Under review as a conference paper at ICLR 2026

2D QUANTIZATION FOR ULTRA-LOW-BIT OPTIMIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimizer states used to accelerate neural network training become a significant
memory bottleneck as model size grows. A common mitigation is to compress
these high-precision states to low-bit representations, but existing methods typi-
cally stop at 4 bits. In this paper, we push the bitwidth of AdamW and Adafactor
states down to 1.5 and 2 bits by mapping high-precision values to their nearest
low-bit representations in a two-dimensional (2D) polar space, which we call 2D
quantization. This is effective because optimizer states exhibit a quasi-Gaussian
distribution with strong circular symmetry. To further improve efficiency, we offer
concrete design principles for both signed and unsigned data, and we validate the
superiority of our approach over traditional 1D quantization through static experi-
ments on real momentum matrices. Across a range of pretraining and fine-tuning
benchmarks—including image classification and natural language modeling—our
ultra-low-bit AdamW and Adafactor match the performance of their 16/32-bit
counterparts while dramatically reducing memory usage.

1 INTRODUCTION

Deep neural networks, such as Transformer-based architectures (Vaswani et al., 2017; Liu et al.,
2019; Radford et al., 2019; Zhang et al., 2022; Touvron et al., 2023; Yang et al., 2024), have achieved
remarkable success in applications such as dialogue systems and multilingual translation. A key
enabler of this progress is the AdamW optimizer (Loshchilov & Hutter, 2019), which maintains first-
and second-moment states for stable optimization. However, as models scale, the memory required to
store these optimizer states becomes a dominant factor in overall training cost.

To reduce the memory consumed by the optimizer states, quantization is a classical and effective
strategy. Formally, given a codebook) € R¥, any point in R¥ can be approximated by its nearest
neighbor in (). This process is known as k-dimensional (kD) quantization. Prior work on low-bit
optimizers (Dettmers et al., 2022; Li et al., 2023) has focused exclusively on 1D quantization, namely
quantizing a single high-precision floating-point number into a low-precision number, e.g., converting
a 32-bit floating-point number to a 4-bit one.

While 1D quantization is straightforward, its performance degrades dramatically in the ultra-low-bit
regime (i.e., less than 4 bits). Its core limitation, as illustrated in Fig. 1(a), is the use of a simple
rectilinear grid that quantizes each dimension independently, thus failing to exploit the strong inter-
dimensional correlations found in optimizer states. Adopting 2D quantization provides a natural
solution by jointly encoding parameters, thereby capturing the underlying data geometry.

This conceptual difference is visualized in Fig. 1. The grid-like structure of a 1D quantizer (Fig. 1(a))
is fundamentally mismatched with the underlying data geometry. As we empirically demonstrate in
Appendix D, optimizer states consistently exhibit a quasi-Gaussian distribution with strong circular
symmetry. Although a general-purpose 2D quantizer (Fig. 1(b)) can form ideal, data-aware decision
cells, it incurs prohibitive storage and computational overheads, rendering it impractical. This
motivates our approach: a structured 2D quantizer that is both geometrically congruent and practically
efficient. We propose a polar quantizer (Fig. 1(c)), whose concentric codebook structure is explicitly
designed to match the iso-probability contours of the source. This design is powerful because it
offers theoretical elegance through its structural congruence, enables intelligent, radius-dependent bit
allocation, and maintains practical efficiency with a training-free design and fast encoding.

This paper pushes the bitwidth of the moments of Adafactor/AdamW down to 1.5 and 2.0 bits via 2D
quantization. Our main contributions are highlighted below.

Under review as a conference paper at ICLR 2026

(a) 1D mapping (b) General 2D mapping (c¢) Our 2D mapping

Figure 1: Visualization of 2D quantization mappings. Red dots are codebook vectors and blue lines
are decision boundaries. (a) The 1D mapping’s rectilinear grid ignores the data’s circular symmetry.
(b) A general 2D mapping adapts perfectly but is computationally expensive. (c) Our proposed
polar mapping offers an efficient, structured design that is congruent with the quasi-Gaussian data
distribution.

First, to address the significant performance degradation of traditional 1D quantizers at ultra-low
bitwidths (e.g., 2-bit), we propose a 2D quantization framework in the polar coordinate system.
This approach is highly effective as it leverages the quasi-Gaussian distribution and strong circular
symmetry observed in optimizer states. It enables the creation of ultra-low-bit AdamW/Adafactor
optimizers that achieve performance on par with their 16/32-bit counterparts. We validate the
superiority of our 2D approach over 1D quantization through static experiments on real-world
momentum matrices.

Second, we offer concrete design principles for both signed and unsigned data for moments in
optimizer states. For signed inputs, we show that the zero point is unnecessary, that placing codebook
magnitudes near the median is beneficial, and we theoretically justify the use of angularly uniform
sampling. For unsigned inputs, we propose a novel mapping only in the first quadrant, which enhances
efficiency by assigning more points to larger values for precision and fewer to smaller ones. This is
combined with small axis offsets to guarantee training stability by preventing division-by-zero errors.

Finally, we evaluate our 1.5-bit and 2-bit AdamW/Adafactor across both language modeling and
vision tasks. For language modeling tasks, we pretrain GPT-2 on OpenWebText and LLaMA-2 on
C4, and fine-tune LLaMA-2-7B and Qwen2.5-7B on GLUE. For vision tasks, we pretrain ViT-Base
and ResNet-50 on ImageNet-1K. Across all these benchmarks, our ultra-low-bit AdamW/Adafactor
achieve performance comparable to that of their 16/32-bit counterparts with significantly less memory.

2 RELATED WORK

To reduce the memory cost of optimizers, several directions are explored, and are introduced below.

Low-rank approximation. Adafactor (Shazeer & Stern, 2018) approximates Adam’s second mo-
ments by the outer product of two vectors. Feinberg et al. (2023) and Yen et al. (2023) approximate
the preconditioner in second-order optimizers via truncated SVD. GaLore (Zhao et al., 2024) projects
gradient matrices into a low-rank subspace for memory saving, while Q-GaLore (Zhang et al., 2024)
further reduces memory by quantizing the projectors to 4-bit and weights to 8-bit. LoQT (Loeschcke
et al., 2024) extends GaLore into QLoRA (Dettmers et al., 2023), enabling LLM pretraining with a
4-bit full-rank matrix and additional low-rank matrices per linear layer.

Division. SM3 (Anil et al., 2019) approximates Adam’s second moment using its cover statistics.
Adam-mini (Zhang et al., 2025) partitions parameters into blocks corresponding to small dense
Hessian sub-blocks, allowing shared second moments within each block.

Quantization. Dettmers et al. (2022) employ block-wise dynamic quantization to store first-order
optimizer states in 8-bit. Li et al. (2023) address the zero-point issue when quantizing Adam/AdamW
second moments to 4-bit via a zero-point-free mapping. Wang et al. (2024) show that quantizing the
eigenvectors of 4-bit Shampoo outperforms quantizing the preconditioner directly, and Li et al. (2025)

Under review as a conference paper at ICLR 2026

introduce Cholesky quantization for 4-bit Shampoo. All prior methods use 1D quantizers; Tian et al.
(2025) proposes a 2D mapping from R to a closed disk in R?, allowing fast 2D quantization with
linear complexity independent of precision. However, due to theoretical and implementation limits,
this only reduces AdamW bitwidth to 3.32 bits for fine-tuning and is ineffective for pretraining.

3 METHODOLOGY

Notations. We use a non-bold letter like a or A to denote a scalar, a boldfaced lower-case letter
like a to denote a vector, and a boldfaced upper-case letter such as A to denote a matrix. & = [z;]
means that the i-th element of column vector x is x; and X = [x;] means the i-th column of matrix
X is @;. ||z||, denotes the p-norm of vector . Given two matrices A and B, A ® B represents
the elementwise matrix product (Hadamard product), and (A, B) represents the inner product. The

Frobenius norm of a matrix A is || A||r = \/(A, A).

3.1 OUR Low-BIT OPTIMIZATION FRAMEWORK

Low-bit optimizers store optimizer states like Algorithm 1 Quantized AdamW
first and second moments using low-precision

floating-point numbers, temporarily dequantiz-
ing them to high precision during computations.
This significantly reduces the static memory
footprint of these optimizers. Below, we use two
widely adopted optimizers AdamW (Loshchilov
& Hutter, 2019) and Adafactor (Shazeer & Stern,
2018) as examples.

Input: Step number 7, learning rate 7, hyper-
parameters 31, 82, decay parameter \, €

Initialize: 6y, m{ < 0, v « 0

1: fort=1,...,Tdo

2: g+ Vof(0i-1)
Dequantize m;_1, v;—1 using Eqn. (1)
Update moments m, v; using Eqn. (3)
Update parameters 8; using Eqn. (4)
Quantized AdamW. At the ¢-th iteration, given ~ 6: Quantize m{, v{ using Eqn. (2)
the minibatch gradient g;, we first dequantize Output: 61
the previous first and second moments m;]_;

and v}, via our low-bit dequantizer D which is introduced in Sec. 3.2:

AN A

my_1 =D(m} ;), vi_1 =D(v]). (H

Here mj_; and v} | are respectively the low-precision versions of high-precision m;_; and v;_1,
and are computed by our proposed low-bit quantizer Q presented in Sec. 3.2:

m{_, = Q(my_1), v} ;= Q(vi_1). ()
In this way, we can follow vanilla AdamW to update the first and second moments 1m; and v;:
my = pimy_1 + (1—B1)gs, v = Povi—1 + (1— B2)g;. ©)

Following (Dettmers et al., 2022; Zhao et al., 2024), we quantize the 2-dimensional optimizer
states except those used for updating the embedding layers during transformer-based model training.
Besides, since the norm of a tensor can vary significantly after quantization, we scale the learning
rate 7) used to update the corresponding trainable tensor, by a scale factor a. Accordingly, we update
the model parameters via

0, =0, , — o mi/(1—B1) | g 7 4
t t—1 77t< vt/(1—6§)+e+ t—1 @

where 7 is the learning rate and A is the hyper-parameter for weight decay. Crucially, for the non-
quantized layers (i.e., the embedding layers), we set a = 1.0, effectively applying the standard update
rule. Finally, we quantize the high-precision first and second moments m; and v, into low-precision
versions m and v, via Eqn. (2).

For clarity, we summarize all steps of quantized AdamW into Algorithm 1, where we use a gray color
to highlight the extra steps. One can observe that quantized AdamW almost follows vanilla AdamW
and is quite simple. Moreover, its memory cost becomes much lower than AdamW, since it only need
to maintain the low-bit first and second moments without performance degradation.

Under review as a conference paper at ICLR 2026

Quantization
Updated optimizer states

codebook radius 0.9

Dequantization
Load index values

1.0
-
Ontimizer stat -0.0250 0.00525 0.02225 0.01575] Index 4160
plimizer states -0.00168 -0.0080 0.00512 0.00112 g
I L Lookup values (-0.90,0.00) (0.64 0.64)
Groun info 2D vectors (0-0250, 0.00525) (0.02225, 0.01575) (0.00,-0.80) (0.90,0.00)
i (-0.00168, -0.0080) (0.00512, 0.00112) ¥ i Flatten -0.90 0.00 0.64 064
‘ 1 0.00 -0.90 0.90 0.00
Partition into blocks |-0:0250, 0.00525) (0.02225, 0.01575)] 0ol ¢ a i) 00
{0.00168, -0.0080) (0.00512, 0.00112)] {] Denormaiize by 0.99°0.02726 000°0.02726
Compute the block-wise max 002554 [0.02726 ‘ scaling factor 0 00817 -0.90%0 00817
2-norm as scaling factor 0.00817 0.00524 —0.5 5 7 0.90*0.00817 0.00*0.00817
»
Normalize with ~ %(-0.9171, 0.1926) %(0.8162, 0.5778) . 6 Dequantized -0.02453 0.0 0.01735 0.01735
scaling factor % (-0.2056, -0.9792) % (0.6267, 0.1371)) * - optimizer states 0.0 -0.00735 0.00735 0.0
-1.0

Find the nearest codeword in codebook ® -0.5 0.0 0.5 1.0

store index4 160
Figure 2: Schematic of our 2D polar quantization for optimizer states, implemented in a 1.5-bit
update cycle (a codeword in the 8-entry codebook jointly encodes two parameters, namely 1.5 bits
per parameter). After a high-precision (16/32-bit) update, the state tensor is treated as 2D vectors
and partitioned into disjoint blocks. For each block, a scaling factor—the maximum 2-norm of its
vectors—is computed. Each vector is normalized by this factor and mapped to the nearest point in
a circular codebook, with only the codebook index stored. Dequantization reverses the process by
retrieving the codebook vector and reapplying the scaling factor. Compared to 1D methods, this 2D
approach reduces quantization distortion at the same bit-rate (Sayood, 2017) and supports non-integer
bit representations.

Update optimizer states

Quantized Adafactor. For another popular optimizer, Adafactor, we can follow almost the same
spirit to quantize it and obtain its quantized version. To this end, we only add two extra steps for
dequantization and quantization. Compared with AdamW, Adafactor inherently reduces memory by
factorizing the second-moment matrix. Accordingly, we only need to quantize its first moment while
ingnoring the factorized second-moment accumulators, R; and C, since their size are very small
and account for much less memory cost than first moment. See more discussion in Appendix B.

3.2 2D QUANTIZATION

The success of low-precision optimizers hinges on the ability of the quantization algorithm to
minimize approximation error. Without proper control, this error can accumulate during training,
leading to instability and poor convergence. Therefore, we focus on matrix-based quantization, as
optimizer state tensors can be readily reshaped into matrices. We first identify the shortcomings of
current techniques and then introduce a novel 2D quantization method that provides more robust
error control, enabling the practical application of low-precision optimizers.

Quantization. Given a real matrix X = [@1, X2, ..., @, 5] € R¥*% where k divides n, we can
partition the columns of X into multiple disjoint blocks, and compute the maximum 2-norm of the
column vectors within each block. Usually, the size of each block (k times the number of vectors
in any block) should be as close as possible to a value called block size. Let M (X)) be a vector
whose i-th element M (X); is the maximum 2-norm of the column vectors in the block containing
x;. We can define the normalization operator N/ : R¥* % — R¥*% as N(X); = x;/ M(X);, where
N(X); is the i-th column of matrix N'(X).

We define an injective quantization mapping R : Ty, — R¥. The image of this mapping, R(T4s),
constitutes the codebook, and each vector within this set is a codeword. The indexing map Z :
R* — T} then finds the nearest codeword for any given input vector and returns its corresponding
index, where Ty, = {0, 1,...,2* — 1}, The implementation of R can be seen in Sec. 4.1, and the
implementation of Z is in Sec. 4.2. After normalizing X with A/, we can use mapping Z to quantize
each column of N'(X) to a kb-bit number (b bits per element). Let Z(N' (X)) be a vector whose i-th
element Z(N(X)); = Z(N(X);). Now the k-dimensional b-bit quantizer Q for quantizing X is
given by

Q= (ZoN,M):RFE - T} x RE. (5)
Dequantization. Given a k-dimensional b-bit quantizer @ = (Z o N', M) for quantizing matrix
X € R¥*%, the corresponding dequantizer D is a mapping defined as

D(Q(X)) = DT o N(X), M(X)) = RIZ o N'(X)) © M(X) : Tf, x RE = RVE, (6)

Under review as a conference paper at ICLR 2026

Table 1: Comparison of AdamW momentum quantization errors for the g_proj weight in the
8th layer of a LLaMA-130M model. For each column, the best result is shown in bold and the
second-best is underlined.

First momentum Second momentum
Method NRE-1| NRE-2| AE(°)] NRE-1| NRE-2| AE(°)|

Linear-2 2-bit 0.513 0.947 26.747 0.800 0.007 32.965
Dynamic 2-bit 0.435 0.579 24.632 0.782 0.007 32.860
Ours 2-bit 0.394 0.421 22.631 0.295 0.002 16.665
Ours 1.5-bit 0.528 0.807 31.788 0.379 0.003 21.875

where R(Z o N'(X)); = R(Z(N(X));) is the i-th column of matrix R(Z o N'(X)).

Our generalized framework unifies different quantization approaches through the vector dimension
parameter k. Standard 1D quantization (Dettmers et al., 2022; Li et al., 2023) corresponds to the
special case where k = 1. In this setting, each “vector” x; is simply a scalar. Consequently, our
general normalization based on the maximum 2-norm naturally simplifies to the conventional method
of dividing by the block’s maximum absolute value, as for any scalar s, ||s||2 = |s|. While effective
at higher precisions, this scalar approach introduces significant error in ultra-low-bit scenarios (e.g.,
below 4 bits), where a 1D codebook’s representational capacity is insufficient.

To overcome this limitation, we explore the case of k& = 2 by leveraging joint quantization. This
directly applies our generalized procedure: parameters are grouped into 2D vectors, normalized by
the block-wise maximum 2-norm, and mapped to a 2D codebook. This complete procedure for our
2D (k = 2) quantizer, visualized in Fig. 2, provides a fundamentally richer representation than its
counterpart of k = 1.

The theoretical basis for this advantage is well-established. For instance, Bucklew & Gallagher
(1979) showed that for 2D data, using a 2D polar coordinate system for quantization results in a lower
mean square error (MSE) than a standard 1D Cartesian approach (Max, 1960). This principle was
later generalized by Swaszek & Thomas (1983), who designed methods for even higher dimensions
(k > 2) to minimize error for spherically symmetric data distributions.

To provide empirical proof, we first introduce the metrics used to evaluate static quantization error.
Given X € R**¥, to measure the difference between X and Y = D(Q(X)), we use the reshaping
function b : RF*% — R™ 7% to reorder elements in X and Y. A first vectorizes the input matrix via
column-wise concatenation, then partitions the resulting vector into contiguous segments of length
m, and finally reshapes these segments into the matrix in R™* = . We define the m-dimensional
normwise relative error (m-NRE) and the angle error (AE) at X as

X))l (XY
m‘NRE‘mea“l< [h(X)il + <) AB = arceo (<|X||F||Y|F>)’

where mean;(a;) is the average value of all possible a; (i = 1,...m), and ¢ is a small positive
number.

We consider three common 1D quantization mappings: Linear power quantization (Li et al., 2023;
Wang et al., 2024), Dynamic quantization (Dettmers, 2016; Dettmers et al., 2022), and NormalFloat
(NF) based on Quantile quantization (Dettmers et al., 2023). Since NF is mainly tailored for weight
quantization, our analysis focuses on Linear and Dynamic mappings. See their specifications and
visualizations in Appendix C. As shown in Tab. 1, our 2D approach consistently achieves the lowest
relative error and the highest cosine similarity. This advantage is further confirmed by the distribution
maps in Appendix D, where our method better preserves the original data structure.

4 EFFICIENT DESIGN AND THEORETICAL ANALYSIS

4.1 IMPLEMENTATION OF THE QUANTIZATION MAPPINGS

We present the implementation of our 2D 1.5-bit and 2.0-bit quantizer for signed and unsigned
tensors. Further, we also give the implementation of our low-bit AdamW/Adafactor used for neural

Under review as a conference paper at ICLR 2026

network training. Let Q = (Z o N, M) be a kD quantizer and D be its corresponding dequantizer as
described in Sec. 3.2.

2D quantization mappings for signed inputs. Our 2D quantization mappings, illustrated in Fig. 2,
are designed for superior representation efficiency. A straightforward method for creating a 2D
codebook is to arrange points in a simple Cartesian grid (Fig. 1(a)). However, this approach is
inherently suboptimal, as it treats each dimension independently and fails to leverage the primary
benefit of joint quantization: modeling the correlation between values.

We therefore construct our codebook using a polar representation, placing points on concentric circles.
All configurations share a common set of eight angles, © = {jn/4 | j = 0,...,7}. The number
of bits is determined by the radii R: a single radius (R = {0.40}) is used for 1.5-bit, while two
radii (R = {0.14,0.53}) are used for 2.0-bit. The resulting codebook is shown in Fig. 1(c), and the
following lemma formalizes the advantages of this spherically symmetric sampling.

Lemma l. Letx € R2Y CR?and s > 0. IfVy € Y, ||z||]2 = s||y|l2 > 0 and the angle between
x and y does not exceed ¢ < 7, then we have

2sin(¢/2) + |s — 1 -
s

& —ylls < 2.

The above lemma indicates that the relative quantization error can be controlled well by spherically
symmetric sampling when s ~ 1. In our settings, ¢ = % and ||z — y||2 < Z|z||2 if s = 1. The
proof of Lemma 1 can be found in Appendix F.

2D quantization mappings for unsigned inputs. For unsigned inputs, such as the second moments
in AdamW, a different strategy is required. Since these values are always non-negative, we enhance
efficiency by concentrating all codebook points in the first quadrant.

A critical design choice is to avoid placing points on the origin or the axes. Mapping to zero can cause
numerical instability during training, especially when a quantized value appears in a denominator (Li
et al., 2023). We prevent this by ensuring all angles are sampled strictly between 0 and /2.

Furthermore, unlike the uniform circular design for signed inputs, this mapping is non-uniform,
meaning the number of available angles depends on the radius. For instance, our 1.5-bit mapping
uses three radii, R = {0.20,0.42,1.00}, with 2, 3, and 3 angles assigned to them respectively, while
the 2.0-bit mapping uses four radii, R = {0.20,0.33,0.53, 1.00}, with a corresponding 2, 4, 5, and 5
angles. This specialized structure can more robustly and effectively cover the positive data space.

4.2 IMPLEMENTATION OF THE QUANTIZERS

Given a quantization mapping R : Ty, — R, the simplest implementation of Z : RF — Ty is
searching for the nearest neighbor of the input in R(T;), that is

jet 12 =R, » M

where p, = 1 in our experiments. The time cost of Eqn. (7) is affordable when b < 2. If b is large
and £ > 1, Eqn. (7) becomes time-consuming. Tian et al. (2025) propose a fast 2-dimensional
quantization method with linear time complexity independent of quantization precision. Here we
further develop it with more rigorous proofs and flexible mappings.

Z(x) = argmin

Consider mapping f : R — C defined as f(t) = e + €*?, where 0 is an irrational number and
i = y/—1. We first introduce the concept of dense set, Dirichlet’s approximation theorem and
Kronecker’s approximation theorem.

Definition 1. Let A C B C R"”, we say A is dense in B if the closure of A is B. Equivalently A is
dense in B if for any x € B, every neighborhood U of x intersects A, that is, U N A # ().

Theorem 1 (Dirichlet). Let a be a real number, and k be a positive integer. Then there exist p,q € Z,
such that 1 < q < k and |a — §| < qik,

Corollary 1. Let o be a real number; then « is an irrational number if and only if Ve > 0, there exist
x,y € Z such that 0 < |ax — y| < e.

Theorem 2 (Kronecker). Let o be a real number, and k be a positive integer. Then there exist
p,q €Z, suchthat 1 < q < k and | — g\ < qik.

Under review as a conference paper at ICLR 2026

Corollary 2. Let a be a real number, and 0 be an irrational number, then Ve > 0, there exist n, k € Z
such that |nf — k — a| < e.

The proofs of Theorem 1 and Theorem 2 can be found in Appendix F. Ve > 0, we can obtain an
algorithm with constant time complexity to compute £ € R such that |f () — z| < e, where |z| < 2.
To see this, let z = g + iyo = r cos ¢ + irsin ¢, where xg, yo € R and r = |z| € [0, 2]. According
to Corollary 2, Vi, > 0 there exist nq,ny € Z such that

146 go—%garccosg
1—g" " 2

1+6
<p= ’1+G (2 arccosg + 4n17r) — (29 +4nom)| < 4mp.

Note that the proofs of Theorem 1 and Theorem 2 are constructive, thus it is easy to see that ni, ns
can be obtained within constant time complexity. Let f(¢) = x(t) 4 iy (t), where x(¢), y(¢) are real

2 arccos % +4nqm

functions. Define ¢ = 2

, we can prove that

|o — z(t)] < 2rmp < dwp, |yo — y(t)| < 2rrp < 4mp.

Specifically, if § = 1 — 4w, we have t = n; + arc;::sg , and arc;::sg € [0,0.25]. In this case,
the integer part of ¢ reflects the angle information of f(Z), and the fractional part of ¢ reflects the
magnitude information of f(£). The number of all possible values of n; does not exceed 1 + 1/p. If
the range of r is discrete, a fast quantization method can be derived from the above discussion. In

summary, we get the following theorem.

Theorem 3. Suppose mapping f : R — C is defined as f(t) = € + €%, where 0 is an irrational
number. Then f(R) is dense in {z € C||z| < 2}.

5 EXPERIMENTS

Now we compare our ultra-low-bit optimizers against their 16/32-bit counterparts, a 4-bit baseline (Li
et al., 2023), and its naive 2-bit extension, across LLM pretraining and fine-tuning, and vision training
tasks on a single A800 GPU. To ensure fairness, we keep the weights, gradients, activations, and
hyperparameters identical to the public baselines, replacing only the optimizer with our 1.5-bit or
2-bit variants. Medium-scale LLMs and vision models are pretrained with 16/32-bit optimizers as
baselines, while LLaMA2-7B fine-tuning uses 8-bit Adafactor as the high-precision reference.

Models and datasets. We pretrain GPT-2 (124M) for 40k steps on OpenWebText (Gokaslan &
Cohen, 2019) following the nanoGPT codebase, and LLaMA-2 (130M, 350M) for 80k steps on
C4 (Raffel et al., 2020) following (Zhao et al., 2024). For fine-tuning, LLaMA2-7B and Qwen2.5-7B
are trained on Alpaca (Taori et al., 2023) and evaluated with GLUE (Wang et al., 2019) using Im-
evaluation-harness (Gao et al., 2024). For vision tasks, we use codebase in (Zhou et al., 2023) to train
ViT-B/16 (Dosovitskiy et al., 2021) and ResNet-50 (He et al., 2016) on ImageNet-1K (Russakovsky
et al., 2015) for 150 and 100 epochs, respectively. Further details are in Appendix G.

Quantization setup. Optimizer states X are partitioned into blocks of size 64 and quantized using
our 2D k-bit quantizers (see Sec. 4.1). For additional compression, M (X) is dynamically quantized
to 8-bit with block size 256, following the double-quantization scheme of (Dettmers et al., 2023). For
Adafactor, we adopt a learning rate scaling factor o = 2.0. For AdamW, we set o = 2.0 for 2-bit
quantization and o« = 2.5 for 1.5-bit quantization (see Sec. 3.1). All other optimizer hyperparameters
remain unchanged.

5.1 MAIN RESULTS

On LLMs, we report the performance, wall-clock time, and memory cost of optimizers in Tab. 2.
Importantly, Tab. 2 shows that a naive extension of the 4.0-bit baseline’s 1D quantization technique
to 2 bits consistently leads to training collapse (Crash). In contrast, our proposed method not
only ensures stable training but also demonstrates significant advantages in both efficiency and
performance. Specifically, our method enables stable quantization down to 2.0 and even 1.5 bits,
achieving up to a 4.6 reduction in optimizer memory footprint compared to the 16-bit baseline
while maintaining highly competitive wall-clock times. Fig. 3 also shows the validation perplexity

Under review as a conference paper at ICLR 2026

Table 2: Comparison of validation perplexity (VPPL), wall-clock time (WCT, hours), and GPU
Memory usage of optimizer states (MC, MB). We train LLAMA-130M/350M on the C4 dataset, and
GPT2-124M on OpenWebText. Crash indicates training failures (NaN loss or non-convergence).

LLAMA-130M LLAMA-350M GPT2-124M
Optimizer VPPL WCT MC VPPL WCT MC VPPL WCT MC
32-bit Adafactor 20.393 22.98 516.87 17.708 59.57 1429.64 19.556 31.34 476.45
4.0-bit Adafactor 20.497 22.99 228.42 17.481 59.70 411.77 19.658 31.30 200.23
2.0-bit Adafactor Crash - Crash - Crash -

2.0-bit Adafactor(Ours) 20.243 23.04 208.80 16.790 59.98 330.66 19.890 31.37 173.75
1.5-bit Adafactor(Ours) 20.273 23.14 203.74 16.712 59.50 312.63 20.164 31.32 168.69

16-bit AdamW 20.350 22.33 518.70 16.866 58.36 1420.72 19.645 31.30 951.90
4.0-bit AdamW 20.680 22.49 269.30 17.123 59.04 582.98 19.842 31.29 391.46
2.0-bit AdamW Crash - - Crash - - Crash - -

2.0-bit AdamW(Ours) 20.480 22.63 230.06 16.917 59.09 403.66 19.979 31.34 341.50
1.5-bit AdamW(Ours) 20.904 22.59 219.94 17.157 59.14 367.62 20.665 31.39 331.38

LLAMA-130M on C4 LLAMA-350M on C4 GPT2-124M on OWT

24.0 20.5 23.0
—— 16-bit Adafactor —— 16-bit Adafactor \ —— 16-bit Adafactor

235 4.0-bit Adafactor 200 4.0-bit Adafactor 225 4.0-bit Adafactor
223.0 —— 2.0-bit Adafactor(Ours) | 219.5 —— 2.0-bit Adafactor(Ours) | 222.0 —— 2.0-bit Adafactor(Ours)
@ —— 1.5-bit Adafactor(Ours) E) —— 1.5-bit Adafactor(Ours) E —— 1.5-bit Adafactor(Ours)
0225 219.0 2215 \V4
& g 3
c22.0 c21.0
.2 2
®21.5 ®©20.5
=t h=]
£21.0 £20.0

20.5 19.5

200 8 10 12 14 16 18 20 22 24 16. 0 25 30 35 40 45 50 55 60 19.0 15 20 25 30

Wall-clock Time (hour) Wall-clock Time (hour) Wall-clock Time (hour)
24.0 LLAMA-130M on C4 20.5 LLAMA-350M on C4 23.0 GPT2-124M on OWT
—— 16-bit AdamwW —— 16-bit Adamw — —— 16-bit AdamwW

235 —— 4.0-bit AdamWw 20.0 —— 4.0-bit Adamw 225 —— 4.0-bit AdamW
223.0 —— 2.0-bit AdamW(Ours) | 2'19.5 —— 2.0-bit AdamW(Ours) | 222.0 —— 2.0-bit AdamW(Ours)
3 —— 1.5-bit AdamW(Ours) | & —— 1.5-bit AdamW(Ours) | & —— 1.5-bit AdamW(Ours)
5225 519.0 5215 v
& & &
=220 > 185 T210
) L =
w©21.5 ©18.0 ©20.5
2 k=l 3
$21.0 8175 $20.0

20.5 17.0 19.5

20.0 8 10 12 14 16 18 20 22 16. 0 25 30 35 40 45 50 55 60 19.0 15 20 25 30

Wall-clock Time (hour) Wall-clock Time (hour) Wall-clock Time (hour)

Figure 3: Validation perplexity curves on the C4 and OWT datasets.

curves of pretraining LLMs on the C4 and OWT datasets, and demonstrates of superiority of our
method.

Notably, our method shows exceptional strength in certain settings; for instance, during the LLaMA-
350M pretraining with AdamW, our 2-bit optimizer not only outperforms the standard 4-bit baseline
but also closes over 80% of the performance gap to the full 16-bit version. Even more strikingly, for
Adafactor pretraining on both LLaMA-130M and LLaMA-350M, the validation perplexity for our
low-bit optimizer eventually surpasses the high-precision baseline in the later stages of training. We
hypothesize this phenomenon is due to the inherent regularization effect of ultra-low-bit quantization,
where the introduced noise may help the optimizer escape sharp local minima and settle into flatter,
more generalizable minima.

We also conducted experiments on vision pretraining tasks using ViT-Base/16 and ResNet-50 models.
The results, summarized in Tab. 3, reinforce the findings from our LLM experiments. Once again,
a naive extension to 2-bit quantization consistently fails, while our method ensures stable training.
Remarkably, our approach delivers substantial efficiency gains, particularly for ViT-Base/16, where it
reduces the AdamW optimizer memory footprint from 654.4 MB to just 49.4 MB—a reduction of
over 13x—with only a minor ~1% drop in Top-1 accuracy. Furthermore, in AdamW experiments

Under review as a conference paper at ICLR 2026

Table 3: Test accuracy (TA), wall-clock time (WCT, hours), and GPU Memory usage of optimizer
states (MC, MB) on ImageNet-1K classification. Crash indicates training failures.

ViT-Base/16 ResNet-50

Optimizer TA WCT MC TA WCT MC
32-bit SGDM - - - 75.41 29.94 94.21
32-bit Adafactor 80.72 58.80 326.11 77.60 31.99 214.71
4.0-bit Adafactor 80.57 59.19 59.09 76.85 32.37 135.66
2.0-bit Adafactor Crash - - Crash - -

2.0-bit Adafactor(Ours) 79.53 59.35 26.25 76.72 32.39 125.89
32-bit AdamW 80.72 56.47 654.38 77.68 30.06 192.87
4.0-bit AdamW 79.28 56.85 103.39 75.65 31.24 24091
2.0-bit AdamW Crash - - Crash - -

2.0-bit AdamW(Ours) 79.68 57.32 49.39 76.30 31.21 10.93

Table 4: Performance of fine-tuned LLMs on the GLUE benchmark during fine-tuning on the Alpaca
dataset. AVG = average GLUE score. TMC = total memory cost (TMC).

Model Optimizer SST-2 RTE COLA MNLI MRPC AVG TMC (MB)

Original 83.0 708 29.2 36.5 66.9 57.3 -
LLaMA2-7B 8.0-bit Adafactor 91.5 74.7 35.1 53.9 65.0 64.0 54220
1.5-bit Adafactor 91.3 74.0 35.7 50.0 68.1 63.8 49188

Original 94.8 83.0 46.0 77.3 75.3 75.3 -
Qwen2.5-7B 8.0-bit Adafactor 94.6 80.1 46.6 70.4 76.5 73.6 62969
1.5-bit Adafactor 95.4 80.9 47.6 71.4 75.7 74.5 57929

on both models, our 2-bit optimizer again outperforms the 4-bit baseline, confirming its superior
balance of compression and performance. Wall-clock times remained competitive across all settings,
indicating minimal computational overhead.

In Tab. 4, we can see the performance of fine-tuned LLMs on the GLUE benchmark. These results
further verify the effectiveness and scalability of our proposed low-bit Adafactor.

5.2 ABLATION STUDIES

We investigate the impact of different val- Table 5: Validation perplexity (VPPL) of training
ues of hyperparameters scale factor « on LLAMA-130M on the C4 dataset and GPT-2 (124M)
performance. The results shown in Tab. 5 on the OpenWebText dataset.

demonstrate the rationality of our chosen Model | Optimizer VPPL

hyperparameters. -
1.5-bit Adafactor (« = 1.0) 20.543
LLAMA | L5-bit Adafactor (@ = 2.0) 20.273
6 CONCLUSIONS, LIMITATIONS, _{30Mm %.g-gyt ﬁgamy Ea = ggg %(1).(9)8‘2‘

.0-bit am o = 4. .

AND BROADER IMPACT 1.5-bit AdamW (o = 3.0) 21.036
We propose 2.0-bit and 1.5-bit variants of GPT2 1.5-bit AdamW (o - 2.0) 20648
AdanW and Adaf besed | 1oay | 1-5-bit AdamW (o = 2.5) 20.665
amw and Adatactor, based on a nove . 1.5-bit AdamW (o = 3.0) 20.624

2D quantization framework and its asso-
ciated design principles. Experimental re-
sults on a diverse set of benchmarks demonstrate that our low-bit optimizers maintain comparable
performance to their high-precision counterparts while substantially reducing memory consumption.

Limitations & Broader impact. Due to limitations in computing resources, we did not pretrain
our ultra-low-bit optimizers on large-scale models with more than 1B parameters. For impact, our
research opens up the field of using multi-dimensional quantization to realize ultra-low-bit optimizers
for LLM training. It benefits Al researchers with limited GPU memory resources.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All datasets used in this work are publicly available and widely used in the research community (e.g.,
C4, OpenWebText). No private, proprietary, or personally identifiable data were collected or used in
our experiments. We have adhered to the licensing terms of each dataset and ensured that the data
were processed in compliance with ethical standards. Additionally, we are committed to ensuring
fairness and impartiality in the research process, avoiding any form of bias.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed experimental settings in Sec. 5 and Appendix G.
We also release an anonymous code repository at https://anonymous.4open.science/r/
ultra-low-bit-optimizers.

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient
adaptive optimization. Advances in Neural Information Processing Systems, 32,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/

8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html.

James Bucklew and Neal Gallagher. Quantization schemes for bivariate gaussian random variables.
IEEE Transactions on Information Theory, 25(5):537-543, 1979. doi: 10.1109/TIT.1979.1056096.

Tim Dettmers. 8-bit approximations for parallelism in deep learning. In Proceedings of the Inter-
national Conference on Learning Representations, 2016. URL http://arxiv.org/abs/
1511.04561.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In Proceedings of the International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=shpkpVXzo3h.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning
of quantized LLMs. Advances in Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=DSZ6SxyWcL.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In Proceedings of the International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=YicbFdNTTy.

Vladimir Feinberg, Xinyi Chen, Y. Jennifer Sun, Rohan Anil, and Elad Hazan. Sketchy: Memory-
efficient adaptive regularization with frequent directions. Advances in Neural Information Process-
ing Systems, 2023. URL https://openreview.net/forum?id=Bz08uak8V-2.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
June 2016. URL https://doi.org/10.1109/CVPR.2016.90.

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances in
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
1d=nN8TnHB5nw.

10

https://anonymous.4open.science/r/ultra-low-bit-optimizers
https://anonymous.4open.science/r/ultra-low-bit-optimizers
https://proceedings.neurips.cc/paper/2019/hash/8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html
http://arxiv.org/abs/1511.04561
http://arxiv.org/abs/1511.04561
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=DSZ6SxyWcL
https://openreview.net/forum?id=DSZ6SxyWcL
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=Bz08uak8V-2
https://zenodo.org/records/12608602
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.1109/CVPR.2016.90
https://openreview.net/forum?id=nN8TnHB5nw
https://openreview.net/forum?id=nN8TnHB5nw

Under review as a conference paper at ICLR 2026

Jingyang Li, Kuangyu Ding, Kim-Chuan Toh, and Pan Zhou. Memory-efficient 4-bit preconditioned
stochastic optimization. arXiv preprint arXiv:2412.10663, 2025.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Sebastian Bugge Loeschcke, Mads Toftrup, Michael Kastoryano, Serge Belongie, and Vésteinn Snab-
jarnarson. LoQT: Low-rank adapters for quantized pretraining. Advances in Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=Pnv8C0ObUIt.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings of the
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=Bkg6RiCqY7.

Joel Max. Quantizing for minimum distortion. IRE Transactions on Information Theory, 6(1):7-12,
1960. doi: 10.1109/T1T.1960.1057548.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neu-
ral Networks, 12(1):145-151, 1999. ISSN 0893-6080. doi: https://doi.org/10.
1016/S0893-6080(98)00116-6. URL https://www.sciencedirect.com/science/
article/pii/S0893608098001166.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, and others.
Language models are unsupervised multitask learners. OpenAl blog, 2019. URL https://
insightcivic.s3.us—-east-1.amazonaws.com/language-models.pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1-67, 2020. URL
http://jmlr.org/papers/v21/20-074 .html.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115
(3):211-252,2015. URL https://doi.org/10.1007/s11263-015-0816—-y.

K. Sayood. Introduction to Data Compression. The Morgan Kaufmann Series in Multimedia
Information and Systems. Morgan Kaufmann, 2017. ISBN 9780128097052. URL https:
//books.google.co.jp/books?id=3DFHDgAAQBAJ.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In Proceedings of the International Conference on Machine Learning, 2018. URL http:
//proceedings.mlr.press/v80/shazeerl8a.html.

Peter Swaszek and John Thomas. Multidimensional spherical coordinates quantization. [EEE
Transactions on Information Theory, 29(4):570-576, 1983. doi: 10.1109/TIT.1983.1056703.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Zhen Tian, Wayne Xin Zhao, and Ji-Rong Wen. Irrational complex rotations empower low-bit
optimizers. arXiv preprint arXiv:2501.12896, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, and others. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. URL https:
//arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, . ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Pro-
cessing Systems, 30,2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/£file/3f5ee243547dee91fbd053clc4a845aa—Paper.pdf.

11

https://openreview.net/forum?id=Pnv8C0bU9t
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1007/s11263-015-0816-y
https://books.google.co.jp/books?id=3DFHDgAAQBAJ
https://books.google.co.jp/books?id=3DFHDgAAQBAJ
http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Under review as a conference paper at ICLR 2026

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJ4km2R5t7.

Sike Wang, Pan Zhou, Jia Li, and Hua Huang. 4-bit Shampoo for memory-efficient network training.
Advances in Neural Information Processing Systems, 2024. URL https://arxiv.org/abs/
2405.18144.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Jui-Nan Yen, Sai Surya Duvvuri, Inderjit S. Dhillon, and Cho-Jui Hsieh. Block low-rank precondi-
tioner with shared basis for stochastic optimization. Advances in Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=JzQ1GgRm8d.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu
Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. In
Proceedings of the International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=1BExhaU3Lc.

Zhenyu Zhang, Ajay Jaiswal, Lu Yin, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. Q-galore: Quantized galore with int4 projection and layer-adaptive low-rank gradients.
arXiv preprint arXiv:2407.08296, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-efficient LLM training by gradient low-rank projection. In Proceedings
of the International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=hYHsrKDiX7.

Pan Zhou, Xingyu Xie, and Shuicheng Yan. Win: Weight-decay-integrated Nesterov acceleration
for adaptive gradient algorithms. In Proceedings of the International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=CPdc77SQfQ5.

12

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/abs/2405.18144
https://arxiv.org/abs/2405.18144
https://openreview.net/forum?id=JzQlGqBm8d
https://openreview.net/forum?id=iBExhaU3Lc
https://openreview.net/forum?id=iBExhaU3Lc
https://openreview.net/forum?id=hYHsrKDiX7
https://openreview.net/forum?id=hYHsrKDiX7
https://openreview.net/forum?id=CPdc77SQfQ5

Under review as a conference paper at ICLR 2026

A DECLARATION OF LLM USAGE

During the preparation of this work, we used Gemini 2.5 Pro Think and GPT-5 to polish the English
expression and check for spelling errors in our manuscript. No parts of the core research ideas,
methods, results, or conclusions were generated by LLMs. All experimental code and data analysis
were conducted and verified by the authors.

B Low-BIT ADAMW AND ADAFACTOR

Our quantization strategy is applied selectively to specific parameter groups within the model. We
define Sq as the set of indices for parameter groups designed for quantization. In our experiments,
S¢q primarily contains the core weight tensors of linear layers (which are typically 2D-shaped), as
these are the most memory-intensive.

Conversely, several parameter groups are intentionally kept in full precision and are thus excluded
from S¢q. For Large Language Models (LLMs), these non-quantized parts notably include the embed-
ding layer parameters, the bias vectors within linear layers, and all parameters within normalization
layers (e.g., LayerNorm, RMSNorm).

For all parameter groups 6;, we introduce a layer-wise scaling factor «;, which is applied to the
normalized momentum term before the main parameter update. This factor is formally defined as:

o ifi€Sg
O"_{Lo ifi ¢ So ©

In contrast, previous approaches (Dettmers et al., 2022; Li et al., 2023) that do not use such a
mechanism are equivalent to setting a;; = 1.0 for all layers. The hyperparameter o, is set based
on the quantization level (e.g., 2.0 for 2-bit). The modified optimization procedures are detailed in
Algorithms 2 and 3.

Algorithm 2 AdamW with quantized states Algorithm 3 Adafactor with quantized states
Input: Steps 7, learning rate 7, moment decays Input: Steps 7', learning rate 7, decays 1, 52,
b1, B2, weight decay A, epsilon € epsilons €7, €5
1: Let Sg be the set of quantized layer indices ~ 1: Let Sg be the set of quantized layer indices
2: for each parameter group ¢ do 2: for each parameter group ¢ do
3: 0071', mgvi +~ 0, ’U&i +~— 0 3: 0072', m&i 0, RO,i +~ 0, CQ’Z' +~0
4: fort=1,...,T do 4: fort=1,...,T do
5. for each parameter group ¢ do 5: for each parameter group ¢ do
6: gii < Vof(0i—1,) 6: gii < Vof(6i—1,)
7: if i € S then 7: if i € S then
8: My_1,0i1, — 8 my_q,; Dequantize(mf_lyi)
Dequantize(my_, ;v ;) 9: else
9: else 10: my_1; < mi
10: My—1,i Vi—1, mg—l,w vtq—l,i I1: my; < Bimy 1, + (1 — B1)gei
) (State are not quantzed) 12 Rig ¢ BoRivi+ (1— B2)Eanlg?,]
: my M1 — ;
bt 1A=L, 1)gt.i 13: Cii 2Cr1,;+(1— BQ)Ecol[th,i]
12: V4 < Povi—1i + (1 — B2)g;; . c /(1 — Bt
13: mc. —m /(1_61‘) ' 14: mt,i%mtyl/(ﬁl)
14: ’Uctﬂ(— . ;’El - ﬁt) 1 15: ‘/t,i — (Rt,i ® Ct,i)/mean(Rm)
15: Dtﬂﬁn fﬂ LB 112 ® 16: ¢ < max(e2, RMS(0;_1 ;)"
: ehne o, asT:LC qn. 17: Define «; as in Eqn. (8)
. . . tyi . ¢
16: Ut < Oy pate +)\0,5_1,1 18: g — = t,;el
t,i
};: g-t’-i é_Set;ﬁ’in_ e Wi 19: O < 01 — M1 -
; L < PQ the , 20: if i € S, then
19: my;, vy ; < Quantize(my;, v¢ ;) 21 m? . - Quantize(m, ;)
20: else 2. else ’
. q q :
21: My 55 Uy <= Miy Vi 23: mgi My

13

Under review as a conference paper at ICLR 2026

1.00 . 1.0 .
—— Dynamic —— Dynamic
0.75 Linear-1 Linear-1
0.50 0.8
: —— Linear-2 —— Linear-2
o 025 — NF4 © 0.6
§ 0.00 E
-0.25 0.4
—-0.50 0.2
-0.75
—-1.00 0.0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Index Index
(a) Mappings for signed inputs (b) Mappings for unsigned inputs

Figure 4: Visualization of different 4-bit quantization mappings for signed and unsigned inputs.

C 1D QUANTIZATION MAPPINGS

We present the constructions of different quantization mappings in 1D b-bit quantizers (R in Q). See
Fig. 4 for their illustration. Note that T, = {0,1,...,2° — 1}.

Linear power quantization. Linear power (Linear-p) quantization for signed inputs is defined as

—(-1+2j/@2-1)", j<2t-1
R(j) = 0, j=2"1-1;
(-1+2j/(2* - 1)", >0t 1,

where j € T, and p > 0. For unsigned inputs, it is defined as

R(j) = (j/(2"=1))", j€Typ>0.

Dynamic quantization. Dynamic quantization R for b-bit quantization maps T}, onto {0,1} U G.
For signed inputs, G is a set of numbers with the following properties: the number in G looks like
+q; x 10, where

b=2+FE+F, E,FeN;

ax = (pr +pra1)/2, ke€{0,...,2F -1}
p; =0.95/2F +01, je{o,...,2F}.

For unsigned inputs, G is a set of numbers with: the number in G looks like g5 x 10~ F, where

b=2+E+F, E,F eN;

qr = (pk +pk+1)/27 ke {07"‘72F+1 _1}a
p;=0.9j/2F +01, je{0,...,2F+}.

NormalFloat. b-bit NormalFloat R is built on Quantile quantization. range(R) is constructed as
follows: evenly sampling 2° quantiles of the standard normal distribution at first, and then normalizing
them into [—1, 1]. For 4-bit NormalFloat (NF4) handling signed inputs, range(R) is about {-1.00,
-0.70, -0.53, -0.39, -0.28, -0.18, -0.09, 0.00, 0.08, 0.16, 0.25, 0.34, 0.44, 0.56, 0.72, 1.00}.

D THE DISTRIBUTION OF OPTIMIZER STATES

To motivate our approach and highlight the challenges of low-bit optimizer state quantization, we
first analyze the empirical distributions of AdamW’s momentum states. As illustrated in Fig. 5, we
plot the distributions for both the first momentum (Fig. 5(a)) and the second momentum (Fig. 5(b)),
captured from the g_proJj weight of the 8th layer in a LLaMA-130M model during its training. A

14

Under review as a conference paper at ICLR 2026

key observation is the stark difference between the two distributions: the first momentum exhibits a
quasi-Gaussian distribution, whereas the second momentum is non-negative and highly skewed, with
a high concentration of values near zero.

This pronounced asymmetry in the second momentum suggests that data-oblivious quantization
schemes, such as uniform quantization, are highly inefficient. Based on this insight, We compare our
proposed 2D quantization method against a baseline 1D quantization scheme using Kernel Density
Estimation (KDE). Fig. 6 clearly demonstrates that our method more faithfully reproduces the original
full-precision distribution for both states.

Crucially, this superiority is particularly striking for the highly-skewed second momentum and persists
even under an aggressive 1.5-bit quantization, a regime where the 1D method fails to capture the
essential data structure.

500000 lell
1.0
400000
0.8
300000
g z
2 Gos6
[[
© 200000 o
0.4
100000 0.2
0 0.0
-75 =50 =25 0.0 2.5 5.0 7.5 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Value le—6 Value le-10
(a) First momentum (b) Second momentum

Figure 5: Empirical distributions of AdamW states for the g_proj weight in the 8th layer of a
LLaMA-130M model.

le6 lell
Full-Precision ours-2bit 8 Full-Precision ours-2bit
2.0 linear-2bit ours-1.5bit linear-2bit ours-1.5bit
Im dynamic-2bit W dynamic-2bit
015 Qb
X 3
21.0 24
0 n
o ©
Qo5 Q2
0.0 0
-4 -2 0 2 4 0 2 4 6
Value le—6 Value le-12
(a) First momentum KDE (b) Second momentum KDE

Figure 6: A comparison of quantization methods on the first-order and second-order momentum
states for the g_proj weight in the 8th layer of a LLaMA-130M model. The full-precision data
serves as the ground truth. The Kernel Density Estimation (KDE) plots visualize the data’s probability
distribution with a smooth curve, allowing a qualitative assessment of how well each method preserves
the original shape. As shown, data-aware approaches, such as our proposed 2D quantization method,
more faithfully reproduce the original distribution compared to the data-oblivious 1D quantization
scheme. This advantage is particularly pronounced for the highly-skewed second-order momentum,
and it holds true even under an aggressive 1.5-bit quantization.

15

Under review as a conference paper at ICLR 2026

E MORE EXPERIMENTS RESULTS

Fig. 7 presents the training loss curves for fine-tuning on the Alpaca dataset. The convergence
trajectory of our low-bit method closely tracks that of the full-precision baseline, indicating negligible
performance degradation.

1.4 —— 8.0-bit Adafactor 1.4 —— 8.0-bit Adafactor
—— 1.5-bit Adafactor —— 1.5-bit Adafactor
1.2 1.2
& @
[e] [e]
410 >10
(o)) (o)}
C C
= =
T 0.8 ©0.8
= =
0.6 0.6
0.4 0.4
0 1 2 3 4 0 1 2 3 4
Wall-clock Time (hour) Wall-clock Time (hour)
(a) LLaMA2-7B (b) Qwen2.5-7B
Figure 7: Training loss curves of fine-tuning LLMs on the Alpaca dataset.
F PROOFS

Lemma l. Letx € R2Y CR?and s > 0. IfVy € Y, ||z||]2 = s||y|l2 > 0 and the angle between
x and y does not exceed ¢ < 7, then we have

2sin(¢/2) +|s — 1| -
s

& —ylls < 2.

Figure 8: Visualization of a circle centered at O and its inscribed triangle AABC'. The line segment
AB passes through point O, and ¢ = ZCOB.

Proof. Consider Fig. 8. Without loss of generality, we assume that y = O? €Yandx = 50? .
According to the properties of the inscribed triangle of a circle, we have

IBCl2 = 2|yl sin(6/2).

16

Under review as a conference paper at ICLR 2026

The 2-norm satisfies the triangle inequality. Thus,
&~ yll: = [OC ~ OF + (s~ 1)OC|;
IBCll2 + (s =)OC2

~ 2sin(¢/2) + |s — 1 Iz
s

IN

[l2-

The proof is completed. O

Theorem 1 (Dirichlet). Let o be a real number, and k be a positive integer. Then there exist p,q € Z,
such that 1 < q < k and |a — §| < qik

Proof. Consider dividing the interval [0, 1] into k sub-intervals [0, 1), ..., [52, 221), [A2, 1].
Let real number z = [z] + {z}, where [z] is the integer part of z, and {z} is the fractional
part of x satisfying 0 < {z} < 1. By the pigeonhole principle, among the k¥ + 1 numbers
0,{a},....,{(k — 1)a},{ka}, there must be at least two numbers that lie in the same sub-
interval among the aforementioned k sub-intervals. Thus, there exist 0 < ¢ < j < k such that

[{ja} — {ia}| < 1. Hence,

‘ o] — [ie] 1
o — PE— = P
j—i k(j =)
The proof is completed. O

Theorem 2 (Kronecker). Let o be a real number, and k be a positive integer. Then there exist
p,q €Z, suchthat 1 < q < k and | — g\ < qik.

Proof. Since nf = n[0] + n{0}, we have {nf} = {n{0}}. Therefore, we can assume that 6 € (0, 1).
According to Corollary 1, for any 1 > & > 0, there exist 2,y € Z such that 0 < |z — y| < . Since
6 > 0, without loss of generality, we assume that x, y are positive numbers.

1) If O > y, we get 0 < {fz} < e. Thus, there exists positive integer N such that ﬁ <{bz} <
+ < e. For positive integer k < N, since 0 < k{fz} < 1, we have {k6z} = k{fz}. This indicate
that the N numbers {6z}, ..., { N0z} form an arithmetic sequence. Additionally, since

N 1

N+1 N+1

thus, those N numbers divide the interval [0, 1] into N + 1 sub-intervals, and each of them is no
longer than ¢.

0<1—N{0z} <1-— < {bz} <e,

2) If Oz < y, we get 0 < 1 — {6z} < e. Thus, there exists positive integer N such that ﬁ <

1 — {#z} < & < e. For positive integer k < N, since 0 < k — k{fz} < 1, we have {kfz} =
k{0x} — k + 1. This indicate that the N numbers {0z}, ..., { N0z} form an arithmetic sequence.
Additionally, since

N 1
N+1 N+1

thus, those N numbers divide the interval [0, 1] into N + 1 sub-intervals, and each of them is no
longer than ¢.

0<1—-N+N{fz}<1-— <1—{0z} <e,

According to 1), 2) and the definition of density, the proof is completed. [

G EXPERIMENTAL DETAILS

In our experiments, we use one A800 GPU under the PyTorch 2.2.0 + CUDA12.1 framework. To
obtain the total peak memory consumption per GPU, we call "torch.cuda.max_memory_allocated".
The total memory cost includes data, model parameters, activations, gradients, optimizer states and
memory fragments. We calculate the memory cost of the optimizer states by taking the difference

17

Under review as a conference paper at ICLR 2026

between the memory usage of training with the target optimizer and the memory usage of training
with a momentum-free optimizer.

For Adafactor, we set eps = (10*30, 10’3), clip_threshold = 1.0, decay_rate = —0.8 and ; = 0.9
by default. For AdamW, we set 81 = 0.9 and 35 = 0.95. For quantization settings, matrices with a
size smaller than 4096 will not be quantized.

Settings on training LLAMA-2 on C4. We run Adafactor/AdamW with 2000 warmup steps for
training 130M LLAMA-2 and with 4000 warmup steps for training 350M LLAMA-2. Total batch
size is set to 512. Batch size is set to 256 for training 130M LLAMA-2 and is set to 128 for training
350M LLAMA-2. Dtype is bfloat16. The initial learning rate is 0.001 and weight decay is 0.0.

Settings on training GPT-2 on OWT. We run Adafactor/AdamW with 2000 warmup steps. Total
batch size is set to 480. Batch size is set to 24 for training 124M GPT-2. Dtype is bfloat16. The initial
learning rate is 0.0006 and weight decay is 0.1.

Settings on training ResNet50 on ImageNet-1k. We run SGDM (Qian, 1999)/AdamW/Adafactor
for 100 epochs with a linear warmup at the first 10 epochs. Minibatch size is set to 512. For SGDM,
we set momentum decay S to 0.9, the initial learning rate to 0.1, and the weight decay to 0.0005. For
AdamW/Adafactor, we set the initial learning rate to 0.001, and the weight decay to 0.05. We adopt
the cosine learning rate schedule. Data augmentation follows the configuration for training ResNet50
in (Zhou et al., 2023). We utilize PyTorch’s native Automatic Mixed Precision (AMP) functionality
(torch.cuda.amp) for training.

Settings on training ViT-Base/16 on ImageNet-1k. We run Adafactor/AdamW for 150 epochs
with a linear warmup at the first 10 epochs. Minibatch size is set to 512. The initial learning rate is
0.001 and weight decay is 0.05. We use the cosine learning rate schedule. Data augmentation follows
the configuration for training ViT-Base/16 in (Zhou et al., 2023), excluding repeated augmentation.
We utilize PyTorch’s native Automatic Mixed Precision (AMP) functionality (torch.cuda.amp) for
training.

Settings on fine-tuning 7B models. Dtype is bfloat16. Training epochs is set to 3. Batch size is set
to 2 and the gradient accumulation steps is 32. The initial learning rate is 0.00003 and weight decay
is 0.0. We set warmup_ratio = 0.3 and adopt cosine learning rate decay.

Settings on running the GLUE benchmark. We set batch_size = auto and num_fewshot = 5.

18

