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Abstract

Traditional data-sharing practices require data owners to reveal the data to buy-
ers to determine its value before they can negotiate a fair price, creating legal
exposure, privacy risk, and asymmetric information that discourages exchange.
We propose a Homomorphic Encryption (HE) framework that enables prospec-
tive buyers to quantitatively assess a dataset’s utility for an Al algorithm while the
data remains fully encrypted end-to-end. Our approach tackles the last-mile prob-
lem in building secure Al data marketplaces. We design a lightweight data utility
evaluation method using HE protocols that allow buyers to score different data
samples without actually having to obtain the raw data. The proposed method can
work with popular gradient-based data valuation methods and can scale to Large
Language Models (LLMs). By allowing organizations to determine the value of
their data, without disclosing the data itself before the transaction, our work pro-
vides a practical path toward secure data monetization.

1 Introduction

Artificial intelligence is fundamentally driven by data, and advanced machine learning models re-
quire large, high-quality datasets to learn effectively (Zhang and Beltran, 2020). For example,
Llama 3 was pretrained on over 15 trillion tokens of publicly available tex Recognizing the im-
portance of domain-specific information, AI companies increasingly offer fine-tuning services that
allow users to adapt foundation models to their proprietary datasets’, Consequently, firms holding
valuable private data are exploring partnerships with Al developers to enhance products or inform
internal decision making. For instance, Reddit signed formal licensing agreements with OpenAl to
provide authorized access to Reddit content for model training (OpenAl and Reddit, [2024). Yet, in
the absence of robust Al regulation, data exchange often remains ad hoc and opaque. Leading firms
such as OpenAl initially relied on large-scale scraping of copyrighted online content without con-
sent (Grynbaum and Mac, [2023)), sparking lawsuits and public criticism. A prominent case is Getty
Images’ lawsuit against Stability Al, alleging unauthorized use of 12 million Getty photographs in
training a generative art model (Brittain, [2023).

This chaotic environment persists because the industry has yet to solve a fundamental challenge:
how to quantify the value of data in algorithmic predictions and decisions (Zhang et al., [2024).
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Evaluating a dataset’s impact typically requires its use in model training or testing. However, this
process inherently exposes the data to the model owner, creating a significant risk for the data owner.
If the model owner were to use the data without payment, holding them accountable is challenging,
partly due to the lack of high-fidelity tools for detecting data misuse or theft (Grynbaum and Mac|
2023). From the buyer’s perspective, there is also the risk of sellers exaggerating a dataset’s qual-
ity — without testing it directly, the buyer might overpay based on inflated claims. One potential
workaround is to introduce a trusted third party to facilitate the process. For instance, a neutral
escrow service or a platform could hold the sensitive dataset and run the valuation on behalf of the
buyer, then report the results. In practice, however, this approach still hinges on trust and carries
significant drawbacks. [Spiekermann|(2019) have noted that a “lack of trust and security” in inter-
mediaries or platforms is a major obstacle that keeps companies from participating in data sharing.
The data owner must trust that the third-party evaluator has the ability to assess the value of her data
and will not leak or misuse the data.

In light of these challenges, we propose an encrypted data-valuation framework that integrates
privacy-preserving encrypted computation with modern data valuation methods, allowing buyers
to compute utility scores on encrypted ciphertexts while sellers prove utility integrity through ran-
domized, auditable challenge tests—all without exposing the underlying raw data possessed by the
data owner. The proposed framework is shown in Figure|l} which we will discuss in detail in Sec-
tion[3] The method employs the gradient-based influence function to quantify the marginal utility
of a candidate record while keeping both the seller’s data and the buyer’s evaluation set encrypted
throughout the protocol. As we shall see in Section[d] the proposed framework can recover the util-
ity of data points with near-perfect accuracy with minor computing overhead, a property especially
critical for large foundational models such as Large Language Models.

Our work makes the following contributions. First, we design a novel encrypted data-valuation
framework that, for the first time, integrates modern data valuation techniques (specifically, gradient-
based influence functions) with encrypted computation. Second, our framework resolves the
dilemma in data commerce where buyers risk purchasing low-quality data while sellers risk data
theft during evaluation. By enabling secure, direct testing on encrypted data, our work protects the
intellectual property of the data owner while preventing the buyer from overpaying for a dataset
of exaggerated value. We also theoretically demonstrate that the proposed method, under the cor-
rect hyper-parameter specifications, can recover the true data utility in a privacy-preserving manner.
Finally, our empirical evaluation shows that the proposed method achieves near-perfect utility com-
putation while preserving privacy across a diverse range of models.
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Figure 1: Proposed Secure Data Marketplace with Homomorphic Encryption.

2 Related Work

Data Markets The increasing demand for high-quality data has led to the emergence of data market-
places(Zhang et al.l |2024). Early research explored data market paradigms, including direct sales,
query-based access, and trained-model exchanges (e.g., Balazinska et al., 201 1}; Koutris et al., 2015
Agarwal et al., [2019). However, a persistent challenge across all these designs is the ”value-privacy
dilemma”: buyers cannot assess a dataset’s true value without accessing it, yet sellers cannot pro-
vide access without risking their intellectual property (Fernandez et al.,|[2020; |Spiekermann, [2019)).
Prior work has focused on market design and pricing mechanisms (Wang et al., [2021; [Roughgar-
denl 2010), but has not provided a technical solution to this core trust problem. We address this



fundamental issue by providing a practical and secure protocol for pre-transaction utility evaluation
to foster the trust required for these data markets to function effectively. As a result, our proposed
framework attains near-perfect performance.

Data Attribution Methods Data attribution concerns how to evaluate the value of individual data
points; therefore, it is different from other explanation methods, such as feature attribution meth-
ods like LIME or SHAP (Lundberg and Lee, |2017} Ribeiro et al., 2016). Foundational approaches
like Data Shapley Value (Ghorbani and Zou, |2019) provide a theoretically principled framework,
but are computationally prohibitive for large models as they require extensive retraining. Influ-
ence functions approximate a data point’s value by measuring its impact on the model’s loss or
parameters using gradients, avoiding the need for retraining (Hampel, [1974; [Koh and Liang, [2017).
However, computing the influence function at scale can be prohibitively slow and memory-intensive
(Hammoudeh and Lowd, [2024). Recent efforts have adapted influence function techniques to large
models. TRAK (Park et al., |2023)) forgoes computing a full Hessian and instead uses a simplified
“influence-style” gradient similarity metric to trace influential data for vision and language models.
Datalnf (Kwon et al.,2023) leverages LoRA (Hu et al.,2021) to compute influence scores for LLM
fine-tuning data. Our work is the first to bridge this gap by integrating scalable, gradient-based attri-
bution methods with a formal cryptographic protocol, enabling secure valuation without revealing
sensitive information.

Privacy-Aware Computing To solve the value-privacy dilemma, a secure computation protocol
is required. Differential Privacy (DP) provides a mathematically rigorous definition of privacy for
statistical data analysis (Dworkl |2006; [Dwork and Roth| 2014)). It ensures privacy by limiting the
impact of any single participant’s data, assuming honest participation. Liu et al.|(2021) provided an
end-to-end model marketplace that formalizes the interactions between data owners, a broker, and
model buyers using Shapley value for fair data valuation and differential privacy to preserve privacy.
Zheng et al.| (2022) proposes a mechanism for federated learning that ensures privacy preservation
through local differential privacy while motivating data owners to contribute high-quality model
updates. We leverage Homomorphic Encryption to enable computation directly on encrypted data
(Furukawa et al [2017; |Subramanyan et al.,|2017; Gramaglia et al.,[2017; [Yao, |1986). Specifically,
we use the CKKS scheme because it uniquely supports approximate arithmetic on the real-valued
vectors inherent in gradients (Cheon et al.l 2017a; |Chillotti et al., [2020). While HE has been ap-
plied to model training and inference (Lee et al., [2022} (Graepel et al., 2012), our key distinction is
the novel application of CKKS to a specialized protocol for secure influence function calculation,
creating the first practical bridge between scalable data valuation and strong cryptographic privacy.

3 Secure Data Market

3.1 Preliminary on Influence Function

Data valuation is used to quantify the contribution of individual data points to a model’s behavior.
A principled way to measure this contribution is to ask: “How would the model’s performance
on the test set change if an additional training example was added?”. Influence functions offer a
computationally efficient approximation and have become a popular way to quantify data utilities
(Park et al.l [2023; [Kwon et al., 2023} |(Choe et al.| [2024). Intuitively, it approximates the effect of
upweighting a new data point z; on the loss of a test point z without retraining the model. The
first-order influence is given by the following formula:

I(2i, 2ie) ® =V L(zes, 0) T H; 'VoL(2;,0) )

where Vg L(z;,0) and Vg L( 2, 0) are the gradients of the loss with respect to the model parameters

¢ for the training and test points, respectively. H; = 711 S V2L(z;, é) denotes the Hessian of
the total training loss, which captures the curvature of the loss landscape at the converged model
parameters 6. n indexes the number of training data samples. Hé_1 represents the inverse of the
Hessian. Equation (T)) can be derived by taking the derivative of the upweighted loss with respect to
the weight (Xia and Henaol 2023).

The resulting scalar score, I(z;, zest), has a direct and intuitive interpretation for data valuation. A
large negative influence score implies that the training point z; was highly beneficial, as including it



in the training set helps reduce the loss on the test point z.y. Conversely, a large positive score sug-
gests that z; was harmful—perhaps an outlier or mislabeled example—as its presence increases the
test loss. By ranking training data based on these influence scores, a model owner can quantitatively
assess the value of each data point for a given taskﬂ

Applying this formula to large-scale models like LLMs presents two major scalability challenges.
First, computing and inverting the Hessian matrix is intractable, as its size is quadratic in the
number of model parameters, which can be in the billions. Second, computing and storing the
gradient for every single example in a massive training dataset introduces prohibitive memory
and computational costs. To overcome these issues, recent work has proposed random projec-
tion (Hu et al.l [2021) or low-rank approximations (Choe et al., 2024) to overcome the compu-
tational hurdle. For example, in Hu et al. (2021), the influence function is approximated as
Influence(z;, ziest; P) = (Pg[esl)T(PHéP "Y~1(Pg;), where P € R¥*9 is a projection matrix with
the projected dimension k£ being far smaller than the original model dimension d. These influence
function approximations enable data valuation for large-scale models with billions of parameters.
In our experiments, we adopt this recipe by using LoRA to define the projection and Kronecker-
factored Approximate Curvature(K-FAC) to implement the inverse preconditioner.

3.2 Secure Data Marketplace Design

We aim to establish a secure data marketplace in which buyers can assess the utility of sellers’
data without disclosing their respective private assets. Data value is measured through influence
functions that capture the marginal contribution of each sample to model predictions. As illustrated
in Figure[T] the setting involves three parties under the standard semi-honest (“honest-but-curious™)
model: the data owner (S), who holds a private dataset intended for sale; the model owner (B3),
who possesses a proprietary model fy and a private evaluation set D.,,; to assess the seller’s data;
and the broker (T), an untrusted computation service that performs encrypted operations but may
otherwise attempt to leak information.

Let fy be a model with parameters 6 pre-trained by B. Consider a candidate for-sale training sample
z; = (x;,y;) held by a data seller, and a private evaluation example Zeyay = (Zeval, Yeval) held by
a potential buyer. The influence of z; on the buyer’s evaluation 10ss £(zeya; 0) is defined as the
first-order change in that loss if z; were up-weighted as:

Theorem 3.1 (First-Order Influence on Loss (Koh and Liang,2017)). Suppose 0 is a local minimiser
of the empirical risk on D and let Hy = VL(0) be the Hessian of the total training loss at 0
(assumed nonsingular and optionally regularized). Adding an infinitesimal weight € on sample z;
changes the evaluation loss by:

% g(zeval; 95) = - Veg(zeval; 9) ! H(;l VOZ(Zﬁ 9) . (2)
e=0

Inf(zi — Zeml) =
With the low-rank projection, the projected gradients are denoted by § = PTg. The influence
formula can then be tractably approximated in this low-dimensional space with Inf (zZ — Zeval) ~
gl H 9 & .va1. To compute this score, the data seller must provide their projected gradient g;, and the
model owner (buyer) must provide their projected evaluation gradient geva and projected inverse

Hessian H, !, Sharing these components in plaintext would violate the privacy of both parties.
Gradients often contain sensitive information about the underlying data (which is why companies
like OpenAl restrict gradient access for safety reasons). Specifically: g; reveals information about

the seller’s private data, while g, and H 0 ! reveal information about the buyer’s private evaluation
query and proprietary model. Our goal is to design a cryptographic protocol that allows for the secure
multi-party computation of the influence score. We achieve it through the following Lemma.

Lemma 3.2 (CKKS approximate homomorphism). Let (pk,sk) be keys for CKKS and my,ms €
R?. Then there exist relinearization and rescaling procedures such that

D(sk, Ep(m1)® Epk(mse)) = mi+ma+eada, D(sk, Epk(m1)® Epk(ma)) = mi©ma~+emul,

3We note that while we only discuss the contributions of individual data points in this paper, partly due to
space constraints. The proposed framework can be easily extended to the best dataset selection among datasets
problem with subset-based data valuation methods (Hu et al.,|2024).



where © is element-wise product and the errors satisfy ||€addl|; ||Emulll <
d(scale, modulus chain, depth).

Lemma [3.2] suggests that HE can perform the computation using an encrypted ciphertext and return
the exact solutions of the computation using plaintext under additive and multiplicative operations,
which, interestingly, are the only operations needed for influence function computation. Inspired by
this observation, we introduce the secure data market design. We choose the CKKS (Cheon-Kim-
Kim-Song) scheme (Cheon et al.| [2017b)) as the cryptographic foundation of our framework. The
specific parameters chosen for our implementation, which control the trade-off between precision,
security, and performance, are detailed in the Appendix and omitted due to space constraints. The
protocol is illustrated in Figure[I]and Algorithm ]

Algorithm 1 TIP: Trustworthy Influence Protocol

Require: From S: Projected gradients {g; } ¥,

Require: From B: Projected evaluation vector Veyal = Hy 1geval

Require: Key ownership: 3 runs SETUP to obtain (pk g, skiz); publishes pk; keeps sk private

Ensure: Buyer-only plaintext scores {s;}2¥,; all intermediate values remain encrypted under pk 5
1: (pkg,skp) « HE.SETUP > Action by Model Owner B, once per session
2: B publishes pkp, shares with S

3: procedure SECUREINFLUENCECOMPUTATION({g; } Y |, Veval, Pk3)

4: Ctoyal < Encryptpk (Veval) > Action by Model Owner B
5: B sends cteyay to Broker T

6: foreachi=1,..., N do > Action by Data Owner S and Broker T
7 ct; < Encrypty (&) > S encrypts under pkg (never learns skp)
8: S sends ct; to Broker T

9: Clprod ¢ Ct; © Cleval > Homomorphic element-wise product (under pk )
10: Ctint,i <~ RotateAndSum(ctproq) > Homomorphic summation over slots
11: T sends ctins,; to B > Encrypted result stays under pkg
12: end for

13: s; < Decrypty . (cting;) foralli =1,..., N > Only B can decrypt
14:  return {s;},

15: end procedure

Next, we verify the computational correctness of our protocol design. Theorem [3.3] implies that
our framework enables the accurate computation of data utility, matching the results of traditional
methods that assume unencrypted data, but within an encrypted domain. We omit the proof due to
space constraints.

Theorem 3.3 (Encrypted Influence Approximation). Let s := g} H, 9 & a1 denote the true influence
score in plaintext, and let § be the value obtained by decrypting the final ciphertext cty, from the
protocol. Under the condition of Lemma § = s+ A, where the error |A| is negligible and can
be made arbitrarily small by adjusting the CKKS precision parameters.

Zero-knowledge proofs (ZKPs). We note that the proposed Trustworthy Influence Protocol (TIP)
can be further strengthened by Zero-knowledge proofs (ZKP) and an interactive proof system (IPS)
to enhance trust in a secure Al data marketplace by letting buyers verify claims on whether the
dataset has a utility above a certain threshold—without seeing the data—and letting sellers prove
value before disclosure or payment. Our protocol extends naturally to an IPS: the seller acts as
the prover, the buyer as the verifier, and a notary computes a public homomorphic inner-product
oracle on encrypted inputs; the buyer then learns only the resulting utility score. Adding ZKP
on top of this flow provides a crisp privacy guarantee: the verifier can be convinced the score is
correct while learning nothing beyond that single number (no gradients, no evaluation set, no model
details). In practice, one-shot proofs give a lightweight “proof-by-encryption”, and optional multi-
round challenges amplify confidence without additional disclosure. These additions slot into our
current design without changing the core computation. We omit the details due to space constraints.



4 Experiment

We evaluate our encrypted data evaluation framework on three representative tasks of increasing
scale and complexity: (1) image classification on MNIST (Deng|, 2012), (2) sentiment analysis with
BERT on SST-2 (Devlin et al), [2019), and (3) next-token prediction with GPT-2 on WikiText-2
(Radford et al.| 2019). For each task, we report: Model performance (e.g., classification accuracy
or perplexity) under normal, unencrypted training. Fidelity of encrypted influence scores is mea-
sured both by absolute error against the plaintext baseline and by Pearson correlation. Runtime
overhead introduced by our homomorphic steps, specifically the time to encrypt and decrypt the
logged gradients, and the time to compute the influence function under CKKS.

We demonstrated our FHE-based influence computation in Table [Tl On the MNIST task (60000
training points), we recover a Pearson correlation of 1.00 and a mean absolute error of 2.16 x 1075,
indicating that the encrypted and decrypted influence values are virtually indistinguishable from the
plaintext reference. On the much larger BERT-SST2 task (66978 training points), we observe a
slightly lower but still very high correlation of 0.9719 and an MAE of 1.84 x 10~°. The total extra
time climbs to about 10 016 s, but the per-sample cost (0.1495 s) remains essentially identical to
MNIST. This confirms that our implementation scales linearly in the number of data points, with
FHE batching and packing amortizing setup costs across all samples. Finally, on the GPT-2 MLP
probe (21 saved gradients), we recover perfect correlation (1.0000) with an MAE of 1.12 x 107° in
only 3.1s total (= 0.1476 s per sample).

Pearson Correlation Mean Average Error Extra Running Time Running Time Per Sample

MLP(MNIST) 1.00 2.16e-05 890.19s 0.1483
BERT(SST-2) 0.97 1.84e-05 10016.07s 0.1495
GPT-2(Wikitext-2) 1.00 1.12e-05 3.1s 0.1476

Table 1: Experiment Results. The proposed method achieves near-perfect data utility computation
with a computation time independent of model size.

High fidelity ensures FHE-based valuations match plaintext decisions. Also, since the additional
FHE overhead is linear in the number of samples and stable across tasks, budgeting teams can ac-
curately forecast the computing expense for any scale, from a small 21-sample probe to tens of
thousands of records. This makes it straightforward to justify investments in secure computation
when considering privacy compliance costs. We also conducted ablation studies on the CKKS scale
parameter, which controls the precision of the encrypted computation. We omit the detailed discus-
sion due to space constraint.

5 Conclusion

We introduced a novel homomorphic encryption framework designed to address the challenges in
secure Al data marketplaces. Our framework allows potential data buyers to quantitatively assess a
dataset’s utility for Al algorithms while the data remains fully encrypted end-to-end. By enabling
secure, direct testing on encrypted data, the proposed method protects the intellectual property of
data owners and prevents buyers from overpaying for data with exaggerated value. The proposed
approach is compatible with popular gradient-based data valuation methods and demonstrates scal-
ability to Large Language Models. Experimental results show near-perfect accuracy in computing
data utility with minor computational overhead.

Despite its advancements, the proposed framework has limitations. Although low-rank approxi-
mations and random projections are used to overcome some computational hurdles, the underlying
complexity of homomorphic encryption, specifically the CKKS scheme, introduces trade-offs be-
tween precision, security, and performance. The choice of CKKS scale, for instance, directly im-
pacts numerical fidelity, with smaller scales leading to severe quantization error. This necessitates
careful parameter selection to ensure adequate precision without incurring unnecessary overhead.
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