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ABSTRACT

Existing Multi-Task Learning(MTL) strategies like joint or meta-learning focus
more on shared learning and have little to no scope for task-specific learning. This
creates the need for a distinct shared pretraining phase and a task-specific finetuning
phase. The finetuning phase creates separate models for each task, where improving
the performance of a particular task necessitates forgetting some of the knowledge
garnered in other tasks. Humans, on the other hand, perform task-specific learning
in synergy with general domain-based learning. Inspired by these learning patterns
in humans, we suggest a simple yet generic task aware framework to incorporate
into existing MTL strategies. The proposed framework computes task-specific
representations to modulate the model parameters during MTL. Hence, it performs
both shared and task-specific learning in a single phase resulting in a single model
for all the tasks. The single model itself achieves significant performance gains over
the existing MTL strategies. For example, we train a model on Speech Translation
(ST), Automatic Speech Recognition (ASR), and Machine Translation (MT) tasks
using the proposed task aware multitask learning approach. This single model
achieves a performance of 28.64 BLEU score on ST MuST-C English-German,
WER of 11.61 on ASR TEDLium v3, and BLEU score of 23.35 on MT WMT14
English-German tasks. This sets a new state-of-the-art performance (SOTA) on
the ST task while outperforming the existing end-to-end ASR systems with a
competitive performance on the MT task.

1 INTRODUCTION

The process of Multi-Task Learning (MTL) on a set of related tasks is inspired by the patterns
displayed by human learning. It involves a pretraining phase over all the tasks, followed by a
finetuning phase. During pretraining, the model tries to grasp the shared knowledge of all the
tasks involved, while in the finetuning phase, task-specific learning is performed to improve the
performance. However, as a result of the finetuning phase, the model forgets the information about
the other tasks that it learnt during pretraining. Humans, on the other hand, are less susceptible
to forgetfulness and retain existing knowledge/skills while mastering a new task. For example,
a polyglot who masters a new language learns to translate from this language without losing the
ability to translate other languages. Moreover, the lack of task-based flexibility and having different
finetuning/pretraining phases cause gaps in the learning process due to the following reasons:

Role Mismatch: Consider the MTL system being trained to perform the Speech Translation(ST),
Automatic Speech Recognition(ASR) and Machine Translation(MT) tasks. The Encoder block has a
very different role in the standalone ASR, MT and ST models and hence we cannot expect a single
encoder to perform well on all the tasks without any cues to identify/use task information. Moreover,
there is a discrepancy between pretraining and finetuning hampering the MTL objective.

Task Awareness: At each step in the MTL, the model tries to optimize over the task at hand. For
tasks like ST and ASR with the same source language, it is impossible for the model to identify
the task and alter its parameters accordingly, hence necessitating a finetuning phase. A few such
examples have been provided in Table 1. Humans, on the other hand, grasp the task they have to
perform by means of context or explicit cues.
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Task Confounding Task MTL Prediction Task Aware Output

En ASR En-De ST sogar ihre eigenen Eltern even their own parents
Mobilität opportunity to.. Mobility opportunity to ..

En-De MT En-Ro MT Situat,ia este alarmantă Die Situation ist alarmierend

En-De ST En ASR I don’t understand it. Das verstehe ich nicht
was a success or not. war ein Erfolg oder nicht.

Table 1: Issues due to the lack of task information in MTL strategies. The MTL model, unable
to identify the task, produces the output corresponding to another task either completely or par-
tially.(En:English, De:German, Ro:Romanian). Task aware output is the output obtained from our
proposed approach.

Although MTL strategies help the finetuned models to perform better than the models directly trained
on those tasks, their applicability is limited to finding a good initialization point for the finetuning
phase. Moreover, having a separate model for each task increases the memory requirements, which is
detrimental in low resource settings.

In order to achieve the goal of jointly learning all the tasks, similar to humans, we need to perform
shared learning in synergy with task-specific learning. Previous approaches such as Raffel et al.
(2019) trained a joint model for a set of related text-to-text tasks by providing the task information
along with the inputs during the joint learning phase. However, providing explicit task information is
not always desirable, e.g., consider the automatic multilingual speech translation task. In order to
ensure seamless user experience, it is expected that the model extracts the task information implicitly.

Thus, a holistic joint learning strategy requires a generic framework which learns task-specific
information without any explicit supervision.

In this work, we propose a generic framework which can be easily integrated into the MTL strategies
which can extract task-based characteristics. The proposed approach helps align existing MTL
approaches with human learning processes by incorporating task information into the learning
process and getting rid of the issues related to forgetfulness. We design a modulation network
for learning the task characteristics and modulating the parameters of the model during MTL. As
discussed above, the task information may or may not be explicitly available during the training.
Hence, we propose two different designs of task modulation network to learn the task characteristics;
one uses explicit task identities while the other uses the examples from the task as input. The model,
coupled with the modulation network, jointly learns on all the tasks and at the same time, performs
the task-specific learning. The proposed approach tackles issues related to forgetfulness by keeping a
single model for all the tasks, and hence avoiding the expensive finetuning phase. Having a single
model for all the tasks also reduces memory constraints, improving suitability for low resource
devices.

To evaluate the proposed framework, we conduct two sets of experiments. First, we include the task
information during MTL on text-to-text tasks to show the effect of task information. Secondly, we
train a model on tasks with different modalities and end goals, with highly confounding tasks. Our
proposed framework allows the model to learn the task characteristics without any explicit supervision,
and hence train a single model which performs well on all the tasks. The main contributions of this
work are as follows:

• We propose an approach to tackle the issue of forgetfulness which occurs during the
finetuning phase of existing MTL strategies.

• Our model, without any finetuning, achieves superior performance on all the tasks which
alleviates the need to keep separate task-specific models.

• Our proposed framework is generic enough to be used with any MTL strategy involving
tasks with multiple modalities.

2 TASK-AWARE MULTITASK LEARNING

An overview of our proposed approach is shown in Figure 1.
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Figure 1: Overview of task aware multi-task learning. Task Characteristics Network (TCN) produces
a task embedding to modulate the parameters of base network. Inputs to the TCN are chosen based
on type of TCN.

2.1 BASE MODEL

In general, the sequence-to-sequence architecture consists of two components: (1) an encoder which
computes a set of representationsX = {x1, · · · ,xm} ∈ Rm×d corresponding to x, and a decoder
coupled with attention mechanism (Bahdanau et al., 2015) dynamically reads encoder’s output and
predicts target language sequence Y = {y1, · · · ,yn} ∈ Rn×d. It is trained on a dataset D to
maximize the p (Y |X; θ), where θ are parameters of the model.

We use the Transformer Vaswani et al. (2017) as our base model. Based on the task modalities,
we choose the preprocessing layer in the Transformer, i.e., speech or the text (text-embedding)
preprocessing layer. The speech preprocessing layer consists of a stack of k CNN layers with stride 2
for both time and frequency dimensions. This layer compresses the speech sequence and produces
the output sequence such that input sequences corresponding to all the tasks have similar dimensions,
d. The overview of the base sequence-to-sequence model is shown in the rightmost part of Figure 1.

2.2 TASK MODULATION NETWORK

The task modulation network performs two operations. In the first step, it computes the task
characteristics (te) using the task characteristics layer. It then modulates the model parameters θ
using te in the second step.

2.2.1 TASK CHARACTERISTICS NETWORK:

We propose two types of Task Characteristics Networks(TCN) to learn the task characteristics, where
one uses explicit task identities while the other uses source-target sequences as input.

Explicit Task Information: In this approach, the tasks involved are represented using different task
identities and fed as input to this TCN as one hot vectors. This network consists of a feed-forward
layer which produces the task embedding used for modulating the model parameters.

te = FFN(e), (1)

where e ∈ Rs is a one-hot encoding of s tasks used during joint learning.

Implicit Task Information: The Implicit TCN computes the task embeddings using example
sequences from the tasks without any external supervision. It consists of four sub-layers: (1)
Sequence Representation Layer, (2) Bi-directional Attention Layer, (3) Sequence Summary Layer,
and (4) Task Embedding Layer.

The sequence representation sub-layer consists of uni-directional Transformer Encoder (TE) blocks
Vaswani et al. (2017). It takes the source and target sequences from the tasks as input and produces
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self-attended source and target sequences.

Xsa = TE(X), Y sa = TE(Y ), (2)

whereXsa ∈ RM×d, Y sa ∈ RN×d. This sub-layer computes the contextual representation of the
sequences.

The Bi-directional Attention (BiA) sub-layer takes the self-attended source and target sequences from
the previous layer as input and computes the relation between them using Dot-Product Attention
Luong et al. (2015). As a result, we get target aware source (Xat ∈ RM×d) and source aware target
(Y asRN×d) representations as outputs.

Xat = BiA(Xsa,Y sa), Y as = BiA(Y sa,Xsa). (3)

The sequence summary sub-layer is similar to the sequence representation sub layer and summarizes
the sequences. The sequence summaries are given by:

Xs = TEu(X
at), Y s = TEu(Y

as), (4)

whereXs ∈ RM×d, Y s ∈ RN×d. The Equation 4 summarizes the sequencesXat and Y as which
contain the contextual and attention information. We take the last tokens from both the xs ∈ Rd and
ys ∈ Rd, since the last token can see the whole sequence and acts as a summary of the sequence.

The task embedding layer computes te by taking the outputs of the sequence summary sub-layer and
applying a feed-forward network:

te = FFN([xs : ys]). (5)

2.2.2 MODULATING MODEL PARAMETERS

We modulate the parameters (θ) of the network (Section 2.1) to account for the task-specific variation
during MTL over a set of tasks. We achieve this by scaling (γ) and shifting (β) the outputs of each
layer (e.g., transformer block) including any preprocessing layers in the model adopted based on the
Feature-wise Linear Modulation (FiLM; Perez et al. (2018)). The γ and β parameters are obtained
from the task embedding te either by using equation 1 or 5.

γ = te[: d], β = te[d :], (6)

where te ∈ R2d, and d is the hidden dimension of the model.

Once we have γ and β, we apply the feature-wise linear modulation (Perez et al., 2018) to compute
the modulated output (Ol) for each block of the model.

Ol = γ ∗ fl(vl; θl) + β, l = 1, · · · , L, (7)

where L is the total number of blocks in the model and fl represents the lth block of the model with
parameters θl ∈ θ and inputs vl.

2.3 TRAINING

MTL has been successfully applied across different applications of machine learning such as natural
language processing (Hashimoto et al., 2016; Collobert & Weston, 2008), speech recognition (Liu
et al., 2019; Deng et al., 2013), computer vision (Zhang et al., 2014; Liu et al., 2015; Girshick,
2015), and drug discovery (Ramsundar et al., 2015). It comes in many forms: joint learning, learning
to learn, and learning with auxiliary tasks. We consider two MTL strategies: (1) joint learning
and (2) learning to learn to train on set of S tasks, T = {τ1, · · · , τS} with corresponding datasets
D = {D1, · · · , DS}.
As our first training strategy, we use Joint Learning (JL) (Caruana, 1997), which is the most commonly
used training strategy for MTL. In JL, the model parameters, including the output layer, are shared
across all the tasks involved in the training. For the second training strategy under the learning-to-
learn approach, we use a variant of meta-learning, Modality Agnostic Meta Learning (MAML) (Finn
et al., 2017a). Even though MAML is mostly used in few-shot learning settings, we use it since it
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S. No. MTL Strategy Training Approach En-De (↑) En-Tr((↑) En-Ro((↑)
1 Joint Learning Vanilla 7.65 3.59 5.55
2 OHV(Raffel et al., 2019)* 16.77 6.10 11.79
3 Meta Learning MAML (Finn et al., 2017a)* 7.74 2.93 5.78
4 OHV(Raffel et al., 2019)* 16.08 5.93 12.43

This Work
5 Joint Learning Implicit TCN 14.18 4.38 13.47
6 Meta Learning Implicit TCN 14.50 4.43 14.32

Table 2: Performance(BLEU) of the models trained on the Single Modality for the En-De, En-Ro and
En-Tr Machine Translation task. *Models based on OHV and MAML are inspired from Raffel et al.
(2019) and Finn et al. (2017a).

allows for task-specific learning during the meta-train step and it has also been shown to provide
improvements in the field of speech translation(Indurthi et al., 2020).

We resolve the source-target vocabulary mismatch across different tasks in MTL by using a vocabulary
of subwords (Sennrich et al., 2016) computed from all the tasks. We sample a batch of examples from
Ds and use this as input to the TCN and the Transformer model. To ensure that each training example
uses the task embedding computed using another example, we randomly shuffle this batch while
using them as input to the TCN. This random shuffling improves the generalization performance by
forcing the network to learn task-specific characteristics (te) in Equation 1 or 5. We compute the
task embedding in the meta-train step as well; however, the parameters of the TCN are updated only
during the meta-test step. During inference time, we use the precomputed task embeddings using a
batch of examples randomly sampled from the training set.

3 EXPERIMENTS

3.1 TASKS AND DATASETS

We conduct two sets of experiments, one with the tasks having the same input modality, i.e., text
and another over tasks having different input modalities, i.e., speech and text. The main motivation
behind the text-based experiments is to establish the importance of providing task information in
MTL. Our main experiments, containing different input modalities involve highly confusing tasks.
These experiments help us demonstrate the effectiveness of our approach in a generic setup. We
incorporate the proposed task modulation framework into joint and meta-learning strategies and
analyze its effects.

3.1.1 SINGLE MODALITY EXPERIMENTS

We perform the small scale text-to-text machine translation task over three language pairs English-
German/Romanian/Turkish (En-De/Ro/Tr). We keep English as the source language, which makes it
crucial to use task information and produce different outputs from the same input. Since it is easier
to provide task identity through one-hot vectors in text, we provide the task information by simply
prepending the task identity to the source sequence of each task, e.g., ”translate from English to
German”, ”translate from English to Turkish” similar to Raffel et al. (2019). We also train models
using our proposed framework to learn the task information and shared knowledge jointly.

For En-De, we use 1.9M training examples from the Europarl v7 dataset. Europarl
dev2006 and News Commentary nc-dev2007 are used as the dev and Europarl
devtest2006, Europarl test2006 and News Commentary nc-devtest2007 as the
test sets. For En-Tr we train using 200k training examples from the setimes2 dataset. We use
newsdev2016 as the dev and newstest2017 as the test set. For En-Ro, we use 600k train-
ing examples from Europarl v8 and setimes2 datasets. We use newsdev2016 as dev and
newstest2016 as the test set.
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S. No. MTL Strategy Training ST (↑) ASR(↓) MT (↑)
1 N/A Direct Learning 22.14 25.25 27.93
2 Joint Learning Pretraining 0.81 14.83 23.62
3 + Finetuning 25.99 12.95 22.63
4 Meta Learning Pretraining 0.51 32.93 11.40
5 (Indurthi et al., 2020) + Finetuning 26.03 12.83 22.15

This Work
6

Joint Learning
Explicit TCN 28.34 11.99 23.15

7 Implicit TCN 28.64 11.61 23.35
8 Taskwise Best Models 28.88 11.36 23.71
9

Meta Learning
Explicit TCN 28.16 11.68 23.13

10 Implicit TCN 28.55 11.65 23.41
11 Taskwise Best Models 28.59 11.28 23.57

Table 3: Performance of the models trained on the Multiple Modality tasks, i.e., ST (MuST-C En-De),
ASR (TED-LIUM 3), and MT (WMT’15 En-De).

3.1.2 MULTIPLE MODALITY EXPERIMENTS

To alleviate the data scarcity issue in Speech Translation (ST), several MTL strategies have been
proposed to jointly train the ST task with Automatic Speech Recognition (ASR) and Machine
Translation (MT) tasks. These MTL approaches lead to significant performance gains on both ST and
ASR tasks after the finetuning phase. We evaluate our proposed framework based on this multimodal
MTL setting since passing the task information explicitly via prepending labels(like the text-to-text
case) in the source sequence is not possible. We use the following datasets for ST English-German,
ASR English, MT English-German tasks:

MT En-De: We use the Open Subtitles (Lison et al., 2019) and WMT 19 corpora. WMT 19 consists
of Common Crawl, Europarl v9, and News Commentary v14 datasets(22M training examples).

ASR English: We used five different datasets namely LibriSpeech (Panayotov et al., 2015), MuST-C
(Di Gangi et al., 2019), TED-LIUM (Hernandez et al., 2018), Common Voice (Ardila et al., 2020)
and filtered IWSLT 19 (IWS, 2019) to train the English ASR task.

ST Task: We use the Europarl ST (Iranzo-Sánchez et al., 2019), IWSLT 2019 (IWS, 2019) and
MuST-C (Di Gangi et al., 2019) datasets. Since ST task has lesser training examples, we use data
augmentation techniques (Lakumarapu et al., 2020) to increase the number of training examples.

Please refer to the appendix for more details about the data statistics and data augmentation techniques
used. All the models reported in this work use the same data settings for training and evaluation.

3.2 IMPLEMENTATION DETAILS AND METRICS

We implemented all the models using Tensorflow 2.2 framework. For all our experiments, we use the
Transformer(Vaswani et al., 2017) as our base model. The hyperparameter settings such as learning
rate, scheduler, optimization algorithm, and dropout have been kept similar to the Transformer, other
than the ones explicitly stated to be different. The ASR performance is measured using Word Error
Rate (WER) while ST and MT performances are calculated using the detokenized cased BLEU score
(Post, 2018). We generate word-piece based universal vocabulary (Gu et al., 2018a) of size 32k using
source and target text sequences of all the tasks. For the task aware MTL strategies, we choose a
single model to report the results rather than finding the best model for each task separately.

We train the text-to-text translation models using 6 Encoder and Decoder layers with a batch size of
2048 text tokens. The training is performed using NVIDIA P40 GPU for 400k steps.

In multi-modality experiments, the speech signals are represented using 80-dimensional log-Mel
features and use 3 CNN layers in the preprocessing layer described in Section 2.1. We use 12 Encoder
and Decoder layers and train for 600k steps using 8 NVIDIA V100 GPUs. For the systems without
TCN, we perform finetuning for 10k steps on each task.
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S. No. Task Approach (BLEU(↑)/WER(↓))
1 MT (WMT’15 En-De) Liu et al. (2020)(60 Encoders) 30.10
2 Our Approach(12 Encoders) 23.71
3

ST (MuSTC En-De)

Indurthi et al. (2020) 22.11
4 Pino et al. (2020) 25.99
5 Lakumarapu et al. (2020) 27.51
6 Our Approach 28.88
7

ASR (TED-LIUM 3)

Pham et al. (2019)(36 Encoders) 10.20
8 Pham et al. (2019)(12 Encoders) 12.40
9 Our Approach(12 Encoders) 10.01

Table 4: Performance comparison with the existing works in ASR, ST and MT.

(a) Language pairs for MT task (b) ASR, MT and ST tasks

(c) Dataset-wise plots for ASR, MT and ST
tasks

Figure 2: t-SNE plot of the task modulation output shows a clear demarcation between various tasks
and datasets.

3.3 RESULTS

3.3.1 SINGLE MODALITY EXPERIMENTS

The results for the text-to-text translation models trained with different MTL strategies have been
provided in Table 2. The MTL models with prepended task label (Raffel et al., 2019) are referred
to as OHV (One Hot Vector). Unlike T5, we don’t initialize the models with the text embeddings
from large pretrained language model (Devlin et al., 2018). Instead, we focus on establishing the
importance of task information during MTL and having a single model for all the tasks. As we can
see from the results, providing the task information via text labels or implicitly using the proposed
task aware MTL leads to significant performance improvements compared to the MTL without the
task information. The models trained using OHV have better performance than those trained using
implicit TCN. However, providing OHV via text labels is not always possible for tasks involving
non-text modalities such as speech and images.
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3.3.2 MULTI MODALITY EXPERIMENTS

We evaluate the proposed two TCNs and compare them with the vanilla MTL strategies. The
performance of all the models is reported in Table 3. We also extended the T5 (Raffel et al., 2019)
approach to the multi modality experiments and compare it with our approach.

Effect of Task Information: The models trained using task aware MTL achieve significant per-
formance gains over the models trained using vanilla MTL approach. Our single model achieves
superior performance compared to the vanilla MTL models even after the finetuning. This shows
that not only is the task information essential to identify the task, but also helps to extract the shared
knowledge better. Our JL and MAML models trained with task aware MTL achieve improvements of
(+2.65, +2.52) for ST, (-1.34, -1.18) for ASR, and (+0.72, +1.26) for the MT task. MAML has some
scope for task-specific learning during its meta train step, which explains why the improvements for
MAML are slightly lesser than JL for ST and ASR tasks.

We also report results using Direct Learning (DL) approach, where separate models are trained for
each task, to compare with MTL models. All the MTL models outperform the DL models on ST and
ASR tasks have comparable performance on MT task.

Explicit v/s Implicit TCN: Our proposed implicit TCN learns the task characteristics directly from
the examples of each task and achieves a performance comparable to the models trained using explicit
TCN. This indicates that it is better to learn the task information implicitly, specifically for tasks
having overlapping characteristics. Figure 2 contains the tSNE plots for task embeddings obtained
from the implicit TCN for single and multi-modality experiments. We can observe that the implicit
TCN is also able to separate all the three tasks effectively without any external supervision.

Single model for all tasks: We select one single model for reporting the results for our approach,
since, having a single model for multiple tasks is favourable in low resource settings. However, we
also report the best models corresponding to each task (row 8 and 11 of Table 3). We observe that
choosing a single model over task-specific models did not result in any significant performance loss.

Feature-wise v/s Input based modulation: We also implemented the input based conditioning
(Toshniwal et al., 2018; Raffel et al., 2019) where we prepend the TCN output, i.e., task information
to the source and target sequences. As compared to our approach, this approach provides a comparable
performance on the ASR task. However, the ST performance is erratic and the output is mixed between
ST and ASR tasks. This shows that the feature-wise modulation is more efficient way to carry out
task-based conditioning for highly confusing tasks like ST and ASR.

Number of parameters added: The Explicit TCN, which is a dense layer, roughly 1500 new
parameters are added. For the Implicit TCN, roughly 1 million new additional parameters are added.
However, simply increasing the number of parameters is not sufficient to to improve the performance.
For e.g., we trained several models by increasing the number of layers for encoder and decoder upto
16. However, these models gave inferior performance as compared to the reported models with 12
encoder and decoder layers.

Scaling with large number of tasks: The t-sne plots in the Figure 2b are drawn using the three
test datasets. However, we used multiple datasets for each of the ASR(Librispeech, Common voice,
TEDLIUM, MuSTC-ASR), ST (MuSTC, IWSLT20, Europarl), and MT (WMT19, OpenSubtitles)
tasks in the multi-modality experiments. We analyze whether or not our proposed approach is able
to separate the data coming from these different distributions. As compared to data coming from
different tasks, separating the data coming from the same task(generated from different distributions)
is more difficult. Earlier, in Figure 2b, we observed that the output is clustered based on the tasks.
Figure 2c shows that within these task-based clusters, there are sub-clusters based on the source
dataset. Hence, the model is able to identify each sub-task based on the source dataset. The model
also gives decent performances on all of them. For example, the single model achieves a WER
of 7.5 on the Librispeech tst-clean, 10.35 on MuSTC, 11.65 on the TEDLIUM v3 and 20.36 on
the commonvoice test set. For the ST task, the same model gives a BLEU score of 28.64 on the
MuSTC test set, 27.61 on the IWSLT tst-2010, and 27.57 on the Europarl test set. This shows that
our proposed approach scales well with the total number of tasks.

Comparison with existing works: The design of our system, i.e., the parameters and the related
tasks were fixed keeping the ST task in mind. We compare the results of our best systems(after
checkpoint averaging) with the recent works in Table 4. We set a new state-of-the-art (SOTA) on the

8



Under review as a conference paper at ICLR 2021

ST En-De MuST-C task. For the ASR task, we outperform the very deep Transformer based model
Pham et al. (2019). We achieve a 19.2% improvement in the WER as compared to the model with
the same number of Encoder and Decoder blocks. The best transformer-based MT model achieves a
BLEU score of 30.10, however, it uses 60 Encoder blocks. The performance drop on the MT task is
attributed to simply training a bigger model without using any additional initialization techniques
proposed in Liu et al. (2015); Wu et al. (2019). However, the MT task helps the other tasks and
improves the overall performance of the system.

4 RELATED WORK

Various MTL techniques have been widely used to improve the performance of end-to-end neural
networks. These techniques are known to solve issues like overfitting and data scarcity. Joint learning
(Caruana, 1997) improves the generalization by leveraging the shared information contained in the
training signals of related tasks. MAML (Finn et al., 2017b) was proposed for training a joint model
on a variety of tasks, such that it can quickly adapt to new tasks. Both the learning approaches require
a finetuning phase resulting in different models for each task. Moreover, during finetuning phase the
model substantially forgets the knowledge acquired during the large-scale pretraining.

One of the original solutions to this problem is pseudo-rehearsal, which involves learning the new
task while rehearsing generated items representative of the previous task. This has been investigated
and addressed to a certain extent in Atkinson et al. (2018) and Li & Hoiem (2018). He et al. (2020)
address this by using a mix-review finetuning strategy, where they include the pretraining objective
during the finetuning phase. Raffel et al. (2019) take a different approach by providing the task
information to the model and achieve performance improvements on different text-to-text tasks.
Although this alleviates the need for finetuning, it cannot be extended to the tasks involving complex
modalities. In our work, we propose a generic framework on top of MTL to provide task information
to the model which can be applied irrespective of the task modalities. It also removes the need for
finetuning, tackling the issue of forgetfulness at its root cause.

A few approaches have also tried to train multiple tasks with a single model, Cheung et al. (2019)
project the input to orthogonal sub-spaces based on the task information. In the approach proposed by
Li & Hoiem (2018), the model is trained on various image classification tasks having the same input
modality. They preserve the output of the model on the training example such that the parameters
don’t deviate much from the original tasks. This is useful when the tasks share the same goal, e.g.
classification. However, we train on a much more varied set of tasks, which might also have the
same inputs with different end goals. Strezoski et al. (2019) propose to apply a fixed mask based
on the task identity. Our work can be seen as a generalization of this work. As compared to all
these approaches, our model is capable of performing both task identification and the corresponding
task learning simultaneously. It learns to control the interactions among various tasks based on the
inter-task similarity without any explicit supervision.

In the domain of neural machine translation, several MTL approaches have been proposed (Gu et al.,
2018a;b). Similarly, recent works have shown that jointly training ST, ASR, and MT tasks improved
the overall performance (Liu et al., 2019; Indurthi et al., 2020). However, all these require a separate
finetuning phase.

5 CONCLUSION

This work proposes a task-aware framework which helps to improve the learning ability of the existing
multitask learning strategies. It addresses the issues faced during vanilla multitask learning, which
includes forgetfulness during finetuning and the problems associated with having separate models for
each task. The proposed approach helps to align better the existing multitask learning strategies with
human learning. It achieves significant performance improvements with a single model on a variety
of tasks which is favourable in low resource settings.
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Albert Sanchis, Jorge Civera, and Alfons Juan. Europarl-st: A multilingual corpus for speech
translation of parliamentary debates. arXiv preprint arXiv:1911.03167, 2019.

The IWSLT 2019 Evaluation Campaign, November 2019. IWSLT, Zenodo. doi: 10.5281/zenodo.
3525578. URL https://doi.org/10.5281/zenodo.3525578.

Nikhil Kumar Lakumarapu, Beomseok Lee, Sathish Reddy Indurthi, Hou Jeung Han, Mohd Abbas
Zaidi, and Sangha Kim. End-to-end offline speech translation system for IWSLT 2020 using
modality agnostic meta-learning. In Proceedings of the 17th International Conference on Spoken
Language Translation, pp. 73–79, Online, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.iwslt-1.7. URL https://www.aclweb.org/anthology/2020.
iwslt-1.7.

Z. Li and D. Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(12):2935–2947, Dec 2018. ISSN 1939-3539. doi: 10.1109/TPAMI.2017.2773081.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell.,
40(12):2935–2947, 2018. doi: 10.1109/TPAMI.2017.2773081. URL https://doi.org/10.
1109/TPAMI.2017.2773081.

Pierre Lison, Jörg Tiedemann, Milen Kouylekov, et al. Open subtitles 2018: Statistical rescoring
of sentence alignments in large, noisy parallel corpora. In LREC 2018, Eleventh International
Conference on Language Resources and Evaluation. European Language Resources Association
(ELRA), 2019.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-yi Wang. Representation
learning using multi-task deep neural networks for semantic classification and information retrieval.
In Proceedings of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 912–921, Denver, Colorado,
May–June 2015. Association for Computational Linguistics. doi: 10.3115/v1/N15-1092. URL
https://www.aclweb.org/anthology/N15-1092.

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng Gao. Very deep transformers for neural machine
translation. arXiv preprint arXiv:2008.07772, 2020.

11

https://www.aclweb.org/anthology/D18-1398
https://www.aclweb.org/anthology/D18-1398
http://arxiv.org/abs/1611.01587
http://dx.doi.org/10.1007/978-3-319-99579-3_21
https://www.aclweb.org/anthology/P19-1290
https://www.aclweb.org/anthology/P19-1290
https://doi.org/10.5281/zenodo.3525578
https://www.aclweb.org/anthology/2020.iwslt-1.7
https://www.aclweb.org/anthology/2020.iwslt-1.7
https://doi.org/10.1109/TPAMI.2017.2773081
https://doi.org/10.1109/TPAMI.2017.2773081
https://www.aclweb.org/anthology/N15-1092


Under review as a conference paper at ICLR 2021

Yuchen Liu, Hao Xiong, Zhongjun He, Jiajun Zhang, Hua Wu, Haifeng Wang, and Chengqing Zong.
End-to-end speech translation with knowledge distillation. CoRR, abs/1904.08075, 2019. URL
http://arxiv.org/abs/1904.08075.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 1412–1421, Lisbon, Portugal, September 2015. Association
for Computational Linguistics. doi: 10.18653/v1/D15-1166. URL https://www.aclweb.org/
anthology/D15-1166.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: An asr corpus based on public
domain audio books. In 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5206–5210, 2015.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. In AAAI, 2018.

Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues, Markus Müller, and Alex Waibel. Very deep
self-attention networks for end-to-end speech recognition. CoRR, abs/1904.13377, 2019. URL
http://arxiv.org/abs/1904.13377.

Juan Pino, Qiantong Xu, Xutai Ma, Mohammad Javad Dousti, and Yun Tang. Self-training for
end-to-end speech translation. arXiv preprint arXiv:2006.02490, 2020.

Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference
on Machine Translation: Research Papers, pp. 186–191, Belgium, Brussels, October 2018.
Association for Computational Linguistics. URL https://www.aclweb.org/anthology/
W18-6319.

Tomasz Potapczyk, Pawel Przybysz, Marcin Chochowski, and Artur Szumaczuk. Samsung’s system
for the iwslt 2019 end-to-end speech translation task. In 16th International Workshop on Spoken
Language Translation (IWSLT). Zenodo, November 2019. doi: 10.5281/zenodo.3525498. URL
https://doi.org/10.5281/zenodo.3525498.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Bharath Ramsundar, Steven Kearnes, Patrick Riley, Dale Webster, David Konerding, and Vijay Pande.
Massively multitask networks for drug discovery, 2015.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, August 2016. Association
for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https://www.aclweb.org/
anthology/P16-1162.

Gjorgji Strezoski, Nanne van Noord, and Marcel Worring. Many task learning with task routing.
CoRR, abs/1903.12117, 2019. URL http://arxiv.org/abs/1903.12117.

Shubham Toshniwal, Tara N Sainath, Ron J Weiss, Bo Li, Pedro Moreno, Eugene Weinstein, and
Kanishka Rao. Multilingual speech recognition with a single end-to-end model. In ICASSP, pp.
4904–4908. IEEE, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Lijun Wu, Yiren Wang, Yingce Xia, Fei Tian, Fei Gao, Tao Qin, Jianhuang Lai, and Tie-Yan Liu.
Depth growing for neural machine translation. arXiv preprint arXiv:1907.01968, 2019.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial landmark detection by
deep multi-task learning. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.),
Computer Vision – ECCV 2014, pp. 94–108, Cham, 2014. Springer International Publishing. ISBN
978-3-319-10599-4.

12

http://arxiv.org/abs/1904.08075
https://www.aclweb.org/anthology/D15-1166
https://www.aclweb.org/anthology/D15-1166
http://arxiv.org/abs/1904.13377
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://doi.org/10.5281/zenodo.3525498
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
http://arxiv.org/abs/1903.12117


Under review as a conference paper at ICLR 2021

6 APPENDIX

6.1 DATASETS

6.1.1 DATA AUGMENTATION FOR SPEECH TRANSLATION

Table 5 provides details about the datasets used for the multi-modality experiments. Since En-De
ST task has relatively fewer training examples compared to ASR and MT tasks, we augment the
ST dataset with synthetic training examples. We generate the synthetic speech sequence and pair
it with the synthetic German text sequences. obtained by using the top two beam search results of
the two trained English-to-German NMT models. For speech sequence, we use the Sox library to
generate the speech signal using different values of speed, echo, and tempo parameters similar to
(Potapczyk et al., 2019). The parameter values are uniformly sampled using these ranges : tempo
∈ (0.85, 1.3), speed ∈ (0.95, 1.05), echo delay ∈ (20, 200), and echo decay ∈ (0.05, 0.2). We also
train two NMT models on EN-De language pair to generate synthetic German sequence. The first
model is based on Edunov et al. (2018) and the second model (Indurthi et al., 2019) is trained on
WMT’18 En-De and OpenSubtitles datsets. We increase the size of the IWSLT 19(filtered) ST dataset
to five times of the original size by augmenting 4x data – four text sequences using the top two beam
results from each EN-De NMT model and four speech signals using the Sox parameter ranges. For
the Europarl-ST, we augment 2x examples to triple the size. The TED-LIUM 3 dataset does not
contain speech-to-text translation examples originally; hence, we create 2x synthetic speech-to-text
translations using speech-to-text transcripts. Finally, for the MuST-C dataset, we only create synthetic
speech and pair it with the original translation to increase the dataset size to 4x. The Overall, we
created the synthetic training data of size approximately equal to four times of the original data for
the ST task.

6.1.2 TASK IDENTIFICATION WITHOUT TASK INFORMATION

Under the multi-modality setting, we conducted smaller scale experiments using only one dataset
for each ST, ASR, and ST tasks. The details of the datasets used have been provided in Table 7. We
trained on single p40 GPU for 400k steps. The corresponding results have been reported in Table 6.
All the results have been obtained without any finetuning. Even though our task-aware MTL model
achieves significant performance improvement over vanilla MTL models, we can observe that the
vanilla MTL models are also able to give a decent performance on all tasks without any finetuning.
An explanation for this is that we used MuST-C dataset for the En-De ST task and TEDLium v3 for
the ASR task, which means that the source speech is coming from 2 different sources. However, if we
use the same datasets for both the tasks(after data augmentation), the MTL models get confused and
the ST, ASR outputs are mixed. The MTL models might be able to learn the task identities simply
based on the source speech sequences, since these sequence are coming from different datasets for
each task type–MuST-C for ST and TED-LIUM v3 for ASR. However, this does not mean that vanilla
MTL models perform joint learning effectively. A human who can perform multiple tasks from the
same input is aware of the task he has to perform beforehand. Similarly, it is unreasonable to expect
different outputs (translation, transcription) from a model to the same type of input (English speech)
without any explicit task information.

6.1.3 IMPLEMENTATION DETAILS

The detailed hyperparameters settings used for the single modality and multi modality experiments
have been provided in the Table 8.
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Task Corpus # hours # Examples
MT Open Subtitles N/A 22,512,639
MT WMT 19 N/A 4,592,289
ASR LibriSpeech 982 232,958
ASR IWSLT 19 ST(filtered) 220 145,372
ASR MuST-C 400 229,702
ASR CommonVoice 1469 232,958
ASR TED-LIUM 3 452 286,263
ST Europarl-ST 89 32,628
ST IWSLT 19 ST(filtered) 220 145,372
ST MuST-C 400 229,703

Table 5: Number of original training examples in each dataset.

S No. MTL Strategy MT BLEU (↑) ASR(WER (↓) ST(BLEU (↑)
Test Dev Test Dev Test

1 Joint Learning 14.77 29.56 30.87 13.10 12.70
2 Meta Learning 14.74 28.58 29.92 13.89 13.67

This Work

3 Task Aware Meta Learning 18.84 21.29 23.44 17.77 17.51(with implicit TCN)

Table 6: Performance of models trained using different approaches on the ASR, MT and ST tasks
using different datasets

Task Corpus Train Dev Test
hours Examples Examples Examples

MT WMT 14 N/A 4,592,289 3,000 3,003
ASR TED-LIUM 3 452 286,263 1,469 591

ST MuST-C 400 229,703 1,423 2,641
Synthetic N/A 689, 103 N/A N/A

Table 7: The data statistics of ASR, MT and ST tasks used in our experiments.

Hyperparameter Single Modality Multi Modality
batching dynamic static
batch size 2048 (tokens) 16 (examples)
optimizer adam adam
adam betas (0.9,0.997) (0.9,0.997)
lr scheduler inverse sqrt inverse sqrt
lr 2.0 2.0
lr warmup steps 16000 16000
label smoothing 0.1 0.1
dropout 0.1 0.1
lr decay rate 1.0 1.0
hidden size 512 512
encoder layers 6 12
decoder embed dim 512 512
decoder layers 6 12
num heads 8 8
filter size(ffn layers) 1024 1024

Table 8: Hyperparameter details for the experiments
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