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Abstract

High annotation cost has driven extensive research in active learning and self-1

supervised learning. Recent research has shown that in the context of supervised2

learning, when we have different numbers of labels, we need to apply different3

active learning strategies to ensure that it outperforms the random baseline. This4

number of annotations that change the suitable active learning strategy is called the5

phase transition point. We found, however, when combining active learning with6

self-supervised models to achieve improved performance, the phase transition point7

occurs earlier. It becomes challenging to determine which strategy should be used8

for previously unseen datasets. We argue that existing active learning algorithms are9

heavily influenced by the phase transition because the empirical risk over the entire10

active learning pool estimated by these algorithms is inaccurate and influenced by11

the number of labeled samples. To address this issue, we propose a novel active12

learning strategy, neural tangent kernel clustering-pseudo-labels (NTKCPL). It13

estimates empirical risk based on pseudo-labels and the model prediction with14

NTK approximation. We analyze the factors affecting this approximation error and15

design a pseudo-label clustering generation method to reduce the approximation16

error. Finally, our method was validated on five datasets, empirically demonstrating17

that it outperforms the baseline methods in most cases and is valid over a wider18

range of training budgets.19

1 Introduction20

The boom in deep learning models in recent years stems in part from the massive amounts of21

data [11, 17, 23]. However, the demand for large amounts of data, especially labeled data, in22

turn, constrains the application of deep learning models, since large amounts of labels imply high23

annotation costs [41, 1, 45]. Active learning is a path to alleviate the cost of labeling by selecting24

informative subsets of samples to annotate.25

However, the benefits of active learning have been increasingly questioned in recent years [25, 28].26

One of the main concerns is that training a model initialized by self-supervised learning with randomly27

selected labeled samples often yields results far beyond those obtained by existing active learning28

with supervised training (randomly initialized or initialized by the last round of the active learning29

model) [6, 8, 7, 14, 9]. Because the latter only uses labeled data to train the network, while the30

former uses a large amount of unlabeled data to train the backbone of the network. Since most31

existing active learning algorithms are designed in the context of supervised training, they must be32

validated with a large number of labels compared to the number of labels required in training from a33

self-supervised model. This means that the effectiveness of these active learning algorithms is not34

guaranteed in the case of having access to relatively few annotations, as is the case when combining35

with a self-supervised model. Several studies [15, 42, 4] have shown that many existing active36
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learning strategies fail to outperform the random baseline when combining them with self-supervised37

learning. In this paper, we focus on designing an active learning strategy that works well in the38

training method with a self-supervised model.39

The “phase transition” phenomenon [15] is known to occur in active learning with supervised training.40

It refers to the fact that an active learning strategy that outperforms a random baseline when the total41

number of labels is small will be inferior to a random baseline when the total number of labels is42

large (called the low-budget strategy) and vice versa (called the high-budget strategy). We note that43

when combining active learning with the self-supervised model, the cut-off point between low-budget44

and high-budget strategy occurs much earlier. For example, in the CIFAR-100 [21], the cut-off point45

is about 10,000 labeled samples when training in the supervised learning way [16]. But, the cut-off46

point shifts forward to about 1,500 labeled samples when training from a self-supervised model. The47

forward-moving cut-off point means that even if the annotation budget is low (only one order of48

magnitude above the number of classes in the dataset), it is likely to hit that cut-off point. Thus, for a49

previously unseen dataset, it is difficult to simply determine whether a low-budget or high-budget50

strategy should be chosen since the difficulty varies from dataset to dataset. In this paper we use this51

problem to motivate the design of an active learning strategy with a wider effective budget range.52

Since existing low-budget strategies are designed based on the idea of feature space coverage [24, 15,53

42], we first analyze the problems of determining coverage based on sample feature distances in sec. 2.54

After that, we propose that the true coverage where the empirical risk is zero, can be estimated based55

on pseudo-labels and predictions of the model trained on the candidate set. Based on this, we propose56

our active learning strategy, Neural Tangent Kernel Clustering-Pseudo-Labels (NTKCPL), which57

uses the NTK [18, 27] and CPL to approximate empirical risk on active learning pool in sec. 3.2. And58

we analyze which factor affects approximation error in sec. 3.3. Based on this analysis, we design59

a CPL generation method in sec. 3.4. Extensive experimental results demonstrate that our method60

outperforms state-of-the-art approaches in most cases and has a wider effective budget range. As part61

of the results (sec. 4) we also show our method is effective for self-supervised features of different62

quality.63

Our contribution is summarized as follows: (1) We propose a novel active learning strategy, NTKCPL,64

by estimating empirical risk on the whole active learning pool based on pseudo-labels. (2) We analyze65

the approximation error of the empirical risk in the active learning pool when NTK and CPL are used66

to approximate networks and true labels. (3) Our method outperforms both low- and high-budget67

active learning strategies within a range of annotation quantities one order of magnitude larger than68

traditional low-budget active learning experiments. This means that our approach can be used more69

confidently for active learning on top of self-supervised models than existing low-budget strategies.70

1.1 Related Work71

Most active learning strategies are designed and validated in the high-budget scenario where network72

weights are randomly initialized or initialized from the weights of the previous active learning73

round. Active learning methods mainly include uncertainty-based sampling [22, 13, 19], feature74

space coverage [32, 24, 42, 33, 5, 40], the combination of uncertainty and diversity [41, 3], learning-75

based methods [43], and so on [34, 35]. Moreover, some recent studies explore “look ahead”76

strategies [26, 38], where samples are selected based on the model trained on candidate training sets.77

However, with the development of self-supervised training, the training approach for low-budget78

scenarios has shifted to training based on a self-supervised pre-trained model [24]. This change in79

the training method implies a shift in the total number of samples that need to be selected by active80

learning. When training based on a self-supervised model, often only 0.4-6% of the total data needs81

to be labeled to achieve similar results to training with 20-40% labeled data on a randomly initialized82

network [4]. Recent studies have shown that there exists a phase transition phenomenon in active83

learning strategies, whereby opposite strategies should be adopted in high-budget and low-budget84

scenarios [15], causing many active learning strategies designed for high-budget scenarios unsuitable85

for training based on a self-supervised model. As a result, recent studies have explored active learning86

strategies specifically designed for low-budget scenarios [15, 42, 31, 20]. However, we find that these87

strategies are effective only when the number of labeled data samples is extremely small, and as we88

increase the labeled data to one order of magnitude above the number of classes of the dataset, their89

performance falls below that of the random baseline.90
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2 Insight: Distance is not an accurate indicator of empirical risk91

The goal of the active learning is to find a labeled subset, DC = (xi, yi)
NC
i=1, such that the model92

trained on that subset, fDC
, has the minimized empirical risk in the entire active learning pool,93

D = (xi, yi)
N
i=1 as shown in eq. 1.94

argminDC

1

N

∑
i∈D

Loss(fDC
(xi), yi) (1)

Unfortunately, during active learning, we do not have the labels of the entire active learning pool, so95

we cannot compute this loss directly. To address this problem, current methods [32, 24, 33] covert96

empirical risk minimization into feature space coverage based on Lipschitz continuity. Although97

Lipschitz continuity guarantees that the difference between the model’s predictions is less than the98

product of the Lipschitz constant and the difference between inputs, it does not guarantee that their99

predictions fall into the same class. In practice, we cannot determine the true coverage because we100

do not know the distance threshold beyond which the model would change its predicted class for101

unlabeled samples.102

Therefore, the current solution is to minimize the coverage radius assuming full coverage [32] or to103

maximize coverage based on high purity coverage [42], where purity refers to the probability that the104

sample has the same label within a given distance. Assuming full coverage leads to an overestimated105

coverage as shown in fig. 1a, i.e., some covered samples still have a large empirical risk, while high-106

purity coverage causes underestimated coverage as shown in fig. 1b. The overestimated coverage107

may cause the active learning algorithm to miss samples in areas that are not truly covered, while108

underestimated coverage makes active learning algorithms likely to select redundant samples. These109

affect the performance of active learning.110

(a) Coreset (b) Probcover (c) NTKCPL (d) Neural Network

Figure 1: Coverage estimation based on sample feature distance vs. NTKCPL. Here different colors
represent different categories, the black star denotes labeled samples and the blue circle represents the
samples considered covered based on the feature distance approach. Coreset assumes full coverage
and Probcover assumes high purity coverage. The coverage estimated by our method, NTKCPL, and
true coverage based on predictions of the neural network is represented by black dots. The coverage
estimated by NTKCPL is more consistent with the true coverage of the neural network than those
estimated based on feature distances.

Additionally, estimating the empirical risk based on distance implies the assumption that model111

predictions are only relevant to the nearest labeled sample, which is often not the case in reality. To112

estimate the true coverage, we propose a new strategy, NTKCPL. It estimates the empirical risk based113

on the predictions of the model trained on the candidate set and pseudo-labels.114

3 Method: NTKCPL115

In sec. 3.1, we briefly review the Neural Tangent Kernel (NTK) [18] that enables active learning116

strategies based on the outputs of a model trained on a candidate set feasible. Then, we propose our117

active learning strategy, NTKCPL, in sec. 3.2 and analyze the approximation error of NTKCPL in118

sec. 3.3. Finally, based on the analysis, we introduce the method of generating cluster pseudo-label in119

sec. 3.4.120
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3.1 Preliminaries121

Neural Tangent Kernel (NTK) is a powerful tool to analyze the training dynamics of neural network.122

Jacot et al. [18] show that the neural network is equivalent to the kernel regression with Neural123

Tangent Kernel when network is sufficiently wide and its weights are initialized properly [2]. The124

NTK, K, is shown in eq. 2, where the f denotes a neural network with parameters θ and X denotes125

train samples. When training with MSE loss, the neural network has a closed-form solution for the126

prediction of test sample x at iteration t as eq. 3, where Y denotes labels of trainset and f0 denotes127

the output of network with initialized weights.128

K(X ,X ) = ∇θf(X )∇θf(X )
T (2)

ft(x) = f0(x) +K(x,X )K(X ,X )−1(I − e−tK(X ,X ))(Y − f0(X )), (3)

Additionally, for active learning scenarios, Mohamad [26, 27] proposes the computation time of129

using NTK can be further reduced by considering the block structure of the matrix, which means130

that look ahead type active learning strategies can be implemented in a reasonable amount of time.131

For example, as shown in [26], if we want to use the look ahead active learning strategy, each active132

learning cycle takes 3 hours to train the entire network of 15 epochs on the MNIST dataset, while it133

takes only 3 minutes to use NTK with a block structure.134

3.2 Framework135

We propose a look ahead strategy, NTKCPL, to approximate the empirical risk on the whole active136

learning pool directly. There are two challenges: (1) estimate empirical risk without labels and (2)137

estimate predictions of models trained with candidate sets efficiently and accurately.138

For the first challenge, clusters on self-supervised features provide good pseudo-labels. Because most139

samples in the same cluster have the same label [39]. And when the number of clusters is increased,140

it can improve the purity of clusters, where purity refers to the probability that the sample has the141

same label within the same cluster. We call these clusters clustering-pseudo-labels (CPL), ycpl.142

For the second challenge, as introduced in sec. 3.1, NTK approximates the network well for random143

initialization and the computation time is acceptable. However, in our scenario, training on top of the144

self-supervised model, NTK does not approximate predictions of the whole network well. The main145

reason is that weights of the neural network are initialized by self-supervised learning rather than146

NTK initialization, i.e., drawn i.i.d. from a standard Gaussian [18]. In addition, the self-supervised147

initialization provides the neural network with a powerful feature representation capability that is not148

available in NTK. This leads to inconsistency between NTK predictions and network outputs. So, in149

our method, the NTK is used to approximate the classifier instead of the whole network. And the150

inputs of NTK are self-supervised features. Accordingly, we choose a training method following [24]151

that freezes the encoder initialized by self-supervised learning and trains only the MLP as a classifier.152

That training method achieves better or equal performance than fine-tuning the whole network in153

the low-budget case while its prediction is more consistent with the results of NTK. We denotes the154

predictions of NTK with trainset DC as f̂DC
. Now, the active learning goal in eq. 1 is approximated155

as eq. 4.156

argminDC

1

N

∑
i∈D

Loss(f̂DC
(xi), ycpl,i) (4)

The algorithm is shown in Alg. 1. For computational simplicity and without loss of generality, we157

use 0-1 loss to calculate empirical risk in eq. 4. In each round of active learning, after computation of158

NTK based on eq. 2 and generation of CPL based on the method introduced in sec. 3.4, the sample159

that minimizes the empirical risk on the whole active learning pool after adding labeled set is selected.160

3.3 NTKCPL Approximate Error161

In this section, we analyze what affects the accuracy of NTKCPL estimates of empirical risk on162

the whole active learning pool. The difference between the true empirical risk and the estimated163
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Algorithm 1 NTKCPL
1: Input: self-supervised feature fself , active learning feature fal labeled set L, unlabeled set U , budget b,

initial budget b0, maximum cluster number Cmax, model prediction Ypre,t−1 at the last active learning
round

2: Output: labeled set L, model prediction Ypre,t at this round
3: if L is ∅ then
4: Ycpl← K-means(fself , b0)
5: else
6: Nclu = min{bi/2, Cmax}
7: Ycpl← CPL generation(fal, Ypre,t−1, b0, Nclu, L) based on Alg. 2
8: end if
9: Initialize classifier, MLP, compute f0 and ker based on eq. 2

10: for itr = 1 to b do
11: Emp_risk = []
12: for (xi, ycpl,i) in U do
13: Compute YNTK = f̂(ker, f0, L ∪ (xi, ycpl,i), U) based on eq. 3
14: Emp_risk + = [0-1Loss(YNTK , Ycpl)]
15: end for
16: i′ = argminEmp_risk
17: L = L ∪ (xi′ , ycpl,i′), U = U\xi′

18: end for
19: Query label yi′

1,...,b
of xi′

1,...,b

20: L = L ∪ (xi′
1,...,b

, yi′
1,...,b

), U = U\xi′
1,...,b

21: Train classifier ft on L
22: model prediction Ypre,t = ft(U)

empirical risk using NTK and CPL is shown in eq. 5. The approximation error can be divided into164

two terms, the first one is the difference between NTK and neural network prediction, errorNTK ,165

and the second one is the difference caused by CPL during NTK estimation, errorCPL. For the166

errorNTK , as we mentioned in sec. 3.2, NTK is used to approximate the classifier only to obtain167

better consistency. To analyze errorCPL, we start with the relationship between the predictions of168

NTK trained with the ground truth, f̂y(xi), and CPL, f̂cpl(xi).169

1

N

∑
i∈D

∣∣∣Loss(f(xi), yi)− Loss(f̂(xi), ycpl,i)
∣∣∣

≤ 1

N

∑
i∈D

(
∣∣∣Loss(f(xi), yi)− Loss(f̂(xi), yi)

∣∣∣+ ∣∣∣Loss(f̂(xi), yi)− Loss(f̂(xi), ycpl,i)
∣∣∣) (5)

Definition Denotes the jth output of f̂cpl as f̂ j
cpl. Label mapping function g converts NTK’s170

predictions about CPL classes, f̂cpl(xi), into predictions about true classes, f̂ymap(xi), based on171

dominant labels within corresponding CPL classes as shown in eq. 6, where Ddom is a set of index k,172

where j is the dominant true label classes within CPL class, ycpl,k.173

f̂ j
ymap(xi) =

∑
k∈Ddom

f̂k
cpl(xi) (6)

Proposition If the true labels of labeled samples are the dominant labels in their corresponding174

CPL clusters, f̂y(xi) = g(f̂cpl(xi)). We defer the proof to appendix 1.175

errorCPL = Pnff + Pfnf (7)

As mentioned in sec. 3.2, we use 0-1 loss to calculate empirical risk. We can expand errorCPL as176

eq. 7, where we denote the probability that the NTK prediction agrees with the y but not with ycpl as177

Pfnf , and the probability that the NTK prediction does not agree with y but agrees with ycpl as Pnff .178

According to the proposition, we argue argmaxf̂y(xi) is most likely equal to g(argmaxf̂cpl(xi)).179
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Pfnf refers to the case where different CPL classes correspond to the same true label class, i.e.,180

over-clustering. Pnff means that the true label of a sample is different from the dominant true label181

within its CPL class, i.e., the CPL class includes samples from different true label classes, which is182

called impurity. Detailed explanations and empirical evidence can be found in appendix 1.183

3.4 Cluster Pseudo-Labels184

As shown by eq. 7, the effect of CPL on the approximation error comes from the purity of the clusters185

and over-clustering. To improve clustering purity, we take two approaches: (1) clustering on the186

active learning feature, i.e., the output of the penultimate layer of the classifier, and (2) increasing187

the number of clusters. However, increasing the number of clusters may cause the labeled samples188

not to cover all classes of the CPL (under-coverage) and also increase the over-clustering error. For189

example, a group of samples with the same true label is clustered into K different classes. Even190

though NTK incorrectly predicts some samples as other CPL classes, their true empirical risk is zero.191

Algorithm 2 CPL generation
Input: active learning feature fal, model predictions
Ypre, initial cluster number C0, cluster number Cmax,
labeled set L
Output: CPL Ycpl

Clu1,...,C0 ← Constrained K-means(fal, L, C0)
for itr = 1 to (Cmax − C0) do

i′ = argmaxi number of Confusing samples(Clui,
Ypre)
fal,i′ ← fal of samples within Clui′

Clui′,C0+1← K-means(fal,i′ , 2 )
C0← C0 + 1

end for
Ycpl← Clu1,...,Cmax

To improve the under-coverage, we set the num-192

ber of clusters to half of the total number of la-193

bels, i.e., each cluster includes two labeled sam-194

ples on average. To improve the over-clustering,195

we manually set the maximum number of clus-196

ters and design a clustering-splitting approach197

instead of directly increasing the number of clus-198

ters. It splits the low-purity clusters and keeps199

the high-purity ones to reduce the extra over-200

clustering errors within samples located in the201

high-purity clusters. Specifically, we use the pre-202

diction of the neural network in each round of203

active learning to estimate the number of confus-204

ing samples within each cluster, i.e., the number205

of samples from classes that are different from206

the dominant class. The clusters that contain the207

largest number of confusing samples are split sequentially until a predefined number of clusters208

is reached. The cluster splitting algorithm is shown in Alg. 2, where we adopt the constrained209

K-Means [37] to improve the clusters from labeled sample constraints.210

4 Experiment Results211

Our approach is validated on five datasets with various qualities of self-supervised features. Datasets212

with good self-supervised features, such as CIFAR-10 [21], CIFAR-100 [21], and ImageNet-100213

(a subset of ImageNet [11], following splitting in [36]), are included. SVHN [29] with poor self-214

supervised features is also included. Additionally, we consider practical scenarios where the total215

number of samples in the trainset is insufficient to support effective self-supervised training, such as216

Oxford-IIIT Pet dataset [30]. In this case, we evaluated the effectiveness of our method based on the217

model pre-trained on ImageNet [11].218

Baseline We compare our proposed method with representative active learning strategies: (1)219

Random, (2) Entropy (uncertainty sampling, maximum entropy of output) [22], (3) Coreset (diversity220

active learning strategy, greedy solution of minimum coverage radius) [32], (4) BADGE (combination221

of uncertainty and diversity, kmeans++ sampling on grad embedding) [3], where the scalable ver-222

sion [10, 12], badge partition, is used in ImageNet-100, CIFAR-100 and Oxford-IIIT Pet because the223

huge dimension of grad embedding (5) Typiclust (designed for low-budget case) [15], (6) Lookahead224

(maximum output change based on NTK) [26].225

Implementation Our method focuses on the low-budget regime, we followed the training method226

in [24], freezing weights of backbone initialized with self-supervised learning and then training a227

MLP as the classifier. The hyperparameters for training are set following [15] and can be found in228

appendix 3. For the self-supervised model, we adopt simsiam [9] for CIFAR-10, CIFAR-100 and229

SVHN and BYOL [14] for ImageNet-100 and Oxford-IIIT Pet. Resnet-18 [17] is used in CIFAR-10230
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Table 1: Comparison of accuracy of different active learning strategies on CIFAR-10. All results are
averages over 5 runs. The best results are shown in red and the second-best results are shown in blue.

#
La

be
ls

R
an

do
m

En
tro

py

C
or

es
et

(s
el

f)

BA
D

G
E

Ty
pi

C
lu

st

Lo
ok

A
he

ad

N
TK

C
PL

(s
el

f)

N
TK

C
PL

(a
l)

20 41.80±3.82 38.58±2.86 20.08±2.75 39.85±3.91 46.38±1.61 40.93±4.04 54.31±3.74 52.67±3.70
40 57.52±3.34 51.10±4.21 36.67±6.29 54.99±3.43 66.18±2.45 58.55±2.71 68.60±2.50 63.55±2.89
60 65.88±3.07 64.46±3.42 46.39±7.41 65.23±1.40 72.93±1.77 66.96±2.90 75.09±1.69 72.22±2.11
80 69.35±3.31 70.49±3.05 58.96±6.15 70.76±1.86 76.98±1.04 72.71±1.94 78.51±1.61 75.32±0.92
100 74.11±1.16 74.34±1.92 62.64±5.07 75.40±0.99 78.24±1.28 75.97±2.04 80.30±1.17 78.45±1.19
200 80.90±0.90 79.86±1.77 76.93±3.56 82.20±1.14 83.16±0.61 81.89±1.31 83.77±1.04 81.87±1.02
300 82.80±0.93 81.43±2.23 82.64±1.42 84.53±0.46 84.16±0.25 83.29±0.89 85.00±0.54 83.78±1.05
400 84.04±0.49 83.37±1.31 84.56±1.15 84.75±0.40 85.13±0.27 84.59±0.59 85.64±0.38 84.73±0.85
500 84.97±0.78 84.24±0.89 85.23±0.59 85.57±0.51 85.37±0.15 85.31±0.12 85.72±0.22 85.48±0.65
1000 86.26±0.38 84.94±0.48 86.75±0.36 86.06±0.31 86.07±0.14 85.69±0.47 86.83±0.33 87.15±0.57
1500 86.95±0.27 85.85±0.39 87.03±0.13 87.05±0.36 86.37±0.11 86.82±0.23 87.18±0.41 87.58±0.29
2000 87.30±0.37 86.92±0.15 87.34±0.27 87.31±0.47 86.55±0.21 87.16±0.19 87.34±0.41 87.87±0.39

and SVHN, WRN28-8 [44] is used in CIFAR-100 and Resnet-50 [17] is used in ImageNet-100 and231

Oxford-IIIT Pet.232

The number of clusters in our method is set according to three rules, in the initial selection, it is233

set to the number of query samples, after that it is set to half of the query samples until the number234

of clusters reaches the maximum number of clusters. For CIFAR-10, CIFAR-100, ImageNet-100,235

SVHN, and Oxford-IIIT Pet, the maximum number of clusters is 100, 500, 300, 100, and 150,236

respectively. We followed [26] to sample a subset of the unlabeled set as the candidate set to select237

samples and estimate coverage. The candidate set includes 10,000 samples.238

For the query step, most of the experiments (those on CIFAR-100, SVHN and Oxford-IIIT Pet)239

following the active learning literature by drawing a fixed number of samples from the unlabeled240

dataset to the oracle. Specifically, 500 for CIFAR-100, 20 for SVHN, and 40 for Oxford-IIIT Pet.241

We empirically found that fixed active learning query steps lead to much faster growth of classifier242

accuracy in the early stages of active learning (the amount of labels is about 10 times than the number243

of class) than in the later stages, so it is difficult to clearly observe the differences between different244

active learning strategies. For this reason, we empirically set varying query steps in our experiments245

with CIFAR-10 and ImageNet-100. Smaller query steps were used in the early stage of active learning246

and switched to larger query steps in the later stage. Specifically, for CIFAR-10, 20 samples are247

queried before 100 labels are available, 100 samples are queried before 500 labels and 500 labels248

are queried before 2000 labels. For ImageNet-100, 200 samples are selected before 1000 labels are249

available and 500 samples are queried before 2000 labels.250

4.1 Main Results251

All experiments were run 5 times and the avg. and std. are reported. Considering that the experiments252

are conducted for the scenario with a low annotation budget, it is not practical to construct a validation253

set to select the best checkpoints (the benefits of constructing a validation set are much less than254

using these labeled samples as training samples). Therefore, we report the final checkpoint accuracy,255

not the accuracy of the checkpoints determined by the validation set. The results are shown in fig. 2256

and table 1. The detailed results are in appendix 5.257

NTKCPL outperforms SOTA. As shown in table 1, fig. 2. In most cases, our proposed method258

outperforms the baseline methods. For the few cases with only a small number of labels, our method259

shows comparable performance with the low-budget strategy, TypiClust, such as in CIFAR-100 with260

500 and 1000 labeled samples, and Oxford-IIIT Pet with 80 and 100 labeled samples.261

NTKCPL still shows good performance when the self-supervised features do not correspond262

well to the label classes. Since the loss of self-supervised training is different from that of image263

classification, self-supervised features do not always correspond well with label classes. In SVHN264

dataset, self-supervised features of different classes are mixed together because the images include265

some irrelevant digits on both sides of the digit of interest [29]. Our method is similar to other266
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Figure 2: Performance of different active learning strategies. The shaded area represents std.

baseline strategies at the beginning of active learning, but it shows better results than baselines after267

several active learning rounds as shown in fig. 2c.268

Another common scenario is the lack of sufficient samples to support effective self-supervised training.269

To evaluate in this context, we choose the Oxford-IIIT Pet dataset with the self-supervised model270

trained on ImageNet. The result is shown in fig. 2d. Our method has similar accuracy in the first three271

rounds as the TypiClust and outperforms all baseline methods afterward.272

Table 2: Comparison of the effective bud-
get ratio of different active learning strate-
gies.

Effective Budget Ratio

TypiClust 40.8%
BADGE 42.0%
NTKCPL(al) 92.7%

NTKCPL has a wider effective budget range than273

SOTA. Active learning based on self-supervised mod-274

els exhibits an intensified phase transition phenomenon.275

We plot the active learning gain of our method and base-276

lines on different datasets in fig. 3. The average accuracy277

of our method, NTKCPL(al), outperforms the random278

baseline at all quantities of labels. In contrast, both the279

typical high-budget strategy, BADGE, and low-budget280

strategy, TypiClust, appear to be worse than the random281

baseline over a range of annotation quantities. We show282

the effective budget range of our method, NTKCPL, as well as the typical high-budget strategy,283

BADGE, and the typical low-budget strategy, TypiClust, across all experiments in table 2. The effec-284

tive budget ratio refers to the proportion of the effective annotation quantity to the total annotation285

quantity, where the effective annotation quantity refers to the number of annotations at which active286

learning accuracy exceeds the random baseline (avg. + std.).287

4.2 Ablation Study288

In this section, we evaluate the coverage estimation of our method and the effect of the maximum289

cluster number on NTKCPL. Also, we compare the effect of generating CPL on self-supervised290

features as well as on the active learning feature on the performance of NTKCPL.291
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Figure 3: Active learning gain of different active learning strategies.
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Figure 4: Coverage estimation on
CIFAR-100.
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Figure 5: Effect of the maximum number of clus-
ters on active learning performance on CIFAR-10.

Coverage Estimation We conducted experiments on CIFAR-100, where the coverage indicates the292

proportion of samples that are correctly predicted. The estimated coverage of NTK with true label293

and with CPL is shown in fig. 4. Our method approximates the true coverage well for most cases.294

Effect of the Maximum Number of CPL The ablation experiments are conducted on CIFAR-10.295

We plot the accuracy when the number of annotations selected by active learning is greater than296

400 as shown in fig. 5. In this range, the number of classes of CPL is fixed at 10, 50, 100, and297

200, respectively. The experimental results support our analysis in sec. 3.4 that too many or too few298

clusters will increase the approximation error, which affects the performance of active learning.299

Effect of self-supervised feature-based and active learning feature-based clustering-pseudo-300

labels on NTKCPL. We denote NTKCPL based on active learning features as NTKCPL(al) and301

NTKCPL based on self-supervised learning feature as NTKCPL(self). The results are shown in302

table 1 and fig. 2. From these experiments, we found that clustering on active learning features yields303

better results except for the case where the number of annotations is very small. Also, NTKCPL(self)304

is better than NTKCPL(al) in a wide range of annotation quantities (no more than 500), when305

self-supervised features are good such as experiment in the CIFAR-10.306

5 Conclusion307

We study the active learning problem when training on top of a self-supervised model. In this case,308

an intensified phase transition is observed and it influences the application of active learning. We309

propose NTKCPL that approximates empirical risk on the whole pool more directly. We also analyze310

the approximation error and design a CPL generation method based on the analysis to reduce the311

approximation error. Our method outperforms SOTA in most cases and has a wider effective budget312

range. The comprehensive experiments show that our method can work well on self-supervised313

features with different qualities.314

Our approach is limited to the fixed training approach, i.e., training the classifier on top of a frozen315

self-supervised training encoder, which is restricted to the low-budget scenario because the fine-316

tuning training approach provides higher accuracy in the high-budget case. Therefore, (1) how to317

accurately approximate the fine-tuning model initialized with self-supervised weights using NTK and318

(2) whether the samples selected by our current method have good transferability for the fine-tuning319

would be interesting future directions.320
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