ:Ψ#ρ0=ρ1

∫
SE(3)N0

1

2
c(x,Ψ(x))2 dρ0(x). (4)

Here c is the geodesic cost induced by the metric (cf. eq. (25) in §A.2) and Ψ a pushforward map:
ρ0 → ρ1. A related problem, called the OT-Kantorovich formulation, relaxes the Monge problem by
looking for a joint probability distribution π minimizing the displacement cost of transporting ρ0 to
ρ1 (see §C.1). The uniqueness of the Monge map over SE(3)N

0
is guaranteed under some assumptions

on the measures ρ0, ρ1 as stated in the following proposition and proven in §C.2.

Proposition 1. Let us consider SE(3)N
0

with the product distance dSE(3)N0
and two compactly

supported probability distributions ρ0, ρ1 ∈ P(SE(3)N
0
). In addition, suppose that ρ0 is abso-

lutely continuous with respect to Riemannian volume form (i.e., ρ0 ≪ dx). Then for the distance
c = 1

2d
2
SE(3)N0

, the Kantorovich and Monge problems admit a unique solution that is connected as
follows π = (id×Ψ)#ρ0, where Ψ is almost uniquely determined everywhere ρ0. Furthermore,
we have that Ψ(x) = expx(∇ϕ(x)) for some d2

SE(3)N0
-concave function ϕ.

Following this proposition, we define the McCann interpolants as ρt(x) = (expx(−t∇ϕ(x)))#ρ0.
While it is possible to approximate the Monge map and McCann interpolants using c-concave
functions, it imposes practical limitations on the architecture of the flow (Cohen et al., 2021). Instead,
we use the correspondence between the Monge and Kantorovich problems and rely on the optimal
transport plan π. Formally, we draw two samples from q(z) = q(x0, x1) := π(x0, x1) and we
compute for a given frame ρt(rt|r0, r1) = δ(expr0(t logr0(r1))), where δ is a Dirac. Since our
choice of metric for SE(3) factorizes into metrics on SO(3) and R3, we can use independent losses
on rotations and translations—similar to FOLDFLOW-BASE—and repeat this over N frames, as
long as each geometric quantity in π is coupled properly. Defining π̄(r0, r1) as the projection of
π(x0, x1) on SO(3), we present the SO(3) loss for a single frame in FOLDFLOW-OT as

LFOLDFLOW-OT−SO(3)(θ) = Et∼U(0,1),π̄(r0,r1),ρt(rt|r0,r1)
∥∥vθ(t, rt)− logrt(r0)/t

∥∥2
SO(3)

. (5)

3.3 FOLDFLOW-SFM

We finally present FOLDFLOW-SFM, which builds on the foundations of both FOLDFLOW-BASE
and FOLDFLOW-OT. Departing from the deterministic dynamics of the previous models, we aim to
build a stochastic flow over SE(3)N0 by replacing these deterministic bridges with guided stochastic
bridges. Previous research has shown that, compared to ODEs, SDEs have the important benefit
of being more robust to noise in high dimensions (Tong et al., 2023a; Shi et al., 2023; Liu et al.,
2023a). For proteins in SE(3)

N

0 , this means the generative process has greater empirical calibre to
sample outside the support of the training distribution—crucial for generating designable proteins
that are also novel. In Euclidean space, we can build a translation invariant flow on (R3)N0 by using
a (reverse time) Brownian bridge as the conditional flow between the points,

dSt =
St − s0

t
dt + γ(t)dWt, S1 = s1. (6)

This flow, also known as Doob’s h-transform (Doob, 1984), is easy to sample from in a simulation-free
manner and correctly maps between arbitrary samplable marginals in expectation. Specifically, we
can build a simulation-free bridge by sampling from the conditional probability ρt(xt|x0, x1) =
N (xt; tx1 + (1− t)x0, γ2t(1− t)) (Shi et al., 2023; Albergo et al., 2023). See §B for more details.
Brownian Bridge on SO(3). On SO(3), we aim to model the dynamics between rotations matrices
by a guided diffusion bridge (Jensen et al., 2022; Liu et al., 2022), leading to the following dynamics,

dRt =
logRt

r0

t
dt + γ(t)dBt, R1 = r1, (7)
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for Bt the Brownian motion on SO(3) (see §D.1 for further technical details on this SDE). Despite
the close resemblance of this SDE to the translation one in eq. (6), the corresponding Brownian
bridge—to the best of our knowledge—does not have a closed-form expression for ρt(rt|r0, r1).
Thus, to sample from ρt(rt|r0, r1) correctly, we start at r1 and simulate the bridge backward in
time using algorithm 3 in §I.2. Given this form of the conditional bridge, we can make use of a
flow-matching loss to optimize a flow between source and target distributions on SO(3) as follows:

LSFM−SO(3)(θ) = Et∼U(0,1),π̄(r0,r1),ρt(r̃t|r0,r1)
∥∥vθ(t, r̃t)− logr̃t(r0)/t

∥∥2
SO(3)

. (8)

Here r̃t is a sample from the bridge between r0 and r1. When π(x0, x1) is a valid coupling between ρ0
and ρ1—and thus π̄(r0, r1) on SO(3)—this objective is equivalent in expectation to matching directly
the (computationally intractable) marginal loss LUSFM = Et∼U(0,1),ρt(r̃t) ∥vθ(t, r̃t)− u(t, r̃t)∥

2
SO(3).

The correctness of this approach is established in the next proposition and proved in §D.3.

Proposition 2. Given ρt(x) > 0, ∀x ∈ SE(3)
N

0 , the conditional and unconditional FOLDFLOW-
SFM losses have equal gradients w.r.t. θ: ∇θLUSFM(θ) = ∇θLSFM(θ).

This result allows us to learn a stochastic flow from any source to any target distribution supported on
SE(3)

N

0 , only requiring samples from both distributions. However, it does require simulation of an
SDE to sample from the conditional probability ρt(rt|r0, r1), limiting scalability.
An Efficient Simulation-free Approximation. Unfortunately, sampling from the correct conditional
bridge requires simulation and is thus computationally expensive for training. In practice, we use a
simulation-free approximation that closely matches the true conditional probability path on SO(3),
ρt(r̃t|r0, r1). Specifically, we approximate ρt with the simulation-free alternative,

ρ̂t(r̃t|r0, r1) = IGSO(3)

(
r̃t; expr0(t logr0(r1)), γ

2(t)t(1− t)
)
, (9)

where IGSO(3) denotes the isotropic Gaussian distribution on SO(3). This distribution can be seen as
an analog of the Gaussian distribution in Rd. It is the heat kernel on SO(3) (Nikolayev & Savyolov,
1900) and it can be seen as the limit of small i.i.d. rotations in 3D (Qiu, 2013). Additionally,
it has some of the desirable properties of the normal distribution, such as being closed under
convolution (Nikolayev & Savyolov, 1900). We provide both the training and sampling algorithms for
FOLDFLOW-SFM in §I, details on IGSO(3) in §A.3, and results on the approximation error in §D.2.

4 MODELING PROTEIN BACKBONES USING FOLDFLOW

To model protein backbones using FOLDFLOW models we parameterize the velocity prediction
vθ(t, xt) as a function that consumes a protein xt on the conditional path at time t and predicts
the starting point x̂0. Specifically, the predicted velocity is vθ(t, xt) = ∇gd(x̂0, xt)

2/t, with
x̂0 = wθ(t, xt). This choice of parameterization has two principal benefits. (1) It allows the usage of
specialized architectures specifically designed for structure prediction, and (2) it allows for auxiliary
protein-specific losses to be placed directly on the x̂0 to improve performance.
Architecture. Following by Anand & Achim (2022); Yim et al. (2023b) (FrameDiff) we use the
structure module of AF2 to model wθ. This begins with a time-dependent node and edge embeddings
Nθ(t, xt) and Eθ(t, xt), followed by layers of invariant point attention. We use a small MLP head
on top of the node embeddings to predict the torsion angle of the oxygen φ as φ̂ = MLP(Nθ(t, xt)).
Full Loss. Our FOLDFLOW models are trained to optimize a flow-matching loss on SO(3) and R3

for each residue i ∈ [N ] in the backbone. These are denoted LFOLDFLOW−SO(3) and LFOLDFLOW−R3

(see §B for the complete expression in R3) respectively. In addition to the flow-matching losses, we
also include auxiliary losses from Yim et al. (2023b) which enforce good predictions at the atomic
level in the R3 atomic representation A. These include a direct regression on the backbone (bb)
positions Lbb and a loss on the pairwise atomic distance in a local neighbourhood L2D,

Laux = EQ [Lbb + L2D] , Lbb =
1

4N

∑
∥A0 − Â0∥2, L2D =

∥1{D < 6Å}(D − D̂)∥2∑
1D<6Å −N

HereQ(t, x0, x1, x̃t) := U(0, 1)⊗ π̄(x0, x1)⊗ ρt(x̃t|x0, x1) is the factorized joint distribution, 1 is
the indicator function, A is in Angstroms (Å), D is an N ×N × 4× 4 tensor containing the pairwise
distances between the four heavy atoms, i.e. Dijab = ∥Aia −Ajb∥, and D̂ is defined similarly from
Â. We only apply auxiliary losses for t < 0.25, with scaling λaux for a final loss of:
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Figure 3: FOLDFLOW-SFM generated structures in green compared to ProteinMPNN −→ ESMFold refolded
structures in grey. Samples with RMSD < 2Å for lengths 100, 150, 200, 250, 300 from left to right.

LFOLDFLOW(θ) = LFOLDFLOW−SO(3) + LFOLDFLOW−R3 + 1{t < 0.25}λauxLaux. (10)

5 EXPERIMENTS

5.1 SO(3) SYNTHETIC DATA

Table 1: Mean and std of the 1- and
2-Wasserstein distances, computed against
5000 points in the test set, over 5 seeds.

(µ± σ) W1 (×10−2) W2 (×10−1)

FOLDFLOW-BASE 5.39± 0.88 1.52± 0.27
FOLDFLOW-OT 4.96± 0.27 1.25± 0.12
FOLDFLOW-SFM 4.92± 1.56 1.26± 0.49
Simulated SDE 5.13± 1.36 1.33± 0.44

We evaluate all our FOLDFLOW models on synthetic
multimodal densities on SO(3) as done by Brofos et al.
(2021) (see §F.1 for details). We report the Wasserstein
distance between generated and ground truth samples in
table 1 and visualize the generated samples in fig. 7 in §F.2.
We find that all our proposed methods correctly model
all the modes of the ground truth distribution. However,
FOLDFLOW-BASE exhibits mode shrinkage in relation
to the ground truth. FOLDFLOW-OT, FOLDFLOW-SFM,
and the simulated SDE results in comparable performance, with the OT-based method being the best.
Importantly, this shows that our simulation-free approximation of the SDE does not hinder model
performance, and combined with its significant speedup justifies its use in protein experiments.

5.2 PROTEIN BACKBONE DESIGN

Table 2: Comparison of Designability (fraction of proteins with scRMSD < 2.0Å and mean scRMSD),
Diversity (avg. pairwise TMscore), Novelty (max. TM-score to PDB and fraction of proteins with averaged max.
TMscore < 0.5 and scRMSD < 2.0Å). Designability and Novelty metrics include standard errors.∗RFDiffusion
and Genie have larger training sets that likely overestimate novelty with respect to our dataset.

Designability Novelty Diversity (↓) iters / sec (↑)
Fraction (↑) scRMSD (↓) Fraction (↑) avg. max TM (↓)

RFDiffusion 0.969 ± 0.023 0.650 ± 0.136 ∗0.708 ± 0.060 ∗0.449 ± 0.012 0.256 —
Genie 0.581 ± 0.064 2.968 ± 0.344 ∗0.556 ± 0.093 ∗0.434 ± 0.016 0.228 —
FrameDiff-ICML 0.402 ± 0.062 3.885 ± 0.415 0.176 ± 0.124 0.542 ± 0.046 0.237 —
FrameDiff-Improved 0.555 ± 0.071 2.929 ± 0.354 0.296 ± 0.112 0.457 ± 0.026 0.278 —

FrameDiff-Retrained 0.612 ± 0.060 2.990 ± 0.307 0.108 ± 0.083 0.684 ± 0.032 0.403 1.278
FOLDFLOW-BASE 0.657 ± 0.042 3.000 ± 0.271 0.432 ± 0.074 0.452 ± 0.024 0.264 2.674
FOLDFLOW-OT 0.820 ± 0.037 1.806 ± 0.249 0.484 ± 0.068 0.460 ± 0.020 0.247 2.673
FOLDFLOW-SFM 0.716 ± 0.040 2.296 ± 0.391 0.544 ± 0.061 0.411 ± 0.023 0.248 2.647

We evaluate FOLDFLOW models in generating valid, diverse, and novel backbones by training
on a subset of the Protein Data Bank (PDB) with 22,248 proteins. We compare FOLDFLOW to
pretrained versions of FrameDiff (Yim et al., 2023b) (FrameDiff-ICML), the improved version on
the authors’ GitHub (FrameDiff-Improved), Genie (Lin & AlQuraishi, 2023), and RFDiffusion,
which is the gold standard (Watson et al., 2023). We also retrain FrameDiff (FrameDiff-Retrained)
on our dataset, which contains ∼10% more admissible structures, while inheriting the majority of
the hyperparameters of FOLDFLOW. We provide a detailed description of all the metrics in §I.6.
Figures 3 and 10 visualize generated samples and ESM-refolded structures.
We report our findings in table 2 and observe that FOLDFLOW outperforms FrameDiff-Retrained
on all three metrics. We identify FrameDiff as the most comparable baseline as it is the current SOTA
model that does not utilize pre-training while using comparable resources. In contrast to FOLDFLOW
we highlight that RFDiffusion uses a pre-trained backbone and a significantly larger model (60m
vs. 17m parameters), training set, and compute resources (1800 vs. 10 GPU days). We also note
that Genie is trained on a larger dataset (195k vs. 22k), which hinders rigorous comparisons with
FOLDFLOW. Next, we analyze the performance of FOLDFLOW on each metric in detail.
Designability. We measure designability using the self-consistency metric with ProteinMPNN (Dau-
paras et al., 2022) and ESMFold (Lin et al., 2022), counting the fraction of proteins that refold (Cα-
RMSD (scRMSD) < 2.0Å and mean scRMSD) over 50 proteins at lengths {100, 150, 200, 250, 300}.
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(c)
Figure 4: (a) Count of novel and designable (scRMSD < 2) proteins out of 250 at various novelty thresholds
with TM-score to the training set < x for models trained on subsets of PDB. (b) scRMSD of designed proteins vs.
ESMFold under flow scaling (c) Table showing an ablation study of FOLDFLOW features against designability.

In table 2, we find that all FOLDFLOW models achieve significantly higher Frac. designability score
than all FrameDiff models, and appreciably close the gap to RFDiffusion, e.g. ∆ = 0.149 vs. ∆ =
0.357 for FOLDFLOW-OT and FrameDiff-Retrained respectively. When retrained on our dataset
with 10% more samples, we find that FrameDiff is more designable, but is still below all FOLDFLOW
models. We also note that while FOLDFLOW-OT creates the highest fraction of designable proteins
(excluding RFDiffusion), it has relatively low diversity and novelty. We find that adding stochasticity
with FOLDFLOW-SFM results in a model that beats FrameDiff-Improved on every metric and can
dramatically improve novelty at the cost of worse designability (table 2). In fig. 9 in §G.1, we plot
designability versus sequence length and observe the largest gains on sequence lengths < 300.
Diversity. We use the average pairwise TM-score of the designable generated samples averaged
across lengths as our diversity metric (lower is better). We find an inverse correlation between
performance on designability and diversity metrics for FrameDiff models, which interestingly does
not hold for FOLDFLOW models. We note that FOLDFLOW models have comparable diversity to
the baselines with FOLDFLOW-OT and FOLDFLOW-SFM being the most diverse.
Novelty. Designing novel but realistic protein structures compared to the training data is also an
important goal. Unlike conventional generative modeling problems, e.g. images, the novelty of
proteins is particularly important since the entire premise of ML-driven drug discovery requires
developing original drugs that may be vastly different than current human knowledge (training data)
but also synthesizable (designable) (Marchand et al., 2022; Schneider et al., 2020; Schneider, 2018).
We measure novelty using two metrics: 1.) the fraction of designable proteins with TM-score < 0.5
as used in Lin & AlQuraishi (2023) (higher is better) and 2.) the average maximum TM-score of
designable generated proteins to the training data (lower is better). In fig. 4a count the number of
designable proteins as a function of the Max TM-score to the training set. We see that FOLDFLOW-
SFM designs the most novel structures against all methods including RFDiffusion and Genie. This
substantiates the hypothesis that the stochasticity of the learned SDE is crucial to the improved
robustness in high dimensions of FOLDFLOW-SFM versus FOLDFLOW-BASE, and FOLDFLOW-OT
which allows it to sample designable proteins far outside of the support of the training set.
Inference Annealing. We now describe a numerical trick during inference that greatly improves
the designability of FOLDFLOW which we term inference annealing. Instead of following the
theoretical ODE or SDE for generating rotations, we use a multiplicative scaling of the velocity—e.g.
dRt = i(t)vθ(t,Rt) dt + γ(t)dBt for some positive function i(t). In practice, we use i(t) = ct for
some constant c. This annealing removes an unwanted increase in the flow norm during the end of
inference (fig. 8). We observe that larger c drastically increases the designability of FOLDFLOW
(fig. 4b). In practice, we use values of c ≈ 10, which leads to designable yet diverse structures.
Ablation study of FOLDFLOW. Next, we ablate various additions to the FOLDFLOW-BASE model
in fig. 4c and report the full extended ablation in table 6. We find FOLDFLOW-OT creates the most
designable model, but adding stochasticity helps increase novelty and diversity. We also find that infer-
ence annealing is critical to the performance of the model in terms of achieving higher designability.

5.3 EQUILIBRIUM CONFORMATION GENERATION Table 3: W2 in angle space be-
tween generated and test samples.

W2 W2@56

FOLDFLOW 4.379 0.406
FOLDFLOW-Rand 4.446 0.557
FrameDiff 4.844 0.800

Modeling various protein conformations is crucial in determining bi-
ological behaviours such as mechanisms of actions or binding affinity
to other proteins. Unlike diffusion models, FOLDFLOW can easily
be instantiated from any sampleable source distribution. To test this,
we model the equilibrium distribution of a protein given initial predicted structures from pre-trained
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folding models including OmegaFold (Wu et al., 2022b) and ESMFold (Lin et al., 2022). The training
target distribution consists of 200,000 frames at 5ns intervals of a 1ms molecular dynamics trajectory
of the BPTI protein (Shaw et al., 2010); the inference of FOLDFLOW is tested against 20,000 unseen
frames in that trajectory. FOLDFLOW can successfully model both the general set of conformations,
as indicated by ICA of the dihedral angles in fig. 5b, as well as the highly flexible residues, as seen
in the 2D Ramachandran plot in fig. 5a. We note that our approach can capture all the modes of
distribution in contrast to AlphaFold2, which does not model the flexibility well (fig. 5c). In table 3,
we observe under the 2-Wasserstein (W2) metric for all angles and only residue 56, FOLDFLOW with
an informed prior outperforms a random prior, and FrameDiff which can only use an uninformed
prior which further highlights a key advantage of FOLDFLOW over diffusion-based approaches.

(a) (b) (c)
Figure 5: (a) Ramachandran plot of Φ and Ψ of the most flexible residue (56) in BPTI (b) ICA of all dihedral
angles of BPTI (c) 1000 BPTI conformations sampled by FOLDFLOW with Cα alignment highlighted in yellow
and AlphaFold2 samples in green. FOLDFLOW reproduces test MD frames while AlphaFold2 samples do not.

6 RELATED WORK

Protein design approaches. The field of protein design has evolved over the course of several
decades with many useful libraries (McCafferty et al., 1990; Winter et al., 1994; Romero & Arnold,
2009; Wang et al., 2021) with subfields being impacted by ML assitance (Yang et al., 2019). Sequence-
based machine learning approaches resulted in multiple successful protein design cases (Madani
et al., 2023; Verkuil et al., 2022; Alamdari et al., 2023; Hie et al., 2022). Structure-based biophysics
approaches resulted in several drug candidates (Röthlisberger et al., 2008; Fleishman et al., 2011; Cao
et al., 2020b). Moreover, diffusion-based approaches have risen in prominence (Wu et al., 2022a; Yim
et al., 2023b), including significantly improved biological experiment success compared to previous
SOTA (Watson et al., 2023). SE(3) diffusion has also seen applications in protein-ligand binding (Jin
et al., 2023), docking (Somnath et al., 2023), as well as robotics (Brehmer et al., 2023). Lastly,
FrameFlow (Yim et al., 2023a) concurrently investigates a model similar to FOLDFLOW-BASE.
Equivariant generative models. There have been several efforts to incorporate symmetry constraints
in generative models. These include building equivariant vector fields for CNFs (Köhler et al., 2020;
Katsman et al., 2021; Garcia Satorras et al., 2021; Klein et al., 2023) and finite flows using the affine
coupling transform (Dinh et al., 2017; Bose & Kobyzev, 2021; Midgley et al., 2023). Applications in
theoretical physics have also been impacted by equivariant flows (Boyda et al., 2020; Kanwar et al.,
2020; Abbott et al., 2023). Lastly, beyond flows a new genre of models coming into prominence
is based on the idea of equivariant score matching (De Bortoli et al., 2022; Brehmer et al., 2023)
and diffusion models (Hoogeboom et al., 2022; Xu et al., 2022; Igashov et al., 2022).

7 CONCLUSION

In this paper, we tackle the problem of protein backbone generation using SE(3)
N -invariant generative

models. In pursuit of this objective, we introduce FOLDFLOW, a family of simulation-free generative
models under the flow matching framework. Within this model class, we introduce FOLDFLOW-BASE
which learns deterministic dynamics over SE(3), FOLDFLOW-OT which learns more stable flows
using Riemannian OT. To learn stochastic dynamics, we propose FOLDFLOW-SFM which learns an
SDE over SE(3)N , and is motivated by learning Brownian bridges over SO(3), but in a simulation-free
manner. We investigate the empirical caliber of FOLDFLOW models on PDBs that contain up to 300
amino acids and find that our proposed models are competitive with RFDiffusion while significantly
outperforming the current non-pretrained SOTA approach, FrameDiff-Improved, on all metrics.
Finally, FOLDFLOW is more amenable for equilibrium conformation sampling which is an important
subtask in protein design. Beyond generating 3D structures, a natural direction for future work is to
extend FOLDFLOW to conditional generation by using target sequence and structure during training.
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A THEORETICAL PRELIMINARIES

A.1 SO(3) LIE GROUP

The Special Orthogonal group in 3 dimensions, SO(3) consists of the 3D rotation matrices:

SO(3) =
{
r ∈ R3×3 : r⊤r = rr⊤ = I, det r = 1

}
(11)

It is a matrix Lie group with the lie algebra given by:
so(3) =

{
r ∈ R3×3 : r⊤ = −r

}
(12)

Parametrizations of SO(3). The skew-symmetric matrices r ∈ SO(3) can be uniquely identified
with a vector ω ∈ R3 such that ∀v ∈ R3, rv = ω × v, where × indicates the cross product. This
vector is known as the rotation vector. The magnitude of this vector, ω = ||ω|| is the angle of rotation
its direction, eω = ω

||ω|| is the axis of rotation.

Mapping the R3 vector to the skew-symmetric matrix is known as the hat operation, (̂·).
Another parametrization of SO(3) is with Euler angles, described using three angles (ϕ, θ, ψ). A
common convention is to use the x-convention, where the rotation is given by: a rotation about the
z-axis by ϕ, a second rotation about the former x-axis by θ, and a last one about the former z-axis by
ψ.
Metric on SO(3). First, we recall that a metric is a bilinear function ⟨·, ·⟩ : Rn × Rn → R that is
both symmetric and positive definite. Additionally, we recall that a quadratic form on a manifoldM
is a bilinear map TxM× TxM→ R that is smooth and symmetric. A positive-definite quadratic
form is, therefore, a metric. Let us consider the following symmetric positive definite quadratic form
defined:

Q =

(
A B⊤

B C

)
. (13)

A canonical choice for the metric of SO(3) is obtained by takingQ = 1/2I , resulting in a bi-invariant
metric on SO(3). Therefore, the metric is given by:

⟨r1, r2⟩SO(3) = tr(r⊤1 Qr2) =
1

2
tr(r⊤1 r2) (14)

Note that the inner product on Lie groups consumes elements of the Lie algebra and, because the left
action is transitive, this inner product is well-defined for all tangent spaces of the group elements.
The distance induced by this metric is given by:

dSO(3)(r1, r2) = ∥ log (r⊤1 r2)∥F (15)
for r1, r2 ∈ SO(3) and where the Frobenius matrix norm is used.
The exponential and logarithmic maps on SO(3). Generally speaking, the exponential and
logarithmic maps of a Lie group G relate the elements in the group to the lie algebra, G. In the case
of matrix Lie groups, these coincide with the matrix exponential:

g = exp(g) =

N∑
n=0

1

n!
gn (16)

and the matrix logarithm:

g = log(g) =

N∑
n=1

(−1)n−1

n
(g − I)n (17)

For SO(3), since the elements of the lie algebra are skew-symmetric matrices, eq. (16) for the matrix
exponential can be simplified significantly to obtain a closed-form, known as Rodrigues formula.
Given ω a rotation vector, and ω̂ ∈ so(3), the corresponding element of the lie group, r ∈ SO(3) is
given by:

r = exp ω̂ = cos(ω)I + sin(ω)eω + (1− cos(ω))eωe
⊤
ω (18)

where ω and eω are the angle and axis of rotation for ω.
Similarly, the matrix logarithm can be expressed using the rotation angle:
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log(r) =

{
ω

2 sin(ω) (r − r
⊤) if r ̸= I,

0 if r = I.
(19)

A.2 SE(3) LIE GROUP

The special Euclidean group, SE(3) is used to represent rigid body transformations in 3 dimensions:

SE(3) =

{(
r s
0 1

)
: r ∈ SO(3), s ∈ (R3,+)

}
(20)

Represented by this 4× 4 matrix and with the group operation defined by matrix multiplication, this
group can be seen as a subgroup of the general linear group GL(4,R). The lie algebra of the group
se(3) is given by:

se(3) =

{
x =

(
r s
0 0

)
: r ∈ so(3), s ∈ R3

}
(21)

Note that the tangent space of R3 is isomorphic to the space itself so we can simply use the notation s
instead of s. This lie algebra is isomorphic to R6 using the map: x 7→ (ω, s), where we have identified
the skew-symmetric matrix r ∈ so(3) with its axis-angle representation, ω ∈ R3. As the group of
translations, (R3,+) is a normal subgroup of SE(3), the group can be understood as a semi-direct
product: SE(3) = SO(3)⋉ (R3,+).
Metric on SE(3). Although there are many possible choices for metrics on SE(3), none of them
are bi-invariant. Instead, one can choose to build a left-invariant or right-invariant metric. A simple
choice for the quadratic form Q from eq. (13) is setting the matrices A = C = I3 and B = 0 (Park &
Brockett, 1994), which gives:

Q =

(
I3 0
0 I3

)
. (22)

Using this metric we can define an inner product on SE(3) as ⟨x1, x2⟩SE(3) = tr(x⊤1 Qx2), where tr is
the trace operation. Writing out the inner product explicitly for x1, x2 ∈ se(3) we get,

tr(x⊤1 Qx2) = tr
(
r⊤1 r2 r⊤1 s2
s⊤1 r2 s⊤1 s2

)
. (23)

Thus, we have tr(x⊤1 Qx2) = r⊤1 r2 + s⊤s2. Therefore, the metric on SE(3) decomposes into the
metric on SO(3) and R3:

⟨x1, x2⟩SE(3) = ⟨r1, r2⟩SO(3) + ⟨s1, s2⟩R3 (24)
This means that we can obtain the geodesics on SE(3) from the geodesics on the product manifold
SO(3)× R3:

dSE(3)(x1, x2) =
√
dSO(3)(r1, r2)2 + dR3(s1, s2)2 (25)

where x1 = (r1, s1), x2 = (r2, s2) ∈ SE(3), dSO(3) is defined in eq. (15) and dR3 is the usual
Euclidean distance.

A.3 THE ISOTROPIC GAUSSIAN DISTRIBUTION ON SO(3)

IGSO(3) density. The isotropic Gaussian distribution on SO(3) is parametrized by a mean, r ∈ SO(3)
and a concentration parameter, ϵ ∈ R. It can be parametrized in axis-angle, where the axis of rotation
is sampled uniformly and the angle of rotation ω has probability density function (pdf) given by:

f(ωx, ϵ) =

∞∑
l=0

(2l + 1)e−l(l+1)ϵ sin
(
(l + 1/2)ωx

)
sin (ωx/2)

(26)

Although this expression contains an infinite sum, Matthies et al. (1900) has shown that for ϵ ≤ 1, it
can be approximated by a closed-form equation:

f(ωx, ϵ) =
√
πϵ−3/2e

ϵ−ω2/ϵ
4

(
ω − e−π2/ϵ

(
(ω − 2π)eπω/ϵ + (ω + 2π)e−πω/ϵ

))
2 sin

(
ω
2

) (27)
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Sampling from IGSO(3). Sampling from IGSO(3) is done following Leach et al. (2022). The angle
of rotation is obtained by inverse transform sampling, where the cumulative density function is
approximated using the pdf above, scaled by uniform density on SO(3) with density f(ω) = 1−cosω

π ;
the axis is sampled uniformly from S2. We note that the closed-form approximation of eq. (27) makes
the computation of the cdf, and hence the sampling process very efficient.

B FLOW MATCHING IN Rd

To perform FOLDFLOW on SE(3), we consider two different flows. One on SO(3) that we described
in the main paper and another one on R9 that we describe depending on the consider FOLDFLOW
method.
Riemannian Flow Matching is a generalization of Flow Matching on Riemannian manifold. Therefore,
the setting as well as the main ideas are similar and are straightforward to adapt to the Euclidean
case. This means that the objective is also to regress a conditional vector field built from conditional
probability paths. In this section, we described the conditional probability paths and conditional
vector fields that were used respectively by Lipman et al. (2022) and Tong et al. (2023b).
The main difference is that the conditional probability path is now a Gaussian conditioned on a latent
variable z ∼ q(z) with variance σt, ρt(s) = N (s|z, σt). The conditional vector field has a closed
form derived from the following Theorem:

Theorem 1 (Theorem 3 of Lipman et al. (2022)). The unique vector field whose integration map
satisfies ρt(s) = µt + σts has the form

ut(s) =
σ′
t

σt
(s− µt) + µ′

t, (28)

We now describe the Flow Matching method Lipman et al. (2022) and OT-CFM Tong et al. (2023b;a);
Pooladian et al. (2023b).
Flow Matching. In the context of data living in the Euclidean space Rd. Identifying the condition z
with a single datapoint z := s1, and choosing a smoothing constant σ > 0, one sets

pt(s|z) = N (s | ts1, (tσ − t+ 1)2), (29)

ut(s|z) =
s1 − (1− σ)s
1− (1− σ)t

, (30)

which is a probability path from the standard normal distribution (p0(x|z) = N (x; 0, 1)) to a
Gaussian distribution centered at x1 with standard deviation σ (p1(x|z) = N (x;x1, σ

2)). If one sets
q(z) = q(x1) to be the uniform distribution over the training dataset, the objective introduced by
Lipman et al. (2022) is equivalent to the CFM objective (1) for this conditional probability path.
OT-Conditional Flow Matching (Tong et al., 2023b). As explained in the main paper, the probability
path used in FM is not the optimal transport probability paths between the distributions ρ0 and ρ1.
Therefore, we want to get straighter flows for faster inference and more stable training. To achieve
that, we leverage the optimal transport theory and want the probability path to be the Euclidean
McCann interpolants defined as ρt = tΨ(s0) + (1 − t)s0. However, as the map Ψ is intractable
in practice, we rely on the Brenier theorem which makes a connection between the map Ψ and the
optimal transport plan π. Therefore we set the mean of Gaussian conditional probability path as
µt = ts1 + (1− t)s0 and the latent distribution q(s0, s1) = π(s0, s1).

pt(s|s0, s1) = N (s | ts1 + (1− t)s0, σ2), (31)

pt(s) =

∫
N (s | ts1 + (1− t)s0, σ2)π(s0, s1)ds0ds1, (32)

ut(s|z) = s1 − s0. (33)

In the case of the Euclidean space, the FM loss is equal to LFOLDFLOW−R3 = ∥vθ(t, s) − ut(s|z)∥.
This can be simplified to down to LFOLDFLOW−R3 = ∥vθ(t, s)− (s1 − s0)∥. This method is the main
inspiration to develop FOLDFLOW-OT.
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C RIEMANNIAN OPTIMAL TRANSPORT

Optimal transport in generative models. OT has been used in generative models for several
approaches. For GANs, it was used as a loss function (Genevay et al., 2018; Fatras et al., 2021b;
Salimans et al., 2018; Arjovsky et al., 2017). More recently, it was used to speeding up training
and inference for continuous normalizing flows (Finlay et al., 2020; Liu et al., 2023b; Lipman et al.,
2022; Tong et al., 2020; 2023b;a), Schrödinger bridge models (Shi et al., 2023; Liu et al., 2023a;
De Bortoli et al., 2021). In this section, we recall its basic definition over a Riemannian manifold.
Then we discuss its empirical computation and we finish this section by proving Proposition 1.

C.1 BACKGROUND ON RIEMANNIAN OPTIMAL TRANSPORT

Optimal transport on Riemannian manifold was first studied in the seminal work of McCann (2001)
and we refer to Villani (2003; 2008) for a review of all results. Recently, optimal transport has also
drawn attention from the machine learning community, and we now give a longer introduction on this
topic.
The (static) Kantorovich optimal transport problem seeks a mapping from one measure to another that
minimizes a displacement cost. Formally, we define the 2-Wasserstein distance between distributions
ρ0 and ρ1 onM with respect to the cost c(x, y) = 1

2d(x, y)
2 as:

W (ρ0, ρ1)
2
2 = inf

π∈Π(ρ0,ρ1)

∫
M2

c(x, y) dπ(x, y), (34)

where Π(ρ0, ρ1) denotes the set of all joint probability measures onM×M whose marginals are
ρ0 and ρ1. To compute the optimal transport plan, we rely on the POT library Flamary et al. (2021).
This problem is a relaxation of the well-known Monge formulation described in the main paper and
that we recall now for the sake of readability.
The Monge optimal transport problem is defined as

OT(ρ0, ρ1) = inf
Ψ:Ψ#ρ0=ρ1

∫
M
c(x,Ψ(x)) dρ0(x). (35)

WhenM is a smooth compact manifold with no boundary and ρ0 has a density, (McCann, 2001,
Proposition 9) shows that the map T exists and is unique. This is an extension to Riemannian
manifold of the well-known Brenier Theorem (Brenier, 1991). The optimal transport map Ψ and the
McCann interpolation have then the following form:

Ψ(x) = expx(−∇ϕ(x)), Ψt(x) = expx(−t∇ϕ(x)), (36)
where ϕ is a c-concave function. Furthermore, we have that the optimal transport plan is supported
on the graph of the Monge map, i.e., π = (id,Ψ)#ρ0. Therefore, knowing the transport plan leads
to the Monge map. The connection between the two formulations for SE(3)N0 is explicitly stated in
Proposition 1 which is proved in §C.2. However, we first discuss the computation of the OT plan π.

Minibatch OT approximation. For empirical distributions, the Kantorovich problem is a linear
program and can be efficiently solved with the simplex algorithm. We refer to (Peyré & Cuturi, 2019,
Chapter 3) for a review on how to solve the Kantorovich problem. However, when we deal with large
datasets, computing and storing the transport plan π for Optimal Transport (OT) can be challenging
due to its cubic time and quadratic memory complexity with respect to the number of samples. To
address this, a minibatch OT approximation is often employed. While this approach introduces
some error compared to the exact OT solution (Fatras et al., 2020), it has been proven effective in
various applications such as domain adaptation and generative modeling (Damodaran et al., 2018;
Genevay et al., 2018). Specifically, during training, for each source and target minibatch, pairs of
points are sampled from the optimal transport plan computed between the pair (x, y) ∼ πbatch. We
empirically show that the batch size can be small compared to the full dataset size and still give a
good performance, which aligns with prior studies (Fatras et al., 2021b;a). This strategy is also at the
heart of the OT-CFM methods (Tong et al., 2023b;a; Pooladian et al., 2023b).
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C.2 PROOF OF PROPOSITION 1

We recall the proposition statement here for convenience and then prove it below.

Proposition 1. Let us consider SE(3)N
0

with the product distance dSE(3)N0
and two compactly

supported probability distributions ρ0, ρ1 ∈ P(SE(3)N
0
). In addition, suppose that ρ0 is abso-

lutely continuous with respect to Riemannian volume form (i.e., ρ0 ≪ dx). Then for the distance
c = 1

2d
2
SE(3)N0

, the Kantorovich and Monge problems admit a unique solution that is connected as
follows π = (id×Ψ)#ρ0, where Ψ is almost uniquely determined everywhere ρ0. Furthermore,
we have that Ψ(x) = expx(∇ϕ(x)) for some d2

SE(3)N0
-concave function ϕ.

Proof. The manifold SE(3) is a connected, complete, (C∞) smooth manifold without boundary.
SE(3)

N (equipped with the usual product distance) is a finite Cartesian product of connected,
complete, smooth manifolds without boundary and therefore it is itself a connected, complete, smooth
manifold without boundary. We only need to check these assumptions are also satisfied by SE(3)

N

0
.

We do so by noting that SE(3)N
0

can be written as N − 1 copies of SE(3) where the R3 component is
mean subtracted—i.e. sc = s− 1/N

∑N
i=1 s

i, and the final N th element in the product is the mean,
1/N

∑N
i=1 si. Certainly, the first N − 1 components satisfy connectedness, and completeness, and

are manifolds that are smooth without boundary. Furthermore, the disintegration of measures on
SE(3)

N

0
(Proposition 3.5 (Yim et al., 2023b)) allows us to define a measure µ̄ proportional to R3 for

the final component N th component. Therefore, by our assumptions on the measures ρ0, ρ1, we can
apply the following Theorem from Villani (2003) to get the desired results.

Theorem 2 (Theorem 2.47, Villani (2003)). Let M be a connected, complete and smooth (C3)
Riemannian manifold without boundary, equipped with its standard volume measure. Let ρ0, ρ1
be two compactly supported distributions and set the ground cost c(x, y) = 1

2d(x, y)
2 with d the

geodesic distance onM. Further, assume that ρ0 is absolutely continuous with respect to the volume
measure onM. Then the Kantorovich and Monge problems admit a unique solution that is connected
as follows π = (id×Ψ)#ρ0, where Ψ is almost uniquely determined everywhere ρ0. Furthermore
we have that Ψ(x) = expx(∇ϕ(x)) for some d2-concave function ϕ.

D STOCHASTIC RIEMANNIAN FLOW MATCHING

D.1 BROWNIAN BRIDGE ON SO(3)

We follow the presentation in Jensen et al. (2022) to define the Brownian bridge on a Lie group G
endowed with a metric. We note that log is the inverse of the Riemannian exponential map. However,
if the metric is bi-invariant, which is the case for SO(3), it coincides with the Lie group logarithm.
We can simulate a bridge on G via the guided diffusion SDE (using ◦ for the Stratonovich integral),
for a process conditioned to reach v at t = 1.

dRt = −
1

2
V0(Rt) dt + Vi(Rt) ◦

(
dBi

t −
logRt

(v)i

1− t
dt

)
R0 = r0, (37)

where Vi(xr = (dLr)evi with {v1, . . . , vd} an orthonormal basis of TeG, and where Bt is a Brownian
motion on G. On SO(3), since the metric is bi-invariant, we have V0 = 0. In this work, we model the
guided bridge with a diffusion that does not depend on the process Rt. In this case, the Stratonovich
and Itô formulations are the same, yielding the reversed process defined in Eq. 7.

D.2 SIMULATION-FREE APPROXIMATION OF BROWNIAN BRIDGES ON SO(3)

We now numerically investigate the fidelity of our simulation-free SDE which is employed in
FOLDFLOW-SFM in relation to the guided drift SDE in eq. (8). In fig. 6 we plot the mean and the
standard deviation (over 1024 data points) of the distribution of the SO(3)-norm along the trajectory
against time, for three different values of the diffusion coefficient, γ. We find the true simulated
Brownian bridge (bold black line) is in close proximity to the simulation-free FOLDFLOW-SFM SDE
(red dotted lines). We further note that this holds for the entire trajectory and leads to overlapping
shaded regions that correspond to the standard deviation of the norm. This result adds empirical
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substantiation to using the FOLDFLOW-SFM as a drop-in and fast approximation to the Brownian
bridge SDE on SO(3).

(a) γ = 0.1 (b) γ = 0.5 (c) γ = 1.0

Figure 6: Numerical comparison between the simulation-free of the SDE in FOLDFLOW-SFM vs. simulated
Brownian bridge on SO(3), for different values of the diffusion coefficient, γ.

D.3 PROOF OF PROPOSITION 2
Proposition 2. Given ρt(x) > 0, ∀x ∈ SE(3)

N

0 , the conditional and unconditional FOLDFLOW-
SFM losses have equal gradients w.r.t. θ: ∇θLUSFM(θ) = ∇θLSFM(θ).

Proof. Let ut = Eρ(z)

[
ρt(x|z)
ρt(x)

ut(x|z)
]
, for x ∈ SE(3)

N

0 . We claim that:

∇θEz∼ρ(z),x∼ρt(x|z)

[
||vθ(t, x)− ut(x|z)||2SE(3)N0

]
= ∇θEx∼ρt(x)

[
||vθ(t, x)− ut(x)||2SE(3)N0

]
(38)

From disintegration of measures (Pollard (2002) and Proposition 3.5 form Yim et al. (2023b)), we
know the probabilities ρt(x) ∝ ρt(r

1) · · · ρt(rN )ρt(s
1) · · · ρt(sN ), and similar for the conditional

probability ρt(x|z). Given that by eq. (24), the metric on SE(3) also factorizes into metric on SO(3)
and R3, it suffices to prove the claim for SO(3) and R3. The claim can therefore be stated as follows,
where we have written ri as r and si as s for conciseness.

∇θEz∼ρ(z),x∼ρt(r|zr)

[
||vθ(t, r)− ut(r|zr)||2SO(3)

]
= ∇θEr∼ρt(r)

[
||vθ(t, r)− ut(r)||2SO(3)

]
(39)

∇θEz∼ρ(z),s∼ρt(s|zs)
[
||vθ(t, s)− ut(s|zs)||2R3

]
= ∇θEs∼ρt(s)

[
||vθ(t, s)− ut(s)||2R3

]
(40)

The proof of this claim follows a similar structure to Chen & Lipman (2023). We proceed by proving
eq. (40). Dropping the distributions for conciseness, we have:

∇θ

(
Ezr,r[||vθ(t, r)− ut(r|zr)||2]− Ezr,r[||vθ(t, r)− ut(r)||2]

)
= ∇θ

(
−2Ezr,r⟨vθ(t, r), ut(r|zr)⟩SO(3) − 2Er⟨vθ(t, r), ut(r)⟩SO(3)

) (41)

Now:

Er⟨vθ(t, r), ut(r)⟩ =
∫ 1

0

∫
SO(3)

⟨vθ(t, r), ut(r)⟩SO(3)ρt(r)dvolr

=

∫ 1

0

〈
vθ(t, r)

∫
SO(3)

ρt(r|zr)
ρt(r)

ut(r|zr)ρ(zr)dvolzr

〉
ρt(r)dr

=

∫ 1

0

∫
SO(3)

⟨vθ(t, r), ut(r|rz)⟩ρt(r|rz)ρ(rz)dvolrdvolzr

= Er,zr ⟨vθ(t, r)ut(r|zr)⟩

(42)

The proof for R3 directly follows Theorem 3.2 from Tong et al. (2023a).
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E EXTENDED FIGURE INFORMATION

E.1 FIGURE 1

depicts the probability paths of FOLDFLOW-BASE, FOLDFLOW-OT, and FOLDFLOW-SFM projected
onto S2. Where FOLDFLOW-BASE paths may cross, FOLDFLOW-OT conditional paths do not cross
reducing the variance in the objective stabilizing training as studied in Pooladian et al. (2023b);
Tong et al. (2023b). FOLDFLOW-SFM adds in stochasticity which improves novelty in our protein
generation task. Figure 1 also contains a table summarizing the differences between methods.
Showing whether or not they can map from a general source distribution, can perform optimal
transport under some conditions, are stochastic or deterministic, and do not require calculation of the
score. We note that there is a ∗ for FOLDFLOW-SFM performing OT, as it only achieves OT when
noise goes to zero and it recovers FOLDFLOW-OT However, this bias may still be helpful in reducing
the variance of the objective function even if OT is not achieved.

F SO(3) TOY EXPERIMENT

F.1 TOY MODEL PARAMETERIZATION

For the vector-field parametrization, the goal is to create a function that by construction lies on the
tangent space of the manifold. For the toy experiments, this is done by using a 3-layer MLP, and
projecting the output of the network to the tangent space of the input. That is, similar to Chen &
Lipman (2023), we have:

uθ(t, r) = ΠrMLP(t, r), (43)
where Πr(M) projects a 3× 3 matrix onto TrSO(3). This operation essentially computes the skew-
symmetric component of M , given by M−M⊤

2 and parallel transports it to the tangent space of r
using left matrix multiplication which is the group operation on SO(3).

F.2 ADDITIONAL RESULTS FOR SO(3) TOY EXPERIMENTS

In this section, we present the qualitative results of our toy experiments. In fig. 7, we can see that all
the three models, FOLDFLOW-BASE, FOLDFLOW-OT FOLDFLOW-SFM learn to correctly model
the modes of the ground-truth distribution with a slight model shrinkage in the FOLDFLOW-BASE.

(a) (b) (c) (d)

Figure 7: (a) Data distribution (b) FOLDFLOW-BASE (c) FOLDFLOW-OT (d) FOLDFLOW-SFM.
The data is visualized using the Euler-angle representation of the rotation matrices.

G ADDITIONAL RESULTS AND ANALYSIS FOR THE PROTEIN EXPERIMENTS

G.1 PROTEIN BACKBONE GENERATION EXPERIMENT ADDITIONAL RESULTS

Empirical investigation of rotation norms for Inference Annealing.
In fig. 10, we show five proteins generated by FOLDFLOW-SFM from each backbone length. Here
we show the generated structure in green and the best ESM-refolded structure out of eight sequences
generated using ProteinMPNN. We can see that FOLDFLOW-SFM generates diverse folds that refold
with diversity in secondary structure and overall 3D conformation.
In fig. 9 we compare the performance of models on designability, diversity, and novelty tasks for
different backbone lengths. In particular, we can see that FOLDFLOW closes the gap between models
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Figure 8: Norm of the rotation flow with and without t scaling.

(a) (b) (c)

Figure 9: (a) Designability as quantified by scRMSD (lower is better), (b) Diversity as quantified by average
pairwise TMScore (lower is better), and (c) Novelty of proteins as quantified by maximum TMScore to PDB
(lower is better), designed across lengths for FOLDFLOW models and previous state of the art models.

without pretraining (Genie, FrameDiff, FOLDFLOW) and RFDiffusion in terms of designability,
particularly on shorter sequences (≤ 200).
We note there is a trade-off between designability and diversity/novelty, both at the short sequence
lengths and as sequence length increases. For longer sequences (250, 300), while FOLDFLOW models
are comparable in terms of designability, they generate significantly more diverse and novel structures
as compared to all other models, even RFDiffusion (although RFDiffusion still generates significantly
more designable proteins at these lengths.

G.1.1 TIMING COMPARISON IN TABLE 2 AND TABLE 4

In Table 2 we compare the number of steps per second for each model, where a step corresponds to a
forward and backwards pass on the effective batch size as defined in Equation (46) on a single GPU.
Here we find that FOLDFLOW is over 2x faster than FrameDiff per step. This drastic improvement is
due to a number of optimizations, with the largest being that we can avoid the costly IGSO(3) score
computation which is necessary for their method.
We train our model in Pytorch using distributed data-parallel (DDP) across four NVIDIA A100-80GB
GPUs for roughly 2.5 days. We note that this is substantially less than comparable models (table 4).
RFDiffusion requires the use of pre-trained weights from RosettaFold which trained for 4 weeks on
64 V100 GPUs (Watson et al., 2023).

G.2 EQUILIBRIUM CONFORMATION GENERATION EXPERIMENT

As described in Section 5.3 proteins take on many different physical conformations in the real world.
These conformations dictate many important attributes of a protein’s behaviour, e.g., how one protein
might bind to another. As a protein’s conformations generally do not deviate greatly from one another,
a desirable approach would be to start from a noised version of a known conformation of the protein
to generate another conformation. We hypothesize that the flows required to do this are easier to learn
than starting from an uninformed source distribution. We find FOLDFLOW is an ideal candidate for
this setting, and we show its efficacy in fig. 5.
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Figure 10: More FOLDFLOW-SFM generated structures in green compared to ProteinMPNN –>
ESMFold refolded structures in grey. 5 samples all with RMSD < 2Å for lengths 100, 150, 200, 250,
300 from left to right. FOLDFLOW-SFM generates designable diverse proteins.

(a) (b)

Figure 11: KL divergence per residue of the 2D dihedral angle (Φ and Ψ) distributions between the samples
from FOLDFLOW and test MD frames (blue) and AlphaFold 2 and the test MD frames (orange).

25



Published as a conference paper at ICLR 2024

Table 4: Training resources for protein generation models.

Model Training time Optimization Steps #gpus Distributed Training

RFDiffusion 28 + 3 days — 64 + 8 —
RFDiffusion w/o pretraining 3 days — 8 —
Genie (SwissProt) ∼8 days ∼800k 6 DP
FrameDiff-ICML ∼7 days ∼1.9m 2 DP
FrameDiff-Improved +7 days +1.9m 2 DP
FrameDiff-Retrained 10 days 2.2m 2 DP
FOLDFLOW (BASE, OT and SFM) ∼2.5 days 600k 4 DDP
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Figure 12: Ramachandran plot of Φ and Ψ for (a) FOLDFLOW with informed prior (b) FOLDFLOW-rand with
uniformed prior and (c) FrameDiff at 10k steps. With the informed prior, FOLDFLOW is able to better capture
the mode on the left.

We chose bovine pancreatic trypsin inhibitor (BPTI) to study in this experiment. The 58-residue
protein is the first protein whose dynamics were studied experimentally by nuclear magnetic res-
onance (NMR) and was the first protein that was simulated by molecular dynamics for 1ms. On
timescales ranging from nanoseconds to milliseconds, the dynamics of BPTI involve protein back-
bone structural changes that, for example, accommodate water molecule exchange and disulfide
isomerization (Persson & Halle, 2008). We used the 1−msMD simulation trajectory at a temperature
of 300 K (Shaw et al., 2010) to reproduce and interpret the kinetics of folded BPTI. To construct our
source distribution, we first generated four folded conformations from each of AlphaFold2, ESMFold,
RoseTTAFold, and Unifold (Li et al., 2022). Our source distribution was then added a small amount
of noise from the standard Gaussian and IGSO(3). We trained FOLDFLOW for one day on 4 A100
GPUs.
Results in Section 5.3 show that FOLDFLOW generates conformations covering all modes of the true
conformation distribution. Moreover, we sample different conformations of BPTI from AlphaFold2
and plot them on the Ramachandran and ICA plots, observing while FOLDFLOW can capture all
modes of the distribution AlphaFold2 only captures one. Further fig. 11 shows that the KL divergence
between the distribution of angles generated by FOLDFLOW is low and uniform, conveying it
has learned the distribution of the target. We believe this is an exciting direction meriting larger
experiments on more proteins in the future.

Table 5: Quantitative performance on the equilibrium conformation generation task on the BPTI protein.
Measures the 2-Wasserstein W2 in angle space between generated and test samples over all residues (W2), the
most flexible residue (W2@56), and the Kullback-Leibler divergence also at the most flexible residue (KL @
56). We also measure the distance of a distribution of AlphaFold2 structures (AlphaFold2) as well as the distance
to samples from the trainset.

W2(↓) W2@56(↓) KL@56(↓)
FOLDFLOW 4.379 0.406 0.441
FOLDFLOW-Rand 4.446 0.557 1.205
FrameDiff 4.844 0.800 3.051

RandomPrior 18.752 1.993 0.746
AlphaFold2 7.298 1.917 5.724
Trainset 4.140 0.198 0.487

26



Published as a conference paper at ICLR 2024

Comparison to Uninformed Prior and FrameDiff. Next we further describe the setup of the
comparison experiment in table 3 and table 5 which compares FOLDFLOW with an informed prior,
FOLDFLOW with a uniform random prior (FOLDFLOW-Rand) and FrameDiff. We measure the
2-Wasserstein (W2) distance between generated and test samples either on all 58 residues (denoted
W2) or just on residue 56 (denotedW2@56), which is the most flexible residue. TheW2 is calculated
using the SO(2)

2N distance on Φ and Ψ. We also compare the generated and test samples over the
Ramachandran plot of residue 56 with a Kullback-Leibler (KL) divergence (depicted in fig. 12). Here
we compute an empirical histogram from samples over a 100 by 100 grid in angle space. We then
compute the KL divergence between the smoothed empirical distributions where the minimum of
each bin is clipped at 10−10 for stability.
We train each model for 10k steps on 2 A100 GPUs using either a random prior (uniform over
rotations and Gaussian translation) or a mixture of Gaussians / IGSO(3) distributions using centers
defined by the four folded prior conformations and with standard deviation and IGSO(3) concentration
0.5. We do not use inference annealing for this experiment. We generate 250 samples from the model
and test against 1000 samples from the test set for computational efficiency reasons.
To contextualize these results, we compare the performance of these models with various baselines
such as 250 samples from a random prior (used as the prior in FOLDFLOW-Rand and FrameDiff
where each residue is sampled from N (0, 10)), 160 conformations sampled from AlphaFold 2, and
250 samples from the training set (Trainset). Results are averaged over 10 seeds for the random
prior and the train set. The trainset represents a well-trained model as the Wasserstein distance is not
zero even for empirical distributions drawn from the same distribution. The RandomPrior and the
AlphaFold2 represent the random and informed priors respectively. All models are significantly better
than these two priors, and FOLDFLOW approaches the performance of samples from the training set.
Figure 12 depicts the Ramachandran plots for residue 56 with scatter plots for FOLDFLOW FOLD-
FLOW-Rand and FrameDiff against a kernel density estimate (KDE) of the test set. We see that
FOLDFLOW with the informed prior is able to model both modes where FOLDFLOW-Rand and
FrameDiff both focus on the mode in the bottom right, centred at Φ = π/2.
We have two major findings from this experiment:

• An informed prior helps improve performance both overall and on the most flexible residue
as seen by comparing the performance of FOLDFLOW and FOLDFLOW-Rand in table 3.

• FOLDFLOW (with both informed and random priors) improve over FrameDiff on this task.

The equilibrium conformation generation task, studied here, is an example of a setting where an
informed prior may be useful. Recent work has explored other applications of starting from an
informed prior, such as protein docking (Somnath et al., 2023; Stärk et al., 2023), single-cell (Tong
et al., 2023b) and image-to-image translation (Liu et al., 2023b).

H FURTHER DISCUSSION OF FOLDFLOW AND RELATED MODELS

Symmetries as an inductive bias for flow matching. Leveraging symmetries as an inductive bias
in deep learning models (for example by data augmentation or design equivariant models) has been
shown to improve data efficiency and lead to better generalization. In the context of flow matching
for proteins, the goal is to learn the vector field generating the flow, which maps an invariant source
to an invariant target distribution, guaranteeing the existence of an equivariant vector field (Köhler
et al., 2020; Bose & Kobyzev, 2021). Therefore, one way to exploit this symmetry would be to
parameterize the vector field with an equivariant network, taking as input the 3D coordinates of the
protein. Alternatively, since protein backbones can be parametrized by elements of SE(3)N , we can
directly construct the vector field by taking an intrinsic perspective by using charts on the manifold
and their coordinate system. In this case, as the vector field lies on the tangent space of SE(3) it is
equivariant by construction.
Comparison between flow matching and diffusion approaches. While flow matching and diffusion
models bear many similarities they also have key differences which we highlight in this appendix.

1. Flow matching based approaches enjoy the property of transporting any source distribution
to any target distribution. This is in contrast to diffusion where one typically needs a
Gaussian-like source distribution.
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2. Flow matching approaches are readily compatible with optimal transport due to the same
property of being able to transport and source to any target. Optimal transport which itself
has the advantage of providing faster training with a lower variance training objective and
reducing the numerical error in inference due to straighter paths. Diffusion models by
themselves are not amenable to optimal transport but instead one can do entropic regularized
OT. In Euclidean space, this corresponds to a Schrodinger bridge but this is not an optimal
transport path is it stochastic.

3. In general, simulating an ODE is much more efficient than simulating an SDE during
inference. Conditional flow-matching and OT-conditional flow matching (Lipman et al.,
2022; Tong et al., 2023b) both learn ODEs as the learned flow corresponds to a continuous
normalizing flow. Diffusion models on the other hand are SDEs and while being more robust
to noise in higher dimensions require more challenging inference.

Comparison to FrameDiff. While our model uses a similar setup to FrameDiff, we introduce
a number of improvements that help to stabilize training and improve performance. Indeed our
additions lead to improvements on all metrics over the FrameDiff-Improved model released on
GitHub which substantially improves on the designability over FrameDiff-ICML. We first recap the
improvements made in FrameDiff-Improved over FrameDiff-ICML as detected in the code:

1. A bug in the score calculation for rotations means that there is a stop gradient in the rotation
score calculation and FrameDiff-ICML is not trained to match the rotation score, which
makes its performance quite impressive given this limitation. This bug is fixed in the
FrameDiff-Improved model which uses a different score calculation.

2. The dataloader was switched from sampling uniform over proteins in the dataset, to uniform
over clusters, then uniform within clusters. As we explore in Appendix I.5, this changes the
distribution of proteins but overall increases diversity as there are many similar proteins in a
small number of clusters Figure 13c.

3. The rotation loss was changed to use a separate axis and angle component to reduce variance
in the loss.

While these items improve the performance of FrameDiff, especially in terms of designability, there
are still a few potential areas for improvement.
One area we focus on is the costly loss function of FrameDiff which relies on calculating the pdf
of IGSO(3) for sampling and computing the score. In the setting used Frame-Diff, the infinite-sum
formulation of the density from eq. (26) had to be used, leading to an expensive score loss.
We also noticed that FrameDiff does not exactly follow theory in that the model is not exactly
translation invariant: As mentioned in section 3 in order to obtain SE(3) invariant distributions, the
center of mass has to be removed. However, in the FrameDiff code, this was only done at inference
and not during training. It is unclear to what extent this impacts the performance, as the model
remains translation invariant in expectation and during inference.

I IMPLEMENTATION DETAILS AND EXPERIMENTAL SETUP

I.1 TRAINING AND INFERENCE

To describe the precise algorithm for training FOLDFLOW models over distributions in SE(3)
N .

Our starting distribution in SE(3)
N is r1 ∼ USO(3) i.e. uniform over rotations and s1 ∼ N (0, I).

After centering (i.e. subtracting the mean) this distribution will be uniform over rotations and with
translations distributed according to the centered normal (r1, sc1) ∈ SE(3)

N

0
, with sc1 ∼ N c(0, 1). In

algorithm 1, we also slightly abuse the notation and denote the output of the rotation part of vθ as
vθ(t, rt) and similarly the translation part of vθ as vθ(t, st). We do not include separate algorithms
for FOLDFLOW-BASE and FOLDFLOW-OT as they are simple modifications to FOLDFLOW-SFM.
If we set γr(t) = 0 and γs(t) = 0, then we recover the FOLDFLOW-OT algorithm. If in addition we
remove the resampling in lines 4 and 5 then we recover the FOLDFLOW-BASE algorithm.
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Algorithm 1 FOLDFLOW-SFM training on SE(3)
N

1: Input: Source and target ρ1(x1), ρ0(x0), flow network vθ, and diffusion scalings γr(t), γs(t).
2: while Training do
3: t, x0, x1 ∼ U(0, 1), ρ0, ρ1
4: π̄ ← OT(x0, x1) ▷ OT resampling step to obtain FOLDFLOW-OT
5: (r0, s0), (r1, s1) ∼ π̄
6: sc0, s

c
1 ← s0 − 1

N

∑
i s

i
0, s1 − 1

N

∑
i s

i
1 ▷ mean subtract: (sc0, r0), (s

c
1, r1) ∈ SE(3)

N

0

7: rt ← expr0(t logr0(r1)) ▷ geodesic interpolant from eq. (2)
8: st ← tsc1 + (1− t)sc0 ▷ interpolant (Euclidean)
9: r̃t ∼ IGSO(3)(rt, γ

2
r (t)t(1− t)) ▷ simulation-free approximation from eq. (9)

10: s̃t ∼ N (st, γ
2
s (t)t(1− t))

11: LFOLDFLOW ←
∥∥∥vθ(t, r̃t)− logr̃t

(r0)

t

∥∥∥2
SO(3)

+
∥∥∥vθ(t, s̃t)− s̃t−sc0

t

∥∥∥2
12: θ ← Update(θ,∇θLFOLDFLOW)
13: return vθ

I.2 SDE TRAINING AND INFERENCE

In this section, we outline our training and inference algorithms for the SO(3) component of
FOLDFLOW-SFM The training algorithm is detailed in algorithm 2 while the inference algorithm is
provided in algorithm 3.

Algorithm 2 FOLDFLOW-SFM training on SO(3)

1: Input: Source and target ρ1, ρ0, diffusion schedule γ(·), flow network vθ
2: while Training do
3: t, x0, x1 ∼ U(0, 1), ρ0, ρ1
4: π̄ ← OT(x0, x1)
5: r0, r1 ∼ π̄
6: rt ← expr0(t logr0(r1)) ▷ geodesic interpolant from eq. (2)
7: r̃t ∼ IGSO(3)(rt, γ

2(t)t(1− t)) ▷ simulation-free approximation from eq. (9)

8: ut(r̃t|r0, r1)←
logr̃t

(r0)

t

9: LFOLDFLOW-SFM ← ||vθ(t, rt)− ut(r̃t|r0, r1)||2SO(3)

10: θ ← Update(θ,∇θLFOLDFLOW-SFM)
11: return vθ

Algorithm 3 FoldFlow-SFM Inference

1: Input: Source distribution ρ1, flow network vθ, diffusion schedule γ(·), inference annealing i(·),
noise scale, ζ, integration step size ∆t.

2: Sample r1 ∼ ρ1
3: for s in [0, 1/∆t) do
4: t← 1− s∆t
5: Sample z ∼ N (0, 1)

6: dBt ← ζγt ·
√
dt · z

7: dB̂t ← hat(dBt) ▷ map rotation vector to so(3)
8: ut ← r⊤t vθ(t, rt) ▷ parallel-transport the vector field to so(3)

9: rt+∆t ← rt exp(utitdt+ dB̂t)
10: return r0

I.3 VECTOR FIELD PARAMETRIZATION

Similar to the toy experiment, for the protein modelling case, the architecture is constructed such that
the output vector lies on the tangent space.
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I.3.1 PROTEIN MODEL PARAMETERIZATION

For proteins, we use the FrameDiff architecture (Yim et al., 2023b) over SE(3)N
0

, which is based
on the structure module of AlphaFold2 (Jumper et al., 2021) following the initial work on diffusion
models with AF2-like architectures (Anand & Achim, 2022). As described in the main text, this
architecture wθ outputs a predicted x̂0, which we can then deterministically transform into a vector
located at the tangent space of xt. This transformation can be split into 2N components, the N R3

components, and the N , SO(3) components. For the SO(3) components we calculate

vθ(t, rt) =
logrt r̂0

t
, (44)

and for the R3 components we calculate after centering,

vθ(t, st) =

(
st − ŝ0
t

)
− 1

N

N∑
i

(
st − ŝ0
t

)i, (45)

where (r̂0, ŝ0) = x̂0 = wθ(t, xt). For R3, vθ(t, st) is clearly on the tangent space as R3 is isomorphic
to its own tangent space. This is because Euclidean space is a flat space. For SO(3), vθ(t, rt) is also
on the tangent space of rt due to the definition of the log map. Since all components of the product
space SE(3)

N

0
are on the tangent space, vθ(t, xt) is on the tangent space of SE(3)N

0
.

I.4 PROTEIN TASK HYPERPARAMETERS

FOLDFLOW is implemented in Pytorch, and uses the invariant point attention (IPA) implementations
from OpenFold (Ahdritz et al., 2022) in the backbone. We use the Adam optimizer with constant
learning rate 10−4, β1 = 0.9, β2 = 0.99. The batch size depends on the length of the protein to
maintain roughly constant memory usage. In practice, we set the effective batch size to

eff_bs = max(round(#GPUs× 500, 000/N2), 1) (46)
for each step. We set λaux = 0.25 and weight the rotation loss with coefficient 0.5 as compared to
the translation loss which has weight 1.0.
We also used a trick from FrameDiff-Improved to stabilize the rotation loss. Instead of the L2 loss on
the rotation vector, we separate the loss into two components: one on the axis and one on the angle
for the rotation vector. This seemed to reduce variance and numerical instability in the training.

I.5 DATA AND DATA SAMPLING

We use a subset of PDB filtered with the same criteria as FrameDiff, specifically, we filter for
monomers of length between 60 and 512 (inclusive) with resolution < 5Å downloaded from
PDB (Berman et al., 2000) on July 20, 2023. After filtering out any proteins with > 50% loops we
are left with 22248 proteins. To support diversity, we sample uniformly over clusters with similarity
of 30% as suggested in FrameDiff-Improved model2. Our model functions most efficiently with
batches of proteins of the same length, so we each batch contains proteins of a single length. There
are 4268 clusters in our dataset.
To assess the effects of our sampling methods on protein diversity and length distribution, we present
three plots. fig. 13a illustrates the variability and range of protein lengths in the dataset, giving an
overview of available lengths for sampling. fig. 13b shows the batch fraction per length, highlighting
alterations in sequence length distribution during training due to uniform cluster sampling. Fig. 13c,
which uses a log scale on both axes, unveils the variation in cluster sizes and the skewness in
protein distribution across clusters. Uniform cluster sampling enhances batch diversity, aiding model
generalization over various protein sequences and structures. However, as observed in fig. 13b, it
slightly modifies the sequence length distribution during training. fig. 13c reveals an unevenness in
protein distribution across clusters, with two bins containing approximately 14% of proteins.

2https://cdn.rcsb.org/resources/sequence/clusters/clusters-by-entity-30.
txt
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Figure 13: (a) Distribution of protein lengths in our dataset. (b) Distribution of protein lengths in a batch (when
sampling uniformly by cluster) (c) Distribution of number of proteins per cluster.

I.6 PROTEIN METRICS

The TM-score. The template modeling score (TM-score) measures the similarity between two
protein structures. The TM score can be expressed for two protein backbones x0, x1 ∈ SE(3)

N as

TM-score(x0, x1) = max

 1

Ntarget

Ncommon∑
i

1

1 +
(

di

d0(Ntarget)

)2

 (47)

where Ntarget is the length of the target sequence, Ncommon is the length of the common sequence
after 3D structural alignment, di is the distance (post alignment) of the ith residues in x0, and x1,
and d0(N) = 1.24(N − 15)1/3 − 1.8 is a scaling factor to normalize across protein lengths. The
TM-score ranges between (0, 1] with a TM-score of 1 indicating perfectly aligned structure. In
general a TM-score > 0.5 are considered roughly similar folds, with TM-score < 0.2 corresponding
to randomly chosen unrelated proteins.
The RMSD metric. The root-mean-square deviation (RMSD) is a simple metric over paired residues
expressed as

RMSD(x0, x1) =

√√√√ L∑
i=1

d2i
L

(48)

where di is again the distance between the ith residues heavy atoms [N,Cα,C,O]. The RMSD score
is length dependent unlike the TM-score, but has been shown to be a more stringent filtering step
then TM-score > 0.5 for designability (Watson et al., 2023). In general, as compared to TM-score
the RMSD metric is more sensitive local errors and less sensitive to global misalignments.
Designability. A generated protein structure is considered designable if there exists an amino acid
sequence which refolds to that structure. We first generate 50 proteins at lengths {100, 150, 200,
250, 300 }, then apply ProteinMPNN with sampling_temp = 0.1 8 times to generate 8 sequences for
every generated structure. Finally we apply default ESMFold and aligned RMSD of the Cα backbone
atoms to calculate alignment of each ESMFold-refolded structure with the generated structure. We
determine a protein designable if at least one of the 8 refolded structures has an scRMSD score < 2.0.
While a threshold of < 2.0 for designability is standard, this threshold may be unreasonably strict for
longer backbones. However, it is unclear how this threshold should decay with increasing sequence
length.
Finally, we note the imperfection of the self-consistency designability metric: when ESMFold does
not produce the same structure as FOLDFLOW it does not imply FOLDFLOW’s structure is wrong,
especially for longer sequences where protein folding models are known to perform worse. Both
ProteinMPNN and ESMFold are imperfect, and the failure cases of these models has not been well
characterized. While the false positive rate of this metric appears to be low, the false negative of this
metric has not been quantified.
Diversity. We calculate all pairwise TM-scores for all generated structures that achieve the des-
ignability threshold of scRMSD < 2 for each length of protein. We then compute the mean over
all of these pairwise TM-scores as our diversity metric. For this metric, a lower score is better. We
choose to compare diversity on designable proteins as we do not want the designability score to be
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inflated by models which produce poor, proteins that may be very dissimilar to the space of refoldable
proteins at that length.
Novelty. We calculate novelty using two metrics. The first is the minimum TM-score of designable
generated proteins to the training data as described in Appendix I.5. The second metric is motivated
by previous research (Lin & AlQuraishi, 2023) and is the fraction of proteins that are both designable
(scRMSD < 2 Å) and novel (avg. max TM-score < 0.5). We note that all models are not trained
on the same dataset: FOLDFLOW and FrameDiff-Retrained share their dataset andFOLDFLOW and
FrameDiff-ICML use very similar training datasets (only differing in about 10% of structures),.
However, Genie and RFdiffusion use substantially larger datasets. Genie is trained on the Swissprot
database (Jumper et al., 2021; Varadi et al., 2021) and RFdiffusion is at least pretrained on high-
confidence AlphaFold2 structures. These larger training sets may cause novelty to be overestimated
for these models as there are structures in their training sets that are far from the training set we use
to test novelty against.
Error bounds in Table 2. We also report the standard error of the novelty and designability metrics
in table 2. This is calculated by taking the standard error for each metric per sequence length, and
then taking the mean over sequence lengths. We note that as the diversity is calculated as the averaged
pairwise distances of designable proteins, each estimate of the mean is correlated resulting in an
invalid estimate of the standard error.

J EXTENDED ABLATION OF EXPERIMENTS

Table 6: Ablation study of FOLDFLOW features (stochasticity, optimal transport, auxiliary losses and
inference annealing) against designability, diversity and novelty metrics.

Designability(↑) Diversity(↓) Novelty Stochas. OT Aux.
Loss

Inf. an-
nealing

max(↓) fraction(↑)
0.228 0.230 0.440 0.172 ✗ ✗ ✗ ✗
0.648 0.267 0.447 0.412 ✗ ✗ ✗ ✓
0.132 0.235 0.432 0.096 ✗ ✗ ✓ ✗
0.657 0.264 0.452 0.432 ✗ ✗ ✓ ✓
0.112 0.209 0.414 0.088 ✗ ✓ ✗ ✗
0.592 0.247 0.419 0.424 ✗ ✓ ✗ ✓
0.152 0.190 0.443 0.108 ✗ ✓ ✓ ✗
0.820 0.247 0.460 0.484 ✗ ✓ ✓ ✓
0.128 0.198 0.394 0.100 ✓ ✗ ✗ ✗
0.580 0.253 0.439 0.416 ✓ ✗ ✗ ✓
0.164 0.196 0.427 0.120 ✓ ✗ ✓ ✗
0.684 0.253 0.412 0.500 ✓ ✗ ✓ ✓
0.188 0.215 0.449 0.136 ✓ ✓ ✗ ✗
0.632 0.257 0.433 0.432 ✓ ✓ ✗ ✓
0.268 0.210 0.446 0.188 ✓ ✓ ✓ ✗
0.716 0.251 0.411 0.544 ✓ ✓ ✓ ✓

We perform a complete ablation experiment for the four features of the FOLDFLOW models: stochas-
ticity, optimal transport, auxiliary losses in training and inference annealing. For each of the
experiments, we evaluate the performance of the model on the designability, diversity and novelty
metrics. These results can be seen in table 6. Overall, we observe the following trends:

• Stochasticity improves robustness and the ability of the model to generate novel proteins in
7/8 settings, as observed in the fraction of novel and designable proteins (Novelty-fraction).

• Optimal transport improves the designability of the model by reducing the variance in the
training objective in 7/8 settings.

• The auxiliary losses improve the designability of the models in 7/8 settings.

• Inference annealing improves the performance of all FOLDFLOW models in all metrics.
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