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Abstract

A modern paradigm for generalization in ma-
chine learning and AI consists of pre-training
a task-agnostic foundation model, generally ob-
tained using self-supervised and multimodal con-
trastive learning. The resulting representations
can be used for prediction on a downstream task
for which no labeled data is available. We present
a theoretical framework to better understand this
approach, called zero-shot prediction. We iden-
tify the target quantities that zero-shot prediction
aims to learn, or learns in passing, and the key
conditional independence relationships that en-
able its generalization ability.

1. Introduction

In 2021, OpenAl shocked the world by improving the zero-
shot classification accuracy on ImageNet from 11.5% to
76.2% via the CLIP series of models (Radford et al., 2021).
This event redefined the goal of zero-shot prediction from
producing models that generalized to unseen classes to
those that generalized to unseen tasks entirely. Two fun-
damental drivers of CLIP’s success were 1) the use of
natural language as a medium for representing arbitrary
classes (as in the previous state-of-the-art Visual N-grams
(Li et al., 2017)), and 2) a massive, yet carefully designed
pre-training set which significantly impacted downstream
performance (Radford et al., 2021; Fang et al., 2023; Xu
et al., 2024). Despite the remarkable success of these foun-
dation model-based pipelines (Bommasani et al., 2022),
there are unique components of zero-shot prediction that
warrant investigation from a theoretical point of view.

To clarify these gaps, we contrast zero-shot prediction
(ZSP) with the related setting of few-shot learning (FSL).
Let x € X denote an input (often an image) that accompa-
nies a discrete value y € Y (often a class label). Common
to both ZSP and FSL is a pre-training procedure in which a

"Department of Statistics, University of Washington, Seattle.
Correspondence to: Ronak Mehta <ronakdm@uw.edu>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

large unlabeled dataset 1, ...,xy € X is used to produce
an encoder o : X — R?. The embedding o () is thought
to contain information that is relevant for predicting y from
a. Pre-training typically occurs through the process of self-
supervised learning (SSL), using a pretext task that can be
solved with only instances of x (e.g. filling in a blank im-
age patch). In FSL, the user may then access a labeled
dataset (z?®, y1?P), ... (x!2P y!2P) from which a predic-
tor can be trained inexpensively. This often takes the form
of a linear classifier & — Wa(x)+b for W € RIYI*? and
b € RIYI. Where ZSP departs from FSL is the additional
challenge of being given no directly labeled training data.

At first glance, ZSP seems impossible. Yet, the ingenu-
ity of practitioners has yielded the following solution; if 1)
each pre-training example x; is paired with another “view”
z; € Z (e.g. a caption in natural language) and 2) if each
label y € Y can intelligently be embedded into Z, then
the relationship between each x; and z; could provide the
means to perform prediction. Concretely, one learns a com-
plementary encoder 3 : Z — R¢ during pre-training and
designs prompts zj fory € Yand k = 1,...,m. Then,

m

T+ arg max 1 Z(a(w),ﬁ(z%)} (1)

m
yed k=1

is employed for prediction. An example of a prompt is the
template text “photo of a __ ., where the blank can be
filled by the textual representation of the class (e.g. “cat”
or “dog”). The ZSP pipeline, from pre-training to prompt
selection, is clearly a wild departure from what is explained
by statistical learning theory. Moreover, while some com-
ponents of these systems have been studied in the context
of FSL (such as the reasons why various pre-training objec-
tives result in encoders that provably accelerate learning),
unique aspects of ZSP, such as the role of prompting and
the cost of “translating” modalities have not yet received
theoretical treatment. Herein lies our question.

Through what decomposition of downstream task
performance can we compare zero-shot prediction to
the direct supervised learner, with a transparent de-
pendence on the 1) pre-training distribution, 2) eval-
uation distribution, and 3) prompting strategy?
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Contributions. In Sec. 2, we present a learning theoretic
framework for the pre-training/evaluation/prompting data
and propose two expressions for the population counterpart
of (1). These expressions, while equivalent at the popula-
tion level, reflect two classes of learning methods which we
call the “conditional mean” and the “information density”
approaches. In Sec. 3, we prove a generic decomposition
of the prediction error on the downstream task, which fur-
nishes three components: prompt bias measures the com-
patibility of the prompt strategy with the pre-training and
evaluation distributions, residual dependence measures the
information-theoretic cost of using one modality to make
predictions on another, and estimation error quantifies the
effect of the finite number of pre-training examples and
prompts. The estimation error decomposes further depend-
ing on whether the conditional mean or information density
approaches are taken. To provide insight and demonstrate
the usefulness of the decomposition, we analyze the perfor-
mance of nonparametric regression methods for each ap-
proach by way of finite-sample bounds in high probability.
Our framework arms practitioners with a means to imbue
existing SSL-to-ZSP pipelines with theoretical guarantees,
depending on the approach with which they best align. In
Sec. 4, we illustrate our theoretical claims by empirically
evaluating prompt bias and residual dependence on zero-
shot prediction tasks with simulated and image data.

Related Work. One can argue that precursors to both FSL
and ZSP in machine learning can be found in the literature
of meta-learning, or “learning to learn” (Thrun and Pratt,
1998; Andrychowicz et al., 2016; Finn et al., 2017). There,
the downstream evaluation tasks are given to the user up-
front, so that pre-training an encoder and training a predic-
tor for all of the evaluation tasks can be performed in one
step. On the other hand, FSL and ZSP both involve fully
task-agnostic pre-training phases. Seminal work in com-
puter vision on matching words and pictures is also worth
mentioning (Barnard et al., 2003; Forsyth et al., 2009).

Two complementary bodies of work studied phenomena
common to FSL and ZSP. The first considers which proper-
ties of learned encoders can provably improve downstream
performance (Wang and Isola, 2020; HaoChen et al., 2021;
Atzmon et al., 2020; Wang and Jordan, 2024; Du and Xi-
ang, 2024). The other is dedicated to explaining how oth-
erwise mysterious SSL objectives achieve these properties
(Wen and Li, 2021; Li et al., 2021; Pokle et al., 2022; Kiani
et al., 2022; Johnson et al., 2023; Shwartz-Ziv et al., 2023).
In particular, Balestriero and LeCun (2022) and Tan et al.
(2024) relate various SSL objectives to spectral clustering.
One FSL-specific line of work studies when linear map-
pings of pre-trained encoders can achieve optimal down-
stream performance (Saunshi et al., 2019; HaoChen et al.,
2021; Tosh et al., 2021; Lee et al., 2021).

While informative representations are essential, the core of
ZSP is the remarkable ability of models to make predic-
tions without any task-specific data, a challenge even for
the perfect encoder. For context, we avoid the historical
term ‘“zero-shot learning” (Larochelle et al., 2008; Akata
et al., 2015), which refers to a setting in which pre-training
data is not only labeled, but contains metadata-based fea-
tures associated with each class. In general, this only han-
dles unseen classes, and only if the same features are ob-
served at inference time. To our knowledge, the only work
studying ZSP based on self-supervised pre-training is Chen
et al. (2024). In particular, Chen et al. (2024, Theorem 4.2
and Corollary 5.1) provides bounds on the top-k accuracy
of ZSP for CLIP-based encoders. However, the bound in-
creases with the batch size, may not decay to zero even if
the pre-training loss is fully optimized and upstream and
downstream data distributions are the same, and does not
seem to explicitly depend on the prompt quality. The inde-
pendent and concurrent work of Oko et al. (2025) develops
a statistical analysis based on sufficiency notions, with the
aim of capturing the predictive performance in the down-
stream task. Their work is complementary to ours, in that
they determine the distributional parameter learned by the
CLIP objective, but also assume that the prompting strat-
egy and downstream data distribution are “idealized”, in
that the prompt bias and residual dependence quantities al-
luded to in the contributions are zero.

On the applied side, we are inspired by the number of
works that use diverse, class-specific prompts generated us-
ing large language models (LLMs) for enhancing ZSP per-
formance (Pratt et al., 2023; Yang et al., 2023; Maniparam-
bil et al., 2023) and interpretability (Menon and Vondrick,
2023; Esfandiarpoor et al., 2024). While these empiri-
cal methods, such as the customized prompts via language
models method (CuPL, Pratt et al. (2023)), are often de-
signed using intuition from human understanding of natural
language, we aim to offer a theoretical explanation for their
success from a statistical learning theory and probabilistic
graphical modeling perspective. Despite this particular ap-
plication of LLMs, we also acknowledge that “prompting”
in ZSP has a different meaning than in the growing field of
prompt engineering, in which inputs are designed for large
language models (Pryzant et al., 2023; Wang et al., 2024;
Guo et al., 2024; Sclar et al., 2024).

2. Theoretical Framework

We introduce the mathematical objects that connect the
empirically-motivated predictor (1) to its theoretical coun-
terpart analyzed in Sec. 3. For the reader’s convenience, a
global notation table is provided in Appx. A.



A Generalization Theory for Zero-Shot Prediction

Unimodal Contrastive

Reconstructive

Multimodal Contrastive

"look at
my cute
kitten"

N

Figure 1. Graphical Models of Prediction Paths. Each directed graphical model corresponds to the data types and dependence struc-
tures for various SSL pre-training approaches. The variable C' represents an unobserved context that determines the observed data-
generating distribution. Dotted lines indicate the possibility of presence or absence of the arrow. Methods compatible with ZSP may
learn the relationship between X and Z directly, whereas the relationship between Z and Y is learned via prompting. Methods that are
compatible with FSL learn the label Y as a latent variable in the process of solving the pretext task.

Prediction Setups. Consider random variables X, Y, and
Z observed in X, Y, and Z, respectively. We interpret X
as the space of images, Y as the (not necessarily discrete)
space of labels, and Z as the space of text captions.

Consider a probability measure Px y on X x Y, called the
evaluation distribution. We specify a collection of down-
stream tasks, with which we may evaluate predictors on
data drawn from Px y (e.g. CIFAR-10). Consider a func-
tion r : Y — R, and the least squares prediction problem

Jmin Epey [(0(X) —r(¥))?] )

The function r serves only to handle multiple task for-
mats such as regression (r(y) = y) or binary classification
(r(y) = 1{y = 1}) in a unified manner. We discuss for-
mulations of multi-class classification and structured pre-
diction in Sec. 3. The optimizer of (2) over n € L?(Px)",
or all measurable, square-integrable functions on X, is

(@) = Epy  [r(YV)|X] (). 3)

We will call this the direct predictor throughout this pa-
per, which will contrast our viewpoint of ZSP as an indi-
rect, multi-stage prediction procedure. Indeed, the prompt-
ing step in (1) resembles an empirical average of draws
from a probability distribution on Z based on the class la-
bel Y = y (especially when considering the LLM-based
generation methods mentioned in Sec. 1), whereas the en-
coders capture a dependence relation between X and Z.
Accordingly, we introduce a probability measure @) x,z on

'In the appendix, we carefully construct L?-spaces as sets of
equivalence classes of functions (see Appx. B.1) for explicitness
and rigor. We do not belabor this distinction in the main text.

X x Z, called the pre-training distribution, and the prompt
distribution py,z on Y x Z which represents the user-
defined strategy for generating prompts. As a theoretical
model for ZSP, we propose the function

1p() = Eqx , [9,(2)1X] (2), @)

called the indirect predictor, where

90(2) = E,y , [r(YV)|Z] (2). (5)

Notice that 7, relies only on Pxy while 7, is a two-
stage predictor relying only on the pair (Qx z, py,z). The
pre-training, evaluation, and prompt distributions represent
pairwise dependencies between the random variables X,
Y, and Z, as well as the observable data of the problem. In-
tuitively, our analysis of the performance gap between the
direct and indirect predictors will quantify the “compatibil-
ity” of these three fundamental distributions as a possible
joint distribution on X x Y x Z.

Prediction Paths of FSL and ZSP. For context, we con-
trast our setup with previous theoretical analyses of FSL,
aiming to 1) highlight the fundamental differences between
SSL-for-FSL and SSL-for-ZSP, 2) describe assumptions
we make (and do not make) to best align with applica-
tions. First, we consider two common SSL tasks that
precede FSL. In unimodal contrastive learning, X and Z
are augmented/corrupted images, and the pretext task is to
identify examples derived from the same (“+) or differ-
ent (“—”) underlying image (Chen et al., 2020). In re-
constructive SSL, the encoder is pre-trained to predict a
hidden portion of the raw/embedded image (Assran et al.,
2023). Foundational works such as Saunshi et al. (2019)
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and Wang and Isola (2020) explain the success of these
SSL-for-FSL pipelines by the following mechanism: the
labels Y used in the downstream task form a latent vari-
able mixture model for the pre-training set, i.e. Qx,z =
Zyey Qx,z|y—y - Qv (y). Thus, generalization guaran-
tees hinge upon the fact that learning parameters of the
pre-training distribution must inherently capture its latent
variables (the downstream labels). This theory is visual-
ized in Fig. 1 (left & center); observe that if the dotted ar-
rows were absent, the only path to solve the pretext task
is through the label. This FSL “prediction path” motivates
another prevalent assumption of exact/approximate condi-
tional independence of X and Z given Y (e.g., as in Lee
et al. (2021)). We avoid this assumption, which is unreal-
istic in the multimodal context as the dependence between
an image and its caption is unlikely to be fully explained
by a coarse label such as “cat”. Moreover, this latent la-
bel model assumes equality of the marginals Px = QQx on
X. As a concrete example, this amounts to assuming that
the marginal distribution of images on the Internet (@ x)
is equal to that of CIFAR-10 images (Px). We explicitly
track this mismatch in our generalization bounds.

For ZSP, the prevailing SSL pretext task is multimodal
contrastive learning (Fig. 1, right), wherein the foundation
model learns a similarity function (z, z) — (a(x), 3(z)).
To discuss a joint distribution P = Px y,z, we adopt a la-
tent caption model that associates X ~ Px with an unob-
served Z-valued latent variable Z (i.e. an unobserved cap-
tion). Because pre-training connects X to Z and prompting
then connects Y to Z, the ideal dependence structure for
ZSP is fundamentally different from FSL; if X and Y are
conditionally independent given Z, the direct and indirect
predictors are in fact equivalent. Indeed, the tower property
of conditional expectation gives the identity

(@) = Ep [r(Y)|X] ()

=Ep[Ep [r(Y)|Z, X]|X] (z)

=Ep [Ep [r(V)|Z][X] (@). (X LY|2)
The final expression is not equal to (4) because of the differ-
ence between (Qx z,py,z) and (Px z, Py,z). Addition-
ally, X and Y are not necessarily conditionally indepen-
dent given Z. These discrepancies are precisely exposed in
our analysis via a measure of distribution mismatch and a
measure of the conditional dependence of X and Y given
Z. The latter formalizes the information-theoretic cost of
using natural language as a proxy for image classification.

Representations of the Indirect Predictor. We estab-
lish several central identities involving the indirect predic-
tor (4). These expressions will strengthen the justification
for 7, as the target function of ZSP and naturally lead to
two classes of learning methods that we analyze in Sec. 3.

As apreview, consider the example of balanced binary clas-
sification (r(y) = 1 {y = 1}) and the classifier that returns
1 when 7,(x) > 1/2 and 0 otherwise. We will show that
there exist encoders o : X — R%and B : Z — R%, and
a sequence of scalars o9 > ... > g4 > 0 such that if
pz =~ @z and d is sufficiently large, then this classifier is
equivalent to

T — argmaxycy (a(z),E,,. , [B(2)[Y =y])_, (6)

where (u,v) = Zle o;u;v;.  This expression mir-
rors (1) down to a rescaling of the inner product. We now
present the expressions that are used to derive (6).

For the first, let Qx and )z be the marginals of Qx z
on X and Z, respectively. We introduce the fundamental
conditional mean operator Mz x : L?(Qz) — L*(Qx),
which assigns to any ¢ € L?(Qgz) the function & +
Eqy ., [9(Z)|X] (x). Then, it holds by definition that

No(x) = Mz xgpl(z). (7

For the second, consider the case in which Qx 7z <
QxQz*, where QxQz denotes the probability distribu-
tion of the pair (X, Z) drawn independently as X ~ Qx
and Z ~ @ z. Then, we define the Radon-Nikodym deriva-

tive R := 5252+ ) x 2 — Ry The function R, called

the information density® has a long history in statistics and
information theory. Using R (Lem. 6, Appx. B.3), the indi-
rect predictor writes as

no(x) = Eq, [9,(Z)R(x, Z)]
— By, [F(V)R(@, 2)] + e11(Q7,p2), (®)

where err(Qyz,pz) term measures the discrepancy be-
tween the marginal distributions of the captions gener-
ated during pre-training and prompting, respectively. The
expressions (7) and (8), while equal at the population
level, motivate two categories of approaches for learn-
ing/estimation that have different statistical properties. The
“conditional mean” approach uses pre-training data to learn
the operator Mz x and prompts to approximate the func-
tion g,. On the other hand, the “information density” ap-
proach learns the function R during pre-training, and ap-
proximates the expectation over py,z using prompts. The
information density approach is particularly reflective of
the prompting aspect of (1), as one may perceive z} for
k=1,....,mandy € Y as M = m|Y| as samples from

2A distribution p on U is absolute continuous with respect
to another distribution v (denoted p < v) if v(A) = 0 =
w(A) = 0 for every measurable set A C U. If so, there exists
a Radon-Nikodym derivative j—:‘ : U — R>¢ such that for every

measurable set A C U, it holds that u(A) = [, 9 (u)dv(u).
3This term actually refers to (x,2) — logR(zx, z), but for
simplicity, we use it for R—see Dytso et al. (2023, Eq. (11)).
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py,z with py chosen to be uniform on Y. These are then
used to replace the expectation in (8).

Finally, we tie back to (6) and describe the formal connec-
tion between Mz x and R. In Prop. 2 (Appx. B.3), we
prove the decomposition of the form

R(z, z) = (a(),B(2)), + €4, ©)

where 04,64 — 0 as d — oo. Then, (6) follows under the
given conditions by plugging (9) into (8).

The encoders & = (a1,...,aq) and B8 = (B1,...,B4),
and constants (o;)%_, are none other than the components
of the truncated singular value decomposition (SVD) of
Mz x (Prop. 1, Appx. B.3). The SVD of M 7| x and the in-
formation density R characterize the full dependence struc-
ture of (Qx,z; because R is identically 1 when Qx z =
Qx @z, we may define the (squared) mean square contin-
gency dependence measure

I(X;Z) =Eqyq, [(R(X, Z) = 1)?] (10)
=My x|lfs — 1
=y 07, (1D

where ||-||zs denotes the Hilbert-Schmidt norm (see Def-
inition 7, Appx. B.2), and the identities are proven in

Prop. 2. The right-hand side of (10) can also be in-
terpreted as the x?-divergence D,2(Qx z[|QxQz) =
EQy o, [(%(X, Z) — 1)?] between the joint distribu-

tion and the product of the marginals (see Definition 8).

3. Generalization Guarantees for ZSP

In this section, we prove generalization guarantees for ZSP
methods by comparing 7, to 7, and 7, to an estimator 7,
based on an N-sized pre-training set and M -sized prompt
set (recall that M = m |Y| in (1)). While there are some
subtleties in the sampling models between various meth-
ods, one can consider (X1, Z1),...,(Xn,ZN) ES) Qx.z
and (Y1,2}),...,(Yar, Z4y) ~ py.z for intuition pur-
poses (see Appx. D.5 for a detailed description). We con-
sider specific instances of both the conditional mean and in-
formation density approaches, based on learning theory in
reproducing kernel Hilbert space (RKHS); our arguments
do not intend to interpret foundation modeling as a kernel
method, but to use the detailed analysis of the statistical
errors in kernel methods to gain insight. In particular, we
aim to expose two key dependences for the random triple
(X,Y, Z): the dependence between X and Z (which gov-
erns pre-training) and the conditional dependence between
X and Y given Z (which governs downstream prediction).
Similar statistical guarantees for other function classes (re-
viewed in Appx. E) can be plugged into our framework,

which intends to capture the end-to-end performance from
pre-training to downstream prediction.

For h € L*(Px), we define the norm ||h||fz p,)

J5 h?(2)dPx (), using analogous notation for other prob-
ability distributions. We will assume throughout the paper
that r is bounded by B, with probability one under Py and
py, so that 1,,7, € L?(Px). Given a square-integrable
flp, We first control the mean squared error (MSE) via

ll7, — ﬁpHiz(pX) <

2 [In« _77p||i2(Px) +2||77p_77pHi2(pX)- (12)

information-theoretic error estimation error

The information-theoretic error captures the prompt bias
and residual dependence that differentiates indirect and di-
rect prediction, whereas the estimation error is a familiar
term in statistical analysis. We discuss in Appx. D.4 how
to convert the MSE bounds to risk bounds for classification.

Prompt Bias and Residual Dependence. Here, we con-
trol the information-theoretic error term in (12). We state
our assumptions regarding conditional probability infor-
mally and defer the formal descriptions using the language
of regular conditional distributions to Appx. C. We work
within the latent caption model from Sec. 2, for which we
consider a joint distribution Px y,z on X x Y x Z which
equals the evaluation distribution Px y when marginalized
over Z. Similar to the information density R from Sec. 2,
we introduce the conditional information density

dPx y |z

S, = — 21—
d(PX\zPY|z)

£ X x Y = Rso, (13)

where Px y|. denotes the conditional distribution of
(X,Y) given Z = z, and Px|,Py|, is defined analo-
gously. This naturally motivates the conditional depen-
dence measure given by

I(X;Y|z) =Ep, . py, [(S2(X,Y)=1)%],  (14)

called the conditional mean square contingency. Finally,
consider the following regularity assumption on the joint
distribution Py y,z, also discussed in Appx. C.

Assumption 1. Px y,z on XxYxZ satisfies the following:
1) Agreement of caption distribution: Px-almost all x €
X, Py, exists and Py, = Qz|¢. 2) Regularity of con-
ditional distributions: For Pz-almost all z € Z, Px y|.
exists, Px y|z < Px|. Py, and the conditional informa-
tion density (13) satisfies Ep, ., [Sz(X,Y)] < +o0 and
]EPX,Y,Z [SZ(va)] < +o0.

To measure the bias of the prompt distribution py,z, we
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denote the analog of (5) under Py z as

9py2(2) = Epy , [r(Y)|Z] (2).

We may now state the main result, proved in Appx. C.

Theorem 1. Under Asm. 1,

Mo — W*\\i?(Px) 5

Ep, [[(X;Y]2)]+ 9o — 9Py 2 IL2(pyy - (15)
N—————

residual dependence

prompt bias

To give context to Thm. I, conditional independence re-
lations have previously been used to describe the perfor-
mance of multimodal contrastive SSL for FSL. We are par-
ticularly inspired by the multi-view redundancy theory of
Tosh et al. (2021), which states informally that the popu-
lation FSL predictor can approach the performance of the
idealized direct predictor that is given both X and Z at test
time, if X 1 Y|Z and Z L Y|X approximately hold.
However, the theory of graphical models (Lauritzen, 1996,
Proposition 3.1) asserts that both conditional independence
relations hold only if (X, Z) I Y, that is, neither view
has information predictive of the label. This can be seen
intuitively from Fig. 1 by breaking the arrows X — Y
and Z — Y. Notice that we compare only to the direct
predictor (3) given X (which is reflective of practice), so
that we need only that X | Y|Z (i.e. X depends on Y
through Z) to close the gap. The prompt bias term (15)
captures the possible incompatibility of the prompt distri-
bution py, z with (Px v, Qx,z)—Wwe call prompt strategies
unbiased (see Appx. D.5) when this term is zero.

Sample Complexity and Distribution Mismatch. The
first step in our estimation error analysis is to pass the
L?(Px)-norm term [|n, — 7,[|f2(p, from (12) to the
L?(Qx )-norm counterpart ||, — i),[|7 (g - We then es-

tablish high-probability bounds on the L?(Q x )-norm term,
with respect to the random sampling of the pre-training
and prompting data. Because this initial step follows from
a standard distribution shift argument (based on either a
bounded likelihood ratio assumption or an additive error
in total variation distance), we defer it to Appx. D (see
Lem. 14). Conceptually, the two examples below are de-
rived from estimating the component of either (7) or (8)
that involves ) x z using the pre-training set and the one
that involves py, 7 using the prompt strategy. In both cases,
we discuss the convergence rates of state-of-the-art RKHS-
based methods. As we review Appx. B.4, these rates are
typically expressed in terms of two quantities: source con-
dition constants, which measure the smoothness of the tar-
get function being learned, and eigendecay exponents of
covariance operators, which measure the effective dimen-
sion of the data. It will serve our purposes to interpret the
rates in terms of the dependence between X and Z under

Q@ x,z, under the following assumption.

Assumption 2. The pre-training distribution satisfies
Qx,z < QxQz, and the information density R is con-
tained in L? (Q xQ7) (i.e. [(X; Z) is well-defined).

Due to the technical overhead of each method (especially
regarding mis-specified function classes), we provide high-
level descriptions below and defer detailed descriptions of
the specific estimation procedures and formal assumptions
to Appx. D.1 (conditional mean) and Appx. D.2 (informa-
tion density). We denote by § € (0, 1] a failure probability,
and plog(+) a term that is poly-logarithmic in its input.

Example 1: Nonparametric Regression. This approach,
based on (7), uses the pre-training set to produce an es-
timate M z|x of the conditional mean operator and the
prompts to produce an approximation g, : Z — R of
gp- For the former, we use as an example the spectral
regularization learning method of Meunier et al. (2024),
which produces a conditional mean embedding function
F : X — G, for an RKHS G of real-valued functions of Z.
For any g € G, we then define [M 7 x g](x) = (g, F'())¢-

Note that F predicts a target that is itself a function—such
methods are therefore referred to as “vector-valued” re-
gression. By the Reisz representation theorem, a similar
function F, can be constructed such that [Mz xg](x) =
(9, Fx(x))g. For g,, we consider standard kernel regular-
ized least-squares (e.g., Smale and Zhou (2007)) applied
to M i.i.d. draws from py z. Assuming that g, € G, one
can then pass the problem to controlling ||g, — g, || and

|F — Fullf2(g .0y Where L?(Qx; ) denotes a Bochner
space (reviewed in Appx. B.4).

To derive the convergence rates below, we show in
Appx. D.1 that the source condition on F, can be ex-
pressed in terms of the singular decay exponent of M 7| x
(i.e. o; ~ 177%Z from (11)), and the eigendecay expo-
nents vx and 7z of the covariance operators of () x and
Qz, respectively. Additionally, w, > 1/2 is a parameter
controlling the convergence rate of the prompt-based esti-
mate of g,. The parametrization below is chosen so that
one may interpret w, as a similar source condition for the
target function g,. In the well-specified case (when Fy is
contained in the hypothesis class), we describe the conver-
gence rate with the aggregated exponent
q(t) = @yxz +7z =Dy 21, t€(0,1)

where ¢ depends on F. The result below corresponds to
Thm. 10 in Appx. D.1, which relies on a basis alignment
assumption to aggregate the singular/eigendecays.

~

Theorem 2 (Informal). For f),(x) = (g,, F'(z))g, there
exist t € [0,1) and C(Qx,z) > 0 (independent of
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(N, M, 6)) such that ||7), — 77p||i2(Qx) <

2wp—1

plog (1/9) N_%—&-C(QX’Z)M*ﬁ (16)

with probability at least 1 — 6 for N sufficiently large.

Let us interpret the constant ¢(t). First, the dependence
on N ranges between O(N~'/2) and the parametric rate
O(N). Convergence is faster when vx,z > 1l oryz > 1.
The first case implies near-independence of X and Z, for
which learning is easy as F'(x) is essentially constant over
x € X. The second case indicates that the Z variable is
near-finite dimensional, or that the vector-valued nature of
the problem has been reduced to standard univariate regres-
sion. Convergence is slower if yx > 1, or if the effective
dimension of X is small relative to the effective dimension
of Z. The balancing constant C(Qx, z) (shown explic-
itly in Thm. 10) decays with vx z and vz, so as (X, Z)
becomes more independent or Z approaches finite dimen-
sions, the variance from prompt sampling decreases. We
also discuss the mis-specified case in Appx. D.1.

Example 2: Radon-Nikodym Derivative Estimation.
This approach, based on (8), considers pre-training to re-
turn a learned information density R:Xx2 — R>o.
By approximating the prompt distribution py,z with py, z
(e.g. the empirical measure in the result below), one may
define the estimator 7j,(x) = E;, , [r(Y)R(z, Z)]. Simi-
lar in spirit to the previous example, we consider the ker-
nel Radon-Nikodym derivative estimation with the spectral
regularization procedure of Nguyen et al. (2024). The con-
vergence rate of R to Ris governed by a source condition
constant 5 > 1 associated to R (see Appx. D.2). We in-
terpret this constant analogously to ¢(¢), in that we prove a
relationship to the singular decay exponent yx, 7, but is not
directly expressible in terms of the latter. The following
result corresponds to Thm. 11 in Appx. D.2.

~

Theorem 3 (Informal). For7,(x) = E;, ,[r(Y)R(zx, Z)],
and pz < Qz, there exists Cr ,(Qx) > 0 (independent
of (N, M, 0)) such that ||, — an%z(QX) <

~

__B8_ _
plog (1/8) [N"F7 + G p(Qx)M | + Dy2(p21Q2)
with probability at least 1 — § for all N sufficiently large.

Notice that the bound of Thm. 3 includes a divergence
term between pz (the captions generated by prompting)
and Q7 (the captions of the pre-training set). This term
comes precisely from the error term in (8). This eluci-
dates the fact that the conditional mean approach and the
information density are not equivalent representations of
the pre-training distribution, as one needs both R and @z
in order to identify the conditional mean. The parametric

rate M ! reflects that samples are used to learn a joint ex-
pectation over py,z, which is an easier statistical problem
than estimating the regression function of Y on Z that ap-
pears in Thm. 2. Thus, the information density approach
may enjoy faster statistical convergence, at the expense
of bias from the distribution mismatch on Z. The con-
stant Cr ,(Q x ) relates to the L?(Q x )-norm of the random
function x — r(Y)R(x, Z) for (Y, Z) ~ py,z; the error
from finite prompts decays when this norm is light-tailed.

In both Thm. 2 and Thm. 3, we aim to highlight not particu-
lar convergence rates of the chosen methods, but the frame-
work that leads to proving them. Similar results can also be
leveraged in our framework. SSL procedures such as noise
contrastive estimation have been related to the estimation
of R (Gutmann and Hyvérinen, 2012). For example, Tosh
etal. (2021, Theorem 11) upper bounds ||R — RIZ2(0x02)
using the suboptimality of the population risk, allowing for
empirical risk minimization-style analysis.

4. Experiments

In Sec. 1, we asked how the downstream task performance
depends on the pre-training distribution @) x,z, evaluation
distribution Py y, and prompting strategy py,z. At the
population level, we captured the dependence on Qx,z
and Pxy using the residual dependence Ep, [I(X; Z)]
and incorporated py,z via the prompt bias (Thm. 1). In
the first experiment, we create a simulated setting in which
the residual dependence can be controlled and investigate
whether it is indeed a determining factor for the empirical
performance of CLIP (Radford et al., 2021) and VICReg
(Bardes et al., 2022) models in practice. In the second ex-
periment, we solve an image classification task in which
the images have both captions and labels (i.e. we may sam-
ple from a true joint distribution Px y,z). This allows
us to understand the effect of prompt bias by comparing
template-based prompting strategies to the unbiased setting
py,z = Py,z. To understand the dependence on py,z at
a sample level, we explore how downstream performance
scales with the number of prompts M in both the sec-
ond experiment (unbiased prompting) and third experiment
(LLM-based prompting). We are particularly interested in
verifying the dependence on M (which is the dominant er-
ror when N > M) derived in Thm. 3). Appx. F contains
further details of the experiments and code for reproduction
can be found at github.com/ronakdm/zeroshot.

Models, Datasets, and Evaluation. For foundation mod-
els, we use three publicly available CLIP models from
the OpenCLIP repository (Ilharco et al., 2022): ResNet50
pre-trained on YFCC15M (Thomee et al., 2016), NLLB-
CLIP pre-trained on a subset of LAION COCO (Visher-
atin, 2023), and ViT-B/32 pre-trained on the DataComp
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Figure 2. Results: Residual Dependence Simulation. Simula-
tion for (X, Z,Y’) described in Appx. F4. Left: The y-axis
is the accuracy of classifying Y given X and the z-axis is the
parameter 6 controlling the residual dependence I(X;Y|Z) as
in (103). Right: The y-axis shows Ep, [[(X;Y]Z)] as com-
puted in Appx. F4. Error bars indicate standard errors from 10
seeds, which govern the data used for estimating expected values
and randomness in the training procedures for CLIP and VICReg.

medium pool (Gadre et al., 2023). Our evaluation datasets
include five standard benchmarks: the Describable Tex-
tures Dataset or DTD (Cimpoi et al., 2014), Flowers 102
(Nilsback and Zisserman, 2008), FGVC Aircraft (Maji
etal., 2013), SUN397 (Xiao et al., 2010), and ImageNet-1k
(Deng et al., 2009). For some experiments, we make use of
the ImageNet-Captions dataset (Fang et al., 2023), which
pairs a subset of ImageNet images collected from Flickr
with their original captions. Evaluation occurs via zero-
shot classification top-k accuracy, in which a test exam-
ple is considered to be classified correctly if the true class
is contained within the elements of Y with the k largest
scores as computed by (1). Evaluation is done using tools
from the CLIP Benchmark repository. In Fig. 3 and Fig. 4,
“templates” refers to using all default community-curated
prompts available in CLIP Benchmark. Finally, detailed
descriptions of the prompt sampling schemes are collected
and compared to the theory in Appx. D.5.

Classification Accuracy and Residual Dependence. We
consider a simulated binary classification task in which
all distributions are compatible (i.e. Qx z = Px,z and
py,z = Py z for some Pxy z) and the predictors (3)
and (4) can be computed analytically. We also include the
zero-shot predictor (1) learned by both the CLIP and VI-
CReg objectives. Our goals are two-fold in this simulation:
1) to empirically observe that as Ep, [I(X;Y]Z)] — 0,
the predictive performance of the indirect predictor 7, does
indeed approach that of 7,, and 2) that the predictors gener-
ated by common SSL methods used in practice have similar
performance trends as 7,. As for the data-generating pro-
cess, we consider X = Z = R and a pair of Gaussian
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Figure 3. Results: Unbiased Prompting. Pre-trained models are
varied along the rows and sub-tasks (subsets of 50 ImageNet-1k
class) are varied along columns. In all plots, the x-axis denotes
the number of prompts sampled for each class embedding and the
y-axis denotes top-k zero-shot classification accuracy. Error bars
indicate standard deviations across 10 seeds for prompt sampling.

distributions (Px, z|y—o, Px,z|y—=1), Where given Y =y,

) e en))

Z Bziy] |Czxyy Czzpy

with class-conditional mean vectors ptx |, Kz, € R? and
covariance matrices Cx x|y, Czx|y; Czz)y € R*d In
order to control the conditional dependence between X
and Y given Z, we fix all parameters except for p |, and
Czx|y (for y = 0,1), and define them using a tunable
parameter § € [0,1] in a way such that the conditional
distribution of Y given X = x stays constant. We make
it so that as # — 1, I(X;Y|z) — 0. Finally, to mea-
sure classification accuracy, we directly draw samples from
Py 7 to simulate unbiased prompting. The full mathemat-
ical details are given in Appx. F4. We observe both of
the intended effects; the left panel of Fig. 2 demonstrates
that as 6 approaches 1, the indirect, CLIP, and VICReg
predictors approach the performance of the direct predic-
tor in terms of classification performance. The right panel
confirms that 6 indeed controls Ep, [I(X;Y|Z)] in an ap-
proximately monotonic fashion.

Prompting without Bias with Observations from Py y.
Next, we illustrate the importance of the prompt bias term
in Thm. 1 by considering an ImageNet-Captions dataset,
in which we may observe the joint sample (X,Y,Z).
We compare the standard prompting technique using pre-
defined templates to the unbiased strategy that draws sam-
ples directly from Py z. We design three sub-tasks by
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Figure 4. Results: Class-Conditional Prompting. Pre-trained models are varied along the rows and evaluation datasets are varied along
columns. In all plots, the z-axis denotes the number of prompts sampled for each class embedding and the y-axis denotes top-k zero-shot
classification accuracy. Error bars indicate standard deviations across 10 seeds for prompt sampling.

randomly selecting collections of 50 classes from each of
998 classes, reserving held-out prompting examples for
which we can draw from Pzy_, for each y € Y (see
the additional details in Appx. F). The zero-shot classi-
fication accuracy on a held-out evaluation set is plotted
in Fig. 3. Observe that the threshold at which unbiased
prompting outperforms the 18 default templates is approxi-
mately M = 10 across tasks. However, the performance of
the unbiased approach only saturates at A/ = 100 and can
have enormous benefits (almost 15% absolute increase in
top-1 accuracy for the ResNet50 on Sub-Task 1) in perfor-
mance. Thus, for models that have not yet been saturated
from pre-training, prompting can close surprisingly wide
gaps in zero-shot classification accuracy.

Class-Conditional Prompting with Language Models.
As mentioned in Sec. 1, we investigate CuPL as a means
to implement class-conditional prompting (sampling from
pz|y—y for each y € YY) with LLMs. Our experimental
setup and scientific goals differ from those used in Pratt
et al. (2023): 1) we use lightweight encoders that have
not saturated their performance during pre-training, as op-
posed to the large-scale ViT-L/14 architecture, 2) we quan-
tify the variability of classification accuracy with respect to
prompting by generating up to fifty times as many prompts
per experiment, and 3) we employ LIaMA 3 (Llama Team,
Meta Al, 2024), which is free and accessible to other, as
opposed to GPT-3 (Brown et al., 2020). The results are
shown in Fig. 4, where we order the datasets in increasing

number of classes per task: 47, 100, 102, 397, and 998.
Similar phenomena as in Fig. 3 are observed, although the
approximate saturation threshold varies per dataset from
20 for Flowers 102 and FGVC Aircraft up to 60 for DTD.
Note that the choice of defaults heavily influences the base-
line performance. Surprisingly, the Flowers 102 dataset
uses a single default: “a photo of a ___, a type of flower”,
and is often able to outperform the class-conditional LLM
approach on average. On the other hand, the DTD tem-
plates of the form “a photo of a __ {texture, pattern,
thing, object}” are dramatically outperformed by our LLM-
generated captions , with a nearly 20% increase in top-5
accuracy on the ResNet50 and ViT-B/32 architectures.

5. Conclusion

We showed how zero-shot prediction (ZSP) can be theo-
retically understood as an indirect prediction path from an-
other modality to the label. We presented two viewpoints
on categorizing ZSP methods—the conditional mean ap-
proach and the information density approach—and framed
a decomposition formula for their generalization abilities.
Our theoretical results and experiments highlighted the role
of residual dependence and prompt bias in defining the fun-
damental limits of ZSP. Interesting venues for future work
include the extension of our analysis to classes of distri-
bution shifts between the pre-training distribution and the
downstream distribution, and to causal generative model-
ing (Scetbon et al., 2024; Zhang et al., 2024).
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Impact Statement

As the capabilities of foundation models become increas-
ingly universal, we feel that a comprehensive understand-
ing of their underlying mechanisms is crucial. Comple-
menting the community’s empirical work on the evaluat-
ing the impact of pre-training data and mitigating bias, we
aim to spark an equally rigorous line of research that re-
thinks theoretical analysis for the purpose of modern learn-
ing paradigms that greatly affect humanity.

Acknowledgements

The authors are grateful to D. Hsu, E. Perkovi¢, and N.
Srebro for fruitful discussions related to this work. The au-
thors also thank the reviewers and the area chair for valu-
able comments. This work was supported by NSF DMS-
2023166, CCF-2019844, DMS-2134012, NIH, and TARPA
2022-22072200003. Part of this work was performed while
R. Mehta and Z. Harchaoui were visiting the Simons Insti-
tute for the Theory of Computing.

References

Z. Akata, Z. Harchaoui, and C. Schmid. Label-Embedding
for Image Classification. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2015.

M. Andrychowicz, M. Denil, S. Gémez, M. W. Hoffman,
D. Pfau, T. Schaul, B. Shillingford, and N. de Freitas.
Learning to learn by gradient descent by gradient de-
scent. In NeurIPS, 2016.

M. Assran, Q. Duval, I. Misra, P. Bojanowski, P. Vincent,
M. Rabbat, Y. LeCun, and N. Ballas. Self-Supervised
Learning from Images with a Joint-Embedding Predic-
tive Architecture. In CVPR, 2023.

Y. Atzmon, F. Kreuk, U. Shalit, and G. Chechik. A
causal view of compositional zero-shot recognition. In
NeurlIPS, 2020.

J.-P. Aubin. Applied Functional Analysis. Wiley, 2nd edi-
tion, 2000.

F. Bach. Learning Theory from First Principles. The MIT
Press, 2024.

C. R. Baker. Joint Measures and Cross-Covariance Opera-
tors. Transactions of the American Mathematical Soci-
ety, 1973.

R. Balestriero and Y. LeCun. Contrastive and Non-
Contrastive Self-Supervised Learning Recover Global
and Local Spectral Embedding Methods. In NeurlPS,
2022.

R. Balestriero, M. Ibrahim, V. Sobal, A. Morcos,
S. Shekhar, T. Goldstein, F. Bordes, A. Bardes, G. Mi-
alon, Y. Tian, et al. A cookbook of self-supervised learn-
ing. arXiv Technical Report, 2023.

A. Bardes, J. Ponce, and Y. LeCun. VICReg:
Variance-Invariance-Covariance Regularization for Self-
Supervised Learning. In ICLR, 2022.

K. Barnard, P. Duygulu, D. Forsyth, N. d. Freitas, D. M.
Blei, and M. 1. Jordan. Matching words and pictures.
JMLR, 2003.

F. Bartolucci, E. De Vito, L. Rosasco, and S. Vigogna.
Understanding neural networks with reproducing kernel
Banach spaces. Applied and Computational Harmonic
Analysis, 2023.

F. Bauer, S. Pereverzev, and L. Rosasco. On regularization
algorithms in learning theory. Journal of Complexity,
2007.

P. J. Bickel, C. A. Klaassen, P. J. Bickel, Y. Ritov,
J. Klaassen, J. A. Wellner, and Y. Ritov. Efficient and
Adaptive Estimation for Semiparametric Models. Johns
Hopkins University Press Baltimore, 1993.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman,
S. Arora, S. von Arx, M. S. Bernstein, J. Bohg, A. Bosse-
lut, E. Brunskill, et al. On the opportunities and risks of
foundation models. arXiv Technical Report, 2022.

L. Breiman and J. H. Friedman. Estimating optimal trans-
formations for multiple regression and correlation. Jour-
nal of the American statistical Association, 80(391):
580-598, 1985.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. Language
Models are Few-Shot Learners. In NeurIPS, 2020.

A. Buja. Remarks on Functional Canonical Variates, Alter-
nating Least Squares Methods and ACE. The Annals of
Statistics, 1990.

V. A. Cabannnes, F. Bach, and A. Rudi. Fast Rates for
Structured Prediction. In COLT, 2021.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A sim-
ple framework for contrastive learning of visual repre-
sentations. In ICML, 2020.



A Generalization Theory for Zero-Shot Prediction

Z. Chen, Y. Deng, Y. Li, and Q. Gu. Understanding Trans-
ferable Representation Learning and Zero-shot Transfer
in CLIP. In ICLR, 2024.

A. Christmann and I. Steinwart. Support vector machines.
Springer, 2008.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and
A. Vedaldi. Describing Textures in the Wild. In CVPR,
2014.

F. Cucker and D. X. Zhou. Learning theory: an approx-
imation theory viewpoint, volume 24. Cambridge UP,
2007.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A large-scale hierarchical image database. In
CVPR, 2009.

R. DeVore, R. D. Nowak, R. Parhi, and J. W. Siegel.
Weighted variation spaces and approximation by shallow
ReLU networks. Applied and Computational Harmonic
Analysis, 2025.

K. Du and Y. Xiang. Low-Rank Approximation of Struc-
tural Redundancy for Self-Supervised Learning. In
CLeaR, 2024.

R. Durrett. Probability: Theory and Examples. Cambridge
University Press, 2019.

A. Dytso, M. Cardone, and I. Zieder. Meta Derivative Iden-
tity for the Conditional Expectation. IEEE Transactions
on Information Theory, 2023.

R. Esfandiarpoor, C. Menghini, and S. H. Bach. If CLIP
Could Talk: Understanding Vision-Language Model
Representations Through Their Preferred Concept De-
scriptions. In EMNLP, 2024.

A. Fang, G. Ilharco, M. Wortsman, Y. Wan, V. Shankar,
A. Dave, and L. Schmidt. Data determines distributional
robustness in contrastive language-image pre-training
(CLIP). In ICML, 2023.

C. Finn, P. Abbeel, and S. Levine. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In
ICML, 2017.

S. Fischer and I. Steinwart. Sobolev Norm Learning Rates
for Regularized Least-Squares Algorithms. JMLR, 2020.

D. A. Forsyth, T. Berg, C. O. Alm, A. Farhadi, J. Hocken-
maier, N. Loeff, and G. Wang. Words and pictures: Cat-
egories, modifiers, depiction, and iconography. Object
categorization: Computer and human vision perspec-
tives, 2009.

11

K. Fukumizu, A. Gretton, and F. Bach. Statistical Conver-
gence of Kernel CCA. In NeurIPS, 2005.

K. Fukumizu, F. R. Bach, and A. Gretton. Statistical
Consistency of Kernel Canonical Correlation Analysis.
JMLR, 2007a.

K. Fukumizu, A. Gretton, X. Sun, and B. Scholkopf. Ker-
nel Measures of Conditional Dependence. In NeurlPS,
2007b.

S. Y. Gadre, G. Ilharco, A. Fang, J. Hayase, G. Smyr-
nis, T. Nguyen, R. Marten, M. Wortsman, D. Ghosh,
J. Zhang, E. Orgad, R. Entezari, G. Daras, S. M.
Pratt, V. Ramanujan, Y. Bitton, K. Marathe, S. Muss-
mann, R. Vencu, M. Cherti, R. Krishna, P. W. Koh,
O. Saukh, A. Ratner, S. Song, H. Hajishirzi, A. Farhadi,
R. Beaumont, S. Oh, A. Dimakis, J. Jitsev, Y. Carmon,
V. Shankar, and L. Schmidt. DataComp: In search of
the next generation of multimodal datasets. In NeurlIPS,
2023.

I. Gohberg, S. Goldberg, and M. Kaashoek. Classes of Lin-
ear Operators Vol. 1. Springer, 1990.

I. Gohberg, S. Goldberg, and M. Kaashoek. Basic Classes
of Linear Operators Vol. 1. Springer, 2003.

S. Goyal, A. Kumar, S. Garg, Z. Kolter, and A. Raghu-
nathan. Finetune like you pretrain: Improved finetuning
of zero-shot vision models. In CVPR, 2023.

Q. Guo, R. Wang, J. Guo, B. Li, K. Song, X. Tan, G. Liu,
J. Bian, and Y. Yang. Connecting Large Language
Models with Evolutionary Algorithms Yields Powerful
Prompt Optimizers. In ICLR, 2024.

M. U. Gutmann and A. Hyvérinen. Noise-Contrastive Esti-
mation of Unnormalized Statistical Models, with Appli-
cations to Natural Image Statistics. JMLR, 2012.

J. Z. HaoChen, C. Wei, A. Gaidon, and T. Ma. Prov-
able Guarantees for Self-Supervised Deep Learning with
Spectral Contrastive Loss. In NeurIPS, 2021.

D. Hendrycks and T. Dietterich. Benchmarking Neural
Network Robustness to Common Corruptions and Per-
turbations. In /CLR, 2019.

G. Ilharco, M. Wortsman, R. Wightman, C. Gordon,
N. Carlini, R. Taori, A. Dave, V. Shankar, H. Namkoong,
J. Miller, H. Hajishirzi, A. Farhadi, and L. Schmidt.
OpenCLIP. GitHub Repository, 2022.

D. D. Johnson, A. E. Hanchi, and C. J. Maddison. Con-
trastive Learning Can Find An Optimal Basis For Ap-
proximately View-Invariant Functions. In ICLR, 2023.



A Generalization Theory for Zero-Shot Prediction

B. T. Kiani, R. Balestriero, Y. Chen, S. Lloyd, and Y. Le-
Cun. Joint Embedding Self-Supervised Learning in the
Kernel Regime. arXiv Technical Report, 2022.

I. Klebanov, 1. Schuster, and T. J. Sullivan. A Rigorous
Theory of Conditional Mean Embeddings. SIAM Jour-
nal on Mathematics of Data Science, 2020.

I. Klebanov, B. Sprungk, and T. Sullivan. The linear con-
ditional expectation in Hilbert space. Bernoulli, 2021.

H. O. Lancaster. The Structure of Bivariate Distributions.
The Annals of Mathematical Statistics, 1958.

H. Larochelle, D. Erhan, and Y. Bengio. Zero-data Learn-
ing of New Tasks. In AAAI 2008.

S. L. Lauritzen.
Press, 1996.

Graphical Models. Oxford University

J.D. Lee, Q. Lei, N. Saunshi, and J. Zhuo. Predicting What
You Already Know Helps: Provable Self-Supervised
Learning. In NeurIPS, 2021.

A.Li, A. Jabri, A. Joulin, and L. van der Maaten. Learning
Visual N-Grams from Web Data . In /ICCV, 2017.

Y. Li, R. Pogodin, D. J. Sutherland, and A. Gretton. Self-
Supervised Learning with Kernel Dependence Maxi-
mization. In NeurIPS, 2021.

Z. Li, D. Meunier, M. Mollenhauer, and A. Gretton. To-
wards Optimal Sobolev Norm Rates for the Vector-
Valued Regularized Least-Squares Algorithm. JMLR,
2024.

Llama Team, Meta Al. The Llama 3 Herd of Models. arXiv
Technical Report, 2024.

S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi.
Fine-Grained Visual Classification of Aircraft. arXiv
Technical Report, 2013.

M. Maniparambil, C. Vorster, D. Molloy, N. Murphy,
K. McGuinness, and N. E. O’Connor. Enhancing CLIP
with GPT-4: Harnessing Visual Descriptions as Prompts.
In ICCV, 2023.

S. Menon and C. Vondrick. Visual Classification via De-
scription from Large Language Models. In ICLR, 2023.

D. Meunier, Z. Shen, M. Mollenhauer, A. Gretton, and
Z. Li. Optimal Rates for Vector-Valued Spectral Reg-
ularization Learning Algorithms. In NeurlIPS, 2024.

T. Michaeli, W. Wang, and K. Livescu. Nonparametric
Canonical Correlation Analysis. In ICML, 2016.

D. H. Nguyen, W. Zellinger, and S. Pereverzyev. On Reg-
ularized Radon-Nikodym Differentiation. JMLR, 2024.

12

M.-E. Nilsback and A. Zisserman. Automated Flower Clas-
sification over a Large Number of Classes. In Indian
Conference on Computer Vision, Graphics and Image
Processing, 2008.

K. Oko, L. Lin, Y. Cai, and S. Mei. A Statistical Theory of
Contrastive Pre-training and Multimodal Generative Al
arXiv Technical Report, 2025.

R. Parhi and R. D. Nowak. Banach Space Representer The-
orems for Neural Networks and Ridge Splines. JMLR,
2021.

L. F. Pinelis and A. I. Sakhanenko. Remarks on Inequalities
for Large Deviation Probabilities. Theory of Probability
& Its Applications, 1986.

A. Pokle, J. Tian, Y. Li, and A. Risteski. Contrasting the
landscape of contrastive and non-contrastive learning. In
AISTATS, 2022.

S. Pratt, I. Covert, R. Liu, and A. Farhadi. What does a
platypus look like? generating customized prompts for
zero-shot image classification. In ICCV, 2023.

R. Pryzant, D. Iter, J. Li, Y. Lee, C. Zhu, and M. Zeng. Au-
tomatic Prompt Optimization with “Gradient Descent”
and Beam Search. In EMNLP, 2023.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
et al. Learning transferable visual models from natural
language supervision. In ICML, 2021.

B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do Im-
ageNet Classifiers Generalize to ImageNet? In ICML,
2019.

A. Rényi. On measures of dependence. Acta Mathematica
Academiae Scientiarum Hungarica, 1959.

N. Saunshi, O. Plevrakis, S. Arora, M. Khodak, and
H. Khandeparkar. A Theoretical Analysis of Contrastive
Unsupervised Representation Learning. In /ICML, 2019.

M. Scetbon and Z. Harchaoui. Harmonic Decompositions
of Convolutional Networks. In ICML, 2020.

M. Scetbon, J. Jennings, A. Hilmkil, C. Zhang, and C. Ma.
A fixed-point approach for causal generative modeling.
In ICML, 2024.

R. Schilling.  Measures, Integrals, and Martingales.
Springer, 2nd edition, 2017.

J. Schmidt-Hieber. Rejoinder: Nonparametric regression
using deep neural networks with ReLU activation func-
tion. The Annals of Statistics, 2020.



A Generalization Theory for Zero-Shot Prediction

M. Sclar, Y. Choi, Y. Tsvetkov, and A. Suhr. Quantify-
ing Language Models’ Sensitivity to Spurious Features
in Prompt Design or: How I learned to start worrying
about prompt formatting. In ICLR, 2024.

G. R. Shorack. Probability for Statisticians, volume 951.
Springer, 2000.

R. Shwartz-Ziv, R. Balestriero, K. Kawaguchi, T. G. J.
Rudner, and Y. LeCun. An Information Theory Perspec-
tive on Variance-Invariance-Covariance Regularization.
In NeurIPS, 2023.

J. W. Siegel and J. Xu. Characterization of the Varia-
tion Spaces Corresponding to Shallow Neural Networks.
Constructive Approximation, 2023.

S. Smale and D.-X. Zhou. Learning Theory Estimates via
Integral Operators and Their Approximations. Construc-
tive Approximation, 2007.

I. Steinwart and C. Scovel. Mercer’s Theorem on General
Domains: On the Interaction between Measures, Ker-
nels, and RKHSs. Constructive Approximation, 2012.

Z. Tan, Y. Zhang, J. Yang, and Y. Yuan. Contrastive Learn-
ing is Spectral Clustering on Similarity Graph. In ICLR,
2024.

B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde,
K. Ni, D. Poland, D. Borth, and L.-J. Li. YFCC100M:
the New Data in Multimedia Research. Communications
of the ACM, 2016.

S. Thrun and L. Pratt. Learning to Learn. Springer, 1998.

C. Tosh, A. Krishnamurthy, and D. Hsu. Contrastive learn-
ing, multi-view redundancy, and linear models. In ALT,
2021.

M. Unser. Ridges, Neural Networks, and the Radon Trans-
form. JMLR, 2023.

A. Visheratin. NLLB-CLIP - train performant multilingual
image retrieval model on a budget. In NeurIPS Work-
shop: ENLSP-1II, 2023.

G. Wahba. Spline models for observational data. SIAM,
1990.

T. Wang and P. Isola. Understanding Contrastive Repre-
sentation Learning through Alignment and Uniformity
on the Hypersphere. In ICML, 2020.

X. Wang, C. Li, Z. Wang, F. Bai, H. Luo, J. Zhang, N. Jojic,
E. Xing, and Z. Hu. PromptAgent: Strategic Planning
with Language Models Enables Expert-level Prompt Op-
timization. In /CLR, 2024.

13

Y. Wang and M. L. Jordan. Desiderata for Representation
Learning: A Causal Perspective. JMLR, 2024.

Z. Wen and Y. Li. Toward Understanding the Feature
Learning Process of Self-supervised Contrastive Learn-
ing. In ICML, 2021.

L. Wu and J. Long. A spectral-based analysis of the separa-
tion between two-layer neural networks and linear meth-
ods. JMLR, 2022.

J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Tor-
ralba. SUN database: Large-scale scene recognition
from abbey to zoo. In CVPR, 2010.

H. Xu, S. Xie, X. Tan, P.-Y. Huang, R. Howes, V. Sharma,
S.-W. Li, G. Ghosh, L. Zettlemoyer, and C. Feichten-
hofer. Demystifying CLIP data. In /CLR, 2024.

Y. Yang, A. Panagopoulou, S. Zhou, D. Jin, C. Callison-
Burch, and M. Yatskar. Language in a bottle: Language
model guided concept bottlenecks for interpretable im-
age classification. In CVPR, 2023.

J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. Bar-
low Twins: Self-Supervised Learning via Redundancy
Reduction. In ICML, 2021.

J. Zhang, J. Jennings, A. Hilmkil, N. Pawlowski, C. Zhang,
and C. Ma. Towards causal foundation model: on dual-
ity between optimal balancing and attention. In ICML,
2024.



A Generalization Theory for Zero-Shot Prediction

Appendix

Table of Contents

A

B

Notation

Technical Background

B.1 Conditional Expectation and the Hilbert Space L2 . . . . . . . . ... ... ... .. ..........
B.2 Compact Operators . . . . . . . . o v i it e e e e e e e e e e e
B.3 The Conditional Mean Operator . . . . . . . . . . . . oo i ittt e e
B.4 Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . . e

Prompt Bias and Residual Dependence

Sample Complexity and Distribution Mismatch

D.1 Conditional Mean Approach . . . . . . . . . . . . e
D.2 Information Density Approach . . . . . . . . . . . . e
D.3 Distribution Shift . . . . . . . oL e
D.4 From Regression to Classification . . . . . . . . . . . . e

D.5 Prompting Strategies . . . . . . . . . o e e e e e e e e e e
Self-Supervised Objectives and Cross Covariance Operators

Experimental Details

F1 Compute Environment . . . . . . . . . . 0oL e e e e e e
FE2 BEvaluation Datasets . . . . . . . . . . e e e
FE3 Model Specification and Hyperparameters . . . . . . . . . . .. .. .. oo

F4 Derivation of Simulation Setting . . . . . . . . . . . L e

15

16
16
18
20
25

31

14



A Generalization Theory for Zero-Shot Prediction

A. Notation

Symbol Description

Instances and sample spaces for data modalities/views,

reX,yelY,zeZ . .
often images, labels, and captions.

a, B Encoders o : X — R%and 3 : Z — R%.
(X,Y,2) Random variable realized in X x Y x Z.
Pxy Evaluation distribution over X x Y.
Qx,z Pre-training distribution over X x Z.
PY,Z Prompting distribution over Y x Z.
r A functionr : Y — R.
M () Direct predictor Ep, . [7(Y)|X] (x).
9,(2) Prediction function E,, ,, [*x(Y)|Z] (2).
np(x) Indirect predictor Eq . , [9,(Z)|X] ().
N Sample size of pre-training set (X1, Z1),..., (XN, ZN) Sy Qx.z.
M Number of prompts (Y1, 21) ..., (Yar, Zur) ES PY.Z-
L2(Py) Set containing equivalence classes of measurable functions h : X — R
satisfying || h[|3: p,) = [ h*(@)dPx () < +oc.
My x Conditional mean operator [M 7| x g](z) = Eqy , [9(Z)|X] ().
R Information density ddg;‘zz : X x Z = Rxo.
D,2(P|Q) x>2-divergence Ey g T(gg(U) - 1)2}.
I(X;72) Mean square contingency D, 2 (Qx,z||@xQz).
(04)324 Singular values of M 7| x.
(0o, Bi)24 Left and right singular functions of Mz x.
S. Conditional information density d;;’ii’é;z X xY = Rso.
I(X;Y]z) Conditional mean square contingency Dy (Px y|z||Px|zPy|z)-
Il g7 Hilbert-Schmidt norm of a linear operator from G to .

Table 1. Notation used throughout the main text.
In the appendix, we use slightly more explicit notation. For example, the product measure of Q) x and Q7 on X X Z is

denoted Qx ® Q7. The bracket notation [-] x and [-]z are used to indicate equivalence classes in L?(Qx) and L?(Q %),
respectively. Such changes are marked as they are introduced.
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B. Technical Background

In this section, we review the necessary background and construct any theoretical tools used in our analyses in a self-
contained manner. Appx. B.1 describes broadest function class we consider and gives a rigorous description of the con-
ditional means that we employ in this work. Appx. B.2 reviews the basic classes of linear operators (trace class, Hilbert-
Schmidt, etc.) that we consider. Appx. B.3 contains central tools regarding the structure of bivariate distributions. Finally,
Appx. B.4 contains a brief introduction to reproducing kernel Hilbert spaces and some recent statistical results used in the
proofs of Thm. 2 and Thm. 3.

B.1. Conditional Expectation and the Hilbert Space L?

Consider a common probability space (€2, F,P) and a topological space X equipped with its Borel o-algebra B(X). Given
a random variable X : Q — X representing some observable data, we consider Px to be the law of X, i.e. Px(B) =
P(X ~1(B)) for every Borel set B € B(X). Our goal is to define L?(Py), a Hilbert space containing equivalence classes
of functions that are square integrable under Px. As an intermediate step, we will also construct a Hilbert space L?(G)
for o-algebra § C F, which contains equivalence classes of §G-measurable functions that are square integrable under P.
Having both of these constructions will be helpful in working with conditional mean operators in a rigorous manner.

Quotient Space. As a starting point, consider the set
L3 (F) = {?—measurable functions v : {2 — R satisfying Hu||fi(§) = /Quz(w)dIP’(w) < oo} .

For any u,v € Li (), consider the equivalence relation “~” defined by
u~v <= 3IQ; € Fsuch that u(w) = v(w) Yw € Q1 and P(Qy) = 1. (17

For any uy € L% (), we define [uy]. € L?(F) as indexing the the equivalence class containing all functions that differ
from w4 only on a set of P-measure zero. The global Hilbert space will be defined using the quotient of Li (F) under this
equivalence relation.

Lemma 1. The quotient space L*(F) = L3 (F)/ ~ is a Hilbert space with the addition and scalar multiplication rules
(u,v) = au + bv = [auy + buy]~ for some uy € wand vy € v,

for scalars a,b € R and the inner product
(u,v) = (U, v) 2y = / g (w)vy (w)dP(w) for some uy € wand vy € v,
Q
where the definitions are independent of the choice of uy and v..

Proof. 1t is easy to verify that the addition, scalar multiplication, and inner product operations are well-defined (i.e. are

invariant to the choice of u.. and v..). Define the norm w — [l 2(5) = | /{u, u) 2 (s, and consider a Cauchy sequence

(u™)2; in L%(F). To confirm completeness, we identify a limit of this sequence as an element of L?(F). First, consider
an arbitrary sequence ui), uf, ... where uff) € u™ forall n > 1. Then, we have by the Riesz-Fischer theorem (Schilling,

2017, Theorem 13.7), there exists a limit u € Li (F) such that
Jim [Juf” = w2 @) — 0. (18)
We then define lim,, oo u™ := [uy]~, and see that
™ =[] llez@y = [0l = uilliz ) = 0asn — oo,
where the last step follows by (18) and completes the proof. O

Next, we construct closed subspaces of L?(F) which contain random variables that are measurable functions of another
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random variable. Notice that for u, v € L2(F), the statement v = v indicates equality of two partitions, namely collections
of random variables that differ pairwise on sets of measure zero. Letting o (X ) denote the o-algebra generated by X, define
the set

L3 (0(X)) :== {u € L%(F) s.t. uis (X )-measurable } . (19)
Then, using the equivalence relation (17), we define the space
L*(0(X)) = L% (o(X))/ ~ -
In the upcoming Cor. 1, we will confirm that L?(o(X)) is indeed a closed subspace of L%(F) for any random variable X.
Before doing so, we consider the induced probability space (X, B(X), Px). Then, we define the related linear space

L3 (Py) := {measurable functions f : X — R satisfying ”ini(Px) = / fA(x)dPx(x) < oo} .
x

We define an analogous equivalence relation “~ x”” defined as
f~xg < 3X; € B(X) such that f(x) = g(x) V& € X; and Px(X;) =1, (20)

and the quotient L?(Px ) := L3 (Px)/ ~x. These sets are related to one another in the following lemma.

Corollary 1. The set L?(0(X)) is a Hilbert space with respect to the inner product used in Lem. 1, whereas L?(Px) is a
Hilbert space with respect to the analogous inner product for (X, B(X), Px ). Furthermore, L?(c(X)) is a closed subspace
of L%(), and it holds that

L*(0(X)) = L*(Px) o X = {[f+ (X ()]~ : f+ € LI (Px)} . 2D

Proof. That L?>(0(X)) and L?(Px) are Hilbert spaces follows by identical arguments to Lem. 1. Additionally, we may
invoke Schilling (2017, Lemma 27.1) to assert that L?(c(X)) is a closed subspace of L?(J). Finally, to show (21), we will
show that

L2 (0(X)) = L2 (Px) o X = { f+(X (")) : f+ € L3 (Px)}

and take the quotient with respect to “~” on either side to complete the proof. First, L2 (Px) o X C L2 (c(X)) holds
because f;(X) is clearly o (X )-measurable and

£+ (I () = / (1 (X (w)))2dP(w) ¥ =7 /x P (@)dPx (@) = | £+11E2 py) < o0 (22)

To show that L2 (o(X)) C L2 (Px) o A, first note that for any o(X)-measurable random variable U, there exists
a measurable function gy : X — R such that U = g;(X) (Durrett, 2019, Exercise 1.3.8). Applying (22) gives
Hg+Hii(Px) =400 = Hg+(X)HEQ+(,j) = 400, which yields a contradiction as ||g+(X)||Eg+(,f) = ||U|\Ez+(3r) < +o0.

Thus, ||g+||iz+(PX) < +o0, completing the proof. O

Conditional Expectation. Using Cor. 1, for any collection of random variables (X, Z,Y"), we can now construct the
Hilbert subspaces L?(Px y ), L?(Px), L?(Pz). We can then identify them with conditional expectations, i.e. projections
onto L2(o(X,Y)), L2(0(X)), L2(c(2)), respectively. This is done in the definition below.

Definition 3 (Conditional Expectation). For any random variable U € L%(F), we define the conditional expectation
E [U|o(X)] as the orthogonal projection of U onto L2(a (X)), or

E[Ulo(X)] := argmin |ju—UlZ2(5),
uel?(o(X))

which uniquely exists due to the closedness of L?(o(X)) and the projection theorem (Schilling, 2017, Theorem 26.13).

17



A Generalization Theory for Zero-Shot Prediction

Owing to Cor. 1, we will also define the conditional expectation function
E[UIX]: X =R

as any measurable function satisfying the conditions [E [U|X]]. € L?(Px) and E [U|o(X)] (w) = E [U|X] (X (w)) for
P-almost every w € 2. The specific function choice will not affect any of the forthcoming arguments.

Here, we defined the conditional expectation as an element of L%(o(X)) and associated it with a function in L2(Py).
Without the squared-integrability requirement, the conditional expectation may also be defined using the familiar tower
property. We include the tower property below for completeness.

Lemma 2. (Schilling, 2017, Theorem 27.12) Consider U &€ L2(3") and X : Q — X. Then, for every measurable set
A € 0(X), it holds that

[ v@pw) = [ BU0)@ew) = [ BUX] @)dPx @)
A A

X(A)

We will make use of both the projection property and tower property throughout this manuscript. While conditional
expectation may be defined for specific integrable functions, we may wish to define probability measures whose inte-
grals can produce all conditional expectations simultaneously—this ideal is captured by regular conditional distributions
(r.c.d.’s) (Shorack, 2000), which we recall below.

Definition 4. Consider random variables (U,V) : Q@ — U x V. Let B(U) denote the Borel o-algebra on U. A map:
w:Vx B(U) :— [0,1] is called a regular conditional distribution (r.c.d.) if the following two properties hold:

1. Foreach A € B(U) and v € V, it holds that
(v, A) = Epy  [1a(U)|V] (v),
for the conditional expectation defined in Definition 3.

2. For Py-almost every v € V, (v, -) is a probability measure on B(U).
This will primarily be used for the conditional dependence arguments in Appx. C.

B.2. Compact Operators

We collect several generalities about Hilbert spaces and linear operators (hereafter, simply “operators”) between them.
Many computations will require expanding an element of a separable Hilbert space onto an orthonormal basis.

Definition 5 (Separability, Orthonormal Basis, Complete Orthonormal System). For a Hilbert space (%, (-, -),,) over R,
the orthonormal system eq, es,... € H of vectors is called an orthonormal basis (ONB) or complete orthonormal system
(CONS) of H if any of the following properties hold, which are equivalent by Schilling (2017, Theorem 26.21).

1. Forevery h € H, (h,e;);, = 0 forall i > 1 implies that h = 0.

2. U,—span{er,... e, } is dense in H.

3. Forevery h € H,itholds that h = >°7°, (h, e;) ;€.

4. For every h € H, it holds that S5°, |(h, e;),,|° = ||2]13,-

5. Forevery h,h' € H, it holds that Y~ (h,e;), (W', €i)5, = (h, h')y,.

If there exists a countable orthonormal basis, then H is called separable (Schilling, 2017, Definition 26.23 & Theorem
26.24).

When linear operators are compact, then we may decompose them in a way that generalizes the eigendecomposition and
singular value decomposition for matrices.
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Definition 6 (Compact Operator). A linear operator M : G — H between Hilbert spaces G and H is called compact if for
every totally bounded subset B C G, the image M(B) is relatively compact (i.e. the closure of M(B) is compact) in H.

Compact operators are bounded, and every bounded linear operator M admits a unique adjoint operator M* satisfying
(h,Mg),y, = (M*h,g)g forall g € G and h € H. An operator T : H — H is called self-adjoint if T = T*. Next, we
collect two operator decompositions that will be used repeatedly. We refer the reader to Gohberg et al. (2003, Chapter I'V)
and Gohberg et al. (2003, Chapter X) for further discussion on these topics. Just as their analogs for matrices, we refer to
them as the eigendecomposition and singular value decomposition, respectively.

Theorem 4. (Gohberg et al., 2003, Chapter IV, Theorem 5.1) Let T : H — H be a compact, self-adjoint operator on
a separable Hilbert space H on R. Then, there exists a countable orthonormal basis {e; }j cy of " and a sequence of
non-zero real numbers {)‘i}ieI with \; — 0, I C J, and for all h € ‘H, we have that

Th = Z Ni(hy )€ (23)
el

Furthermore, if (h, Th),, > 0 for all h € H (i.e. T is positive semidefinite), then we may take \; > 0 for all i € I, and
order them in a non-increasing sequence.. We call {\;},.; the non-zero eigenvalues of T.

Theorem 5. (Gohberg et al., 2003, Chapter X, Theorem 4.2) Let Ml : G — H be a compact operator between separable
Hilbert spaces G and H on R. Then, there exists an orthonormal basis {u;} jeg of M, an orthonormal basis {ortper of
G, and a sequence of positive real numbers {s;},.; with s; — 0 such that the following statements hold.

e All collections are at most countable, i.e. I, J, K CN,and I C JNK.

e Forall g € G and h € H, we have that

Mg = Z <g7vz>gul and M*h = Z (h,u; HUZ (24)
i€l iel

We call {s;},.; the non-zero singular values of M, which can be ordered in a non-increasing sequence.

The sets J and K are used to index the bases of 7 and G, so they may be larger in cardinality than I, which only indexes the
non-zero eigenvalue and singular values, respectively. We will also consider more specific classes of compact operators.
Definition 7. A compact operator M with singular values {Sz}ze ; (Thm. 5) is called trace class if ), s; < 400 (the

singular values are summable) and Hilbert-Schmidt if Z cr s < 400 (the singular values are square summable).

Using the singular value decomposition, we see that if M is Hilbert-Schmidt, then MIIM* and M*M are self-adjoint trace
class operators. The set of all Hilbert-Schmidt operators M : G — H between Hilbert spaces (G, (-,-)¢) and (H, (-, -)5,)
will be denoted by HS(G, #). This is itself a Hilbert space with the inner product

(A, B>Hs(g,7-t) = Z (Agj, Byg;)y
jeJ

where {g; }j c.; can be taken to be any orthonormal basis of G. Similarly, let {h } . ;- be an arbitrary orthonormal basis of
H. Then, the Hilbert-Schmidt norm || A[[yg(g,%) Will be defined as

1A s 6,20 = (A A)ps.)
= Z <Agj7Agj>7-[

jeJ

=303 S (Agy, s (Ags, by e o)y

JjeEJ kEKIEK

=300 (o Ag)y =D D (AT, g5)g 25)

jeJ keEK jeEJ kEK
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Using the singular value decomposition, we see that (25) is equal to the sum of the squared singular values referenced in
Definition 7. For i € H and g € G, we define the rank-one operator h ® g : G — H via (h ® g)g’ = (g,9')gh for
all ¢ € G. For an operator A € HS(G, H), the following identity regarding rank-one operators will be useful for norm
computations:

(h, Ag)y = (A"h,9)g = (A h® ghygg ) = (A", 9 @ Mysiag)-

Finally, we will often compute Hilbert-Schmidt norms using assumptions on the singular decays of the operator in question.

Lemma 3. Let M : G — H be a Hilbert-Schmidt operator with singular values {s;};.; (Thm. 5). Assume that I = N and
that there exist constants ¢, C,~y > 0 such that ci=" < s; < Ci~7 forall i € N. Then, v > 1/2, and it holds that
c? 2vC?

2
27 — 1 < ||MHHS(Q,'H) < 2y — 1°

Proof. The requirement that v > 1/2 follows from the square summability of {51};)21 and the bound s; > ¢t~ 7. For the
upper bound, write

o0

o0 o o0 '3 B oo 3 2702
2<c? =c? / Pdr < 0? (1 / dx | = :
ZSZ— ZZ ; - [2] x < + 1 x x 7 1

=1 i=1

For the lower bound, write

the result as desired. O

B.3. The Conditional Mean Operator

This section contains key properties of the conditional mean operator Mz x and the information density R from Sec. 2,
based on the foundations of Appx. B.1 and Appx. B.2. As we shall show, owing to a particular Lancaster decomposition
(Prop. 2), both operators enjoy convenient spectral representations and relate to a measure of dependence—the mean-
squared contingency.

Recall the probability space (£2, F, P). Consider Borel measurable spaces (X, B(X)) and (Z, B(Z)), and a random variable
(X,Z) : Q — X x Z. We denote by Q x_ 7 the law of (X, Z), i.e. Qx z(B) =P ((X,Z)"'(B)) forevery B € B(X x 2).
Note that by Schilling (2017, Corollary 27.24), the Hilbert spaces L?(Qx), L?(Qz), L?(Qx.z), and L?(Qx ® Q) are
separable, a fact we will maintain in this section. We use the notation [-] x and [-] 7 to index equivalence classes in L?(Q x)
and L2(Qz), respectively. In other words, for a measurable function  : XX — R, we will write [h] x € L?(Qx) to indicate
that [ h?(2)dQx (x) < 4o0. Recall the conditional mean function introduced in Definition 3. We define the conditional
mean operator

Mz x : L*(Qz) = L*(Qx)
My xl9]z = [Eqx. , [9(Z)|X] ()] x. (26)

The specific function g € [g]z chosen for the output conditional expectation is not relevant, as all choices will result in
the same equivalence class. We define M x| as the analogous operator for the conditional mean of h(X) given Z for

[h]x € L*(Qx).

Spectral Representation. In the case that Mz x is compact, the conditional mean operator admits a singular value
decomposition, which will be instrumental in obtaining several important properties.

Proposition 1 (Singular Value Decomposition of the Conditional Mean Operator). Let Mz x : L?(Qz) — L*(Qx) be
compact. There exists a countable orthonormal basis {c;}, ; of L*(Qx), a countable orthonormal basis {fy},.c e of

L2(Qz), and a countable sequence of positive real numbers {0i},c; satisfying o; 0, I C J N K, and the following
statements in addition:
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e We may take 01 = 1, 1 € iy, and 14 € 1, where 1 is identically 1 on X and 14, is identically 1 on Z.

e Forall [g]z € L3(Qz) and [h]x € L?(Qx), we have that

Mz xlglz = 0illglz, Bidpa (g, @ and Mx z[h]x =Y 0i([hlx, o) 120 ) Bi- 27)
iel i€l

Proof. Beyond the direct application of Thm. 5, we must prove the statement regarding (o1, o1, 81) and that M*Z| x =
Mx |z (which relates (24) to (27)) to achieve the desired result. For the first, we appeal to the variational representation of
the first singular value o; (Gohberg et al., 1990, Section IV.1, Eq. (2)), which states that

o1 = sup { Mz xgllL2(qx) : 9 € L (Q2), l9llL2q.) = 1} - (28)

We will show that 51 = [1z]z achieves the supremum. Then, it will hold that 0y = 1 and o; = Mz xB1 = [1x]x.,
because any version of the conditional expectation Eq, , [1/X] is @ x-almost surely equal to 1. Consider any [g]7 €
L?(Qz) satisfying ||gl12(q,) = 1. Then, we apply Jensen’s inequality and the tower property (Lem. 2) to achieve

M xlg)2 20y = /x (Eox, [9(2)X] (@) dQx ()

< [ Eov. [1(2)1X] (@)iQx(a)
=Eq, [¢°(2)] = l9lli2(q,) = 1-
Setting g(z) = 12(z) = 1 achieves the upper bound, hence also achieving the supremum in (28). Next, to prove that
M7 x = M|z, we similarly consider [1]x € L?(Qx) and write
<[h]X7 MZ\X [g]Z>L2(Qx) = EQX [h(X)EQX,Z [g(Z)|X]]
= EQX,Z [h(X)g(Z)]
=Eq, [Eqx., MX)|Z]9(Z)]
= <MX|Z[h]X’ [g]Z>L2(QZ)’

which satisfies the adjoint relationship and completes the proof. O

Lancaster Decomposition. In the remaining proofs of this section, we do not differentiate an equivalence class in an
L2-space with its component functions, as the distinction will be clear from context. First, using the orthonormal bases
defined in Prop. 1, we may form a convenient orthonormal basis of L?(Qx ® Q7).

Lemma 4. The collection {cv;By} ;c ; . i from Prop. 1, where {cv;} . ; is a countable orthonormal basis of L2(Qx) and
{Br} ek is a countable orthonormal basis of L?(Qz), forms an orthonormal basis of L*(Qx @ Qz).

Proof. We first show that {«; 0}
independence that

jeTkeK is an orthonormal system. For any indices 4,7’ € I and j,j' € J, it holds via

<ajﬂjaaj’ﬂk’>L2(QX®Qz) = <04j7aj’>L2(QX)<ﬂk76k/>L2(QZ)
B {1 if j = j' and k = K

0 otherwise

To establish that this orthonormal system is now complete, we use the first equivalent condition in Definition 5. Consider
s € L2(Qx ® Qz) such that (8, 0Br)12 (w0, = Oforall j € Jand k € K. Then, via Fubini’s theorem (Schilling,
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2017, Corollary 14.9), it holds that

0= [ ([ st@ 2101005 @) 2)002(2) = 05 s,

9;(2)

Because {1}, x forms an ONB, it holds that the equivalence class of g; is the zero element in L?(Q ), or in other words,
gj(z) = 0 for Qz-almost all z € Z. Due to the fact that J is countable, we have that

2,1::ﬂ{zeZ:gj(z):0}={zGZ:gj(z):0VjeJ}
Jje€J

is a probability one set under (). Because {c; }jGJ is an ONB of L2(Qx), it also holds that
{z€2:9j)(2)=0VjeJ} CZ)={2€2:s(x,z) =0for Qx-almostall xz € X},

indicating that the right-hand side is also a probability one set under @) z. Then, applying again the iterated integral,

/ (2, 2)d(Qx © Qz) (@, 2) = /
XxXZ

Z

/

0,

( /x s2<w,z>de<x)) Q2 (2)

([ #@20x@) d@z(e)

’
1

indicating the s(x, z) = 0 for (Qx ® Qz)-almost all (x, z) € X x Z. This completes the proof. O

This basis allows us to relate the conditional mean operator to a particular Radon-Nikodym derivative. As a result, both
can be used to measure the dependence between X and Z (Lancaster, 1958).

Proposition 2 (Lancaster Decomposition). Assume that QQx,z < Qx ® Qz, in which case there exists a Radon-Nikodym

derivative R = %. Then, the following identity holds:
R= Z o0 Bi. (29)
iel

In particular, the operator M z| x is Hilbert-Schmidt if and only if R € L?(Qx ® Qz), with the equality

HMZ‘X“%{S(LQ(QZ)*LZ(QX)) = ||R||]2:‘2(QX®QZ) = 20’2
i€l

Proof. Using Lem. 4, we represent R on the ONB {ov; 81}, ; ek
Radon-Nikodym derivative (Schilling, 2017, Theorem 20.2) to write
<R’ aj5k>L2(QX®QZ) = EQX@QZ [R(X» Z)aj (X)Bk(Z)]
= EQX,Z [aj (X)ﬁk<Z)]
=Eqy [aj (X)EQX,Z [ﬁk(Z”X]]
= <aj7MZ\Xﬁk>L2(QX)
o ifj=k=diel
0 otherwise ’

For any j € J and k € K, use the definition of the

where we recall I as the set indexing the non-zero singular values of M 7| x (see Prop. 1). This proves (29), the first claim.
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For the second claim, we use the orthonormality of {ajﬂk}jej rex 1N L%(Qx ® Qz), so that

IRIZ2(0x00s = D05 = IMzixlus@2 (@) L2(@x))
el

so that square-summability of {0}, implies finiteness and equality of the left-hand and right-hand sides above. O

The formulas in Sec. 2 simply equated I = N = {1,2,...} for ease of presentation. For completeness, the €4 term in (9)
represents the tail of (29), i.e.,

o0

ca= Y, oiifi,

i=d+1

which vanishes as d — oo because o; — 0 and «;3; is unit-norm in L2(Qx ® Q7).

The Radon-Nikodym derivative R = %

marginal expectation computations. In this sense, we may say that R acts as a kernel for an integral operator representation
of Mz x, where the integral is taken with respect to 7. The following identity is referenced by Buja (1990, Section 3)
and Dytso et al. (2023, Lemma 1, Eq. (14)). We provide a self-contained proof below.

Lemma 5. Adopt the setting of Prop. 2. Then, for all g € L?(Qz) and h € L*(Qx), it holds that

is also useful for converting conditional expectation computations into

Eqx . [9(2)|X] (x) = Eq, [9(Z)R(x, Z)] for Qx-almost all x € X,
Eqy , [MX)|Z] (z) = Eqy [M(X)R(X, 2)] for Qz-almost all z € Z.

Proof. We prove the first identity, whereas the second follows by a symmetric argument. To confirm that the two functions
are equal almost surely, it is sufficient to prove that for any measurable set A € o(X) (the o-algebra generated by X) the
relation

| Eov 121X (@0dQx (@) = [ Bo. sl 2R (2. 2) dQx (o). (0)
By the definition of conditional expectation, we have that

/EQX,Z [9(2)|X] (w)de(ﬁc)Z/EQx,z [9(2)|X] (2)1a(2)dQx (z)
A X

= IEQX,Z [g(Z)]lA(X>]
=Eqxe, [9(2)1a(X)R(X, Z)],

where the last step follows from the Radon-Nikodym theorem (Schilling, 2017, Theorem 20.2). Next, we compute the
expectation, taken under the product measure, using Fubini’s theorem (Schilling, 2017, Corollary 14.9). That is,

/A Eox., [9(2)X] (2)dQx () = Eqx s, [0(Z)14(X)R(X, Z)]
:/A(/Zg(z)R(%z)dQZ(z)) dQx(x)
- /A Eo, [o(Z)R (@, 2)] dQx (x).

This achieves (30) and completes the proof. O

While Lem. 5 applies for a general function g, the function g, from (5) is itself a conditional mean. This can be leveraged
to produce yet another identity, which acts as a technical lemma for the proof of Thm. 3.
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Lemma 6. Recall that g,(z) :=E [r(Y)|Z] (2) for r € L?(Py). Assume in addition that v € L?(py ). Then,

PY,Z

np(x) = B,y [r(V)R(z, 2)] + /Z ap(2)R(x, 2) (4Q(2) — dpz(2)) .

for Qx almost all x € X.

Proof. By Lem. 5, we already have that for () x-almost all = € X, the identity

ne(x) = Eq, [9,(Z)R(x, Z)]
=E,, [9,(Z2)R(x, 2)] + Eq, [9,(2)R(x, Z2)] = B, [9,(Z2)R(z, Z)]

=By, [9,(Z2)R(z, Z)] + /ng(z)R(w,Z) (dQz(2) —dpz(2)).

Now, unpacking the first term on the right-hand side above, we recognize that for fixed « € X, the random variable R(z, Z)
is o(Z)-measurable, so via the properties of conditional expectation (Schilling, 2017, Theorem 27.11 (vii)) in L' (pz), we
may write

Ep, l9,(Z)R(x, 2)] = E,, [E,y , [r(Y)|Z]R(2, Z2)] =E,, [E

— pz

124 PY,Z PY,Z [T(Y)R(J:,Z”ZH .

Using the expression above and the tower property of the conditional expectation (Lem. 2), we write
Ep, l9,(Z)R(x, 2)] = E,, [E,, , [(Y)R(®, Z)|Z]] =B,y , [r(Y)R(z, Z)],

completing the proof. O

Mean Square Contingency. Both singular value decomposition from Prop. 1 and the Radon-Nikodym derivative R from
Prop. 2 can be used to calculate a dependence measure between X and Z (Buja, 1990). This dependence measure arises
in nonlinear canonical correlation analysis and alternating conditional expectations (Breiman and Friedman, 1985; Bickel
et al., 1993).

Definition 8 (Mean Square Contingency). Assume that Mz x is Hilbert-Schmidt. Assume that I = N (Prop. 1), where
we may append zeros if I is finite. Recalling that o; = 1, define the mean square contingency 1(X; Z) as any of the
expressions

(oo}
I(X;Z) = [Mzxlfswe@m)2@x) — 1 = fo%-
=2

Our definition of the mean square contingency is in fact the square of the quantity that was originally introduced as such
by Rényi (1959), which is shown below.

Definition 9. Assume that Qy 7z < Qx ® Qz, so that R exists, and that R € L*(Qx ® Qz). Define the Rényi mean
squared contingency Rényi (1959, Eq. (13)) as

Trenyi (X5 2) = R = 1|2 (@xQ2) = \//x . (R(z, z) — 1)°d(Qx ® Qz)(z, 2).

If Qx,z is absolutely continuous with respect to a measure v on X x Z, with joint density gx,z and marginal densities
(¢x,qz), we have that

Iranyi(X; Z) = \//x N (R(zx, z) — 1)2 agx(x)qz(z)dv(z, z).

Written in the form above, Irenyi(X'; Z) may also be called the x2-functional (Buja, 1990).
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We apply I(X; Z) = Irenyi(X; Z)? to achieve the sequence of identities following (10). Using the singular decay compu-
tations from Lem. 3 with ¢ = C' = 1, we have that if o; = =7, then
1 1I(X;Z)+2< 11(X;2)+1

142 A4+ 31
1 2I(X;2) 41 21X 2) D

~1<I(X;2) <

2v -1
For simplicity, we will use the upper bounds to describe the order of the quantities, that is,

L Xz
2y —1 T TI(X 2)

I(X;Z) ~ (32)

We employ this relation in the sample complexity calculations in Appx. D.

B.4. Reproducing Kernel Hilbert Spaces

In this section, we review facts about the interplay between reproducing kernel Hilbert spaces (RKHSs), the L2-spaces
defined in Appx. B.1, the Hilbert-Schmidt spaces from Appx. B.2, and Bochner spaces (introduced below). The goal is
to provide the necessary background in order to understand the results regarding kernel-based estimation methods that
are used in other parts of the manuscript. The analyses in Appx. D rely on being able to decompose some target function
(related to the dependence between X and Z) so that it may be estimated in multiple ways. One method involves estimating
the Radon-Nikodym derivative R introduced in Prop. 2. The second technique relies on vector-valued regression, with a
target function denoted by F’,. Most of the setup below is in service of the vector-valued regression estimation portion.

We maintain the Borel spaces (X, B(X)) and (Z, B(Z)) from Appx. B.3, with the topological assumption that X and Z are
second countable, locally compact, and Hausdorff. In addition,  and G each denote a separable reproducing kernel Hilbert
space (RKHS) containing real-valued functions of X and real-valued functions of Z, respectively. We let ¢ : X — H and
1 : Z — G be the canonical feature maps and let £ : X x X — Rand [ : Z x Z — R be the reproducing kernels for { and
G. The boundedness assumptions sup,, ,/cy (€, ') < kpax < 00 and sup,, e (2, 2") < lnax < 00 are maintained
throughout the paper.

Bochner Space. We will adopt the equivalence class notation first introduced in Appx. B.1, with respect to probability
measures (x and (Qz. That is, for any two real-valued measurable functions f : X — R and h : X — R, we say that
f~x hif

Qx {xeX: f(x) # h(z)}) =0.

The notation [f]x denotes an equivalence class with respect to the equivalence relation ~ x, with representative f. We say
that [f]x € L*(Qx) if

/ h%(2)dQx (x) < oo for some, or equivalently all & € [f] .
x

We define ~z, []z, and L%(Q ) similarly. We introduce a similar construction to L?(Qx ) for vector-valued functions,
i.e., those whose outputs lie in a Hilbert space. For measurable functions F' : X — G and H : X — G, we will define
the equivalence relation F' ~x H viaQx ({x € X : F(x) # H(x)}) = 0, and corresponding equivalence classes will be
denoted [F|x. We define the Bochner space L?(Qx; G) via [F]x € L?(Qx;G) if

/ | H(z)||3dQx (z) < oo for some, or equivalently all H € [F]x.
x

Analogous to L?(Q x ), this is a set of equivalence classes of vector-valued functions. Recall from Appx. B.2 and Appx. B.3
that we use HS(/, V) to denote the space of Hilbert-Schmidt operators mapping from a Hilbert space U to another Hilbert
space V. The following result allows us to relate elements of the Bochner space L?(Qx;G) to elements of a space of
Hilbert-Schmidt operators HS(L?*(Qx),G). For [f]x € L*(Qx) and g € G, the notation f(-)g refers to the function
mapping € X to f(x)g € G.
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Theorem 6. (Aubin, 2000, Theorem 12.6.1) There exists a function ® : HS(L?(Qx),G) — L%(Qx; G) that is a bijective
linear transformation satisfying

ICllusw2(@x).9) = 1®(C)llL2(qx;9) for all C € HS(L*(Qx),G),

and for every [f]x € L?(Qx) and g € G, associates

e(g@[flx) = [f()glx <= g@[flx = 2 ([f()glx) (33)
for the rank-one operator g ® [f]x € HS(L?(Qx),G).

Based on the definition of the Hilbert-Schmidt norm in (25) (Appx. B.2, Thm. 6 will make computation of L2(Qx; G)-
norms more convenient by relating them to HS(L?(Q x ), G)-norms. The following technical lemma can be used to simplify
computations regarding the inverse of this isomorphism.

Lemma 7. Let (g;) e be any countable orthonormal basis of G, and let C = @ ([F|x) for some F : X — G such that
[F]x € L*(Qx;G). Define the functions (f;)jes via fj(x) := (g5, F(x))g. Then, [fj]x € L*(Qx) forall j € J, and
we have the identity

C=> g @[fix,

jeJd
where the convergence is interpreted in terms of HS(L2(Qx), G).

Proof. First, consider the case in which we can write the equivalence class of F in L?(Qx, G) in the form

[Flx = > _[£i()g5]x, (34)
jedJ
for some sequence of functions f1, fa,... € L%(Qx). Then, because ®~! is a linear isometry, it is a bounded (hence

continuous) operator with respect to the norm on L?(Qx, G). This implies via continuity

C =07 ([Flx) = @7 (e, Ogilx ) = D07 (1i()gslx) = g5 @ [l

jeJ JjeJ

where the last step follows because ® ! satisfies the relation (33). To achieve the identity (34), we fix any & € X, we
expand F'(x) € G onto the basis (g;) e to write

F(z) =) (9;, F(2))g 9.
ies —_———
15 ()
To pass this pointwise equality to (34), consider any sequence of G-valued functions (H; ) ey such that H;(x) = f;(x)g;

forall x € X; C X, where Q x(X;) = 1. Similarly, consider Hy : X — G such that Hy(x) = F(x) for all z € X, with
Q@ x (Xo) = 1. Thus, we have that

Ho(x) = ¥,o, Hy(z) forallz € Xo N (mje, xj) :

and because J is countable, this implies that Ho(x) = ;. ; H;(z) for Qx-almost all € X, granting (34). It remains
to be shown that [f;]x € L?(Qx). This follows by the Bochner-square integrability of F, as

[ f@axi@) = [ o F@)iaes@ < ol [ IF@]3exE) < .
x x x
which completes the proof. O

In the sequel, we will define a statistical learning problem in which the target function F, is an element of L?(Qx;G).
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For the kernel-based estimation approach, the estimation function F = ﬁ,\ (where X is a to-be-specified regularization
parameter) will live in a particular vector-valued RKHS that will be isometrically isomorphic to HS(H, G). Using Thm. 6,
F, will be associated to en element C, € HS(L?(Qx),G) via an isometric isomorphism. We introduce the concept of
embeddings and interpolation spaces to describe exactly where C, lies in between HS(#, G) and HS(L?(Qx),G) (via a
source condition).

Embedding Operator. See Appx. B.2 for a review of the terminology surrounding compact operators. Consider the
embedding operator Ix : H — L?(Qx ), which identifies a function h € H with its equivalence class [h]x € L*(Qx).
Under the bounded kernel assumption, we have that Iy is compact, and moreover Hilbert-Schmidt, with norm bounded as
ITx llHs(g,12(Qx)) < VEmax (Steinwart and Scovel, 2012, Lemma 2.3). We denote its adjoint by Sx := I’ and finally,
construct the self-adjoint, trace class operator

Ty :=IxSx :L*(Qx) — L*(Qx). (35)

Applying the eigendecomposition Thm. 4, there exists an orthonormal basis of cl(range(Ix)) C L?(Qx), denoted
(lex,i]x )ier, and a sequence of positive, non-increasing eigenvalues (f1x ;)ier such that

Tx = ZMX,i([ex,i]X, '>L2(QX)[€X71']X. (36)
icl

Note that we have only used the index set I from Thm. 4, as opposed to the larger set J for which we can define an ONB for
the entirety of L?(Q x ), not only cl(range(Ix)). Analogous to T x, we can also define the uncentered covariance operator

Cx =SxIx:H—>H.

Similar to (36), Cx enjoys an eigendecomposition
Cx =Yzl i Sexi) s rex . (37)

el

The equation above implicitly contains another fact, which is that the equivalence classes in (36) all contain representatives
that are in . This defines the collection {ex;},;» which forms an ONB of null(Ix )+ C . Combining (36) and (37),
the embedding can be described using a singular value decomposition

Ix = Z Ni(/f ([ex,i]z ® (M%Qiex,i)) . (38)
iel

Lastly, we define (I7,Sz, Tz, Cz) as the analogous operators for L?(Qz) and G.

Interpolation Spaces and the Inclusion Map. For any a > 0, we define the operator

a/2 Zﬂxl €X,i X7'>L2(QX)[€X1}X 39)
el
dom(TY?) = {[f]x e L2 (Qx): Y u¥ (1 fx, lex,ilx)12(0x) < OO} ;
el

which is considered to be well-defined when dom(T?‘(/ 2) # &. Then, we define the a-interpolation space [H]* via
= {Z ain¥ lexlx : (ai)ier € 52(1)} C L*(Qx),
i€l

where (a;)ics € £2(I) indicates that ), ; a? < +oo. When @ = 0, we recover [H]? = cl(range(Ix)), whereas fora = 1,
[H]* is isometrically isomorphic to null(Ix )+ C H (Fischer and Steinwart, 2020). Thus, for « € (0, 1), we interpret [H]*
as an “interpolation” between the well-behaved functions in the RKHS # and the elements of L?(Q x ). Associated to each
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[H]* is the inclusion map I5,°°, which simply views an element [h] x € [H]® as an element of L°°(Q x ) (this requires the
boundedness of the kernel). Here, L°°(Q) x ) denotes equivalence classes of real-valued functions on X that have a finite
essential supremum under @ x. We write I$'™ : [H]* < L°°(Qx ) when the inclusion map is continuous (see Asm. 10).

We use the standard generalization of these notions onto spaces of vector-valued functions (Li et al., 2024; Meunier et al.,
2024): for any 3 > 0, we define the 3-interpolation norm for C € HS(L?(Qx ), G) via the formula

— 2
ICIIs == |1CT X" ?|lnsw2(@x.0) € [0, +00]. (40)

This norm, when finite, will be used to define the source condition of the target function F;, alluded to in Sec. 3, as we may
compute ||C,||g for C, := ®~1([F,]x) (see Thm. 6). While we phrase the condition in terms of the constant 3 above in
order to relate it to the kernel methods and inverse problem literature below, we will use the constructions of Appx. B.3 to
phrase the finiteness of (40) for C, in terms of the mean square contingency (Definition 8) in Appx. D.

Vector-Valued Spectral Regularization Learning. We may now describe estimation techniques for an L2(Qx;G)-
valued target function that fall into the category of vector-valued spectral regularization learning. We give only a brief
overview in order to state the statistical convergence guarantees; see Meunier et al. (2024) for a detailed description,
including computational properties of the estimator. As we prove in Lem. 8, there exists a function F : X — G such that
[Fi]x € L%(Qx;G) and for every g € G,

]EQX,Z [g(Z>|X] (33) = (ng*<w)>g- (41)

For each « € X, we also refer to F, () as the conditional mean embedding of Z given X = . Note that fora fixed g € G,
we do not assume that ¢ — (g, Fi(x)) is an element of an RKHS 7. This avoids some of the technical challenges raised,
for instance, in Klebanov et al. (2020; 2021), where this requirement places strong implicit restrictions on the chosen kernel
and RKHS. Instead, the mis-specified case is handled using vector-valued interpolation spaces.

Next, using Thm. 6, we associate to F), the element C, = ®~1(F,) € HS(L?(Qx),G). Given independent and identically
distributed pre-training data (X1, Z1), . . ., (X, Zn) drawn from Q) x, z, define the empirical (uncentered) auto-covariance
and cross-covariance operator

N N
Cxx = % ; O(X;) @ (X;) and Czx = % ;77[}(21') ® o(X;).

Let fy : R>o = R>( denote the spectral cutoff function

I(z) =

—1 . >
{x ifz >\ 42)

0 otherwise

We can interpret fy(x) as a regularized inverse that behaves in a reasonable manner near z = 0. A similar function
corresponding to the more familiar Tikhonov regularization is fj(z) = (z + \)~!. While other options for fy (i.e. filter
functions) exist owing to the tools of regularization theory (Bauer et al., 2007), the spectral cutoff function will be sufficient
for our purposes, as it allows for the simplest statement of the upcoming results. For a self-adjoint positive semidefinite
operator C, we define f)(C) as replacing each eigenvalue p; > 0 of C with fy(u;) in the eigendecomposition (see
Thm. 4). For regularization parameter A > 0, we define the estimator

F\)\() = a)\gf)() fora)\ = azxf)\(axx) H—G. 43)
Now, consider the following assumptions, which include the source condition.

Assumption 10. (Meunier et al., 2024, Assumptions (SRC), (MOM), (EVD), (EMB))

1. There exist positive constants 5 > 0 and B > 0 such that | Fy || := ||C.||g < B.
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2. For positive constants o2, ¢ > 0 the Bernstein moment condition

oy, [10(2) = Fu(X)|21X] () < ;qwcq—z

is satisfied for @) x-almost all x € X and all ¢ > 2.

3. There exist constants D > 0 and p < 1 such that

pxi < Di”VP.
4. For a € [p, 1], the inclusion map I¢™ : [H]* < L>°(Qx) is bounded, with operator norm || 15|, < A.

Note that the first assumption is always satisfied for & = 1, due to boundedness of the kernel (as the [H]' norm can
be associated to the RKHS norm of an element of 7). We pay particular attention to the constant S which defines the
aforementioned source condition. In Appx. D.1, we translate this condition into one regarding the dependence between X
and Z, using the tools from Appx. B.3. We refer to the case when 8 > 1 as the well-specified case. We also employ one
additional assumption to state the result.

Assumption 11 (Sub-Gaussian Tail). There exists a positive constant 7 > 0 such that the following holds:
t2
Pox [IF(X)llg > t] < 2e727.

Asm. 11 is only used to replace a statement of the form “for NV > 1 sufficiently large” from Meunier et al. (2024, Theorem
4) with a quantitative condition on N. It is used to control the probability that || Fy(X;)||g > t forany i = 1,..., N for
the choices of ¢ specified in the proof of Meunier et al. (2024, Theorem 8).

Theorem 7. (Meunier et al., 2024, Theorem 4) Consider a failure probability § € (0,1], the estimate F defined in (43),
and the target function F defined in (41). Under Asm. 10 and Asm. 11, there exists a constant C > 0 (independent of N
and &) such that the following statements hold.

pP—a

e Casel: B+p > a. I NGOTEEE)TS) > 202 plog(N/6) and A = O(N ™77 ), then

al __8_
I[Fa]x — F*||%2(Qx;g) < Cplog(1/0)N ™ #+»
with probability at least 1 — 0 /4.

« Case2: B+p <o [fNZ > 22 plog(N/8) and X = ©((N/ plog(N))~ =), then

B
a

1B\ x — Fulliaor0) < C plog(1/8)(N/ log? (V)™

with probability at least 1 — 0 /4.

This result is applied in Appx. D.1 and provides an example of the “conditional mean” approach outlined in Sec. 2 and
Sec. 3. Regarding the setting of A in Thm. 7, the argument follows the typical recipe of defining an element F) &€
L?(Qx; G) which represents the population version of the regularized predictor. Let ||-||, denote the v-interpolation norm
for v € [0, 1], which is equal to ||-||L2(¢  ;g) When v = 0. Then, the approximation error ||[Fy] x — F,||2 decays according
to AP~ when using the spectral cutoff regularizer, which reflects the classical analyses of Smale and Zhou (2007). In
the well-specified case, the estimation error, ||[F)]x — [F)]x ||, decomposes into multiple terms which include irreducible
noise terms of order N~ \~/2 and additional approximation terms of order N~/2\(6=)/2_ By using A = O(N~ 77 )
and the condition  + p > « from Case 1, the irreducible noise error converges at rate N ~'/2 whereas the approximation
term converges at rate N ~7/2(5+P)  Note that these rates will be squared in Thm. 7. The argument for Case 2 follows
similarly.

Radon-Nikodym Derivative Estimation. To set the stage for this technique, we describe a function class in which
R: X x Z — R>( will live. Let § denote a separable reproducing kernel Hilbert space (RKHS) of real-valued functions
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on X x Z, with canonical feature map ¢ : X x Z — R and reproducing kernel s : (X x Z) x (X x Z) — R. As before,
we first assume boundedness of the kernel, i.e., sup {k(x, z, ', 2') : (2, 2), (2, 2") € X X Z} < Kmax -

Let us describe the estimation procedure, which relies on a similar spectral regularization technique as the one described

dQ

for vector-valued regression. Because the Radon-Nikodym derivative being estimated is W, we consider having

samples from both distributions available. In particular, we observe IV, paired examples (X1, Z1),...,(Xn,,ZnN,) ~
Qx,7 and N, unpaired examples (X7, Z1),...,(X}y,, Zy,) ~ Qx ® Qz. Define the uncentered covariance operators
Np 1 Ny
Z (X, Z) ® (X, Zi), Cu =3~ D_0(X[, Z) © (X[, Z)), (44)
i=1 u i=1

representing the paired and unpaired examples, respectively. Then, using the spectral cutoff function f) (see (42)), we
define the estimate

R=Ry = /A(Cu)Cy1, (45)

where 1(x, z) = 1 for all (x, z) € X x Z. Because f) can be viewed as a regularized inverse, R can readily be interpreted
as the “ratio” of the covariance operator of the paired sample over that of the unpaired sample.

To state the assumptions for the analysis, we require an analogous operator to I x and I introduced earlier in this section.
We then define the embedding operator Ix 7 : S — L?*(Qx ® Qz), which takes an element S € S and indexes its
equivalence class in L?(Qx ® Qz). We will not need to define an explicit notation for the equivalence class for this
discussion, but will do so in Appx. D.2. Due to Steinwart and Scovel (2012, Lemma 2.3), the bounded kernel assumption
implies that Ix 7 is Hilbert-Schmidt with norm bounded as ||Tx z || (s,12(Qx ©0)) < VFmax -

Recall the powers of operators introduced in (39). We will use a similar construction for this technique as well. Define the
(compact) adjoint operator Sx z = I , : L?(Qx ® Qz) — S. Via Thm. 4, let (j1;);er denote the non-zero eigenvalues
of the compact, trace class operator S/Xy zIx,7, where we consider I = N for simplicity. Let the degrees of freedom
function be defined as

i
df(\) == .
it A

Consider the following assumption.

Assumption 12. (Nguyen et al., 2024, Eq. (9) and Remark 13) There exists an absolute constant Cy¢ and a constant o > 1
such that df (\) < Caqe A1/, There exists a 3 > 1, along with an element Sg . , € null(Ix z)*, such that

R=(Sx.zIx2)"Soy -

The upper bound on df (\) reflects a polynomial eigendecay of order p; ~ i~ (see Bach (2024, Section 7.6.6)). Asm. 12
is more specific than the one stated in the referenced work, in that we use the specific index function = — 2, growing
at least linearly. Furthermore, their result may achieve faster convergence rates than the one stated in Cor. 2 using an
additional source condition on the feature map . However, our intention is not necessarily to provide convergence rates
that are optimal in a particular parameter regime, but ones that are informative with regard to the dependence structure of
Q@ x,z. To this end, we do not incorporate the additional condition.

To state the result, we define A, as the solution of

which is guaranteed to exist as @ is decreasing from +oo to 0 on the interval (0, +00). Observe the following.

Theorem 8. (Nguyen et al., 2024, Proposition 10 and Lemma 11) Consider a failure probability 6 € (0, 1] and constant
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from Asm. 12. Consider the estimate R=R A defined in (45) and the target function R defined in (2). Finally, define
Kuax = 14 (42 . + Kmax)>-

There exists a constant C' > 0 (independent of N and 6) such that for all X € [\, fmax ),

- Kidx
IR —R||s < Cplog(1/5) leaX X o S (V172 + N;”Q)] (46)

with probability at least 1 — § /2.

By optimizing the bound appearing in (46) in A\, we get that

_1
N2y N2\ T
A= ANpN, = (pKuz : (47)
If the expression from (47) falls within [\, Kmax |, this yields the upper bound
~ B+2 ﬁ%
IR —Rlls < Cplog(1/9) {Kri%i?” (N2 N) } : (48)

The condition Ay, N, < Kmax can be satisfied by taking (Np, Ny) sufficiently large. For the condition that A Np,Na = A
we find an upper bound on A, by first deriving an upper bound on df(\) /), and then solving the resulting equation in .
By Asm. 12, we have that

% < Cdf)\—(oH-l)/a — A\, < (

O‘“) . (49)

u

Viewing the dependence of (47) on N,,, we see that if 5 > (1 — «)/(2a), then there exists N, large enough such that (47)
is greater than the right-hand side of (49). This is always satisfied, as o > 1 is required for Sx zIx 7 to be trace class.
Thus, we have the following convergence rate.

Corollary 2. Adopt the setting of Thm. 8. Let N, be large enough such that (47) is upper bounded by km.x and lower
bounded by the right-hand side of (49). Then, for the choice (47), it holds that

~ B+2 258
IR —R||Z < Cplog(1/6) {Krirx (N,;l/2 + N;W) ‘*“} . (50)

This result is applied in Appx. D.2 and provides an example of the “information density” approach outlined in Sec. 2 and
Sec. 3. In the sequel, we will simply assume that N, = N, = N/2 to simplify the statement of the result. Finally,
note that the source condition Asm. 12 does not have any implications for the mis-specified case (R ¢ S). This aspect of
Radon-Nikodym estimation methodology is still an active area of research in statistical learning.

C. Prompt Bias and Residual Dependence

This appendix is dedicated to the proof of Thm. 1, which controls the population quantity |7, — 7, |3 (Px)- The result will
follows from Thm. 9, which is a more mathematically precise version of Thm. 1 from the main text.

We recall the problem setting of Sec. 3. We consider the three central probability measures Px y (evaluation distribution),
Q) x,z (pre-training distribution), and py,z (prompt distribution). We notice that 7, (from (3)) depends on Px y, while 7,
(from (4)) depends on the pair (Qx,z, py,z). Neither component of this term depends on a joint probability over X x Y x Z.
Thus, in order to relate them on common ground, we consider a joint probability measure Py y,z, which satisfies certain
constraints that make it compatible with the distributions that have observable data. We call this the latent caption model.

To proceed, we will need to make several mild regularity conditions on Px y,z. We use the notion of regular conditional
distribution, or r.c.d. (Definition 4), introduced in Appx. B.1. We use more explicit notation in this section (e.g. Z = z) as
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compared to Sec. 3 to emphasize the random variable being conditioned on. The assumption below provides a more formal
description of Asm. 1 from Sec. 3.

Assumption 13. The joint probability Px y,z on X x Y x Z satisfies the following constraints.

* Agrees jointly with the evaluation distribution: For all measurable sets A C X x Y, we have that Py y,z(A x Z) =
Px y(A) (i.e. Px v,z agrees with the given marginal Px y).

* Agrees conditionally with the pre-training distribution: There exists a measurable set X; C X with Px(X;) = 1
such that the regular conditional distributions @ 7| x — and Pz x—z on Z exist. Furthermore, these satisfy Q z|x—z =
Py x—g forallz € X;.

* Regularity of conditional distributions: There exists a measurable set Z; C Z with Pz(Z;) = 1 such that the
regular conditional distributions Py y|z—, on X x Y exists for all z € Z;. Furthermore, we have the absolute
continuity relation Px y|z—. < Px|z=> ® Py|z—. with Radon-Nikodym derivative

dPx y|z==
d(Px|z=z ® Py|z=2)’

S, = ShH

that satisfies Ep, ., ,_, [Sz(X,Y)] < +ooforeach z € 21 and Ep, , , [Sz(X,Y)] < +oc.

That Px y,z marginalizes to Px y is more of an axiomatic property than an assumption, but we phrase it as so to empha-
size that Px y,z is meant to describe the evaluation distribution. The assumption that the conditionals Q) z|x and Py x
match almost surely represents the viewpoint that, after fixing an image x, the latent caption Z|X = x follows the same
relationship to x as seen during pre-training. Importantly, this does not require or imply that Py = @ x or that Pz = Q) z.
The marginal distribution Py is supplied entirely by the evaluation distribution Py y, as for any measurable set A C X,
we have by definition that Px (A4) = Px y (A x Y). On the other hand, the marginal P can be defined using the Markov
kernel Pz|x—g, in that for any measurable B C Z, it holds that

Pz(B) = . Py x=2(B)dPx(x) = . Qz|x=2(B)dPx ().

Finally, the absolute continuity condition, i.e., the existence of (51), rules out degeneracies such as Y being a deterministic
function of X given Z = z (outside of a set of Pz-measure zero). It is also worth pointing out that the first two conditions
Asm. 13 do not contradict one another. For example, one can consider Py y,z that satisfies the Markov chainY — X — Z,
where (X, Y") is drawn according to Py y, and Z and Y are conditionally independent given X . Then, informally, we have
that Pz|xy = Pz x = Qz|x,s0 Px v,z is uniquely determined. While this example implies the existence of a valid joint
probability measure Px y,z, it is also, in a sense, showcasing the “least desirable” distribution for zero-shot prediction, as
the dependence between X and Z does not provide any additional information about Y.

We recall some notation from Sec. 3. Let

gPY,Z(z) = ]EPY,Z [T(Y)‘Z} (z)

Note that gp, , is simply a conditional expectation constructed via Definition 3, and does not require the existence of
an r.c.d. Py|z—.. In the bound, we will encounter a prompt bias term that compares gp,. , to g, from (5). This reflects
the notion that will Py y, 7 agrees with two of the three fundamental distributions governing the problem, it will not be
able to agree with the prompt distribution py,z in general. Finally, the r.c.d. Px y|z—. allows us to measure conditional
dependence using the conditional mean squared contingency, defined by the formula

I(X;Y|Z=2) = Epy,__ory,.. [(1 —s.(Y, X))z} .

As is shown in the proof, I(X;Y|Z = z) and its expectation over Py are well-defined under Asm. 13. We are now ready
to state the result.
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Theorem 9. Assume that r is bounded in absolute value by B,.. Under Asm. 13, it holds that Then, it holds that

7o — 77*”%2(19)() <2|g, - QPy,zHii’(Pz) +2B Ep, [1(X;Y|Z)]. (52)
—_—
prompt bias residual dependence

Proof. We first establish a useful representation of the conditional mean of (Y") given X = @, in terms of the (conditional)
information density from Lem. 5. Fix x € X; and z € Z, the sets on which the regular conditional distributions PZ‘ X—ax
and Px y|z—. are defined (see Asm. 13). Because of the existence the Radon-Nikodym derivative S, from (51), we may
apply Lem. 5withU =Y,V = X, and h = r to write

Epyyizs [r(Y)|X] () = Ep, ,_. [r(Y)S.(Y, )] forall (x,z) € X1 X Z1.

=:f(®,2)

The chosen notation Ep, ., [r(Y)[X] () indicates that after fixing the probability measure Py y|z—., we take the
conditional expectation of the function r € L? (Py|z—2) via Definition 3, which does not necessarily posit the existence of
the re.d. Py x—q, 7—~. We have denoted the right-hand side by the function f(x, z). Integrate both sides over Pz1x=z,
then use the tower property of conditional expectation (Lem. 2) to achieve

(@) = Epy y [r(Y)[X] (2) :/Z]EPX,Y\Z:z [r(Y)|X] (2)d Pz x=2(2)

= /Zf(;c, 2)dPy x=(2)
= ]EPZ\X:a: [f(wa Z)] : &3)

Using the identity (53) and Q z|x—¢ = Pz|x=¢ On & € X1 (Asm. 13), we write

(@) — ni()

=EqQ,xm0 19,(2)] —Ep, «_, [f (2, 2)]

=Ep, . [9,(2)] = Ep, _, [f(®, Z)]

=Ep, o [(95(Z2) — 9Py . (2))] + Ep, «_, [(9pv..(Z2) — f(x, 2))] .

Taking the integral over Px, we have by the decomposition above that
Iy =1l = [ (@) = 1a(2))* APx (@)
<2 [ (@ [02) = ar,(2)) dPx (o) (54)
w2 [ Ern lon(2) - fle.2))) 0P (a). 55)

To handle (54), we apply Jensen’s inequality for each r.c.d. Pz x—4 to achieve

/ (]EPZ\X=m [(gP(Z) - gPy,z(Z))])2dpx(a3) S/
Xy

X1
—Ep, [(gp(Z) - gpy,z(Z))Q}

= ||gp — 9Py z ”%JZ(PZ)'

Eryix-o |(9(2) = 9pv.2(2))"] dPx (@)

*This is why we do not write, for instance, E Py|X—a 2=z [r(Y)]. This consideration is purely technical, and the reader may make
this substitution for conceptual understanding of the proof.
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It remains to control (55). Applying Jensen’s inequality for each r.c.d. Pz x—, once again, we have that

/x (B, xea [(99v.2(2) - (@, 2))])* dPx () < /x (e (972 (2) ~ 1@ 2)°] ) dPx(a)

1

=Epy, [(ngYZ(Z) - fX, Z))Q}

— [ B (om0 - £X20)7] dP(), 50
Z1

where the last step follows due to the existence of the r.c.d. Px|z—. for z € 21, as Px|z—.(A) := Px y|z=2(A x Y) for
every measurable A C X, and the latter exists by assumption. Using the definition of gp,. ,, write

gPY,z(z) - f((ll, Z) = EPYlZ:z [T(Y)(l - Sz(K x))] :

We may substitute this expression into the integrand of (56) and apply Jensen’s inequality to Py-|z— to achieve

Epyse. |(9702(2) = f(X.2)°] = Ery, [(Epype, 1001 = S2(Y, X))’
<Epy,. [Ery, (000 = S.0.X))]
< P IPEpy s [y e, [(1-S:(v,X))]]
= P IPEry ooy o |1 S2(V X))

where the final step follows by applying Fubini’s theorem (Schilling, 2017, Corollary 14.9) to the product measure
Px|z—. @ Py|z—, for fixed z € Z;. By the definition of mean squared contingency (Definition 8), it holds that

Epyseo by |(1 = S2(Y, X))?] = I(X;Y]2 = 2). (57)

After confirming that (57) is Pz-integrable, substituting this expression back into (56) achieves the desired result. Expand
the quadratic term and apply the Radon-Nikodym theorem (Schilling, 2017, Theorem 20.1) to achieve

I(X;Y|Z = Z) =1- 2EPX|Z:z®PY\Z:z [Sz(va)} + ]EPX\Z:z®PY\Z:z [Si(Yv X)]
=1- 2EPX,Y|Z:z [1] + EPX,Y\Z:z [SZ(K X)}
= EPX,Y\Z:z [SZ(K X)] - L

Thus, by integrating against Pz, we see that
Ep, [I(X; Y|Z)] = EPX,Y,Z [SZ(Y’ X)} -1,

where the expectation term is finite by Asm. 13. The proof is complete. O

D. Sample Complexity and Distribution Mismatch

This appendix provides the proofs of Thm. 2 and Thm. 3 by way of Thm. 10 and Thm. 11, respectively. To recall the bigger
picture, we first applied the decomposition (12), which exposed the estimation error term

19 — 7]/)”%,2(13)()» (58)

where Py is the X-marginal of the evaluation distribution Py y, 1, is defined by 1,(x) := Eq , [9,(2)|X] (x) (see (5)),
and 1), is one of two estimation procedures that is based on either (7) or (8). By using standard change of measure arguments
(collected in Appx. D.3), we pass the problem of controlling (58) in high probability to controlling ||7,—1, ”%P(Qx) (i.e. the
mean squared error with respect to the pre-training marginal ) x ). Thus, the format of both Thm. 10 and Thm. 11 will be
an upper bound on ||7, — 17,)||i2( Q) that holds with an arbitrary failure probability ¢ € (0,1].
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The identities (7) and (8) from Sec. 2 can be summarized with the equality

MZ|Xgp =Tp= Epy,z [T(Y)R(a Z)} + err(QvaZ)v (59)

where the err(Qz, pz) is elaborated on in Appx. D.2. In Appx. D.1, we consider the left-hand side of (59), and define ),
by constructing an estimate M z| x of Mz x using pre-training data and g, of g, using prompts. This will be referred to as

the conditional mean approach. In Appx. D.2, we consider the right-hand side of (59) and define 7, by using an estimate R
of R using pre-training data and py,z of py,z using prompts. This will be referred to as the information density approach.
For both approaches, we adopt a parallel structure and break the analysis into the following steps.

1. Decomposing the Global Error: We first provide a generic upper bound on the mean squared error

Hﬁp‘ﬁp”%ﬁ(@x) (60)

in terms of the individual estimators defined by the pre-training and prompting data. While some additional structure
may be employed in these bounds (e.g. the estimate lives in a reproducing kernel Hilbert space), the decomposition is
generally agnostic to the choice of method and can accommodate multiple estimation/learning strategies.

2. Interpreting the Source Condition: The error term related to the pre-training data refers to the distance between
the conditional mean operators M z|x and Mz x or the information densities R and R measured in an appropriate
sense. This is initially controlled by substituting a particular estimation method among those reviewed in Appx. B.
As mentioned in Sec. 3, the convergence rates of these methods rely on source conditions that describe the regularity
of the target function. We derive expressions that relate the source conditions to measures of dependence between X
and Z, so that, in turn, the rate can also be expressed in terms of these fundamental quantities.

3. Controlling the Prompting Term: The error term related to the prompting data will have a high probability bound,
which is stated in the form of an assumption. This generality is maintained because the estimation based on the
prompting data usually relies on simple primitives such as real-valued regression or finite-dimensional parameter
estimation. Statistically, these problems are easier than the vector-valued regression or Radon-Nikodym derivative
estimation problems that arise in the pre-training step. Thus, many possible methods can be used, and we provide
examples in each case.

4. Completing the Proof: We combine the steps above to state the final bounds on (60). They are stated in Thm. 10 and
Thm. 11, respectively.

The steps above comprise the subsections of Appx. D.1 and Appx. D.2 below. The bounds on mean square error on Q) x
are tied to misclassification risk on Px y via Appx. D.3 and Appx. D.4 to produce end-to-end performance guarantees. We
compare the sampling schemes used for prompting that are employed in the theoretical analysis to the sampling schemes
used empirically in Appx. D.5.

D.1. Conditional Mean Approach

This approach is based on the LHS of (59) yielding the result of Thm. 2. The exposition relies heavily on the background
introduced in Appx. B.4. In particular, we maintain the reproducing kernel Hilbert spaces H and G containing real-
valued functions on X and Z, respectively. We denote by L2(Qx; G) the Bochner space containing equivalence classes of
functions mapping from X to G. We also use the the bracket notation [-] x to index a functions equivalence class in L?(Q x)
(or L2(Qx; G) for G-valued functions).

Setup. We first introduce an element F), of L?(Qx;G) which can be used to represent the function & — [Mz|xg,](x).

We then describe how an estimator F of F, and an approximation g, of g, can be used to define an estimated predictor ),,.
Recall the boundedness assumptions supy, ,cx k(, ') < kmax < 0o and sup,, e 1(2,2') < lmax < 00.

Lemma 8. It holds that 1) [n,]x € L?(Qx), and 2) there exists a function Fy : X — G such that [F\]x € L*(Qx;G)
and

Eqx ., [9(D)IX]()lx = [(g, Fi())glx forall g € G. (61)
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In particular, [n,]x = [{gp, F+(-)) gl x-

Proof. Using the notation from Appx. B.1, if we show that the random variable w — g,(Z(w)) is contained in L?(5),
then the first claim holds by the definition of conditional expectation in L?(Q x ) (see Definition 3). Using the reproducing
property of the RKHS G, we have that

Eq. [92(2)] = Eq, [{90 (D)%) < 19,13 - B [$(2)I1E < bmax l95 13, (62)
granting the claim that [1,]x € L*(Qx). Next, fix any € X, and define the map
9 = Ta(g) = Mzxgl(®) = Eqx , [9(2)|X] ().

By the same argument as (62), we have that |T.(¢)| < v/Imax ||9||g, indicating that T}, is a bounded linear functional. By
the Riesz representation theorem, there exists an element of G, denoted as Eq . , [¢/(Z)|X] (), that satisfies

Eqy . [9(2)|X] (x) = (9, Eqx , [V(2)|X] (x)) forallg € G.
Next, given the collection of Riesz representers {Eq , [#/(Z)|X] (x) : * € X}, one may construct the mapping
F,:X — G, defined by x — Fi(z) = Eq, , [¢(Z)|X](x) € G.

It only remains to show that [F,]x € L?(Qx;G). By Jensen’s inequality and the tower property (Lem. 2), we have that

/XIIF*(m)IIéde(w) SEQ[Y(Z)IIG < lmax < o0,
completing the proof. O

Now that we have identified the vector-valued function of interest, F,, we can consider an estimation procedure that will

-~

return F' = F), with [F]x € L*(Qx;G) and regularization parameter A > 0. Then, we may define the estimator 7), of 7,
via the inner product

ip(x) = (G, F (), (63)

where g, satisfies some approximation bound with respect to g,. Our decomposition will expose an error term for which
we can apply Thm. 7, which describes the convergence rate of spectral regularization learning.

D.1.1. DECOMPOSING THE GLOBAL ERROR

Returning to the original quantity we wish to control from (58), we apply the following decomposition.

Lemma 9 (Error Decomposition). For any choice of F € L2(Qx; Q) it holds that

19, — T)PH%Z(QX) < 3lg,ll3 - IF — F*”%Q(QX;Q) + 3||F*||%2(Qx;g) o — 9olI3
+ 319, — gﬂ”é : ||ﬁ - F*Hi?(Qx;g)»
Proof. Using the reproducing property of the RKHS G and Young’s inequality we have that
19, — ani?(QX)
= [ tinfa) = n,(@)0x (@)
<3 /x (g, F(x) — Fu(2))5dQx () + 3 /x (F(@), 8 — 9,)0dQux (x)

+3/x<ﬁ(w> — Fu(@),3, — 9,)0dQx (@),
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Then, applying the Cauchy-Schwarz inequality in G, we have that

||77p - W/JH%R(QX)

<3|lg,l3 - /x”F(ﬂ?) Fy()]|3dQx (z (/ | ()][5dQx (= )) 10 — 90115
315 =9l [ 1F@) - P.@)Z0x(@)

=3llg,llg - I F - F*H%P(QX;Q) + 3||F*||%,2(Qx;g) o = 9oll5 (64)
+3l9p = 90112 - |1 F = Fulli2(0x:0):

the result as desired. O

In the decomposition of Lem. 9, we observe the dominating terms ||g,[|%- |F—F, ||L2(Qx gy and || F, HL2 @x:¢) 1190 — 9oll3s

along with the higher order term ||g, — g,[|Z - |F — F, 12, (@x:g)- We consider estimators F and g, based on kernel
regularized learning techniques in order to bound the domlnatlng terms, as a function of N and M. The bounds are
optimized individually with respect to the regularization parameters of each learning objective.

D.1.2. INTERPRETING THE SOURCE CONDITION

To approach this, we associate our function of interest F, € L%(Qx;G) to an object C, € HS(L?(Qx),G) by way of an
isometric isomorphism introduced in Thm. 6. This then allows us to derive a convenient formula for the quantity || Fy|| g,
which appears in Asm. 10, and relies on the interplay between H and L2(Qx ) described in Appx. B.4.

Lemma 10. Let (g;)jcs be any orthonormal basis (ONB) of G and recall the eigenfunctions ([ex ;|x )icr from (36).
Assuming that || F|| g is finite, it holds that

IEIE =D uxi(Maixlgs]z: lexalx a0,

iel jeJ
Proof. By the definition of ||-|| 3, we have that
[Fells = ICulls = IC T llus(z@x).6) (65)
Then, notice that by the eigendecomposition (36), we have that
T"?[f]x = 0forall [f]x € (cl(range(Ix)))*

Thus, when computing the (65), we may restrict HS(L?(Qx ), G) to HS(cl(range(Ix)),G). This allows us to employ the
eigenvectors ([ex ;] x )ier as a basis of cl(range(Ix)) when computing the norm. We have that

(b
8/2
- ||C T / ||HS cl(range(Ix)),G)
2
= Z Z (95, C.TY? lex,ilx)g (by definition)
icl jeJ
=YY uxi{9), Culexilx)g (by (36))
i€l jeJ
- 2
= 1(Ch 95 @ lexal s w000
icl jeJ
= Z Z Z ZM)_([Z@IC ® [frlx,9; ® [exai]X>HS(L2(QX)7g) A @ [filx,9; ® [eX»i]X>HS(L2(QX),g)7 (Lem. 7)

i€l jeJ keJ le]
where fy(x) = (Fi(x),95)g = Eqx., [9x(Z)|X] (z). Phrased in terms of the conditional mean operator Mz x :
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L?(Qz) — L?(Qx), we have that

[fe]lx = Mz x[gx] 2
Plugging this into the display above, we have that
1F. 113

= Z Z Z Zﬂ)_(i<!]k: ® (Mzx[gkl2),9; ® [CX.i]X>HS(L2(QX)’g)<gl ® (Myzxlaillz),9; ® [GX,i]X>HS(L2(QX)’g)
il jeJ keJ led

= Z Z Z Z“;(,ﬂi@k’gﬁg(glﬂgj)g (Mg x 9]z, [ex,i]X>L2(QX)<MZ|X[91}27 [eX,i]X>L2<QX)
icl jeJ ket et

= > (M xlgslz: lexax ) g
iel jeJ

where the last step follows from the fact that g1, g2, . . . is an ONB of G. This completes the proof. O

It remains to select a choice of the collection (g;);cs. Note that ([g;]z);ecs does not form an orthonormal system in
L?(Qz), due to the distortion of the embedding. However, by explicitly writing the embedding I; (analogous to Iy
introduced in (35)), we can derive one. Consider the singular value decomposition

I = uji ([ez,k}z ® (Mlz/,iez,k)> ) (66)
keK

which is analogous to the one introduced for Iy in (38). The index set K is smaller in cardinality that .J, as the collection
(ez.k)ker forms an ONB of null(Iz)+ C G, whereas (g;);jcs should be an ONB for all of G. Thus, we can expand the
embedding [g;]z € L?(Qz) into

1/2 1/2
9]z =Tzg; =) Mz<k<9jaMz{keZ,k>g[eZ,k]Z-
keK

This decomposition allows us to simplify the equality in Lem. 10 further.

Proposition 3. In the setting of Lem. 10, it holds that

B 2
IEIG =0 > nxbnzi(Mzixlez,;lz, [exlx )12 ©n
el jed
—B/2 1/2
= 1T "M x T/ s 10 L2 @) - ©%

In particular,

1/2
E = 1B 0 i0) = IM21x T/ s 120

Proof. The sequence of functions (,ulz/ ie z,k)ker form an ONB of null(I z)* C G. Because .J indexes a basis of G, we

have that K C J. Then, we may complete (ulz/iezk)ke;( to form the basis (g;);jes of G, where g; = ,ulz/j-eZJ for all
j € K and g, is defined arbitrarily for j ¢ K. Plug (g;);cs into the right-hand side of the formula given in Lem. 10
gives (67), the first part of the claim.

For the second equality, we note that ([ex ;]x)icr and ([ez ;]z) jes form orthonormal bases of cl(range(Ix)) and
cl(range(Iz)), respectively. We complete them (using the index sets I and J) to form (possibly uncountable) orthonomal
bases of L?(Qx) and L?(Q 7). Then, by the definition of the Hilbert-Schmidt norm, it holds that

2
—B/2 1/2 —B/2 1/2
||TX / MZ\XTZ/ HI2-IS(L2(QZ),L2(QX)) = ZZ<TX / MZ\XTZ/ [EZJ]Za [eX,i]X>L2(QX)
icl jeJ
_ 2
= > uinz; (Mg xlez;)z, lex.ix) 20
i€l jeJ
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where we used in the second line that [ex ;]x € null(T)_(’B/z) fori € I\I and [ez ]z € null(le/z) for j € J\J. This
gives the (68) and completes the proof. O

It remains to interpret the equality in Prop. 3 to complete the analysis.

D.1.3. CONTROLLING THE PROMPTING TERM

From the decomposition given in Lem. 9, the estimate G, will be designed as to control the RKHS-norm error ||g, —
ngé. We phrase the assumption generically, but in a way that is reflective of the convergence rates seen in real-valued
nonparametric regression. Recall the probability space (€2, F, P) introduced in Appx. B.1.

Assumption 14. For constants 6 € (0,1], M > 1, and w,, € (1/2, 1], there is an event £(J, M,w,) that is independent of
the pre-training data (X1, Z1),..., (Xn, Zn), such that on £(8, M, w),),

2wp—1

e
19, = 95l < CB7 plog(1/6)M =71 (69)
for a constant C' independent of § and M. On (Q2, F, P), the event £(J, M, w,) occurs with probability at least 1 — §/2.

The notation w, is chosen for the constant that determines the convergence rate, because it can be interpreted itself as a
source condition constant for a real-valued nonparametric regression framework. Indeed, consider the case in which g, is
computed using kernel ridge regression with parameter A. Via the proof of their Theorem 2, Smale and Zhou (2007) show
that with probability at least 1 — 6/2,

195 = 9pllg < Clpy,z)log(4/9) [BTM*”Q/\*1 T ] (70)
estimation approximation

where C(py,z) is a constant that depends on the prompting measure py,z and the choice of kernel. Optimizing the bound
yields A\ = A\yy ~ M —1/2wp+1) \which ultimately leads to the convergence rate (notice the square) in (69). We comment
that the choice to control the error in §, in G-norm comes from the vector-valued regression framework, in which the
output space of the target function always lies in L?(Qx; G). In isolation, the mean squared error of J, can be controlled
both in L?(pz)-norm as well as interpolation norms in between L?(pz) and G (see Fischer and Steinwart (2020), for
instance). Indeed, when applying the decomposition (70) in L?(pz)-norm, Smale and Zhou (2007, Lemma 3) show that
the approximation error decays as A“# (instead of A*»~1/2). In this case, the optimum is achieved at \y; ~ M ~1/(2wp+2),
so that ||g, — gp||i2(pz) enjoys a convergence rate of M ~«e/(@pt1),

D.1.4. COMPLETING THE PROOF

We may now prove Thm. 2. Next, we place the requisite conditions on 3, given eigendecay assumptions on Tx and T 2,
and singular decay assumptions on Mz x (see Appx. B.2 for a review of these operator decompositions). Under these
assumptions, we will have that all operators will have a countably infinite number of non-zero eigenvalues/singular values.

Assumption 15 (Eigendecay and Singular Decay). Let the eigenvalues of T x, eigenvalues of T, and singular values of
M x be given by {ux,i};ﬁl, {NZ,i}fip and {o; };-,, respectively. There exist positive constants ¢, C, yx, vz, and vx, z
such that for all ¢ = 1, 2, .. ., we have the inclusions

pix,i € [ci77X,CiTX] g € [¢iT7,Ci77] and oy € [ci X7, CiTIX7]

Assumption 16 (Basis Alignment). There exists a finite index m € N and a permutation 7 : [m] — [m] such that the
operator Mz x admits the singular value decomposition

Mzix =Y orplezilz ® lexilz+ D oilezilz ® lex.iz.
i=1 j=m+1

Asm. 16 allows us to reason about the finiteness of the Hilbert-Schmidt norm ||T)_(ﬁ M 7| Xle/ QH%IS(Lz(QZ) L2(Qx))
based on the eigendecays of the various operators introduced in Asm. 15. These will imply a maximal value of the source
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condition constant (3.

Lemma 11. Under Asm. 15 and Asm. 16, it holds that || F,||g < +oc if and only if

2 -1
8 < Yx,z + Yz .
X

(71)

Proof. For ease of presentation, we extend the permutation 7 from Asm. 16 so that 7(¢) = ¢ for all 4 > m + 1. Applying
the result from Prop. 3, and using the eigenbases of T x and Tz, we see that

— 2 1/2
IE2 = 1T *Mzix T I 2s (0, L2(0x)

= . . 2
2 ZJ 'YZ,LB’YX <MZ\X[€Z,j]Z7 [eX’i]X>L2(Qx) (ASIH 15)

Qe
e

@
Il
-
.
I
=

ZZ] 121X 62 wllezklz: lez;lz)120,)lexrlx, lexalx)ra gy

%\°
M2
gk

=1 j=1k=11=1
<[eZl]Z7[e } >L2(QZ)<[6X,I]X7[eX,i]X>L2(QX)
CL [Zlﬁvx V7 5 (i) + Z Z'B'YX_’YZU?‘| (Asm. 16)
1=m-+1
m
Ci [Zlﬁvx V7 52 20 —|—C Z iPYx =z —27x, z] 7 (Asm. 15)
1=m-+1

where the rightmost term is finite only if (71) holds. Arguing similarly for the upper bound, we have that

2 C I\ BYx —Vz 52 S BYX —Vz—2VX .,z
1B < G5 | D07 %0% +C 3 |

=1 i=m+1

where we may claim that || F} || < oo if (71) holds. O

We can now wrap together the results of this section. Recalling the estimator F = F) based on vector-valued spectral
regularization learning, described in Appx. B.4. The well-specified case refers to the condition that 3 > 1, indicating that
the RKHS in which F is learned does indeed contain F,. When 8 < 1, we require more sophisticated tools, namely,
vector-valued interpolation spaces. In both cases, after establishing the results above, we capture the sample complexity
via Thm. 7 from Appx. B.4.

Well-Specified Case. Under Asm. 15 and Asm. 16, this implies via Lem. 11 that

2 —1\" 2 —
1§5< Yx,z + 7z > < Yx,z + 7z fort € [0,1). (72)

X 05e

Thus, we may use the parameter ¢ € [0, 1) to measure the degree to which the upper bound is saturated. This yields the
following result, which reflects Thm. 2 from the main text. To state the result, define the quantity

qt) = 2vx.z +7z — Diyx ! (73)

and observe the following, which is an immediate consequence of Lem. 9, Thm. 7, and the formula (72). Note that the
constant p in Thm. 7 refers to 1/yx in the notation of this section.

Theorem 10. Consider failure probability § € (0,1]. Let Asm. 14, Asm. 15, Asm. 16, and the conditions of Thm. 7 hold
with ||T 1/2 MZ|XT HHS 12(Q7) L2(Qx)) < +00. Then, for 1), defined via (63), there exist a constants t € [0,1) and
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C > 0 such that with probability at least 1 — 6,
N 2 < __a(t) 2 1/2 2 ,%
19, — 77pHL2(QX) < plog(1/6) | N7 a0+t + BTHMZ\XTZ s M =T
forall N > C plog(N/0). where ||-|lus = ||-[lasw2(0,),12(Qx))-

The term ||M 4 x T ?||?< is equal (via Prop. 3) to the ||[Fy||25,,, . term from Lem. 9, and is rendered (along with B2
Xtz IlHs q P L2(Qx;9) g T
as the constant C'(Q) x,z) in Thm. 2.

Mis-Specified Case. The first inequality of (72) holds only when F is well-specified, or contained in the vector-valued
RKHS used in the estimation procedure that defines (43). We may employ the interpolation space machinery from
Appx. B.4 to achieve a convergence guarantee in this setting. Recall the constant & € [1/vx, 1] shown in Asm. 10,
which is associated to the continuous embedding I¢™ : [H]* < L*°(Qx). This constant describes the RKHS itself,
and not the specific target function F,. The rate of Thm. 10 may still be achieved for function classes that are “not too
mis-specified” in the sense of Case 1 from Thm. 7. The inequality (71) provides a sufficient condition for Case 2, that is,
when § 4+ 1/vx < «. Indeed,

2 @71 2
XZHNVZ gy @ X2 (74)
00¢ Yx

The left-hand side may also be phrased differently as 2vx z + vz < a7yx. Thus, we may interpret ayxy € [1,7x] as
a parameter that controls the mis-specification threshold. Concretely, it becomes easier for F, to be mis-specified when:
vx,z is low ((X, Z) are highly dependent), vz is low (the effective dimension of Z is large), or vx is high (the effective
dimension of the input X is small). Under the sufficient condition (74), along with Asm. 15 and Asm. 16, the best upper
bound on the convergence rate in the current mis-specification model (see Thm. 7, Case 2), is then

2vx,z+vz -1

_ X z7TVZz _ 2wp—1
75 = o[£y S Plog(1/8) | N7 =75 + BY[Mzx T [fis M~ =0
for N sufficiently large.

D.2. Information Density Approach

This approach is based on the RHS of (59) and yields the result of Thm. 3. Here, we assume that during the pre-training
phase, the user produces an estimated function R, which is an element of a reproducing kernel Hilbert space (RKHS).
Unlike in Appx. D.1, where we approximated g, using a function g, (which aligns with the conditional mean viewpoint),
the information density viewpoint in this section warrants estimating the mean of a function under py,z directly, using

samples (Y1, 21),...,(Yar, Zur) % p,. 1t is also important to point out a slight difference in the sampling model for the
pre-training data. In order to define the estimate (45) for our method of choice (and similar Radon-Nikodym derivative
estimation techniques), it is typically assumed that we observe data from both distributions in the ratio. In the case of Q) x, ~
and @ x ® @z, this corresponds to observing [V, paired examples and /V,, unpaired examples such that N = N, + N,.
For simplicity, we assume that N, = N, = N/2, but remark that the regime in which IV, > N, is an interesting and
practically relevant model for future investigations.

Setup. Let S denote a separable reproducing kernel Hilbert space (RKHS) of real-valued functions on X x Z, with
canonical feature map ¢ : X x Z — R and reproducing kernel k : (X x Z) x (X x Z) — R. We will express the error
in terms of the RKHS norm difference ||§ — R||%, among other terms that capture a notion of “distribution mismatch”
between the prompting marginal p and the pre-training marginal Q7. This may also be interpreted as another instance of
prompt bias. This error occurs because at prompting time, the user does not necessarily have any data drawn from Q) z. As
before, we maintain sup {k(x, z,z’, 2’) : (x,2), (&', 2') € X X Z} < Kmax -

Recall that the true R is a kernel for the conditional mean operator when integrated under () 7 (see Lem. 5), but can also be
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related via Lem. 6 to the marginal distribution pz:

p() = Epy , [r(Y)R(z, 2)] + /ng(Z)R(wvz) (dQz(2z) — dpz(2)).

This motivates the approximation py,z expressed directly in terms of the prompt distribution, and the estimator

ip(@) = Epy , [r(Y)R(z, 2)). (75)
Below, we consider the empirical measure
1M
Py,z = i Z d(v;,2;) (76)
j=1

so that for fixed € X, (75) reduces to a sample mean.

D.2.1. DECOMPOSING THE GLOBAL ERROR

The estimation error decomposition below will take the two differences into account: between the marginal distributions
(z and pz and between the joint distribution py,z and py,z. For the latter, we will define random variables that take
values in a Hilbert space (specifically, L2(Qx)). This will allow for controlling deviations between Py,z and py, z directly
for the test functions being integrated. Define the independent and identically random variables Wy, ..., Wy, by

W :=r(Y;)R(:, Z)),

and the element of L?(Q x) (interpreted as the expectation) E,,, , [W1] : & — E [r(Y1)R(z, Z71)].

PY,Z

Lemma 12 (Error Decomposition). Assume the following conditions.

s pz < Qg with Q z-square integrable Radon-Nikodym derivative (i.e. X*(pz||Qz) < +o0).

* Ris contained in L?>(Qx ® pz) and L*>(Qx @ Q7).

Then, it holds that

175 = 1o 12 (@) < 387 (Kimax IR = RIS + IRIZ2(qy 00 X (0211 Q2)) (77
M
+3lla7 i Wi = Epy o Mll72g -

Proof. Using Lem. 6, we have that for () x-almost all € X,

~

(@) — (@) = Epy , r(V)R(, 2)] — By, [r(Y)R(z, 2)
+ / gp(2)R(@, ) (0Qz(2) — dpz())
Z o~
— By, [r(V)(p(z. Z),R — R)]

+ / rR(@, 2) (ddy 2 (4. 2) — dpy 2y, 2)
YxzZ

+ / ap(2R(@, 2) (AQz(2) — dpz(2)
Z
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Then, we have that

10 = ol < 3Bax | (Bov o M) (0(X, 2),R = R)) | (78)
+ 3/x (/yxz r(y)R(z, 2) (dpy,z(y, z) — dpy,z(y, z)))2 dQx (x) (79)
=1 ( [ an(R@.2) (@2 () - dPZ(Z)))2 4Qx (). (80)

To control (78), apply boundedness to achieve
B [(Epvo [r()(0(X, 2),R=R)P) | < B2, IR—RIZ,

For (79), the term is equal to ||ﬁ E;Vil W; —Epy , [W1]||i2(QX) by definition of W1y, ..., Wy,. For (80), we use that
pz < Qz and ||g,|lc < B, and apply the Cauchy-Schwarz inequality on L?(Qz) so that

( [ 9(2R@. ) (0Qz(2) - dpz(z))>2

_ ( /Z 0,(=)R(@, 2) (1 - %(z)) sz<z>>2

d 2
< IRl [ (1 552@)) dQz(a).

X2 (pz1Qz)

Taking the expectation over @ x gives Eg [|R(X,-) ”%P(Qz) = RH%P(Qx@Qz) and completes the proof. O

Given the decomposition shown in Lem. 12, it remains to bound both the error term ||§ — R||% regarding the estimated
Radon-Nikodym derivative R, and the approximation term | & ijvil W; = E,y , [Wh] ||%2(Qx)' We will employ Cor. 2
to this end. Unlike the arguments of Appx. D.1, there is only a single kernel regularized learning algorithm at play, that is,
for the estimation of R. We proceed to interpret the source condition Asm. 12.

D.2.2. INTERPRETING THE SOURCE CONDITION

To proceed, we introduce some notation related to LQ(Q x ® Qz) and the RKHS S. These objects are also introduced
in Appx. B.4, so we review their properties briefly. Let [h].. index the equivalence class in L?(Qx ® Qz) for a square-
integrable function h : X x Z — R. This indexing can also be identified with an embedding operator 1x 7z : S —
L2 (@x ® Qz), which is Hilbert-Schmidt under the boundedness of the kernel k by fmax. Letting Sx z = I}’ 7
L?(Qx ® Qz) — S be its adjoint, we have that Ix zSx 7z : L2 (Qx ® Qz) - L?*(Qx ® Qz) and Sx zIx 7z : S = S
are compact, trace class operators. These form the analogs of (T x, Tz) and (Cx, Cz), respectively, from Appx. B.4. Via
Thm. 4, we write the eigendecomposition

IxzSx.z = Y (s [ei]) 2 (e €il~s (81)
el

where we may take each representative e; as an element of S (Steinwart and Scovel, 2012, Lemma 2.12). Then, we also
have that

Sxzlxz =Y mil ' e sni’ e, (82)
i€l

These constructions (along with Prop. 2) give us the following relationship between the Hilbert-Schmidt norm of the
conditional mean operator M7 x and the Radon-Nikodym derivative under the condition Asm. 12. In fact, finiteness
follows from the source condition itself and boundedness of the kernel.
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Lemma 13. Under Asm. 12, it holds that

2 1 1
IM i s e (0m 22 0x) = 15 2R 22 @x o0 = 3 125 (Sax o 1 %ei) .
el

Proof. Without loss of generality, assume that R € null(Ix, z) " (as the component in null(Ix,z) will be excluded from
the norm calculation anyway). We expand the expression for R appearing in Asm. 12 on an ONB of null(Iy, z)". To do
so, combine (81) and (82) to introduce the singular value decomposition

Ivz = w2 Cou %e)gled
el

Then, it holds under Asm. 12 that

1/2 1/2 1/2 1
R= ZM’L SQX z My / >3:u1/ €i andIX zR= Z/J‘B+ / SQX Znu’z/ >g[el]
i€l iel

Using that ([e;]~ ) is an orthonormal system, we may use the second expression to perform the computation. O

To make use of Lem. 13, we now interpret (3 in terms of eigendecay exponents of the operators in question.

Assumption 17 (Eigendecay and Singular Decay). Let the eigenvalues of Ix zSx z and singular values of M ZIX be
given by {y;};-, and {o;};-,, respectively. There exist positive constants ¢, C, & > 1, and yx,z > 1/2 such that for all
i =1,2,..., we have the inclusions

pi < [eim®,Ci™%] .and o; € [ci X7, CiTIX7]

The following relationship holds over an interval in 3. We explicitly account for the dependence of S , on 3 when it
comes to satisfying Asm. 12.

Proposition 4. Let Asm. 17 be satisfied. Let Asm. 12 be satisfied for all 0 < 8 < B < +o0, where Sq , = Sqx., (B) is
bounded in S-norm by B for all B € [0, 5]. Then, we have that

1 (B2C?*+1 + H)a(28+1) -1
Xz =0 B2C2 1028 + 1)

Proof. Write
2

2 +1 1/2
||MZ|X||HS (L2(Qz),L%(Qx)) ZU = ZM ? Qx, Zalui/ €z‘>5
i€l

172 (2
= ||SQXZ||sZu2ﬁ+1 (Sax.s/ISax.z s i e
< B Z [‘3+1/2) (83)

The right-hand side is finite, for all 5 > 0, as the (u;)$2, sequence is associated to a trace class operator. Next, using that
ufH/Q < 020+1=(B+1/2)e " we use Lem. 3 to upper bound (83) via

i/ﬁ(ﬁﬂﬂ) L OB+ o _ c2o
’  (28+1)a-1 1-(28+1)"ta™l’

i=1
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On the other hand, using Definition 8 and Lem. 3, the Hilbert-Schmidt norm is lower bounded via

C2

2
IMzixlls @@z 2@ 2 57, 1

Combining both bounds, we have

C2 - 32c2,8+1
Q'YX,Z -1~ 1- (25 —+ 1)—1a—1 ’

Inverting the bound gives the condition

S @ I +1
X2 =5 | BroRsil a(2B+1)
1L [(BPCHFT 4+ Pa(2641) - 1
2 B2C25+1a(23 + 1) ’
the result as desired. O

From Prop. 4, we consider the case in which & — oo (the data is finite-rank under independence), and derive the singular
decay condition

1 (B>C?H1 4 ¢ 1
725 (w) 73

for ¢ > 0. While the relationship is not as direct as in the case of (72), we may still observe some regimes in which a

“maximally smooth” target function boils down to an independence assumption. This holds intuitively as well, in the sense
that R = 1 holds (Q x ® Qz)-almost surely if and only if X and Z are independent.

D.2.3. CONTROLLING THE PROMPTING TERM

The term that relates py, 7 to py,z is simply a measurement of the deviation of a sample mean from its population counter-
part, within a Hilbert space. Thus, it is reasonable to assume an O(1/M) scaling on this term. Below, we use the notation
(X!, Z!) to indicate a sample drawn from Qx ® Qz, i.e., an unpaired example.

Assumption 18. For constants § € (0,1] and M > 1, there is an event £(J, M), which is independent of the pre-training
data {(X;, Z:)}/2 {(X!, Z)YN/2, such that on £(5, M),

=1 1/ Si=1"
2 _
5 S5 Wi = Epy s W] [lf2 gy < Cron(@x) plog(1/8) M, (84)

where Ck ,((Q) x) depends only on its arguments and r, and is independent of M and . On (2, F,P), the event £(J, M)
occurs with probability at least 1 — §/2.

The scaling shown in Asm. 18 can be satisfied by placing a Bernstein-type condition on the random variable W; and
applying, for instance, the Pinelis-Sahanenko inequality (Pinelis and Sakhanenko, 1986). Specifically, consider the case in
which there are positive constants o, ¢ > 0 such that

M

q! _
ZEpy‘zHﬁWj - ﬁEr)y,z [Wl]”%z(Qx) < 5020[] 2
j=1

for all ¢ > 2. Then, (84) is satisfied, wherein the scalars o and ¢ will scale as 1/M, and have additional constants that
depend on 7, R, py,z, and Qx (but not Q7 or Qx, 7). This generates the constant Cr ,(Q x ) above.
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D.2.4. COMPLETING THE PROOF

Well-Specified Case. Because Prop. 4 yields an inexact relationship between the singular decay exponent yx 7z and the
source condition constant /3, we maintain the statement of the result in terms of this constant. The following result comes
as an immediate consequence of Lem. 12 and Cor. 2.

Theorem 11. Consider failure probability § € (0,1]. Assume that the conditions of Lem. 12 are satisfied and that N is
large enough such that the conditions of Cor. 2 are satisfied, in addition to Asm. 18. Define
Kuax = 14 (42 + Kmax)>.

Then, with probability at least 1 — 6, it holds that
- 2 55 -t -1 2
170 = MpllL2 (@) S Plog(1/8) | Kinax N7 77T + Crp(@x)M ™ | + X7 (pzQz),

where Cr ,(Qx ) depends only on its arguments and r, and not M or 6.

The constant Cr ,(Q x ) appears directly from Asm. 18.

Mis-Specified Case. As mentioned in Appx. B.4, the mis-specified case (R ¢ S) for Radon-Nikodym derivative estimation
problems is less understood than the mis-specified case for real-valued and vector-valued nonparametric regression. We
intend here to highlight the overall decomposition of error, for which such results could be plugged in as well.

D.3. Distribution Shift

The results of the previous two subsections provided bounds in high probability on the term ||7, — 1, |3 (Qx)- Returning to

the original error decomposition of (12), we would like to relate this to a similar bound on ||7), — 1, ||, (Py)- We collect two
general techniques for performing this change of measure, which leads to either a multiplicative or additive error depending
on the assumptions the user is willing to make.

Lemma 14 (Distribution Shift). Assume that Px and Q) x have densities px and qx with respect to a common dominating
measure vx on the measurable space (X, B(X)), and define the total variation metric

TV(Py, Qx) i= /x Ipx (@) — gx ()] dvx ().

Then, for any 1 : X — R such that [n]x € L?(Px) NL2(Qx) (see Appx. B.1), the following holds.

o Ifthe essential supremum ||| oo := inf {supAeB(x) Supgeca [n(®)| : vx (A°) = 0} is finite, then we have the additive
relation

10172 Py < IMllE2(0x) + 3% TV(Px, Qx)- (85)
* IfQx < Px, and iQTj:(w, z) < Bp,g for Px-almost all x € X, then we have the multiplicative relation
InlE2pe) < Bralnlizox)- (86)
Proof. In the case of (85), we apply Holder’s inequality to achieve
1122 (pys) = Epy [0*(X)] = Eqy [n*(X)] +/x?72(fv) (px () — gx () dvx (z)

< nllZson + 1% /x Ipx (@) — ax ()] dvx (=)

= nlE2 (g + InlZ TV(Px, Qx),
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which proves the first claim. For (86), on the other hand, write

Iz (py) = Epx [12(X)] = Eqy [n*(X) 5% (X)] < Bralnlfzqy):

proving the second claim and completing the proof. O

From Lem. 14 and the boundedness assumption |r(-)| < B,., we alter (12) slightly to read
17 = pllE2(pyy < 2l = pllE2py) + 2005 = MpllE20) + 4B7 TV(Px, Qx), (87)

and plug in the previous bounds on the ||, — 7, |3 (Qx) term for an overall result.

D.4. From Regression to Classification

Throughout this appendix, we evaluated the quality of an estimated map 7, : X — R via its L?(Q x) distance to some
target predictor 7),. This goal was based on the error decomposition (87), which feeds into ultimate upper bound for
170 — 1 ||%2( Px) where each term was controlled using the techniques of Appx. C, Appx. D.1, and Appx. D.2. In the case

that r : Y — R represents a classification or structured prediction problem (e.g. r(y) = 1 {y = ¢} for class ¢ € Y), it is of
clear interest whether the control of mean squared error translates to risk guarantees for classification error. Establishing
these guarantees, using the notion of a structure encoding loss function (SELF) described in Bach (2024, Section 13.2), is
the subject of this section.

Assume that Y is discrete, or that [Y| < co. We consider a loss function ¢ : Y x Y — R and a regular conditional distribution
Py x(-|z) (see Definition 4), under which £(-, y) is integrable for all (x,y) € X x Y. The corresponding risk of any map
h: X — Y will be denoted

R(h) = Epy y [((Y, h(X))] - (88)
There are a number of assumptions that mark the SELF framework.

Assumption 19 (SELF Loss for Structured Prediction). Consider the existence of a Hilbert space F, and two mappings
x:Y— Fand ¢ :Y — F which act as embeddings of objects in Y. Then, assume that ¢ satisfies the equality

Uy, y') = (x(9), (W) ~-

As of yet, no assumptions (such as being an RKHS) have been placed on F. Under Asm. 19, the Bayes optimal predictor
(with respect to (88), and not mean squared error) is given by

h.(x) € arg min Z Uy, y’)Py|X(y|IE),
y'ey yey

where ties can be broken arbitrarily. In other words, h, € argmin, R(h). Additionally, because Y is finite, we may take
the expectation

> Uy, y)Prix(yle) = > (x(1),£)) 7Py x (ylo)

yeY Y
= (Epyy X(V)|X] (2),£(Y)) 7

which is only based on finite sums of vectors in F. Next, we define the notation of a surrogate loss. To construct a predictor
(e.g. classifier), we consider a function s : X — F called the score function and a map dec : F — Y known as a decoder.
We will then define an integrable surrogate loss L : Y x F — R, for which we can define the risk

RE(s) = Epy., [L(Y, 5(X))]. (89)
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We can then define the Bayes surrogate risk® as

The relationship between the surrogate risk (89) and the true risk (88) for squared surrogates is given in the following
result.

Proposition 5. (Bach, 2024, Section 13.4.2) Consider the surrogate loss and decoder given by

L(y, s(x)) == [|£(y) — s(x)]|F and dec(h) € argengin (X(®¥), ) 5.

Then, for any score function s : X — F, it holds that

R(decos) — R(hy) < 2sup||x(y)[ 7 - \/RE(s) — RE.
yeY

We stated Prop. 5 generally; we now map it to classification, the prototypical task associated with zero-shot prediction.

LetY = {1,...,C}, where C denotes the number of classes (in contrast to the absolute constants in Thm. 2 and Thm. 3).
Then, we have that x(y) is the one-hot encoding in R, whereas £(y) is the complement, that is, £;(y) = 1 — x;(y) for
c¢=1,...,C. Thus, their inner product generates the 0-1 loss

Uy, y' ) =1{y #y'} = (x(4),£¥Y))pe-

Then, we immediately have that sup,,cy||x ()| = 1. It remains to determine the score function s : X — R®. Note that
we used a function r to define (3) and (4); we will now use C' such functions ™V ... r(® each defined by

r(y) =¢&(y) = 1{y = j} (90)
which in turn gives us the individual mean squared error minimizers
17 (@) = Epy o [ (V)| X] (@) = Ppy [V = jIX] (@)-

Finally, we may use any of the estimation strategies developed in Appx. D.1 or Appx. D.2 to produce estimators
iy ..., 057 (i.e. the predicted probability per class) to give the score function

s(z) = (7 (x),..., 7 (x)) € RY. 91)

Each ﬁ;” is then associated to the conditional mean given by the prompt distribution, which we denote g;ﬁ. As a final step,
we use the classical relationship between mean squared prediction error and mean squared integrated error, as seen below.

Corollary 3. For the score function given in (91) and decoder given in Prop. 5, it holds that

R(decos) — R(hy) < 2\/2]@:1”77;;) — 112 (-

Proof. Given Prop. 5, we need only show that
C
RE(s) = RE =105 = 0|32 (py)- 92)
j=1

First, note that for the score function s given in (91), it holds by (90) that

c

L(y,s(@)) = €() = s(@) e = D_(r(y) =0 (@))%,

j=1

>We assume the map @ — infre 7 Epy , [L(Y, h)|X] () to be measurable as a technical consideration.
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EPYAZ [ﬁ(Z)‘Y :Cat] Unbiased
5 | L

Unbiased Ep, , [B(2)]Y =dog]

“my Kitten fs Class Conditional

meowing”

“st. bernard

Class Conditional rescue near me” |

&0 Template-Based
_ “a realistic photo 2 of a cat”
Template-Based ‘ o, 2 _

1 TS ‘ ”i‘4 DR

Figure 5. Illustration of Prompting Strategies. A hypothetical distribution of embeddings 3(Z) parametrized by two classes (“cat”
and “dog”). Three prompting strategies (template-based, class-conditional, and unbiased) are shown with example text and resulting
embeddings in R%. Colors represent the probability of each class given the embedding.

and after taking the expectation over Px v,

c
RF(s) = Epy , [L(Y,s(X))] = Y Epy, [(FO(Y) =7 (X))?].
j=1

Then, by the bias-variance decomposition for each ¢ = 1, ..., C, it holds that
c c c
D Epyy [(rO0) =0 (X)) =D 105 =0 MRemy) + D Erey [(MO(Y) =0l (X))?] -
j=1 j=1 j=1
RL(s) RL
Rearranging terms gives (92) and completes the proof. O

In particular, when applying the bound above to results of Thm. 1, Thm. 2, and Thm. 3, we derive a bound of the form

R(decos) — R(h) < \/CEp, I(X:Y]2)] + S5, a5 — 05 I2a(p,, + C TV(Px. Qx)

(t) 720.1 -1
VC plog (C/9) (N_ (D 4 M Tt ) (conditional mean)

B )

VC plog (C/$) (N*Z(BH) + M*1/2) + /D,2(pz||@Qz) (information density)

which holds with probability at least 1 —§. While generalization bounds for classification and structured prediction can have
sharper dependences on the number of examples and number of classes for supervised learning (e.g., via the techniques
of Cabannnes et al. (2021) and references therein), the conversion from regression to classification is a remarkably general
way to account for the residual dependence, prompt bias, and multiple stages of estimation that mark our problem.

D.5. Prompting Strategies

We have stated upper bounds on the statistical error in this section that depend on the size of the pre-training set N and
the number of prompts M. To state them more precisely, however, we must also specify the sampling schemes that lead
to these examples/prompts. Sampling of the pre-training data falls into fixed and well-understood categories, boiling
down to whether only paired examples or a combination of paired and unpaired examples are available. We describe
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these as part of the background (Appx. B.4), alongside the method to which they apply. However, the interpretation
of prompting (the empirical procedure used in (1)) formally as a sampling scheme from a probability measure py,z is
itself a contribution of this paper. In the results of Appx. D.1 and Appx. D.2, we considered simple random sampling
(Y1,Z4),...,(Ym, Zy) ~ py,z ii.d. to provide examples of scenarios in which Asm. 14 and Asm. 18 can be satisfied.
However, multiple practical and idealized strategies exist for prompting (such as the ones explored in Sec. 4). Below, we
represent them in our framework below, as ways to define py,z and approximate it with py’ 7.

* Template-Based: This technique reflects the earlier iterations of representing labels in natural language. Examples

include “photo of a __ 7, “realistic photo of a __”, “drawing of a __”, etc. Notice that the prompts have no
relationship with the class label. In our notation, this means that py,z = py ® pz, or in other words, that the
prompting distribution renders Y and Z independent. Then, a fixed number of m samples 2y, ..., z,, are drawn

directly from pz, generating the empirical measure p; = % 22;1 02, . Finally, we define py,z = py ® pz, where

py is fixed as the uniform distribution on the discrete set Y. Here, M = m |Y|.

¢ Class Conditional: This technique reflects the modern LLM-based techniques, such as CuPL (Pratt et al., 2023).
We parameterize the joint distribution using the conditional distributions py,z = Zye‘é pPz|y=y - Py (y) for each
class y € Y. Sampling from each pzy—,, occurs by meta-prompting the LLM (such as the one we use in Appx. F),
which generates samples z¥, ..., 2% and empirical measures pz|y—y = % S, 54:. Our final approximation is

PY,2 = Y yey Pzly=y - Py (Y), With M = m[Y].

* Unbiased: This techniques reflects the setting of Fig. 3, where the user may drawn samples from a joint distribution
Px y,z, where the marginal Px y is in fact the data on which the zero-shot classifier will be evaluated. Then, the
prompt distribution can be constructed, as we do, by drawing samples (y,, 21), ..., (Y, 2n) directly from Py z,
and defining py,z = ﬁ Z]Ail 5(yj,zj)). We call this “unbiased”, because the prompt bias term in Thm. 1 is zero for
this example. It is worth pointing out that even if Py z—. can be matched by the prompt distribution, the distribution
mismatch term from Thm. 3 will be zero if and only if p; = @z (or the prompt captions match the pre-training
captions in distribution). In this sense, Py,z may not be the ideal prompting distribution, but instead, Py |zQ z.

E. Self-Supervised Objectives and Cross Covariance Operators

In Sec. 3, we considered specific instances of both the conditional mean and information density approaches based on
nonparametric regression in reproducing kernel Hilbert space (RKHS). This reflected the statistical goals of Thm. 2 and
Thm. 3. In this appendix, we aim to draw relationships with other approaches based on optimizing self-supervised learning
(SSL) objectives, in order to align with practice. In particular, we focus on the relationship between such objectives and
the mean square contingency I(X; Z) introduced in Sec. 2. To do so, we make explicit the intuition that SSL objectives
(such as CLIP and VICReg) are implicit forms of dependence maximization between the representations cae(X') and 3(Z2).
Some of the arguments below have previously appeared in the literature—we do not claim orginality for them, but instead
aim to consolidate them together in a single vignette.

When it comes to specific SSL objectives, we describe here their properties as functions acting on a batch of encoded
data (a(x1),3(21)), ..., (a(xy,), f(z,). This abstract description is agnostic to the function class used for the encoder.
Reproducing kernel Hilbert space theory has been frequently used, in the recent literature, to define the function classes
involved in contrastive and non-contrastive self-supervised foundation modeling (Li et al., 2021; Balestriero and LeCun,
2022; Kiani et al., 2022; Johnson et al., 2023; Tan et al., 2024). We also mention that the precise characterization of
the function classes of various deep neural networks is an active area of research (Schmidt-Hieber, 2020; Scetbon and
Harchaoui, 2020; Parhi and Nowak, 2021; Wu and Long, 2022; Bartolucci et al., 2023; Unser, 2023; Siegel and Xu,
2023; Shwartz-Ziv et al., 2023; DeVore et al., 2025). However, these exciting yet still burgeoning theories of deep neural
networks have not yet reached a maturity level comparable to the one of RKHS theory (Wahba, 1990; Cucker and Zhou,
2007; Christmann and Steinwart, 2008; Bach, 2024) needed for the theoretical analysis we develop in this paper. For more
practical details on self-supervised learning, we point the reader to the recent survey (Balestriero et al., 2023).

Covariance Operators. To relate our theory (which centers around the mean square contingency measure of dependence)
to SSL objectives, we first draw the relationship to covariance operators of () x,z on particular function spaces. Let H{ be
an RKHS of real-valued functions X and G be an RKHS of real-valued functions on Z. Then, define the cross-covariance
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operator Cxz : G — H by

(h, Cxz9)3 = Covax,, (MX), 9(2)),

and the analogously defined auto-covariance operators Cxx : H — H and Czz : G — G. When Cx x and Cyzy are
compact, we define the powers Cﬁg( and Clz/ 22 in the sense of (39). It then holds by Baker (1973, Theorem 1) that there
exists a unique bounded linear operator Vxz : G — H, so that

Cxz =CYivy,Cl2. (93)

The operator V x z is called the normalized cross-covariance operator, or NOCCO for short (Fukumizu et al., 2005). As

an abuse of notation, the NOCCO (93) is sometimes communicated as V x z = C)_(l)fC X ZC;Z/ 2, though it is uniquely

defined without necessarily constructing the square-root inverses. To rigorously use the formula C;{%2C Xz C;Z/ % with a
well-defined adjoint, we must make assumptions on the closure of the range of Cx 7 and Czx being contained within the
closure of the range of Cx x and Cz, respectively. The Hilbert-Schmidt norm of the population NOCCO, when finite, is
equal to the mean square contingency

Vx,z

s = 1(X; 2), (94)

as shown in Fukumizu et al. (2007b, Theorem 4). The relation (94) requires a few additional technical conditions, such as
(H ® G) + R being dense in L?(Q x ® Qz) and Qx,z having joint and marginal densities®.

Variational Characterization of the Hilbert-Schmidt Norm. This operator is an essential component of the kernel
canonical correlations analysis (CCA) problem, which (with (94)) will be the common bridge that ties together SSL and
the mean square contingency. From the nonparametric CCA perspective, the singular values ()52, refer precisely to the
canonical correlations and the singular functions ((c;, 3;))$°2, refer to the canonical variates (Lancaster, 1958; Buja, 1990;
Michaeli et al., 2016). Returning to (94), this operator is estimated with a regularization scheme, i.e.

Vx.z = (Cxx + \)"/2Cx4(Cyz + AI) "2,

where C XX C xz,and C zz are the standard empirical covariance estimates (see Appx. B.4) and A > 0 is a regularization
parameter. Then, one solves the empirical CCA problem

d

max Z hi, V Vo 95
hiy...;ha€H onb 4 this Vix 20i)3 ©3)
91,--,9a€G onb =1

where o.n.b denotes an orthonormal basis. Setting aside matters of estimation, we consider how the norm quantity
IVx, z H%IS(Q 3 relates to the actual encoders returned by the CCA problem (95) (assuming that Vx,z ~ Vi z). Let

(s4)$24 be ordered singular values of the Hilbert-Schmidt operator Vx, z. In this case, denoting hy,...,hq € H and

SRecall that our definition of I(X; Z) does not include the square root that is usually used in the definition of mean square contin-
gency.
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g1, ---,94 € G the orthonormal bases of 7 and G resp. maximizing the criterion ((95)), we have
d
(hi, VX, 29i) 5 = (96)
i=1
(o)
=4 (”VXZH%JS@,H) -2 55)
i=d+1
= .|d (I(X, ALY s§>
i=d+1
o7

The two orthonormal bases maximizing the criterion (95) are actually the left and right singular functions of V xy as-
sociated to the leading d singular values (see Thm. 5). The larger the truncation level d, the closer the quantity is to the
mean-square contingency, up to the truncation level factor d.

In either the population (96) or empirical (95) problems, the functions are maximizing an objective that is a measure of

covariance with a constraint on variance. The constraint on variance is imposed by the norm condition on hy,...,hg € H
and g1,...,94 € G, respectively); see (Fukumizu et al., 2007a). This norm condition is relaxed into a penalization in
popular SSL objectives.

Indeed, several SSL objectives can be written in an analogous variance-regularized covariance form. This may offer
one intuitive viewpoint as to why estimators based on these objectives might exhibit similar statistical properties to those
analyzed in Sec. 3. We first describe a format for these variance-regularized covariance objectives and show that a number
of popular SSL objectives can be expressed in this form.

Variance-Regularized Covariance Objectives. Recall that o : X — R? and 8 : Z — R? denote encoders for X-
valued and Z-valued objects (often images and text, respectively). We denote the standard Euclidean inner product by
(u,v) = Z;lzl u;v; in RY. In either case, we consider a batch of data points (21, 21), .. ., (T, z,) wWhich are thought to
be n independent and identically distributed realizations of (X, Z) from the probability distribution Q) x,z over X x Z. Let
us then define the design matrices induced by the embeddings, written as

- afz) - - B(z1) —
A= : €R"%and B := : € R,
—a(z,) — = B(zn) —
LetJ :=1-— %11T € R™ " be the centering matrix and construct the empirical auto-covariance and cross-covariance

matrices
Saa:=TJA)TJA), Zpp:=UB)'(JB), and 3,5 := (JA)' (IJB).

We aim to write the upcoming objectives in the form
L(e,B) = = Tr (Sap) + wl|Sasl? + V(e B),

for hyperparameter x > 0, matrix X 4p (which is S 4p with its diagonal components set to zero), and variance-
regularization term V' (ca, 3). The term V(a, 3) may explicitly include the regularized inverses of ¥ x x and Xz, or
may penalize variance or non-smoothness more implicitly.
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Example 1: Multimodal InfoNCE (CLIP). Consider the empirical objective for the contrastive language-image pre-
training (CLIP) model (Radford et al., 2021) with batch size n,

~ 1 n 1 n
Lonp (e B) = —— > {a(x:), B(21)) + ,1ogz (alma) Bz} 4 = Z ((@3).B=0) 4 logn,

‘ 2
=1 7j=1

where the logn factor is appended to normalize the sums in the logarithmic terms and does not change the minimizer.
Following arguments used (e.g. by Li et al. (2021)) for the SimCLR objective—the single-modality counterpart to CLIP—
we analyze the logarithmic terms via Tayler expansion. To simplify the analysis, take the large-sample limit to define the
population objective

Lcrp (o, B) := —Ep(a(X), 8(Z))

1 1
+ 5Eny [long {e<°‘<X>ﬂ<Z>>‘XH + 5Er, [long [e<°‘<X>ﬂ(Z>>‘ZH . 98)

Next, define the quantity c¢(x) := Ep,, [(a(X),8(Z2))|X] () and apply a second-order Taylor expansion for every
x € X, the approximation

ele(®).8(2)) — pe(®) (a(z),B(2))—c(z)
~ e (14 {a(a). 52)) - el@) + ; ((a(@).6(2) - c@))" ).
Plugging this approximation into the first term of (98) yields
log B, (/@08 x| (@)  c(w) + log (1 +  Var ((a(@), B(Z))| X) (x))

Using the Taylor expansion log(1 + y) = y + o(y) centered at y = 0, and evaluate the first-order approximation at
y = 3 Var ((a(z), B(Z))| X) (), we finally have that

1 1 1
SEpy [logEp, [ X]] ~ SEp [(a(X), B(2)] + {Ery [Var ((@(X), B(2)|X)]
Applying an identical argument to the second term of (98) gives

Leue (e, B) = — (Ep{a(X),B(2)) — (Epy [a(X)], Ep, [B(Z)]))
+ 3Ep [Var ((a(X), B(2))|1X)] + 1Ep, [Var ((e(X), B(2))|2)]
= —Tr (Cov(a(X),8(2))) + ;Ep, [Var ((a(X), B(2))|X)] + 1Ep, [Var ((a(X), 8(2))| 2)]..

which is the desired form for the population. Now, to rewrite the empirical version, we have

N N
Lourp(ex.8) = ~Tr (Sap) + v 3 Varw (), BENIX) () + gy 3 Fat (). B)IZ) (20
~—_——— i=1

=1

covariance - —
variance regularization

where Var denotes the variance with respect to the empirical measure % 271\;1 O(wy,2)

Example 2: BarlowTwins. The BarlowTwins objective (Zbontar et al., 2021) has already been interpreted as an instance
of kernel canonical correlations analysis (CCA) by previous work (e.g. by Balestriero and LeCun (2022)). This objective
is usually defined in terms of the cross-correlation and auto-correlation matrices. To be consistent with other objectives
in this section, we handle this by enforcing a constraint on the variance. Let tg : R¥*? — {0, 400} denote the convex
analytic indicator function such that ((X) = 0 if ¥ € S and equals +oo otherwise. Let I be the identity matrix in R¢*9,
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Given hyperparameter x > 0, the objective can be written

d

. 1 . 2 _ ) _ _
Lor(@,B) =5 > (Bas)ii 1) +wISasl? + e (Eaa) + 1 (Sss)
=1
5 _ d . d _ _
= —Tr(3ap) + Kl Zasli + > _(Zap)i; + 5 T (Baa) + o (Epp).
=1

covariance

variance regularization

Thus, this objective falls into the class as well, as the penalties enforce a particular variance structure akin to the regularizers
above.

Example 3: Spectral Contrastive Loss. Finally, we consider the spectral contrastive loss from the pioneering work of
HaoChen et al. (2021). This relates to similar viewpoints of contrastive learning as spectral methods found in the literature,
such as the Laplacian eigenmap viewpoint of VICReg (Balestriero and LeCun, 2022, Section 3), the multidimensional
scaling viewpoint of InfoNCE (Balestriero and LeCun, 2022, Section 4), or the recent spectral clustering viewpoint of
SimCLR/CLIP (Tan et al., 2024, Sections 3 and 4). Recall that & := 1 3" | a(w;) and B := 1 3" | B(2;). In the
multimodal setting, this loss (HaoChen et al., 2021, Eq. (6)) can be written as

Esclon ) i= = e, A=) + - 3 (fate). Az
! _ (i) - & Blz:) - B) - (aB)
= > ((ate:) - & Blas) = B)" + (2:8)°
= —Te(Sap) + [ Saslt — (@ B) + (e B))’
=~ Te(Ean) + L [Zanlp+ ((0B) - ;) -3

covariance variance regularization

where we set k := 1/(n — 1) to complete the argument.

Example 4: Multimodal VICReg. We use a variant of the VICReg objective shown in Shwartz-Ziv et al. (2023, Equation
1). Note that this method is typically designed for one encoder being applied to two augmentations of the same object;
however, it naturally generalizes to the multimodal case. The similarity graph simply connects paired observations, leading
to the invariance term below. The multimodal VICReg objective has hyperparameters (¢, ¢, 3, k). To state it, define the
real-valued function r(z) := max {0, ¢; — v/x + ¢z} for x € R. We will also apply r to a matrix, which returns the matrix
of element-wise applications of the function. The objective is written

C3

Lvicreg(a, B) = 24

{TI‘ (T(EAA)) + Tr (7"(233))} Jr% |A = Bl& + k[ ZaslE -

invariance covariance

variance

While usually thought of as capturing a separate property, we will incorporate the invariance term into the other two terms,
which crucially relies on having an extra degree of freedom via the second encoder (as opposed to the single-modality
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setting). Define & := L 3" | a(w;) and B := 1 377" | B(z;), then write

1 1 —
—|A-B|Z2 == A 12
sl =Bl = 13 llex(w) — A=)l

n

1 _ 1 _
o 2lla(@i) — o= B(zi) +BII5 + Sl All3

=1
1 - 1 - A Lo =0
ST (Saa) + 5T (Sps) - 2T (San) + 3 lla - Bl

The final term ||& — B||% can harmlessly be dropped in the objective, as all other terms do not depend on the individual
means. Thus, we can redefine our VICReg objective as

Lyvicreg(a,B) = —Tr (EAB) + k|| ZaB 7

covariance

+ % (T (Baa) +Tx (Sps) ) + o T (r(Zaa)) + T (r(S5))]

variance regularization

as intended.

F. Experimental Details

This appendix accompanies Sec. 4 with further details of the study. Before describing the experiments, we comment one
quantity appearing in the risk bounds that is not analyzed experimentally is the distribution shift error that passes L2( Py )-
norm to the L?(Q x )-norm from Sec. 3. For this, we refer the reader to the host of empirical work at the intersection of
FSL, attribute-based and prompting-based ZSP, and distribution shift (see Recht et al. (2019); Hendrycks and Dietterich
(2019); Goyal et al. (2023) and references therein).

F.1. Compute Environment

Experiments were run on a CPU/GPU workstation with 12 virtual cores, 126G of memory, and four NVIDIA TITAN Xp
GPUs with 12G memory each. The code was written in Python 3.10 with the environment given by the YAML file in the
supplement. The OpenCLIP and CLIP Benchmark repositories were either used directly or adapted in our codebase.

F.2. Evaluation Datasets

We use the following datasets as evaluation benchmarks for zero-shot image classification. Note that the following standard
statistics describe their fest sets.

¢ Describable Textures Dataset (DTD): 1,880 examples labeled with 47 classes (Cimpoi et al., 2014).

* Flowers 102: 6,149 examples labeled with 102 classes. (Nilsback and Zisserman, 2008).

FGVC Aircraft: 3,333 examples labeled with 100 classes (Maji et al., 2013).

SUN397: 21,750 examples labeled with 397 classes (Xiao et al., 2010).

* ImageNet-1k: 100,000 examples labeled with 998 classes. (Deng et al., 2009).

The ImageNet-Captions dataset (Fang et al., 2023) is also used for evaluation using a subset of 134,593 examples, whereas
a 40,000 held-out subset is used to estimate the conditional means of the text embeddings. For the subsets of ImageNet-
Captions, the exact filenames of the ImageNet-1k subsets are provided along with their captions. Image preprocessing
for evaluation was done using the transformations in the PyTorch t ransforms module that were associated with each
OpenCLIP model.
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For the experiment behind Fig. 3, we design three in-distribution sub-tasks by randomly selecting collections of 50 classes
(Y1, Y2,Y3) from each of 998 classes, reserving held-out prompting examples (Z1,Y1),. .., (Z15,000, Y15,000), 100 for
each of 150 classes. Then, for task ¢, using M examples j1(y), ..., jm (y) selected randomly without replacement for
y € Y;, we use the vector ﬁ ZAmlzl B(Z;,, (y)) as the class embedding (projected to unit norm). Using an evaluation set
of approximately 25,000 examples from each sub-task, we compute the classification accuracy of this approach.

F.3. Model Specification and Hyperparameters

CLIP Architectures First, we specify which OpenCLIP models and pre-training sets were used. These models were
chosen due to their range of top-1 zero-shot accuracies on the ImageNet-1k benchmark (as shown below). As opposed
to already highly performant models (>50% on ImageNet-1k), these models benefitted more from optimized prompting
techniques in our initial experiments.

Model \ OpenCLIP Model Tag Pre-Training Set Tag ImageNet-1k Top-1 Acc.

ResNet-50 RN50 yfcclbm 28.11%
NLLB-CLIP nllb-clip-base vl 33.51%
ViT-B/32 ViT-B-32 datacomp.m_s128m_ b4k 32.81%

Prompt-Generating Model We employed the meta-1lama/Llama-3.2-1B-Instruct model publicly available
on HuggingFace. For the purpose of generation, we used a top-p hyperparameter of 0.9 and temperature hyperparameter
of 0.99 for more diverse responses. Meta-prompting was based on the following instructions per dataset, which are slight
variations of those used in Pratt et al. (2023):

¢ Describable Textures Dataset (DTD):

— “What does ___ material look like?”,
— “What does a ___ surface look like?”,
— “What does a ___ texture look like?”,
— “What does a ___ object look like?”,
— “What does a ___ pattern look like?”

Flowers 102:

— “Describe how to identify a(n) ___, a type of flower.”,
— “What does a(n) ___flower looks like?”

* FGVC Aircraft:

— “Describe a(n) ___ aircraft.”,
— “Describe the ___ aircraft.”
¢ SUN397:

— “Describe what a(n) ___looks like.”,
— “How can you identify a(n) ___?",
— “Describe a photo of a(n) __.”,

— “Describe the scene of a(n) ___.”

* ImageNet-1k:

— “Describe what a(n) ___ looks like.”,
— “How can you identify a(n) __?",

— “What does a(n) ___ look like?”,

— “Describe an image from the Internet of a(n) __.”,

— “Write a caption of an image of a(n)
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The following additional instruction was appended for better-formatted responses: “Please format your response as one
that contains only lower case letters and no special characters (including new lines, bold, and any markdown artifacts)
other than a period (‘") or commas (‘). The response should be a single sentence ending in a period that is directed
toward the final instruction in this message. Your sentence should be a minimum of three words and a maximum of thirty.”.

Our reproducibility effort includes not only the full list of all 164,400 prompts generated from LlaMA 3, but the subset of
prompts used for each class and each seed used to generate the figures in Sec. 4.

F.4. Derivation of Simulation Setting

The data-generating process for (X, Z,Y) in the simulation from Sec. 4 is as follows. Because we isolate the effect
residual dependence in this simulation, we construct a joint distribution Px y,z that satisfies Asm. 1, and moreover, such
that Qx z = Px,z and py z = Py,z. Let Y = {0, 1}, indicating binary classification. We consider X = Z = R? and a
pair of Gaussian distributions (Px, zjy—o, Px,z|y—1), Where

() e &zl) e

NZ|y CZX|y CZZ|y

Then, the distribution is fully specified by mean vectors and covariance matrices along with the parameter p = P [Y = 1].
Letting NV(+; i, C) indicate the density function of the A'(p, C) distribution, the direct predictor is equal to

PN (5 px)r)

p@) = Ep [V1X] (@) = PN (25 pxpy) + (1= PN (5 px o) (10

Similarly, the indirect predictor is given by
np(x) = Epy , [Ep,, [Y|Z]|X] (x) = Ep, , [p(2)|X] (), (101)
o(z) = PN(Z; pzp1) 102)

PN (Zipg) + (1 —=p)N(Z;pgp)

The expectation in (101) over Z given X = x can be evaluated via simulation based on the mixture model Pz x—_, =
(1 =p(x)) Pz x=a,v=0 + P(T) Pz|x =2,y =1 and the exact calculation

Z ~ N (Hzjy + C2x1yCxy (@ — Bxiy), Crzy — C2x1yCx , Cxzpy ) given X =2, = y.

Finally, the residual dependence Ep, [I(X;Y|Z)] can be computed by the following steps. First, notice that the conditional
distribution of X given Z = z and Y = y is given by

X~N (NX\y + CXZ\ycglzku(Z — Bzy): Cxxly — CXZ\yC;ZWCZ)qy) :
The likelihood ratio S, from (13) can be computed (where the evaluation at @ refers to the density) via

Pxy—y z=2(z)[yp(z) + (1 — y)(1 — p(2))]
Px|z=z(2)[yp(z) + (1 — y)(1 — p(2))]
(
)

Sz(x,y) =

_ Pxjy—y z=z()
Px|z—z(x
Px|y—y,z==(x)

(1 _p(z>)PX\Y:O,Z:z($) +p(z)PX|Y:1,Z:z(m>.

To simulate from the marginal Pz, we use the mixture pPzy—; + (1 —p) Pz|y —, after which (14) can be directly applied.

To interpolate between the setting in which X I Z|Y (the indirect predictor performs at chance) and X L Y|Z (the

57



A Generalization Theory for Zero-Shot Prediction

indirect predictor is equivalent to the direct one), we use the setting

Hxjo = %L Hxp = _%1-

Let a,b > 0 be constants and let 6 € [0, 1] be a parameter. Then, we define

Bezjo = 20apx g, pzp = 200y,
Czzio=al, Cgzxjo=%I, Czzp=bL Czx;=2I

and finally Cx xjo = (1 + §)Iand Cx x; = (1 + %)I. Due to Gaussianity, it is clear that
=0 = CZX|0:CZX\1 =0 = XJLZ|Y:yVy

On the other hand, using the distribution of X given (Z,Y"), that is,

X~N (HX|y + CXZ\yC;Zw(Z —Bzy) Cxxpy — CXZ\yC;Zh/CZX\y) given Z = z,Y =y,
we have that

Hxjo— CXZ|OCEIZ‘0:U/Z|O =HMx1— CXZ\IC;ZH“ZH
6=1 = {Cxz0C%z0=CxznCrz = X LY|Z=2zVz, (103)

-1 -1
Cxxjo = Cx2z10C570Czxj0 = Cxx;1 = Cxz1nCy 5, Czxpn

as the distribution of X remains the same given either Z = 2,Y = Oor Z = 2,Y = 1. Thus, in the simulation, we
interpolate between 0 and 1 for the value of 8. We set the parameters a = 5 and b = 6 simply to be different numbers for
which Ep, [I(X;Y|Z)] can be computed in a numerically stable manner. We set p = 1 and d = 2.

Finally, the lines labeled CLIP and VICReg in Fig. 2 indicate the predictors generated by training two MLP encoders using
the corresponding objective on observations {(X;, Zi)}i]il for N = 10, 000 pre-training observations. The encoder had a
single hidden layer of 16 units and an output dimension of d. When performing classification, the prompting distribution
used for the methods based on self-supervised learning is the true distribution of Z|Y = y with M = 500 samples,
allowing us to isolate residual dependence while incurring no prompt bias and negligible prompt variance. Each model
was trained for 30 epochs with the AdamW optimizer at a learning rate of 0.01. In the case of the VICReg objective, we
used the parameterization of the original paper (Bardes et al., 2022) with the settings (v, A, i, v, ¢) = (1,25,25,1,0.0001)
as per the authors’ recommendations (see their Eq. (6)).
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