
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

2D QUANTIZATION FOR ULTRA-LOW-BIT OPTIMIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimizer states used to accelerate neural network training become a significant
memory bottleneck as model size grows. A common mitigation is to compress
these high-precision states to low-bit representations, but existing methods typi-
cally stop at 4 bits. In this paper, we push the bitwidth of AdamW and Adafactor
states down to 1.5 and 2 bits by mapping high-precision values to their nearest
low-bit representations in a two-dimensional (2D) polar space, which we call 2D
quantization. This is effective because optimizer states exhibit a quasi-Gaussian
distribution with strong circular symmetry. To further improve efficiency, we offer
concrete design principles for both signed and unsigned data, and we validate the
superiority of our approach over traditional 1D quantization through static experi-
ments on real momentum matrices. Across a range of pretraining and fine-tuning
benchmarks—including image classification and natural language modeling—our
ultra-low-bit AdamW and Adafactor match the performance of their 16/32-bit
counterparts while dramatically reducing memory usage.

1 INTRODUCTION

Deep neural networks, such as Transformer-based architectures (Vaswani et al., 2017; Liu et al.,
2019; Radford et al., 2019; Zhang et al., 2022; Touvron et al., 2023; Yang et al., 2024), have achieved
remarkable success in applications such as dialogue systems and multilingual translation. A key
enabler of this progress is the AdamW optimizer (Loshchilov & Hutter, 2019), which maintains first-
and second-moment states for stable optimization. However, as models scale, the memory required to
store these optimizer states becomes a dominant factor in overall training cost.

To reduce the memory consumed by the optimizer states, quantization is a classical and effective
strategy. Formally, given a codebook Q ∈ Rk, any point in Rk can be approximated by its nearest
neighbor in Q. This process is known as k-dimensional (kD) quantization. Prior work on low-bit
optimizers (Dettmers et al., 2022; Li et al., 2023) has focused exclusively on 1D quantization, namely
quantizing a single high-precision floating-point number into a low-precision number, e.g., converting
a 32-bit floating-point number to a 4-bit one.

While 1D quantization is straightforward, its performance degrades dramatically in the ultra-low-bit
regime (i.e., less than 4 bits). Its core limitation, as illustrated in Fig. 1(a), is the use of a simple
rectilinear grid that quantizes each dimension independently, thus failing to exploit the strong inter-
dimensional correlations found in optimizer states. Adopting 2D quantization provides a natural
solution by jointly encoding parameters, thereby capturing the underlying data geometry.

This conceptual difference is visualized in Fig. 1. The grid-like structure of a 1D quantizer (Fig. 1(a))
is fundamentally mismatched with the underlying data geometry. As we empirically demonstrate in
Appendix D, optimizer states consistently exhibit a quasi-Gaussian distribution with strong circular
symmetry. Although a general-purpose 2D quantizer (Fig. 1(b)) can form ideal, data-aware decision
cells, it incurs prohibitive storage and computational overheads, rendering it impractical. This
motivates our approach: a structured 2D quantizer that is both geometrically congruent and practically
efficient. We propose a polar quantizer (Fig. 1(c)), whose concentric codebook structure is explicitly
designed to match the iso-probability contours of the source. This design is powerful because it
offers theoretical elegance through its structural congruence, enables intelligent, radius-dependent bit
allocation, and maintains practical efficiency with a training-free design and fast encoding.

This paper pushes the bitwidth of the moments of Adafactor/AdamW down to 1.5 and 2.0 bits via 2D
quantization. Our main contributions are highlighted below.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 0 1
1

0

1

(a) 1D mapping

1 0 1
1

0

1

(b) General 2D mapping

1 0 1
1

0

1

(c) Our 2D mapping

Figure 1: Visualization of 2D quantization mappings. Red dots are codebook vectors and blue lines
are decision boundaries. (a) The 1D mapping’s rectilinear grid ignores the data’s circular symmetry.
(b) A general 2D mapping adapts perfectly but is computationally expensive. (c) Our proposed
polar mapping offers an efficient, structured design that is congruent with the quasi-Gaussian data
distribution.

First, to address the significant performance degradation of traditional 1D quantizers at ultra-low
bitwidths (e.g., 2-bit), we propose a 2D quantization framework in the polar coordinate system.
This approach is highly effective as it leverages the quasi-Gaussian distribution and strong circular
symmetry observed in optimizer states. It enables the creation of ultra-low-bit AdamW/Adafactor
optimizers that achieve performance on par with their 16/32-bit counterparts. We validate the
superiority of our 2D approach over 1D quantization through static experiments on real-world
momentum matrices.

Second, we offer concrete design principles for both signed and unsigned data for moments in
optimizer states. For signed inputs, we show that the zero point is unnecessary, that placing codebook
magnitudes near the median is beneficial, and we theoretically justify the use of angularly uniform
sampling. For unsigned inputs, we propose a novel mapping only in the first quadrant, which enhances
efficiency by assigning more points to larger values for precision and fewer to smaller ones. This is
combined with small axis offsets to guarantee training stability by preventing division-by-zero errors.

Finally, we evaluate our 1.5-bit and 2-bit AdamW/Adafactor across both language modeling and
vision tasks. For language modeling tasks, we pretrain GPT-2 on OpenWebText and LLaMA-2 on
C4, and fine-tune LLaMA-2-7B and Qwen2.5-7B on GLUE. For vision tasks, we pretrain ViT-Base
and ResNet-50 on ImageNet-1K. Across all these benchmarks, our ultra-low-bit AdamW/Adafactor
achieve performance comparable to that of their 16/32-bit counterparts with significantly less memory.

2 RELATED WORK

To reduce the memory cost of optimizers, several directions are explored, and are introduced below.

Low-rank approximation. Adafactor (Shazeer & Stern, 2018) approximates Adam’s second mo-
ments by the outer product of two vectors. Feinberg et al. (2023) and Yen et al. (2023) approximate
the preconditioner in second-order optimizers via truncated SVD. GaLore (Zhao et al., 2024) projects
gradient matrices into a low-rank subspace for memory saving, while Q-GaLore (Zhang et al., 2024)
further reduces memory by quantizing the projectors to 4-bit and weights to 8-bit. LoQT (Loeschcke
et al., 2024) extends GaLore into QLoRA (Dettmers et al., 2023), enabling LLM pretraining with a
4-bit full-rank matrix and additional low-rank matrices per linear layer.

Division. SM3 (Anil et al., 2019) approximates Adam’s second moment using its cover statistics.
Adam-mini (Zhang et al., 2025) partitions parameters into blocks corresponding to small dense
Hessian sub-blocks, allowing shared second moments within each block.

Quantization. Dettmers et al. (2022) employ block-wise dynamic quantization to store first-order
optimizer states in 8-bit. Li et al. (2023) address the zero-point issue when quantizing Adam/AdamW
second moments to 4-bit via a zero-point-free mapping. Wang et al. (2024) show that quantizing the
eigenvectors of 4-bit Shampoo outperforms quantizing the preconditioner directly, and Li et al. (2025)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

introduce Cholesky quantization for 4-bit Shampoo. All prior methods use 1D quantizers; Tian et al.
(2025) proposes a 2D mapping from R to a closed disk in R2, allowing fast 2D quantization with
linear complexity independent of precision. However, due to theoretical and implementation limits,
this only reduces AdamW bitwidth to 3.32 bits for fine-tuning and is ineffective for pretraining.

3 METHODOLOGY

Notations. We use a non-bold letter like a or A to denote a scalar, a boldfaced lower-case letter
like a to denote a vector, and a boldfaced upper-case letter such as A to denote a matrix. x = [xi]
means that the i-th element of column vector x is xi and X = [xi] means the i-th column of matrix
X is xi. ∥x∥p denotes the p-norm of vector x. Given two matrices A and B, A ⊙B represents
the elementwise matrix product (Hadamard product), and ⟨A,B⟩ represents the inner product. The
Frobenius norm of a matrix A is ∥A∥F =

√
⟨A,A⟩.

3.1 OUR LOW-BIT OPTIMIZATION FRAMEWORK

Algorithm 1 Quantized AdamW
Input: Step number T , learning rate η, hyper-

parameters β1, β2, decay parameter λ, ϵ
Initialize: θ0, mq

0 ← 0, vq
0 ← 0

1: for t = 1, . . . , T do
2: gt ← ∇θf(θt−1)
3: Dequantize mt−1,vt−1 using Eqn. (1)
4: Update moments mt,vt using Eqn. (3)
5: Update parameters θt using Eqn. (4)
6: Quantize mq

t ,v
q
t using Eqn. (2)

Output: θT

Low-bit optimizers store optimizer states like
first and second moments using low-precision
floating-point numbers, temporarily dequantiz-
ing them to high precision during computations.
This significantly reduces the static memory
footprint of these optimizers. Below, we use two
widely adopted optimizers AdamW (Loshchilov
& Hutter, 2019) and Adafactor (Shazeer & Stern,
2018) as examples.

Quantized AdamW. At the t-th iteration, given
the minibatch gradient gt, we first dequantize
the previous first and second moments mq

t−1

and vq
t−1 via our low-bit dequantizer D which is introduced in Sec. 3.2:

mt−1 = D(mq
t−1), vt−1 = D(vq

t−1). (1)

Here mq
t−1 and vq

t−1 are respectively the low-precision versions of high-precision mt−1 and vt−1,
and are computed by our proposed low-bit quantizer Q presented in Sec. 3.2:

mq
t−1 = Q(mt−1), vq

t−1 = Q(vt−1). (2)

In this way, we can follow vanilla AdamW to update the first and second moments mt and vt:

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g
2
t . (3)

Following (Dettmers et al., 2022; Zhao et al., 2024), we quantize the 2-dimensional optimizer
states except those used for updating the embedding layers during transformer-based model training.
Besides, since the norm of a tensor can vary significantly after quantization, we scale the learning
rate η used to update the corresponding trainable tensor, by a scale factor α. Accordingly, we update
the model parameters via

θt = θt−1 − ηt

(
α ·mt/(1− βt

1)√
vt/(1− βt

2) + ϵ
+ λθt−1

)
, (4)

where η is the learning rate and λ is the hyper-parameter for weight decay. Crucially, for the non-
quantized layers (i.e., the embedding layers), we set α = 1.0, effectively applying the standard update
rule. Finally, we quantize the high-precision first and second moments mt and vt into low-precision
versions mt and vt via Eqn. (2).

For clarity, we summarize all steps of quantized AdamW into Algorithm 1, where we use a gray color
to highlight the extra steps. One can observe that quantized AdamW almost follows vanilla AdamW
and is quite simple. Moreover, its memory cost becomes much lower than AdamW, since it only need
to maintain the low-bit first and second moments without performance degradation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Schematic of our 2D polar quantization for optimizer states, implemented in a 1.5-bit
update cycle (a codeword in the 8-entry codebook jointly encodes two parameters, namely 1.5 bits
per parameter). After a high-precision (16/32-bit) update, the state tensor is treated as 2D vectors
and partitioned into disjoint blocks. For each block, a scaling factor—the maximum 2-norm of its
vectors—is computed. Each vector is normalized by this factor and mapped to the nearest point in
a circular codebook, with only the codebook index stored. Dequantization reverses the process by
retrieving the codebook vector and reapplying the scaling factor. Compared to 1D methods, this 2D
approach reduces quantization distortion at the same bit-rate (Sayood, 2017) and supports non-integer
bit representations.

Quantized Adafactor. For another popular optimizer, Adafactor, we can follow almost the same
spirit to quantize it and obtain its quantized version. To this end, we only add two extra steps for
dequantization and quantization. Compared with AdamW, Adafactor inherently reduces memory by
factorizing the second-moment matrix. Accordingly, we only need to quantize its first moment while
ingnoring the factorized second-moment accumulators, Rt and Ct, since their size are very small
and account for much less memory cost than first moment. See more discussion in Appendix B.

3.2 2D QUANTIZATION

The success of low-precision optimizers hinges on the ability of the quantization algorithm to
minimize approximation error. Without proper control, this error can accumulate during training,
leading to instability and poor convergence. Therefore, we focus on matrix-based quantization, as
optimizer state tensors can be readily reshaped into matrices. We first identify the shortcomings of
current techniques and then introduce a novel 2D quantization method that provides more robust
error control, enabling the practical application of low-precision optimizers.

Quantization. Given a real matrix X = [x1,x2, . . . ,xn/k] ∈ Rk×n
k where k divides n, we can

partition the columns of X into multiple disjoint blocks, and compute the maximum 2-norm of the
column vectors within each block. Usually, the size of each block (k times the number of vectors
in any block) should be as close as possible to a value called block size. LetM(X) be a vector
whose i-th elementM(X)i is the maximum 2-norm of the column vectors in the block containing
xi. We can define the normalization operatorN : Rk×n

k → Rk×n
k asN (X)i = xi/M(X)i, where

N (X)i is the i-th column of matrix N (X).

We define an injective quantization mapping R : Tkb → Rk. The image of this mapping, R(Tkb),
constitutes the codebook, and each vector within this set is a codeword. The indexing map I :
Rk → Tkb then finds the nearest codeword for any given input vector and returns its corresponding
index, where Tkb = {0, 1, . . . , 2kb − 1}. The implementation ofR can be seen in Sec. 4.1, and the
implementation of I is in Sec. 4.2. After normalizing X with N , we can use mapping I to quantize
each column of N (X) to a kb-bit number (b bits per element). Let I(N (X)) be a vector whose i-th
element I(N (X))i = I(N (X)i). Now the k-dimensional b-bit quantizer Q for quantizing X is
given by

Q = (I ◦ N ,M) : Rk×n
k → T

n
k

kb × R
n
k . (5)

Dequantization. Given a k-dimensional b-bit quantizer Q = (I ◦ N ,M) for quantizing matrix
X ∈ Rk×n

k , the corresponding dequantizer D is a mapping defined as

D(Q(X)) = D(I ◦ N (X),M(X)) = R(I ◦ N (X))⊙M(X) : T
n
k

kb × R
n
k → Rk×n

k , (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Comparison of AdamW momentum quantization errors for the q_proj weight in the
8th layer of a LLaMA-130M model. For each column, the best result is shown in bold and the
second-best is underlined.

First momentum Second momentum

Method NRE-1 ↓ NRE-2 ↓ AE(◦)↓ NRE-1 ↓ NRE-2 ↓ AE(◦)↓
Linear-2 2-bit 0.513 0.947 26.747 0.800 0.007 32.965
Dynamic 2-bit 0.435 0.579 24.632 0.782 0.007 32.860
Ours 2-bit 0.394 0.421 22.631 0.295 0.002 16.665
Ours 1.5-bit 0.528 0.807 31.788 0.379 0.003 21.875

whereR(I ◦ N (X))i = R(I(N (X))i) is the i-th column of matrixR(I ◦ N (X)).

Our generalized framework unifies different quantization approaches through the vector dimension
parameter k. Standard 1D quantization (Dettmers et al., 2022; Li et al., 2023) corresponds to the
special case where k = 1. In this setting, each “vector” xi is simply a scalar. Consequently, our
general normalization based on the maximum 2-norm naturally simplifies to the conventional method
of dividing by the block’s maximum absolute value, as for any scalar s, ∥s∥2 ≡ |s|. While effective
at higher precisions, this scalar approach introduces significant error in ultra-low-bit scenarios (e.g.,
below 4 bits), where a 1D codebook’s representational capacity is insufficient.

To overcome this limitation, we explore the case of k = 2 by leveraging joint quantization. This
directly applies our generalized procedure: parameters are grouped into 2D vectors, normalized by
the block-wise maximum 2-norm, and mapped to a 2D codebook. This complete procedure for our
2D (k = 2) quantizer, visualized in Fig. 2, provides a fundamentally richer representation than its
counterpart of k = 1.

The theoretical basis for this advantage is well-established. For instance, Bucklew & Gallagher
(1979) showed that for 2D data, using a 2D polar coordinate system for quantization results in a lower
mean square error (MSE) than a standard 1D Cartesian approach (Max, 1960). This principle was
later generalized by Swaszek & Thomas (1983), who designed methods for even higher dimensions
(k > 2) to minimize error for spherically symmetric data distributions.

To provide empirical proof, we first introduce the metrics used to evaluate static quantization error.
Given X ∈ Rk×n

k , to measure the difference between X and Y = D(Q(X)), we use the reshaping
function h : Rk×n

k → Rm× n
m to reorder elements in X and Y . h first vectorizes the input matrix via

column-wise concatenation, then partitions the resulting vector into contiguous segments of length
m, and finally reshapes these segments into the matrix in Rm× n

m . We define the m-dimensional
normwise relative error (m-NRE) and the angle error (AE) at X as

m-NRE = meani

(
∥h(X)i − h(Y)i)∥2
∥h(X)i∥2 + ε

)
, AE = arccos

(
⟨X,Y ⟩

(∥X∥F ∥Y ∥F)

)
,

where meani(ai) is the average value of all possible ai (i = 1, . . .m), and ε is a small positive
number.

We consider three common 1D quantization mappings: Linear power quantization (Li et al., 2023;
Wang et al., 2024), Dynamic quantization (Dettmers, 2016; Dettmers et al., 2022), and NormalFloat
(NF) based on Quantile quantization (Dettmers et al., 2023). Since NF is mainly tailored for weight
quantization, our analysis focuses on Linear and Dynamic mappings. See their specifications and
visualizations in Appendix C. As shown in Tab. 1, our 2D approach consistently achieves the lowest
relative error and the highest cosine similarity. This advantage is further confirmed by the distribution
maps in Appendix D, where our method better preserves the original data structure.

4 EFFICIENT DESIGN AND THEORETICAL ANALYSIS

4.1 IMPLEMENTATION OF THE QUANTIZATION MAPPINGS

We present the implementation of our 2D 1.5-bit and 2.0-bit quantizer for signed and unsigned
tensors. Further, we also give the implementation of our low-bit AdamW/Adafactor used for neural

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

network training. Let Q = (I ◦ N ,M) be a kD quantizer and D be its corresponding dequantizer as
described in Sec. 3.2.

2D quantization mappings for signed inputs. Our 2D quantization mappings, illustrated in Fig. 2,
are designed for superior representation efficiency. A straightforward method for creating a 2D
codebook is to arrange points in a simple Cartesian grid (Fig. 1(a)). However, this approach is
inherently suboptimal, as it treats each dimension independently and fails to leverage the primary
benefit of joint quantization: modeling the correlation between values.

We therefore construct our codebook using a polar representation, placing points on concentric circles.
All configurations share a common set of eight angles, Θ = {jπ/4 | j = 0, . . . , 7}. The number
of bits is determined by the radii R: a single radius (R = {0.40}) is used for 1.5-bit, while two
radii (R = {0.14, 0.53}) are used for 2.0-bit. The resulting codebook is shown in Fig. 1(c), and the
following lemma formalizes the advantages of this spherically symmetric sampling.
Lemma 1. Let x ∈ R2, Y ⊆ R2 and s > 0. If ∀y ∈ Y , ∥x∥2 = s∥y∥2 > 0 and the angle between
x and y does not exceed ϕ ≤ π

2 , then we have

∥x− y∥2 ≤
2 sin(ϕ/2) + |s− 1|

s
∥x∥2.

The above lemma indicates that the relative quantization error can be controlled well by spherically
symmetric sampling when s ≈ 1. In our settings, ϕ = π

8 and ∥x − y∥2 ≤ π
8 ∥x∥2 if s = 1. The

proof of Lemma 1 can be found in Appendix F.

2D quantization mappings for unsigned inputs. For unsigned inputs, such as the second moments
in AdamW, a different strategy is required. Since these values are always non-negative, we enhance
efficiency by concentrating all codebook points in the first quadrant.

A critical design choice is to avoid placing points on the origin or the axes. Mapping to zero can cause
numerical instability during training, especially when a quantized value appears in a denominator (Li
et al., 2023). We prevent this by ensuring all angles are sampled strictly between 0 and π/2.

Furthermore, unlike the uniform circular design for signed inputs, this mapping is non-uniform,
meaning the number of available angles depends on the radius. For instance, our 1.5-bit mapping
uses three radii, R = {0.20, 0.42, 1.00}, with 2, 3, and 3 angles assigned to them respectively, while
the 2.0-bit mapping uses four radii, R = {0.20, 0.33, 0.53, 1.00}, with a corresponding 2, 4, 5, and 5
angles. This specialized structure can more robustly and effectively cover the positive data space.

4.2 IMPLEMENTATION OF THE QUANTIZERS

Given a quantization mapping R : Tkb → Rk, the simplest implementation of I : Rk → Tkb is
searching for the nearest neighbor of the input inR(Tkb), that is

I(x) = argminj∈Tkb
∥x−R(j)∥p2

, (7)

where p2 = 1 in our experiments. The time cost of Eqn. (7) is affordable when b ≤ 2. If b is large
and k > 1, Eqn. (7) becomes time-consuming. Tian et al. (2025) propose a fast 2-dimensional
quantization method with linear time complexity independent of quantization precision. Here we
further develop it with more rigorous proofs and flexible mappings.

Consider mapping f : R → C defined as f(t) = eiθ + eitθ, where θ is an irrational number and
i =

√
−1. We first introduce the concept of dense set, Dirichlet’s approximation theorem and

Kronecker’s approximation theorem.
Definition 1. Let A ⊆ B ⊆ Rn, we say A is dense in B if the closure of A is B. Equivalently A is
dense in B if for any x ∈ B, every neighborhood U of x intersects A, that is, U ∩A ̸= ∅.

Theorem 1 (Dirichlet). Let α be a real number, and k be a positive integer. Then there exist p, q ∈ Z,
such that 1 ≤ q ≤ k and |α− p

q | ≤
1
qk .

Corollary 1. Let α be a real number, then α is an irrational number if and only if ∀ε > 0, there exist
x, y ∈ Z such that 0 < |αx− y| < ε.

Theorem 2 (Kronecker). Let α be a real number, and k be a positive integer. Then there exist
p, q ∈ Z, such that 1 ≤ q ≤ k and |α− p

q | ≤
1
qk .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Corollary 2. Let α be a real number, and θ be an irrational number, then ∀ε > 0, there exist n, k ∈ Z
such that |nθ − k − α| < ε.

The proofs of Theorem 1 and Theorem 2 can be found in Appendix F. ∀ε > 0, we can obtain an
algorithm with constant time complexity to compute t̃ ∈ R such that |f(t̃)− z| < ε, where |z| ≤ 2.
To see this, let z = x0 + iy0 = r cosφ+ ir sinφ, where x0, y0 ∈ R and r = |z| ∈ [0, 2]. According
to Corollary 2, ∀µ > 0 there exist n1, n2 ∈ Z such that∣∣∣∣∣1 + θ

1− θ
n1 − n2 −

φ− 1+θ
1−θ arccos

r
2

2π

∣∣∣∣∣ < µ⇒
∣∣∣∣1 + θ

1− θ

(
2 arccos

r

2
+ 4n1π

)
− (2φ+ 4n2π)

∣∣∣∣ < 4πµ.

Note that the proofs of Theorem 1 and Theorem 2 are constructive, thus it is easy to see that n1, n2

can be obtained within constant time complexity. Let f(t) = x(t) + iy(t), where x(t), y(t) are real
functions. Define t̃ =

2 arccos r
2+4n1π

1−θ , we can prove that

|x0 − x(t̃)| < 2rπµ ≤ 4πµ, |y0 − y(t̃)| < 2rπµ ≤ 4πµ.

Specifically, if θ = 1 − 4π, we have t̃ = n1 +
arccos r

2

2π , and arccos r
2

2π ∈ [0, 0.25]. In this case,
the integer part of t̃ reflects the angle information of f(t̃), and the fractional part of t̃ reflects the
magnitude information of f(t̃). The number of all possible values of n1 does not exceed 1 + 1/µ. If
the range of r is discrete, a fast quantization method can be derived from the above discussion. In
summary, we get the following theorem.

Theorem 3. Suppose mapping f : R→ C is defined as f(t) = eiθ + eitθ, where θ is an irrational
number. Then f(R) is dense in {z ∈ C | |z| ≤ 2}.

5 EXPERIMENTS

Now we compare our ultra-low-bit optimizers against their 16/32-bit counterparts, a 4-bit baseline (Li
et al., 2023), and its naive 2-bit extension, across LLM pretraining and fine-tuning, and vision training
tasks on a single A800 GPU. To ensure fairness, we keep the weights, gradients, activations, and
hyperparameters identical to the public baselines, replacing only the optimizer with our 1.5-bit or
2-bit variants. Medium-scale LLMs and vision models are pretrained with 16/32-bit optimizers as
baselines, while LLaMA2-7B fine-tuning uses 8-bit Adafactor as the high-precision reference.

Models and datasets. We pretrain GPT-2 (124M) for 40k steps on OpenWebText (Gokaslan &
Cohen, 2019) following the nanoGPT codebase, and LLaMA-2 (130M, 350M) for 80k steps on
C4 (Raffel et al., 2020) following (Zhao et al., 2024). For fine-tuning, LLaMA2-7B and Qwen2.5-7B
are trained on Alpaca (Taori et al., 2023) and evaluated with GLUE (Wang et al., 2019) using lm-
evaluation-harness (Gao et al., 2024). For vision tasks, we use codebase in (Zhou et al., 2023) to train
ViT-B/16 (Dosovitskiy et al., 2021) and ResNet-50 (He et al., 2016) on ImageNet-1K (Russakovsky
et al., 2015) for 150 and 100 epochs, respectively. Further details are in Appendix G.

Quantization setup. Optimizer states X are partitioned into blocks of size 64 and quantized using
our 2D k-bit quantizers (see Sec. 4.1). For additional compression,M(X) is dynamically quantized
to 8-bit with block size 256, following the double-quantization scheme of (Dettmers et al., 2023). For
Adafactor, we adopt a learning rate scaling factor α = 2.0. For AdamW, we set α = 2.0 for 2-bit
quantization and α = 2.5 for 1.5-bit quantization (see Sec. 3.1). All other optimizer hyperparameters
remain unchanged.

5.1 MAIN RESULTS

On LLMs, we report the performance, wall-clock time, and memory cost of optimizers in Tab. 2.
Importantly, Tab. 2 shows that a naive extension of the 4.0-bit baseline’s 1D quantization technique
to 2 bits consistently leads to training collapse (Crash). In contrast, our proposed method not
only ensures stable training but also demonstrates significant advantages in both efficiency and
performance. Specifically, our method enables stable quantization down to 2.0 and even 1.5 bits,
achieving up to a 4.6× reduction in optimizer memory footprint compared to the 16-bit baseline
while maintaining highly competitive wall-clock times. Fig. 3 also shows the validation perplexity

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of validation perplexity (VPPL), wall-clock time (WCT, hours), and GPU
Memory usage of optimizer states (MC, MB). We train LLAMA-130M/350M on the C4 dataset, and
GPT2-124M on OpenWebText. Crash indicates training failures (NaN loss or non-convergence).

LLAMA-130M LLAMA-350M GPT2-124M

Optimizer VPPL WCT MC VPPL WCT MC VPPL WCT MC

32-bit Adafactor 20.393 22.98 516.87 17.708 59.57 1429.64 19.556 31.34 476.45
4.0-bit Adafactor 20.497 22.99 228.42 17.481 59.70 411.77 19.658 31.30 200.23
2.0-bit Adafactor Crash - - Crash - - Crash - -
2.0-bit Adafactor(Ours) 20.243 23.04 208.80 16.790 59.98 330.66 19.890 31.37 173.75
1.5-bit Adafactor(Ours) 20.273 23.14 203.74 16.712 59.50 312.63 20.164 31.32 168.69

16-bit AdamW 20.350 22.33 518.70 16.866 58.36 1420.72 19.645 31.30 951.90
4.0-bit AdamW 20.680 22.49 269.30 17.123 59.04 582.98 19.842 31.29 391.46
2.0-bit AdamW Crash - - Crash - - Crash - -
2.0-bit AdamW(Ours) 20.480 22.63 230.06 16.917 59.09 403.66 19.979 31.34 341.50
1.5-bit AdamW(Ours) 20.904 22.59 219.94 17.157 59.14 367.62 20.665 31.39 331.38

8 10 12 14 16 18 20 22 24
Wall-clock Time (hour)

20.0

20.5

21.0

21.5

22.0

22.5

23.0

23.5

24.0

Va
lid

at
io

n
Pe

rp
le

xi
ty

LLAMA-130M on C4
16-bit Adafactor
4.0-bit Adafactor
2.0-bit Adafactor(Ours)
1.5-bit Adafactor(Ours)

20 25 30 35 40 45 50 55 60
Wall-clock Time (hour)

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

Va
lid

at
io

n
Pe

rp
le

xi
ty

LLAMA-350M on C4
16-bit Adafactor
4.0-bit Adafactor
2.0-bit Adafactor(Ours)
1.5-bit Adafactor(Ours)

15 20 25 30
Wall-clock Time (hour)

19.0

19.5

20.0

20.5

21.0

21.5

22.0

22.5

23.0

Va
lid

at
io

n
Pe

rp
le

xi
ty

GPT2-124M on OWT
16-bit Adafactor
4.0-bit Adafactor
2.0-bit Adafactor(Ours)
1.5-bit Adafactor(Ours)

8 10 12 14 16 18 20 22
Wall-clock Time (hour)

20.0

20.5

21.0

21.5

22.0

22.5

23.0

23.5

24.0

Va
lid

at
io

n
Pe

rp
le

xi
ty

LLAMA-130M on C4
16-bit AdamW
4.0-bit AdamW
2.0-bit AdamW(Ours)
1.5-bit AdamW(Ours)

20 25 30 35 40 45 50 55 60
Wall-clock Time (hour)

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

Va
lid

at
io

n
Pe

rp
le

xi
ty

LLAMA-350M on C4
16-bit AdamW
4.0-bit AdamW
2.0-bit AdamW(Ours)
1.5-bit AdamW(Ours)

15 20 25 30
Wall-clock Time (hour)

19.0

19.5

20.0

20.5

21.0

21.5

22.0

22.5

23.0

Va
lid

at
io

n
Pe

rp
le

xi
ty

GPT2-124M on OWT
16-bit AdamW
4.0-bit AdamW
2.0-bit AdamW(Ours)
1.5-bit AdamW(Ours)

Figure 3: Validation perplexity curves on the C4 and OWT datasets.

curves of pretraining LLMs on the C4 and OWT datasets, and demonstrates of superiority of our
method.

Notably, our method shows exceptional strength in certain settings; for instance, during the LLaMA-
350M pretraining with AdamW, our 2-bit optimizer not only outperforms the standard 4-bit baseline
but also closes over 80% of the performance gap to the full 16-bit version. Even more strikingly, for
Adafactor pretraining on both LLaMA-130M and LLaMA-350M, the validation perplexity for our
low-bit optimizer eventually surpasses the high-precision baseline in the later stages of training. We
hypothesize this phenomenon is due to the inherent regularization effect of ultra-low-bit quantization,
where the introduced noise may help the optimizer escape sharp local minima and settle into flatter,
more generalizable minima.

We also conducted experiments on vision pretraining tasks using ViT-Base/16 and ResNet-50 models.
The results, summarized in Tab. 3, reinforce the findings from our LLM experiments. Once again,
a naive extension to 2-bit quantization consistently fails, while our method ensures stable training.
Remarkably, our approach delivers substantial efficiency gains, particularly for ViT-Base/16, where it
reduces the AdamW optimizer memory footprint from 654.4 MB to just 49.4 MB—a reduction of
over 13×—with only a minor ∼1% drop in Top-1 accuracy. Furthermore, in AdamW experiments

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Test accuracy (TA), wall-clock time (WCT, hours), and GPU Memory usage of optimizer
states (MC, MB) on ImageNet-1K classification. Crash indicates training failures.

ViT-Base/16 ResNet-50

Optimizer TA WCT MC TA WCT MC

32-bit SGDM - - - 75.41 29.94 94.21

32-bit Adafactor 80.72 58.80 326.11 77.60 31.99 214.71
4.0-bit Adafactor 80.57 59.19 59.09 76.85 32.37 135.66
2.0-bit Adafactor Crash - - Crash - -
2.0-bit Adafactor(Ours) 79.53 59.35 26.25 76.72 32.39 125.89

32-bit AdamW 80.72 56.47 654.38 77.68 30.06 192.87
4.0-bit AdamW 79.28 56.85 103.39 75.65 31.24 24.91
2.0-bit AdamW Crash - - Crash - -
2.0-bit AdamW(Ours) 79.68 57.32 49.39 76.30 31.21 10.93

Table 4: Performance of fine-tuned LLMs on the GLUE benchmark during fine-tuning on the Alpaca
dataset. AVG = average GLUE score. TMC = total memory cost (TMC).

Model Optimizer SST-2 RTE COLA MNLI MRPC AVG TMC (MB)

LLaMA2-7B
Original 83.0 70.8 29.2 36.5 66.9 57.3 -
8.0-bit Adafactor 91.5 74.7 35.1 53.9 65.0 64.0 54 220
1.5-bit Adafactor 91.3 74.0 35.7 50.0 68.1 63.8 49 188

Qwen2.5-7B
Original 94.8 83.0 46.0 77.3 75.3 75.3 -
8.0-bit Adafactor 94.6 80.1 46.6 70.4 76.5 73.6 62 969
1.5-bit Adafactor 95.4 80.9 47.6 71.4 75.7 74.5 57 929

on both models, our 2-bit optimizer again outperforms the 4-bit baseline, confirming its superior
balance of compression and performance. Wall-clock times remained competitive across all settings,
indicating minimal computational overhead.

In Tab. 4, we can see the performance of fine-tuned LLMs on the GLUE benchmark. These results
further verify the effectiveness and scalability of our proposed low-bit Adafactor.

5.2 ABLATION STUDIES

Table 5: Validation perplexity (VPPL) of training
LLAMA-130M on the C4 dataset and GPT-2 (124M)
on the OpenWebText dataset.

Model Optimizer VPPL

LLAMA
-130M

1.5-bit Adafactor (α = 1.0) 20.543
1.5-bit Adafactor (α = 2.0) 20.273
1.5-bit AdamW (α = 2.0) 21.072
1.5-bit AdamW (α = 2.5) 20.904
1.5-bit AdamW (α = 3.0) 21.036

GPT2
-124M

1.5-bit AdamW (α = 2.0) 20.648
1.5-bit AdamW (α = 2.5) 20.665
1.5-bit AdamW (α = 3.0) 20.624

We investigate the impact of different val-
ues of hyperparameters scale factor α on
performance. The results shown in Tab. 5
demonstrate the rationality of our chosen
hyperparameters.

6 CONCLUSIONS, LIMITATIONS,
AND BROADER IMPACT

We propose 2.0-bit and 1.5-bit variants of
AdamW and Adafactor, based on a novel
2D quantization framework and its asso-
ciated design principles. Experimental re-
sults on a diverse set of benchmarks demonstrate that our low-bit optimizers maintain comparable
performance to their high-precision counterparts while substantially reducing memory consumption.

Limitations & Broader impact. Due to limitations in computing resources, we did not pretrain
our ultra-low-bit optimizers on large-scale models with more than 1B parameters. For impact, our
research opens up the field of using multi-dimensional quantization to realize ultra-low-bit optimizers
for LLM training. It benefits AI researchers with limited GPU memory resources.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All datasets used in this work are publicly available and widely used in the research community (e.g.,
C4, OpenWebText). No private, proprietary, or personally identifiable data were collected or used in
our experiments. We have adhered to the licensing terms of each dataset and ensured that the data
were processed in compliance with ethical standards. Additionally, we are committed to ensuring
fairness and impartiality in the research process, avoiding any form of bias.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed experimental settings in Sec. 5 and Appendix G.
We also release an anonymous code repository at https://anonymous.4open.science/r/
ultra-low-bit-optimizers.

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient
adaptive optimization. Advances in Neural Information Processing Systems, 32,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/
8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html.

James Bucklew and Neal Gallagher. Quantization schemes for bivariate gaussian random variables.
IEEE Transactions on Information Theory, 25(5):537–543, 1979. doi: 10.1109/TIT.1979.1056096.

Tim Dettmers. 8-bit approximations for parallelism in deep learning. In Proceedings of the Inter-
national Conference on Learning Representations, 2016. URL http://arxiv.org/abs/
1511.04561.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In Proceedings of the International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=shpkpVXzo3h.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning
of quantized LLMs. Advances in Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=DSZ6SxyWcL.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In Proceedings of the International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=YicbFdNTTy.

Vladimir Feinberg, Xinyi Chen, Y. Jennifer Sun, Rohan Anil, and Elad Hazan. Sketchy: Memory-
efficient adaptive regularization with frequent directions. Advances in Neural Information Process-
ing Systems, 2023. URL https://openreview.net/forum?id=Bz08uak8V-2.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
June 2016. URL https://doi.org/10.1109/CVPR.2016.90.

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances in
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=nN8TnHB5nw.

10

https://anonymous.4open.science/r/ultra-low-bit-optimizers
https://anonymous.4open.science/r/ultra-low-bit-optimizers
https://proceedings.neurips.cc/paper/2019/hash/8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html
http://arxiv.org/abs/1511.04561
http://arxiv.org/abs/1511.04561
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=DSZ6SxyWcL
https://openreview.net/forum?id=DSZ6SxyWcL
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=Bz08uak8V-2
https://zenodo.org/records/12608602
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.1109/CVPR.2016.90
https://openreview.net/forum?id=nN8TnHB5nw
https://openreview.net/forum?id=nN8TnHB5nw

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jingyang Li, Kuangyu Ding, Kim-Chuan Toh, and Pan Zhou. Memory-efficient 4-bit preconditioned
stochastic optimization. arXiv preprint arXiv:2412.10663, 2025.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Sebastian Bugge Loeschcke, Mads Toftrup, Michael Kastoryano, Serge Belongie, and Vésteinn Snæb-
jarnarson. LoQT: Low-rank adapters for quantized pretraining. Advances in Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=Pnv8C0bU9t.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proceedings of the
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=Bkg6RiCqY7.

Joel Max. Quantizing for minimum distortion. IRE Transactions on Information Theory, 6(1):7–12,
1960. doi: 10.1109/TIT.1960.1057548.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neu-
ral Networks, 12(1):145–151, 1999. ISSN 0893-6080. doi: https://doi.org/10.
1016/S0893-6080(98)00116-6. URL https://www.sciencedirect.com/science/
article/pii/S0893608098001166.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, and others.
Language models are unsupervised multitask learners. OpenAI blog, 2019. URL https://
insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115
(3):211–252, 2015. URL https://doi.org/10.1007/s11263-015-0816-y.

K. Sayood. Introduction to Data Compression. The Morgan Kaufmann Series in Multimedia
Information and Systems. Morgan Kaufmann, 2017. ISBN 9780128097052. URL https:
//books.google.co.jp/books?id=3DFHDgAAQBAJ.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In Proceedings of the International Conference on Machine Learning, 2018. URL http:
//proceedings.mlr.press/v80/shazeer18a.html.

Peter Swaszek and John Thomas. Multidimensional spherical coordinates quantization. IEEE
Transactions on Information Theory, 29(4):570–576, 1983. doi: 10.1109/TIT.1983.1056703.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Zhen Tian, Wayne Xin Zhao, and Ji-Rong Wen. Irrational complex rotations empower low-bit
optimizers. arXiv preprint arXiv:2501.12896, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, and others. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023. URL https:
//arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Pro-
cessing Systems, 30, 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

11

https://openreview.net/forum?id=Pnv8C0bU9t
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1007/s11263-015-0816-y
https://books.google.co.jp/books?id=3DFHDgAAQBAJ
https://books.google.co.jp/books?id=3DFHDgAAQBAJ
http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJ4km2R5t7.

Sike Wang, Pan Zhou, Jia Li, and Hua Huang. 4-bit Shampoo for memory-efficient network training.
Advances in Neural Information Processing Systems, 2024. URL https://arxiv.org/abs/
2405.18144.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Jui-Nan Yen, Sai Surya Duvvuri, Inderjit S. Dhillon, and Cho-Jui Hsieh. Block low-rank precondi-
tioner with shared basis for stochastic optimization. Advances in Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=JzQlGqBm8d.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu
Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. In
Proceedings of the International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=iBExhaU3Lc.

Zhenyu Zhang, Ajay Jaiswal, Lu Yin, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. Q-galore: Quantized galore with int4 projection and layer-adaptive low-rank gradients.
arXiv preprint arXiv:2407.08296, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. GaLore: Memory-efficient LLM training by gradient low-rank projection. In Proceedings
of the International Conference on Machine Learning, 2024. URL https://openreview.
net/forum?id=hYHsrKDiX7.

Pan Zhou, Xingyu Xie, and Shuicheng Yan. Win: Weight-decay-integrated Nesterov acceleration
for adaptive gradient algorithms. In Proceedings of the International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=CPdc77SQfQ5.

12

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://arxiv.org/abs/2405.18144
https://arxiv.org/abs/2405.18144
https://openreview.net/forum?id=JzQlGqBm8d
https://openreview.net/forum?id=iBExhaU3Lc
https://openreview.net/forum?id=iBExhaU3Lc
https://openreview.net/forum?id=hYHsrKDiX7
https://openreview.net/forum?id=hYHsrKDiX7
https://openreview.net/forum?id=CPdc77SQfQ5

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DECLARATION OF LLM USAGE

During the preparation of this work, we used Gemini 2.5 Pro Think and GPT-5 to polish the English
expression and check for spelling errors in our manuscript. No parts of the core research ideas,
methods, results, or conclusions were generated by LLMs. All experimental code and data analysis
were conducted and verified by the authors.

B LOW-BIT ADAMW AND ADAFACTOR

Our quantization strategy is applied selectively to specific parameter groups within the model. We
define SQ as the set of indices for parameter groups designed for quantization. In our experiments,
SQ primarily contains the core weight tensors of linear layers (which are typically 2D-shaped), as
these are the most memory-intensive.

Conversely, several parameter groups are intentionally kept in full precision and are thus excluded
from SQ. For Large Language Models (LLMs), these non-quantized parts notably include the embed-
ding layer parameters, the bias vectors within linear layers, and all parameters within normalization
layers (e.g., LayerNorm, RMSNorm).

For all parameter groups θi, we introduce a layer-wise scaling factor αi, which is applied to the
normalized momentum term before the main parameter update. This factor is formally defined as:

αi =

{
αscale if i ∈ SQ

1.0 if i /∈ SQ
(8)

In contrast, previous approaches (Dettmers et al., 2022; Li et al., 2023) that do not use such a
mechanism are equivalent to setting αi = 1.0 for all layers. The hyperparameter αscale is set based
on the quantization level (e.g., 2.0 for 2-bit). The modified optimization procedures are detailed in
Algorithms 2 and 3.

Algorithm 2 AdamW with quantized states
Input: Steps T , learning rate η, moment decays

β1, β2, weight decay λ, epsilon ϵ
1: Let SQ be the set of quantized layer indices
2: for each parameter group i do
3: θ0,i, m

q
0,i ← 0, vq

0,i ← 0
4: for t = 1, . . . , T do
5: for each parameter group i do
6: gt,i ← ∇θf(θt−1,i)
7: if i ∈ SQ then
8: mt−1,i,vt−1,i ←

Dequantize(mq
t−1,i,v

q
t−1,i)

9: else
10: mt−1,i,vt−1,i ← mq

t−1,i,v
q
t−1,i

{States are not quantized}
11: mt,i ← β1mt−1,i + (1− β1)gt,i
12: vt,i ← β2vt−1,i + (1− β2)g

2
t,i

13: mc
t,i ←mt,i/(1− βt

1)

14: vc
t,i ← vt,i/(1− βt

2)
15: Define αi as in Eqn. (8)
16: ut,i ← αi

mc
t,i√

vc
t,i+ϵ

+ λθt−1,i

17: θt,i ← θt−1,i − ηt · ut,i

18: if i ∈ SQ then
19: mq

t,i,v
q
t,i ← Quantize(mt,i,vt,i)

20: else
21: mq

t,i,v
q
t,i ←mt,i,vt,i

Algorithm 3 Adafactor with quantized states
Input: Steps T , learning rate η, decays β1, β2,

epsilons ϵ1, ϵ2
1: Let SQ be the set of quantized layer indices
2: for each parameter group i do
3: θ0,i, m

q
0,i ← 0, R0,i ← 0, C0,i ← 0

4: for t = 1, . . . , T do
5: for each parameter group i do
6: gt,i ← ∇θf(θt−1,i)
7: if i ∈ SQ then
8: mt−1,i ← Dequantize(mq

t−1,i)
9: else

10: mt−1,i ←mq
t−1,i

11: mt,i ← β1mt−1,i + (1− β1)gt,i
12: Rt,i ← β2Rt−1,i + (1− β2)Erow[g

2
t,i]

13: Ct,i ← β2Ct−1,i + (1− β2)Ecol[g
2
t,i]

14: mc
t,i ←mt,i/(1− βt

1)
15: Vt,i ← (Rt,i ⊗Ct,i)/mean(Rt,i)
16: ηt ← max(ϵ2,RMS(θt−1,i))

−1

17: Define αi as in Eqn. (8)
18: ut,i ← αi

mc
t,i√

Vt,i+ϵ1

19: θt,i ← θt−1,i − ηt · ut,i

20: if i ∈ SQ then
21: mq

t,i ← Quantize(mt,i)
22: else
23: mq

t,i ←mt,i

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14
Index

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Va
lu

e

Dynamic
Linear-1
Linear-2
NF4

(a) Mappings for signed inputs

0 2 4 6 8 10 12 14
Index

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Dynamic
Linear-1
Linear-2

(b) Mappings for unsigned inputs

Figure 4: Visualization of different 4-bit quantization mappings for signed and unsigned inputs.

C 1D QUANTIZATION MAPPINGS

We present the constructions of different quantization mappings in 1D b-bit quantizers (R in Q). See
Fig. 4 for their illustration. Note that Tb = {0, 1, . . . , 2b − 1}.
Linear power quantization. Linear power (Linear-p) quantization for signed inputs is defined as

R(j) =


−
(
−1 + 2j/(2b − 1)

)p
, j < 2b−1 − 1;

0, j = 2b−1 − 1;(
−1 + 2j/(2b − 1)

)p
, j > 2b−1 − 1,

where j ∈ Tb and p > 0. For unsigned inputs, it is defined as

R(j) =
(
j/(2b − 1)

)p
, j ∈ Tb, p > 0.

Dynamic quantization. Dynamic quantization R for b-bit quantization maps Tb onto {0, 1} ∪G.
For signed inputs, G is a set of numbers with the following properties: the number in G looks like
±qk × 10−E , where 

b = 2 + E + F, E, F ∈ N;
qk = (pk + pk+1)/2, k ∈ {0, . . . , 2F − 1};
pj = 0.9j/2F + 0.1, j ∈ {0, . . . , 2F }.

For unsigned inputs, G is a set of numbers with: the number in G looks like qk × 10−E , where
b = 2 + E + F, E, F ∈ N;
qk = (pk + pk+1)/2, k ∈ {0, . . . , 2F+1 − 1};
pj = 0.9j/2F + 0.1, j ∈ {0, . . . , 2F+1}.

NormalFloat. b-bit NormalFloat R is built on Quantile quantization. range(R) is constructed as
follows: evenly sampling 2b quantiles of the standard normal distribution at first, and then normalizing
them into [−1, 1]. For 4-bit NormalFloat (NF4) handling signed inputs, range(R) is about {-1.00,
-0.70, -0.53, -0.39, -0.28, -0.18, -0.09, 0.00, 0.08, 0.16, 0.25, 0.34, 0.44, 0.56, 0.72, 1.00}.

D THE DISTRIBUTION OF OPTIMIZER STATES

To motivate our approach and highlight the challenges of low-bit optimizer state quantization, we
first analyze the empirical distributions of AdamW’s momentum states. As illustrated in Fig. 5, we
plot the distributions for both the first momentum (Fig. 5(a)) and the second momentum (Fig. 5(b)),
captured from the q_proj weight of the 8th layer in a LLaMA-130M model during its training. A

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

key observation is the stark difference between the two distributions: the first momentum exhibits a
quasi-Gaussian distribution, whereas the second momentum is non-negative and highly skewed, with
a high concentration of values near zero.

This pronounced asymmetry in the second momentum suggests that data-oblivious quantization
schemes, such as uniform quantization, are highly inefficient. Based on this insight, We compare our
proposed 2D quantization method against a baseline 1D quantization scheme using Kernel Density
Estimation (KDE). Fig. 6 clearly demonstrates that our method more faithfully reproduces the original
full-precision distribution for both states.

Crucially, this superiority is particularly striking for the highly-skewed second momentum and persists
even under an aggressive 1.5-bit quantization, a regime where the 1D method fails to capture the
essential data structure.

7.5 5.0 2.5 0.0 2.5 5.0 7.5
Value 1e 6

0

100000

200000

300000

400000

500000

De
ns

ity

(a) First momentum

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Value 1e 10

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

1e11

(b) Second momentum

Figure 5: Empirical distributions of AdamW states for the q_proj weight in the 8th layer of a
LLaMA-130M model.

4 2 0 2 4
Value 1e 6

0.0

0.5

1.0

1.5

2.0

De
ns

ity
 (K

DE
)

1e6
Full-Precision
linear-2bit
dynamic-2bit

ours-2bit
ours-1.5bit

(a) First momentum KDE

0 2 4 6
Value 1e 12

0

2

4

6

8

De
ns

ity
 (K

DE
)

1e11
Full-Precision
linear-2bit
dynamic-2bit

ours-2bit
ours-1.5bit

(b) Second momentum KDE

Figure 6: A comparison of quantization methods on the first-order and second-order momentum
states for the q_proj weight in the 8th layer of a LLaMA-130M model. The full-precision data
serves as the ground truth. The Kernel Density Estimation (KDE) plots visualize the data’s probability
distribution with a smooth curve, allowing a qualitative assessment of how well each method preserves
the original shape. As shown, data-aware approaches, such as our proposed 2D quantization method,
more faithfully reproduce the original distribution compared to the data-oblivious 1D quantization
scheme. This advantage is particularly pronounced for the highly-skewed second-order momentum,
and it holds true even under an aggressive 1.5-bit quantization.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E MORE EXPERIMENTS RESULTS

Fig. 7 presents the training loss curves for fine-tuning on the Alpaca dataset. The convergence
trajectory of our low-bit method closely tracks that of the full-precision baseline, indicating negligible
performance degradation.

0 1 2 3 4
Wall-clock Time (hour)

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 L
os

s

8.0-bit Adafactor
1.5-bit Adafactor

(a) LLaMA2-7B

0 1 2 3 4
Wall-clock Time (hour)

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 L
os

s

8.0-bit Adafactor
1.5-bit Adafactor

(b) Qwen2.5-7B

Figure 7: Training loss curves of fine-tuning LLMs on the Alpaca dataset.

F PROOFS

Lemma 1. Let x ∈ R2, Y ⊆ R2 and s > 0. If ∀y ∈ Y , ∥x∥2 = s∥y∥2 > 0 and the angle between
x and y does not exceed ϕ ≤ π

2 , then we have

∥x− y∥2 ≤
2 sin(ϕ/2) + |s− 1|

s
∥x∥2.

OA B

C

Figure 8: Visualization of a circle centered at O and its inscribed triangle△ABC. The line segment
AB passes through point O, and ϕ = ∠COB.

Proof. Consider Fig. 8. Without loss of generality, we assume that y =
−−→
OB ∈ Y and x = s

−−→
OC.

According to the properties of the inscribed triangle of a circle, we have

∥
−−→
BC∥2 = 2∥y∥2 sin(ϕ/2).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The 2-norm satisfies the triangle inequality. Thus,

∥x− y∥2 = ∥
−−→
OC −

−−→
OB + (s− 1)

−−→
OC∥2

≤ ∥
−−→
BC∥2 + ∥(s− 1)

−−→
OC∥2

=
2 sin(ϕ/2) + |s− 1|

s
∥x∥2.

The proof is completed.

Theorem 1 (Dirichlet). Let α be a real number, and k be a positive integer. Then there exist p, q ∈ Z,
such that 1 ≤ q ≤ k and |α− p

q | ≤
1
qk .

Proof. Consider dividing the interval [0, 1] into k sub-intervals [0, 1
k), . . . , [

k−2
k , k−1

k), [k−1
k , 1].

Let real number x = [x] + {x}, where [x] is the integer part of x, and {x} is the fractional
part of x satisfying 0 ≤ {x} < 1. By the pigeonhole principle, among the k + 1 numbers
0, {α}, . . . , {(k − 1)α}, {kα}, there must be at least two numbers that lie in the same sub-
interval among the aforementioned k sub-intervals. Thus, there exist 0 ≤ i < j ≤ k such that
|{jα} − {iα}| ≤ 1

k . Hence, ∣∣∣∣α− [jα]− [iα]

j − i

∣∣∣∣ ≤ 1

k(j − i)
.

The proof is completed.

Theorem 2 (Kronecker). Let α be a real number, and k be a positive integer. Then there exist
p, q ∈ Z, such that 1 ≤ q ≤ k and |α− p

q | ≤
1
qk .

Proof. Since nθ = n[θ]+n{θ}, we have {nθ} = {n{θ}}. Therefore, we can assume that θ ∈ (0, 1).
According to Corollary 1, for any 1 ≥ ε > 0, there exist x, y ∈ Z such that 0 < |θx− y| < ε. Since
θ > 0, without loss of generality, we assume that x, y are positive numbers.

1) If θx > y, we get 0 < {θx} < ε. Thus, there exists positive integer N such that 1
N+1 < {θx} <

1
N ≤ ε. For positive integer k ≤ N , since 0 < k{θx} < 1, we have {kθx} = k{θx}. This indicate
that the N numbers {θx}, . . . , {Nθx} form an arithmetic sequence. Additionally, since

0 < 1−N{θx} < 1− N

N + 1
=

1

N + 1
< {θx} < ε,

thus, those N numbers divide the interval [0, 1] into N + 1 sub-intervals, and each of them is no
longer than ε.

2) If θx < y, we get 0 < 1 − {θx} < ε. Thus, there exists positive integer N such that 1
N+1 <

1 − {θx} < 1
N ≤ ε. For positive integer k ≤ N , since 0 < k − k{θx} < 1, we have {kθx} =

k{θx} − k + 1. This indicate that the N numbers {θx}, . . . , {Nθx} form an arithmetic sequence.
Additionally, since

0 < 1−N +N{θx} < 1− N

N + 1
=

1

N + 1
< 1− {θx} < ε,

thus, those N numbers divide the interval [0, 1] into N + 1 sub-intervals, and each of them is no
longer than ε.

According to 1), 2) and the definition of density, the proof is completed.

G EXPERIMENTAL DETAILS

In our experiments, we use one A800 GPU under the PyTorch 2.2.0 + CUDA12.1 framework. To
obtain the total peak memory consumption per GPU, we call "torch.cuda.max_memory_allocated".
The total memory cost includes data, model parameters, activations, gradients, optimizer states and
memory fragments. We calculate the memory cost of the optimizer states by taking the difference

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

between the memory usage of training with the target optimizer and the memory usage of training
with a momentum-free optimizer.

For Adafactor, we set eps = (10−30, 10−3), clip_threshold = 1.0, decay_rate = −0.8 and β1 = 0.9
by default. For AdamW, we set β1 = 0.9 and β2 = 0.95. For quantization settings, matrices with a
size smaller than 4096 will not be quantized.

Settings on training LLAMA-2 on C4. We run Adafactor/AdamW with 2000 warmup steps for
training 130M LLAMA-2 and with 4000 warmup steps for training 350M LLAMA-2. Total batch
size is set to 512. Batch size is set to 256 for training 130M LLAMA-2 and is set to 128 for training
350M LLAMA-2. Dtype is bfloat16. The initial learning rate is 0.001 and weight decay is 0.0.

Settings on training GPT-2 on OWT. We run Adafactor/AdamW with 2000 warmup steps. Total
batch size is set to 480. Batch size is set to 24 for training 124M GPT-2. Dtype is bfloat16. The initial
learning rate is 0.0006 and weight decay is 0.1.

Settings on training ResNet50 on ImageNet-1k. We run SGDM (Qian, 1999)/AdamW/Adafactor
for 100 epochs with a linear warmup at the first 10 epochs. Minibatch size is set to 512. For SGDM,
we set momentum decay β to 0.9, the initial learning rate to 0.1, and the weight decay to 0.0005. For
AdamW/Adafactor, we set the initial learning rate to 0.001, and the weight decay to 0.05. We adopt
the cosine learning rate schedule. Data augmentation follows the configuration for training ResNet50
in (Zhou et al., 2023). We utilize PyTorch’s native Automatic Mixed Precision (AMP) functionality
(torch.cuda.amp) for training.

Settings on training ViT-Base/16 on ImageNet-1k. We run Adafactor/AdamW for 150 epochs
with a linear warmup at the first 10 epochs. Minibatch size is set to 512. The initial learning rate is
0.001 and weight decay is 0.05. We use the cosine learning rate schedule. Data augmentation follows
the configuration for training ViT-Base/16 in (Zhou et al., 2023), excluding repeated augmentation.
We utilize PyTorch’s native Automatic Mixed Precision (AMP) functionality (torch.cuda.amp) for
training.

Settings on fine-tuning 7B models. Dtype is bfloat16. Training epochs is set to 3. Batch size is set
to 2 and the gradient accumulation steps is 32. The initial learning rate is 0.00003 and weight decay
is 0.0. We set warmup_ratio = 0.3 and adopt cosine learning rate decay.

Settings on running the GLUE benchmark. We set batch_size = auto and num_fewshot = 5.

18

