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ABSTRACT

Adapting language models (LMs) to new tasks via post-training carries the risk
of degrading existing capabilities—a phenomenon classically known as catas-
trophic forgetting. In this paper, we set out to identify guidelines to mitigate this
phenomenon, by systematically comparing the forgetting patterns of two widely
adopted post-training methods: supervised fine-tuning (SFT) and reinforcement
learning (RL). Our experiments reveal a consistent trend across LM families
(Llama, Qwen) and tasks (instruction following, general knowledge, and arith-
metic reasoning): RL leads to less forgetting than SFT while achieving compara-
ble or higher target task performance. To investigate the cause for this difference,
we consider a simplified setting in which the LM is modeled as a mixture of two
distributions, one corresponding to prior knowledge and the other to the target
task. We identify that the mode-seeking nature of RL, which stems from its use
of on-policy data, enables keeping prior knowledge intact when learning the tar-
get task. We then verify this insight by demonstrating that the use on-policy data
underlies the robustness of RL to forgetting in practical settings, as opposed to
other algorithmic choices such as the KL regularization or advantage estimation.
Lastly, as a practical implication, our results highlight the potential of mitigating
forgetting using approximately on-policy data, which can be substantially more
efficient to obtain than fully on-policy data.

1 INTRODUCTION
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Figure 1: Illustration of the forgetting dynamics for the forward KL objective, corresponding to SFT,
and the reverse KL objective, corresponding to RL. Left: we model LM post-training as a mixture
of two modes. The “old” mode represents prior knowledge and the “new” mode represents a target
task. Initially, the old mode of the training policy πθ roughly matches the old mode of the optimal
policy π∗, but its additional “new” mode does not match the new target mode. The goal is for the
training policy to match the optimal policy. Top right: minimizing forward KL first stretches the
new mode of πθ and then moves probability mass from the old mode to cover the target, leading to
forgetting. Bottom right: in contrast, minimizing reverse KL maintains the shape of the old mode
and covers the target distribution by shifting the new mode of πθ.
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Adapting language models (LMs) to new target tasks during post-training carries the risk of eroding
previously acquired capabilities—a phenomenon known as catastrophic forgetting (McCloskey &
Cohen, 1989; Kirkpatrick et al., 2017). Such forgetting has been reported to occur when training
LMs to follow instructions via supervised fine-tuning (SFT) (Luo et al., 2023; Shi et al., 2024; Wu
et al., 2024) or aligning them with human preferences via reinforcement learning (RL) (Bai et al.,
2022; Ouyang et al., 2022). However, the understanding of how SFT and RL compare in terms of
their susceptibility to forgetting remains limited.

In this work, we systematically compare the forgetting patterns of SFT and RL in order to identify
principled guidelines for mitigating forgetting in LM post-training. We conduct a comprehensive
study across instruction following, general knowledge, and arithmetic reasoning tasks, using Qwen
2.5 (Yang et al., 2024) and Llama 3 (Grattafiori et al., 2024) models of up to 8B scale. Our exper-
iments reveal a consistent trend: SFT suffers from severe forgetting, whereas RL can achieve high
target task performance without substantial forgetting (Figure 2).

We then investigate the cause for the relative robustness of RL to forgetting. At first glance, it
may seem at odds with conventional wisdom. Namely, minimizing the cross-entropy loss via SFT
is equivalent to minimizing the forward KL divergence with respect to the optimal policy, while
maximizing the RL objective corresponds to minimizing the reverse KL (Korbak et al., 2022a).
Conventional wisdom presumes that the mode-seeking nature of reverse KL enables faster learning
of target distributions (Chan et al., 2022; Tajwar et al., 2024b) at the cost of losing coverage of
old modes, while the mode-covering forward KL should maintain probability mass across modes.
We reconcile this discrepancy by considering a simplified setting, where the target distribution is
modeled as a mixture of two distributions: one representing the policy’s prior knowledge and the
other representing the target task. We show that, if the initial policy is uni-modal (i.e., has a single
mode), then SFT can in fact be more robust than RL to forgetting. However, if the initial policy is
multi-modal (i.e., has multiple modes), which is arguably the case for practical LMs, then mode-
seeking RL leads to less forgetting than mode-covering SFT; see Figure 1 for an illustration.

The mode-seeking behavior of RL (i.e., its accordance with reverse KL minimization) stems from
the usage of on-policy data. Through extensive ablations, we empirically verify that this property
underlies the robustness of RL to forgetting, as opposed to other algorithmic choices such as the
advantage estimation or the application of KL regularization. Moreover, we explore what degree of
on-policy data allows mitigating forgetting. We find that for SFT, while generating data only from
the initial policy is not enough, approximately on-policy data generated at the start of each epoch
can suffice for substantially reducing forgetting. This suggests a practical guideline for LM post-
training: leveraging on-policy data, potentially sampled asynchronously or at the start of each epoch
for improved efficiency, can reduce unintended disruption of the model’s existing capabilities.

To summarize, our main contributions are:

• We demonstrate that RL is more robust to forgetting than SFT through extensive experiments
on instruction following, general knowledge, and reasoning tasks, using LMs from different
families and scales.

• We provide intuition for why the mode-seeking nature of RL, which stems from its use of
on-policy data, can counterintuitively lead to less forgetting than mode-covering SFT.

• We corroborate this insight by demonstrating that the use of on-policy data underlies the ro-
bustness of RL to forgetting in practical settings, and highlight the potential of mitigating
forgetting through approximately on-policy data, which can be substantially more efficient to
obtain than fully on-policy data.

2 FORGETTING IN LM POST-TRAINING

We begin by introducing notation and the metrics used to measure forgetting. Then, we empirically
compare the forgetting patterns of supervised fine-tuning (SFT) and reinforcement learning (RL).

2.1 PRELIMINARIES

A language model (LM) is modeled by a policy πθ(y |x), where the response y is generated condi-
tioned on the prompt x. For a target task T , we denote the optimal policy by π∗(· |x). In SFT, the
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Figure 2: SFT forgets more than RL across tasks and models. We compare the Gain (solid bar)
/ Drop (shaded bar) across models and datasets for: (1) Self-SFT, which uses data generated from
the initial policy; (2) SFT, which uses data generated by Llama-3.3-70B-Instruct; and (3) GRPO.
Gain (higher better) represents the accuracy increase on the target task, while drop (lower better)
represents the average accuracy decrease on non-target tasks.

cross-entropy loss is minimized with respect to ground truth responses y∗ sampled from the optimal
policy: LSFT(θ;x) :=

∑
y −π∗(y |x) log πθ(y |x). By contrast, in RL, the goal is to maximize

the KL-regularized reward with respect to responses generated by the LM and a reward function
r(x, y) ∈ {0, 1}1 i.e.: JRL(θ;x) := Ey∼πθ(· | x)[r(x, y)]−β ·KL[πθ(· |x) ||πθ0(· |x)], where β > 0
and πθ0 is the initial policy.

Forgetting and evaluation metrics. The initial policy πθ0 is trained on a target task T for T
optimization steps, resulting in the trained policy πθT . This policy is evaluated using accuracy,
which measures the fraction of correct outputs generated by πθT for prompts associated with T .
We denote the accuracy of πθT over T by A(πθT , T ) and define the target task gain as ∆g :=
A(πθT , T )−A(πθ0 , T ). We quantify forgetting, based on on a collection of tasks {T ′

j }Mj=1, through
the non-target tasks drop ∆d := 1

M

∑M
j=1 A(πθ0 , T ′

j )−A(πθT , T ′
j ). During post-training, the aim

is to achieve high target task gain while minimizing as much as possible the non-target tasks drop.
For brevity, we will often refer to target task gain as gain and to non-target tasks drop as drop.

2.2 EXPERIMENTAL SETUP

Target tasks and evaluation. We consider three tasks, covering different capabilities: IFEval (Zhou
et al., 2023) for instruction following, MMLU (Hendrycks et al., 2021) for general knowledge, and

1We use RL with verifiable reward (RLVR) throughout our experiments.
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Figure 3: SFT exhibits a tradeoff between target task performance and forgetting. Comparison
of SFT runs with different learning rates (1e−5, 1e−4) and training epochs (2, 10).

Countdown (Pan et al., 2025) for arithmetic reasoning. After training on one target task, we evaluate
the model’s performance on all the other tasks. We additionally include as non-target tasks two
safety datasets, WildJailbreak (Jiang et al., 2024) and WildGuardTest (Han et al., 2024), since safety
capabilities are often eroded through fine-tuning (Qi et al., 2024), making them highly suitable for
measuring forgetting. In our RL experiments, correct generations are assigned a reward of 1 and
incorrect generations are assigned a reward of 0.

Models and baselines. We use instruct models from the Llama 3 (Grattafiori et al., 2024) and
Qwen 2.5 (Yang et al., 2024) families: Llama-3.2-1B-Instruct, Llama-3.1-8B-Instruct, Qwen-2.5-
1.5B-Instruct, and Qwen-2.5-7B-Instruct. We compare two SFT variants and one RL method: 1)
SFT, which uses responses generated by Llama-3.3-70B-Instruct as ground truth responses; 2) Self-
SFT, which uses responses generated by the initial model, and 3) GRPO, which is a common RL
algorithm (Shao et al., 2024) for tasks with verifiable outputs. For both SFT variants, the generated
data was filtered using the reward function to include only examples with correct responses. We use
Self-SFT as a baseline to represent the typical first step in the post-training pipeline when human
labels are absent (Dong et al., 2023; Lambert et al., 2024). All models are trained for two epochs.
Additional implementation details are provided in Appendix A.3.

2.3 RESULTS: SFT FORGETS MORE THAN RL

Figure 2 compares the target task gain and non-target tasks drop of the SFT variants and GRPO. We
observe higher levels of forgetting in SFT compared to GRPO across datasets, model families, and
sizes. In particular, we find:

• For Self-SFT, achieving a similar target accuracy gain to GRPO induces a significantly larger
drop on non-target tasks.

• While SFT can achieve a higher performance gain than GRPO on the instruction following
task, it induces an even larger drop on non-target tasks relative to Self-SFT.

• As shown in Figure 3, a high learning rate is typically required to reach high target performance
for SFT, often at the cost of severe forgetting; a smaller learning rate reduces forgetting but
fails to reach the same target performance even with more epochs.

Overall, both SFT variants exhibit a consistent tradeoff between target performance and forgetting,
whereas GRPO improves target performance without noticeable drops on non-target tasks.

3 UNDERSTANDING FORGETTING DYNAMICS THROUGH THE LENS OF KL

SFT and RL can be viewed as minimizing different directions of the KL divergence with respect to
the optimal policy. Specifically, as reviewed in §3.1, SFT corresponds to forward KL minimization
while RL corresponds to reverse KL minimization. Intuitively, a mode-seeking objective such as
reverse KL should be more susceptible to forgetting: it moves probability mass quickly from one
mode to another, whereas mode-covering forward KL should better maintain probability mass on
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all modes. This intuition is invalidated in light of the evidence presented in §2.3, showing that SFT
causes more forgetting than RL. We address this discrepancy through an empirical analysis of a
simplified setting with univariate Gaussian distributions. The analysis reveals that SFT can in fact
lead to less forgetting than RL if the initial policy has a single mode (§3.2). However, in more
realistic multi-modal scenarios, RL is more robust to forgetting (§3.3).

3.1 SFT AND RL AS KL MINIMIZATION

SFT as forward KL minimization (mode-covering). It is widely known that SFT is equivalent to
minimizing the forward KL between the optimal and training policies since:

LSFT(θ;x) =
∑

y
−π∗(y |x) log πθ(y |x) = KL

[
π∗(· |x) ||πθ(· |x)

]
+H(π∗(· |x)) ,

where H(π∗(· |x)) is the entropy of π∗(· |x), which does not depend on πθ.

RL as reverse KL minimization (mode-seeking). The optimal policy for the KL-regularized RL
objective (§2.1) is given by π∗(y |x) = 1

Z(x)π0(y |x) exp(r(x, y)/β) (Korbak et al., 2022a), where
π0 is the initial policy, Z(x) :=

∑
y π0(y |x) exp(r(x, y)/β) is the partition function, and β > 0

is the KL regularization coefficient. This implies that one can view the maximization of the RL
objective as minimization of the reverse KL from π∗ since:

JRL(θ;x) = Ey∼πθ(· | x)[r(x, y)]− β ·KL[πθ(· |x) ||π0(· |x)]
= −β ·KL[πθ(· |x) ||π∗(· |x)] + β · logZ(x) ,

where lnZ(x) does not depend on πθ (c.f. Korbak et al. (2022a); Tajwar et al. (2024a)).

3.2 FORWARD KL FORGETS LESS IN A UNI-MODAL SETTING

In this section, we demonstrate that forward KL (SFT) leads to less forgetting than reverse KL
(RL) under a uni-modal training policy. We model the optimal policy as a mixture of two univariate
Gaussian distributions to mirror LM fine-tuning: an “old” mode that corresponds to prior knowledge
and a “new” mode that represents the target task. As shown below, results in this setting align with
the intuition stated at the beginning of the section, by which the mode-covering forward KL should
forget less. However, in the next section we show that once the uni-modal training policy is expanded
to a multi-modal one, reverse KL causes less forgetting.

Setup. The optimal policy is modeled by an “old” mode representing prior knowledge and a “new”
mode representing a target task:

π∗(y) = α∗ · pold(y; θ∗old) + (1− α∗) · pnew(y; θ∗new) , (1)

where α∗ ∈ (0, 1) and the distributions pold and pnew are univariate Gaussians with means and
standard deviations given by θ∗old = (µ∗

old, σ
∗
old) and θ∗new = (µ∗

new, σ
∗
new), respectively. In this sec-

tion, the training policy πθ is modeled as a univariate Gaussian with trainable mean µ and standard
deviation σ, i.e., θ = (µ, σ). We define the target task gain and non-target task drop as the change
in overlap area2 between the training policy and the modes of the optimal policy. Concretely, the
overlap area for the old and new modes is defined as:

Sold(θ) :=

∫∞
−∞ min {α∗pold(y), πθ(y)} dy

α∗ , Snew(θ) :=

∫∞
−∞ min {(1− α∗)pnew(y), πθ(y)} dy

1− α∗ .

(2)
Notice that Sold(θ), Snew(θ) ∈ [0, 1]. The target task gain at training step T is accordingly defined
by ∆g := Snew(θT ) − Snew(θ0) and the non-target tasks drop is ∆d := Sold(θ0) − Sold(θT ).
We initialize the training policy πθ such that it covers the mode of π∗ corresponding to pold, and
compare minimizing the forward and reverse KL objectives (defined in §3.1) with respect to pnew in
terms of their gain-drop tradeoff. The parameters in θ are updated through sample-based gradients,
where for forward KL data is sampled from pnew and for reverse KL it is sampled from πθ. See
Appendix A.1 for additional implementation details.

2The overlap area can be formulated via the total variation distance; see Appendix A.2.
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Results. Figure 4 shows the forgetting patterns of forward and reverse KL. To reach a target task
gain of 0.9, forward KL results in a non-target tasks drop of 0.64 while reverse KL leads to a
larger drop of 0.7. This matches common intuition: the mode-covering forward KL stretches the
probability mass to cover the new mode while retaining more mass on the old mode compared to the
mode-seeking reverse KL. That is, in this setting, forward KL causes less forgetting than reverse KL.

Forward KL (SFT)
Old Mode
Drop=0.64 Target Mode

Gain=0.90

Reverse KL (RL)
Old Mode
Drop=0.70 Target Mode

Gain=0.90

Figure 4: Forward KL (SFT) with uni-modal training policy forgets less than reverse KL (RL).
Learning and forgetting dynamics of forward KL (left) and reverse KL (right). Dashed lines repre-
sent the modes of the optimal policy: pold (left) and pnew (right). For forward KL, the curve goes
from red to yellow as training progresses. For reverse KL, the curve goes from blue to purple.
Forgetting corresponds to the decrease of overlap on the left mode and learning a new target task
corresponds to the increase in overlap on the right mode.

3.3 REVERSE KL FORGETS LESS IN A MULTI-MODAL SETTING

We showed in §3.2 that the mode-covering properties of forward KL (SFT) lead to less forgetting
than reverse KL (RL) when the initial training policy is uni-modal. This stands in contrast to the
experiments of §2.3, which show that in practical LM post-training settings, RL is more resilient
to forgetting. In this section, we reconcile this discrepancy by showing that when we allow the
initial training policy to have multiple modes, arguably a closer match to practice, the mode-seeking
reverse KL results in less forgetting.

Setup. We consider the setup of §3.2, where the optimal policy is modeled as a mixture of two Gaus-
sian distributions (Equation 1). Instead of modeling the training policy as a uni-modal Gaussian, we
now model it as a bi-modal distribution:

πθ(y) = α · qold(y; θold) + (1− α) · qnew(y; θnew) , (3)

where θ = (α, θold, θnew) is the trainable parameters, with α ∈ [0, 1] being a mixture weighting,
θold = (µold, σold) defining the mean and standard deviation of a univariate Gaussian qold, and
θnew = (µnew, σnew) similarly defining a univariate Gaussian qnew. We initialize the training policy
πθ such that qold roughly covers the mode of π∗ corresponding to pold and, as in §3.2, compare the
gain-drop tradeoffs exhibited by forward and reverse KL minimization with respect to pnew. See
Appendix A.1 for additional implementation details.

Forward KL (SFT) / High LR
Drop=0.12

Gain=0.90

Forward KL (SFT) / Low LR
Drop=0.02

Gain=0.44

Reverse KL (RL) / Low LR
Drop=0.03

Gain=0.90

Figure 5: Reverse KL (RL) with multi-modal training policy forgets less than forward KL
(SFT). Learning and forgetting patterns of forward KL with different high (0.15) and low (0.01)
learning rates (left and middle) and reverse KL (right). Dashed lines represent the modes of the
optimal policy: pold (left) and pnew (right). For forward KL, the curve goes from red to yellow as
training progresses. For reverse KL, the curve goes from blue to purple. Forgetting corresponds
to the decrease of overlap on the left mode and learning a new task corresponds to the increase in
overlap on the right mode.
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Results. Figure 5 shows that, with a high learning rate, achieving a target task gain of 0.9 with
forward KL causes severe forgetting—the area overlap with pold drops by 0.12. Reducing the learn-
ing rate can mitigate forgetting of the old mode, but leads to failure in learning the target pnew. By
contrast, reverse KL shifts qnew toward pnew while largely keeping the old mode intact. This sim-
ulation demonstrates that, for bi-modal policies, reverse KL can match a new target mode without
redistributing probability mass from a mode that represents prior knowledge.

4 LEARNING FROM ON-POLICY DATA MITIGATES FORGETTING

The experiments of §2 demonstrated that RL causes less forgetting than SFT. By considering a
simplified setting in §3, we identified that the mode-seeking behavior of RL, which stems from
its usage of on-policy data, may underlie its robustness to forgetting. In this section, we verify this
prospect and explore the following natural question: what degree of on-policy data allows mitigating
forgetting? As evident from the results of Self-SFT in Figure 2, generating data only from the
initial policy is not enough. However, in §4.1 we show that SFT with approximately on-policy
data, generated at every epoch or with on-policy traces produced by RL, can suffice for substantially
reducing forgetting. These findings, along with additional experiments in §4.2, strongly indicate
that the robustness of RL to forgetting arises from its use of on-policy data, as opposed to other
algorithmic choices such as the use of KL regularization or an advantage estimation (in contrast to
a hypothesis made in concurrent work (Lai et al., 2025)).

4.1 APPROXIMATELY ON-POLICY DATA CAN SUFFICE FOR MITIGATING FORGETTING
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Figure 6: Approximately on-policy data can suffice for mitigating forgetting in SFT. This figure
compares target task accuracy (top) and average non-target accuracy drop (bottom) for three SFT
variants: (1) Iterative-SFT, which uses data generated at the start of each round (i.e., epoch); (2)
Self-SFT, which uses data generated from the initial policy; and (3) SFT, which uses fully off-policy
data generated by a separate expert model (Llama-3.3-70B-Instruct). While SFT and Self-SFT suffer
from severe forgetting, our results show that using approximately on-policy data, generated at the
start of each epoch, can suffice for mitigating forgetting (Iterative-SFT).

SFT using approximately on-policy data. Figure 2 showed that Self-SFT, which generates data
only from the initial policy, suffers from severe forgetting. On the other hand, RL, which generates
data at every step and thus represents the most on-policy end of the spectrum, is robust to forgetting.
We now test whether Iterative-SFT, an approximately on-policy approach that iteratively trains on
data generated at the start of each epoch, can suffice for mitigating forgetting (Zelikman et al., 2022;
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Dong et al., 2023; Xiong et al., 2025). Specifically, in Figure 6 we compare the target task accuracy
and the drop in non-target tasks of Iterative-SFT, Self-SFT, and SFT. We find that Iterative-SFT is
able to reach a target accuracy that is higher than or comparable to that of SFT, while only exhibiting
mild to no forgetting. We also test an additional approximately on-policy approach that applies SFT
on data generated during an RL run, and observe reduced forgetting as well (see Appendix A.4.2).
Overall, these results highlight that while RL remains most effective in forgetting mitigation, making
SFT more on-policy or directly applying SFT on RL data can suffice for reducing forgetting.

The advantage estimator in GRPO does not underlie its robustness to forgetting. Concurrent
work (Lai et al., 2025) attributed the robustness of GRPO to forgetting to an implicit regularization
of the advantage estimator. The fact that SFT on approximately on-policy data does not suffer from
forgetting (as shown above) stands in contrast to this hypothesis. In Appendix A.4.1, we provide
further support for on-policy data, and not any particular choice of advantage estimate, being the
main factor mitigating forgetting by demonstrating that RL without an advantage estimator (i.e.,
REINFORCE (Williams, 1992)) is also robust to forgetting.

4.2 KL REGULARIZATION DOES NOT EXPLAIN ROBUSTNESS TO FORGETTING

KL regularization is commonly applied during RL to prevent the policy from drifting too far from
its initialization (Ouyang et al., 2022; Shao et al., 2024). We examine whether this regularization
accounts for the lesser forgetting of RL. As Figure 7 shows, non-regularized GRPO achieves a simi-
lar target task gain and non-target tasks drop tradeoff as KL-regularized GRPO across all considered
models and datasets, except for Llama models trained on IFEval. These results suggest that the use
of KL regularization does not underlie the robustness of RL to forgetting.
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Figure 7: KL regularization is not a major contributor to RL’s lesser degree of forgetting.
Comparison of GRPO with KL regularization (β = 0.05) and without it (β = 0.0). Except for the
Llama model family and IFEval target task, the non-regularized GRPO achieves a similar gain-drop
tradeoff as regularized GRPO.

5 RELATED WORK

Catastrophic forgetting. Catastrophic forgetting has been studied since the early research on con-
nectionist models (McCloskey & Cohen, 1989). Many early studies focus on preventing parameters
to drastically change (Kirkpatrick et al., 2017; Li & Hoiem, 2018; Lopez-Paz & Ranzato, 2017).
In modern language models post-training, patterns of catastrophic forgetting differ due to the mas-
sive data learned during pre-training (Luo et al., 2023; Shi et al., 2024; Wu et al., 2024). While
LMs typically do not drastically forget all the pre-trained knowledge, post-training LMs still lead to
degradation in performance, which has been called “alignment tax” (Bai et al., 2022; Ouyang et al.,
2022). Studies found more severe forgetting in domains that easily interfere such as instruction
following and safety (Qi et al., 2023; He et al., 2024). Recent studies discover that the observed
forgetting in LMs may be spurious—the forgotten behaviors or abilities can be revived with little
training on the data from the forgotten distribution (Lee et al., 2024; Chen et al., 2024). Kotha et al.
(2024) posited that forgetting happens when the LM infers a wrong mode from the mixture of distri-
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butions to perform the task, and a carefully selected prompt can recover forgetting. Our work draws
inspiration from the mixture of distributions perspective to establish intuition.

LM post-training. Post-training techniques such as SFT and RL are widely adapted to endow the
pretrained language models with desired behaviors or enhancements in target domains. SFT relies
on the ground truth responses provided in the datasets. RL allows the model to generate its own
responses and only provide the reward at the end be it from a parameterized reward model (Schulman
et al., 2017) or a verifiable reward module (Shao et al., 2024; Lambert et al., 2024). Recent studies
have shown that SFT and RL exhibit distinct characteristics. Chu et al. (2025) showed that RL is
able to generalize to unseen distributions while SFT mostly memorizes. (Wang et al., 2025) observed
that RL can benefit from even training on a single example without severe overfitting. (Mukherjee
et al., 2025) reported that RL naturally fine-tunes a smaller network compared to SFT. A common
thread connecting these observations is that the parameter update during RL training is more local
and targeted. Other methods such as RAFT (Dong et al., 2023) and STaR (Zelikman et al., 2022)
performs SFT in several rounds and can be viewed as on-policy offline RL. This paper complements
these studies and provide a forgetting-centric view on the difference between SFT and RL.

Forward KL vs reverse KL. Studies have connected SFT and RL through the lens of KL diver-
gence. Tajwar et al. (2024a) showed that optimizing the policy gradient objective in RL can be
viewed as minimizing the reverse-KL between the training policy and the optimal policy (Korbak
et al., 2022b), which exhibits a mode-seeking behavior to fit the target distribution efficiently. In
contrast, SFT typically uses the cross-entropy loss, which implements the forward KL objective
This perspective has been used to preserve diversity in LM’s generation (Li et al., 2025).

Concurrent work. Similarly to our work, Lai et al. (2025); Shenfeld et al. (2025) have concurrently
found that RL exhibits less forgetting than SFT. However, Lai et al. (2025) attribute RL’s robustness
to an implicit regularization of a particular advantage estimator. We provide evidence against this
claim in §4, and instead identify the crucial role of on-policy data in mitigating forgetting. Shenfeld
et al. (2025) also highlight the benefits of on-policy data through a perspective that is complementary
to ours (§3). Though, our work goes beyond fully on-policy data and demonstrates the potential of
approximately on-policy data in more efficiently mitigating forgetting.

6 CONCLUSION

We systematically compared catastrophic forgetting in SFT and RL for LM post-training. Across
tasks, scales, and model families, we found that RL consistently achieves strong target performance
with substantially less forgetting than SFT. Our experiments in both simplified and real-world set-
tings establish that the robustness of RL to forgetting primarily stems from its use of on-policy data,
rather than other algorithmic choices such as the advantage estimate or KL regularization. Further-
more, they highlight the potential of efficiently mitigating forgetting by incorporating approximately
on-policy data, sampled asynchronously or at the start of each epoch.

Limitations and future directions. Our work provides evidence that RL is more robust than SFT
to forgetting across several tasks, model families, and scales. However, investigating how forgetting
patterns vary as the model and dataset sizes are further scaled, beyond our compute budget, remains
a valuable direction for future work. Moreover, while we provide intuition for why RL forgets less
than SFT based on a simplified mixture-of-Gaussians setting (§3) and empirically identify the use of
on-policy data as a main cause for this difference in forgetting (§4), additional research is necessary
to theoretically establish the role of on-policy data in mitigating forgetting. Going forward, the issue
of forgetting becomes central as the community moves toward building agents that continually learn
from experience (Silver & Sutton, 2025). Deciding what data to consume is consequential to the
stability of the agent. Our results indicate that data generated on-policy will better preserve existing
capabilities, and is therefore safer to learn from, than off-policy data such as content on the internet
or experience from other agents. In a similar vein, our insights lays groundwork for understanding
forgetting in the emerging paradigm of test-time training (Sun et al., 2020; Hardt & Sun, 2024).
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et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences (PNAS), 114(13):3521–3526, 2017. doi: 10.1073/pnas.1611835114. URL
https://www.pnas.org/doi/10.1073/pnas.1611835114.

Tomasz Korbak, Hady Elsahar, Germán Kruszewski, and Marc Dymetman. On reinforce-
ment learning and distribution matching for fine-tuning language models with no catas-
trophic forgetting. In Advances in Neural Information Processing Systems (NeurIPS),
2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/67496dfa96afddab795530cc7c69b57a-Paper-Conference.pdf.

Tomasz Korbak, Ethan Perez, and Christopher L. Buckley. Rl with kl penalties is better viewed as
bayesian inference. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pp. 1100–1115, 2022b. URL https://arxiv.org/abs/2205.11275.

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. Understanding catastrophic forget-
ting in language models via implicit inference. In International Conference on Learning Repre-
sentations (ICLR), 2024. URL https://arxiv.org/abs/2309.10105.

Song Lai, Haohan Zhao, Rong Feng, Changyi Ma, Wenzhuo Liu, Hongbo Zhao, Xi Lin, Dong Yi,
Min Xie, Qingfu Zhang, Hongbin Liu, Gaofeng Meng, and Fei Zhu. Reinforcement fine-tuning
naturally mitigates forgetting in continual post-training. arXiv preprint arXiv:2507.05386, 2025.
URL https://arxiv.org/abs/2507.05386.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm,
Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu 3:
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A ADDITIONAL EXPERIMENTS AND IMPLEMENTATION DETAILS

A.1 SIMULATION DETAILS

Setup. We use a univariate mixture-of-Gaussians synthetic task to compare forward KL (FKL;
SFT analogue) update against reverse KL (RKL; RL analogue). We calculate gradient updates using
n = 1000 samples. For evaluation and plots, densities are computed on a uniform grid at every 100
iterations.

Single-mode setting. We run the gradient step updates for T = 1000 iterations or when the target
task gain reaches 0.9. The training policy starts as a single-mode univariate Gaussian at the old
mode, initialized as N (−3.2, 1.0) (75% old mass), and is adapted toward the same target mixture
used above: 0.75 · N (−3.0, 1.0)+0.25 · N (3.5, 0.7). We use an FKL learning rate 0.05 and a RKL
learning rate 0.05.

Bi-modal setting. We run the gradient step updates for T = 1000 iterations or when the target
task gain reaches 0.9. The initial policy πθ(x) is a two-component mixture with weight 0.75 on
an “old” Gaussian N (−3.5, 1.0) and 0.25 on a “new” Gaussian N (0.5, 0.7). The target π∗(x) is a
mixture with the same weights over N (−3.0, 1.0) (old) and N (3.5, 0.7) (new). We sweep two FKL
learning rates {0.15, 0.01} and use a RKL learning rate 0.01.
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Figure 8: Simulation comparison with different distances ([4.0, 5.0, 6.0]) between pnew and qnew.

RL forgets when the target distribution is far. We show in Figure 8 the simulation results with
varying distance (4.0− 6.0) between qnew and pnew. We observe that as the distance gets larger, RL
begins to suffer from forgetting as well. suggesting that RL is not immune to forgetting when the
target task is drastically far away from the starting modes.

A.2 CONNECTION BETWEEN AREA OVERLAP AND TOTAL VARIATION DISTANCE

Let f, g : D → R≥0 be, possibly unnormalized, integrable density functions over a domain D. The
total variation (TV) between f and g is defined by:

TV(f, g) :=
1

2

∫
D
|f(y)− g(y)|dy .

Notice that:∫
D
min {f(y), g(y)} dy =

∫
D

1

2

(
f(y) + g(y)− |f(y)− g(y)|

)
dy

=
1

2

(∫
D
f(y)dy +

∫
D
g(y)dy

)
− 1

2

∫
D
|f(y)− g(y)|dy

=
1

2

(∫
D
f(y)dy +

∫
D
g(y)dy

)
− TV(f, g) .

(4)

Now, in the context of §3.2, recall that the area overlap of the training policy πθ with respect to the
old mode of the optimal policy is defined by (Equation (2)):

Sold(θ) =

∫∞
−∞ min {α∗pold(y), πθ(y)} dy

α∗ .
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Choosing f = α∗pold and g = πθ, by Equation (4) we may write Sold(θ) as follows:

Sold(θ) =
1
2 (α

∗ + 1)− TV
(
α∗pold, πθ

)
α∗ =

1

2
+

1

2α∗ − 1

α∗TV
(
α∗pold, πθ

)
.

Hence, the non-target tasks drop at training step T is equal to the normalized increase in total varia-
tion distance between the training policy and the (scaled) old component of the optimal policy:

∆d = Sold(θ0)− Sold(θT ) =
TV

(
α∗pold, πθT

)
− TV

(
α∗pold, πθ0

)
α∗ .

Similarly, the area overlap of the training policy πθ with respect to the new mode of the optimal
policy is given by:

Snew(θ) =
1
2 (α

∗ + 1)− TV
(
α∗pold, πθ

)
α∗ =

1

2
+

1

2(1− α∗)
− 1

1− α∗TV
(
(1− α∗)pnew, πθ

)
.

This implies that the target task gain at training step T is equal to the normalized decrease in total
variation distance between the training policy and the (scaled) new component of the optimal policy:

∆g = Snew(θT )− Snew(θ0) =
TV

(
(1− α∗)pnew, πθT

)
− TV

(
(1− α∗)pnew, πθ0

)
1− α∗ .

A.3 TRAINING DETAILS

Training details. We used the AdamW optimizer. The learning rate was initialized to 1e−4 for
Llama-3.2-1B-Instruct and Qwen-2.5-1.5B-Instruct and 5e−6 for Llama-3.1-8B-Instruct and Qwen-
2.5-7B-Instruct. We use cosine scheduler with warp-up step ratio 0.03 over the course of training.
Each model was trained with a batch size of 128 for IFEval and MMLU and 64 for Countdown.
Unless otherwise specified, training was run for 2 epochs.

For supervised fine-tuning (SFT), we minimized the cross-entropy loss with a maximum sequence
length of 4096. For reinforcement learning (RL) experiments, we used the GRPO algorithm with a
KL-penalty coefficient of 0.05 and apply updates right after the group samples are generated (hence
no advantage clipping). All experiments were implemented in PyTorch and trained on maximally 8
H100 GPUs with mixed-precision (bfloat16) training.

A.4 EXTRA EXPERIMENTS AND ABLATIONS

A.4.1 REINFORCE IS AS ROBUST AS GRPO TO FORGETTING

Model Method IFEval MMLU Countdown

Gain Drop Gain Drop Gain Drop

Llama 3.1 8B Inst. REINFORCE 17.8 7.7 8.6 -0.1 7.5 -0.8
GRPO 18.4 3.4 14.6 -0.2 60.4 -0.5

Qwen 2.5 7B Inst. REINFORCE 5.7 2.9 6.4 -0.6 11.9 -0.1
GRPO 17.0 0.2 8.4 0.2 29.2 -0.3

Table 1: Gain and drop comparison between GRPO and REINFORCE.

In this appendix, we compare GRPO with REINFORCE (Williams, 1992), a classical policy gradient
RL algorithm that does not employ an advantage estimator. Table 1 shows that REINFORCE lags
behind GRPO in optimizing the target task accuracy, yet maintains a similar low level of forgetting.
This suggests that algorithmic differences, such as the advantage estimator used in RL, primarily
affect the magnitude of performance gains, whereas the mitigation of forgetting can be primarily
attributed to the use of on-policy data.
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A.4.2 SFT USING RL TRACES.

Data generated by RL throughout training is on-policy with regard to the model at each optimization
step. When this RL data is later used for SFT, the process moves away from being fully on-policy,
though it remains distinct from fully off-policy approaches such as SFT. We investigate whether SFT
on RL data can also mitigate forgetting. In Figure 9, we observe that SFT trained on RL (GRPO)
data trails full RL marginally in terms of gains but exhibits only slightly larger forgetting. This
highlights a yet-to-be-identified benefit of using RL data for SFT (DeepSeek-AI et al., 2025).
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Figure 9: SFT over on-policy traces produced by RL exhibits reduced forgetting. This plot
shows the comparison between SFT trained on GRPO data and GRPO.

A.4.3 OFF-POLICY DATA

IFEval MMLU Countdown

Gain ↑ Drop ↓ Gain ↑ Drop ↓ Gain ↑ Drop ↓
Llama 3.1 8B Instruct SFT w/ GRPO on-policy data 12.4 7.3 11.5 1.2 51.7 0.0

SFT w/ Qwen data 17.9 9.0 10.4 2.5 47.9 0.9

Qwen 2.5 7B Instruct SFT w/ GRPO on-policy data 16.3 0.1 8.6 -1.4 31.0 -0.6
SFT w/ Llama data -3.0 9.8 7.6 7.2 10.1 6.6

Table 2: SFT results on data generated from a different model.

Table 2 further shows that the on-policy data only works for the model that generates it. Training on
another model’s on-policy data increases forgetting.

A.5 LLM USE IN THE PAPER

We use LLM (ChatGPT) to aid writing. In particular, after drafting a sentence we use the LLM
to “Make it read better.” or “Make it read more fluently.” We also use LLM to help format the
references and find the right source and venues that they are published in. We validate the links and
details provided by the model to the best of our ability.

16


	Introduction
	Forgetting in LM Post-Training
	Preliminaries
	Experimental Setup
	Results: SFT Forgets More Than RL

	Understanding Forgetting Dynamics Through the Lens of KL
	SFT and RL as KL Minimization
	Forward KL Forgets Less in a Uni-Modal Setting
	Reverse KL Forgets Less in a Multi-modal Setting

	Learning from On-Policy Data Mitigates Forgetting
	Approximately On-Policy Data Can Suffice for Mitigating Forgetting
	KL Regularization Does Not Explain Robustness to Forgetting

	Related Work
	Conclusion
	Additional Experiments and Implementation Details
	Simulation Details
	Connection Between Area Overlap and Total Variation Distance
	Training Details
	Extra Experiments and Ablations
	REINFORCE is as Robust as GRPO to Forgetting
	SFT using RL traces.
	Off-Policy Data

	LLM Use In the Paper


