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Abstract001

Understanding how Transformer-based lan-002
guage models store and retrieve factual asso-003
ciations is critical for improving interpretabil-004
ity and enabling targeted model editing. Prior005
work, primarily on GPT-style models, has iden-006
tified MLP modules in early layers as key007
contributors to factual recall. However, it re-008
mains unclear whether these findings gener-009
alize across different autoregressive architec-010
tures. To address this, we conduct a comprehen-011
sive evaluation of factual recall across several012
models—including GPT, LLaMA, Qwen, and013
DeepSeek—analyzing where and how factual014
information is encoded and accessed. Conse-015
quently, we find that Qwen-based models be-016
have differently from previous patterns: atten-017
tion modules in the earliest layers contribute018
more to factual recall than MLP modules. Our019
findings suggest that even within the autoregres-020
sive Transformer family, architectural varia-021
tions can lead to fundamentally different mech-022
anisms of factual recall.023

1 Introduction024

Transformer-based language models are trained in025

an autoregressive manner, generating the next token026

sequentially based on previous tokens. These mod-027

els exhibit strong language understanding due to028

their scale and self-attention mechanism (Vaswani029

et al., 2017). Beyond simple sentence genera-030

tion, they internalize factual associations, typi-031

cally expressed in knowledge triples of the form032

t = (s, r, o), where s is the subject, r is the rela-033

tion, and o is the object, and effectively recall them034

during inference (Petroni et al., 2019).035

Factual association recall refers to a model’s036

ability to generate the correct object given a sub-037

ject–relation prompt by leveraging internally stored038

factual knowledge. One line of research on factual039

recall investigates whether specific properties are040

embedded within the internal representations of lan- 041

guage models, by tracing information flow through 042

causal analysis (Meng et al., 2022a,b; Geva et al., 043

2023). These approaches are widely used in ap- 044

plications such as knowledge editing to identify 045

where factual associations are primarily stored and 046

to enable targeted modifications, rather than editing 047

the entire network. 048

However, these prior findings have focused only 049

on GPT-family architectures. This observation 050

raises the question of whether such findings gener- 051

alize across different autoregressive architectures. 052

To address this gap, we conduct a comprehen- 053

sive, layer-wise and module-wise (Attention vs. 054

MLP) quantitative evaluation of factual association 055

recall—examining where and how factual informa- 056

tion is stored and retrieved across a range of autore- 057

gressive Transformer models, including GPT (Rad- 058

ford et al., 2019; Brown et al., 2020; Wang and Ko- 059

matsuzaki, 2021), LLaMA (Grattafiori et al., 2024), 060

Qwen (Yang et al., 2024), and DeepSeek (Guo 061

et al., 2025) 1. Our evaluation and analysis re- 062

veals notable architecture-specific differences— 063

particularly in the Qwen-based architectures—in 064

where and how factual associations are recalled. 065

In our evaluation, we extend the experimental 066

frameworks of Meng et al. (2022a) and Geva et al. 067

(2023), applying causal tracing across a diverse set 068

of autoregressive Transformer models to perform 069

the following experiments, as showed in Figure 1. 070

1. Restoration effects. We measure the change in 071

inference probability between clean and corrupted 072

inputs at the last subject token position, follow- 073

ing causal tracing protocols from prior work. This 074

allows us to analyze the sensitivity of model pre- 075

dictions across all layers and modules (Attention 076

vs. MLP), providing insight into where factual 077

1Evaluation results are based on 17 models across target
architectures; For brevity, we present results for four repre-
sentative models in the main text, with the remaining results
included in Appendix A.
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Figure 1: Overview of Our Evaluation. The pipeline consists of three main stages: (1) restoration effects, (2)
severing effects, and (3) factual prediction. Each stage applies a distinct intervention strategy to evaluate the
contribution of the Attention and MLP modules to factual association recall.

associations are most affected by input corruption.078

2. Severing effects. We perform selective severing079

either the Attention or MLP module at each layer080

during inference. We then evaluate how much each081

module contributes to the model’s ability to gener-082

ate the correct object in factual association prompts.083

In addition, we compute the Gini coefficient over084

inference contributions to assess how structurally085

localized the causal effects are within each module.086

3. Factual prediction. We refine the object predic-087

tion evaluation method used in Geva et al. (2023),088

which relies on string matching between predicted089

tokens and BM25-selected candidates. Noting its090

insensitivity to semantically equivalent outputs, we091

introduce a semantic similarity–based evaluation092

metric, which considers a predicted token correct093

if its embedding similarity to a candidate token ex-094

ceeds a fixed threshold. This allows for more robust095

evaluation of model outputs, especially in architec-096

tures that generate more varied but semantically097

equivalent expressions.098

Results. This study highlights the following:099

1. Our evaluation confirms that, in GPT-based mod-100

els, MLP modules in the early layers play a key101

role in storing factual associations. This finding102

supports prior work (Meng et al., 2022a; Geva et al.,103

2023), demonstrating that their conclusions are ap-104

plicable to this class of architectures.105

2. However, we identify key factors indicating106

that Qwen-based models show larger changes in107

inference probability within the early Attention lay-108

ers, unlike GPT-based models. In Qwen-based109

models, factual associations are more concentrated110

in the Attention module than in the MLP. This111

finding is further supported by Gini coefficient112

analysis, which shows that the Attention modules 113

are where most of tqhe important effects are fo- 114

cused—highlighting their key role in factual recall 115

in this model. 116

3. Our semantic similarity–based evaluation further 117

confirms the difference between GPT-based and 118

Qwen-based models. In Qwen-based models, At- 119

tention modules consistently contribute more to fac- 120

tual inference than MLPs, even when the model’s 121

outputs vary in wording. 122

These findings have practical implications for 123

deploying Transformer models in real-world sce- 124

narios, where knowing which layers and modules 125

store factual knowledge is important for effective 126

targeted model editing, reliable interpretability, and 127

knowledge-intensive tasks. 128

2 Notation of Autoregressive Transformer 129

We begin by outlining the fundamental architecture 130

of autoregressive Transformer models (Vaswani 131

et al., 2017), before analyzing the recall mecha- 132

nisms of factual associations in representative mod- 133

els such as GPT, LLaMA, Qwen, and DeepSeek. 134

These models are designed such that each token 135

can perform the Attention mechanism only over 136

tokens that precede it. 137

An autoregressive Transformer model M : X → 138

Y operates over a vocabulary V , and given an input 139

token sequence x = [x1, ..., xT ] ∈ X , produces a 140

probability distribution y ∈ Y ⊂ R|V | for the next 141

token. This distribution reflects the model’s estima- 142

tion of the next token given the preceding context. 143

Internally, each token xi is mapped to a hidden 144

state vector h(l)i at layer l. The initial hidden state 145

h
(emb)
i is computed as the sum of the token em- 146
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bedding and positional embedding, as defined in147

Equation 1.148

h
(emb)
i = emb(xi) + pos(i) ∈ Rdmodel (1)149

The hidden state is iteratively updated through150

layers using Attention and MLP modules. At layer151

l, the hidden state of the i-th token is :152

h
(l)
i = h

(l−1)
i + a

(l)
i +m

(l)
i (2)153

The Attention output a(l)i incorporates represen-154

tations from previous tokens via self-attention :155

a
(l)
i = attn(l)(h

(l−1)
1 , ..., h

(l−1)
i ) (3)156

The MLP output applies a non-linear transfor-157

mation to the residual input :158

m
(l)
i = W

(l)
projσ(W

(l)
fc γ(a

(l)
i + h

(l−1)
i )) (4)159

where γ denotes a normalization, and σ is a160

non-linear activation.161

162

3 Structural Insights into Factual Recall163

We conduct a quantitative analysis of how factual164

associations are stored across various autoregres-165

sive models through a unified evaluation. The166

results show that Qwen and DeepSeek exhibit167

patterns that differ from previously reported168

trends. Specifically, the early Attention layers169

corresponding to the position of the last subject170

token make significant contributions to the storage171

of factual associations. These findings suggest172

that architectural differences may influence the173

mechanisms underlying factual association storage.174

175

We frame our empirical study around the follow-176

ing research questions, and describe our approach.177

#1. In various autoregressive Transformer models,178

which modules, layers, and token-position-specific179

activations contribute to the recall of specific fac-180

tual associations, and to what extent do they influ-181

ence the model’s output?182

• Following the causal tracing methodology in-183

troduced in ROME (Meng et al., 2022a), we184

conduct restoration effects and severing ef-185

fects experiments across a range of autore-186

gressive Transformer models. Through these187

experiments, we quantitatively measure the188

Average Indirect Effect (AIE) of internal acti-189

vations.190

#2. Experiments conducted across various mod- 191

els reveal an inconsistency between the results of 192

the restoration effects experiment and the sever- 193

ing effects experiment in the Qwen and DeepSeek 194

models, raising the question: what factors might 195

have caused this discrepancy? 196

• To investigate the underlying cause of this dis- 197

crepancy, we compute the Gini coefficient 198

over the distribution of AIE values to quan- 199

tify the degree of concentration across layers, 200

thereby identifying which layers contribute 201

most to factual association recall. 202

• Subsequently, we apply the severing effects 203

experiment to the layers within the Attention 204

modules of the Qwen and DeepSeek mod- 205

els that exhibit the highest AIE concentration. 206

However, severing these layers does not result 207

in a significant reduction in AIE. The incon- 208

sistency between the two experimental results 209

is consistently observed. 210

#3. These findings suggest that the severing ef- 211

fects may have failed to sufficiently suppress the 212

activations of the Attention module. Does this not 213

indicate the need for a more precise intervention 214

method? 215

• Experimental results reveal that the severing 216

effects method (as proposed in Meng et al. 217

(2022a)) has a critical limitation in accurately 218

reflecting the contribution to factual associa- 219

tion recall, as it fails to sufficiently suppress 220

the influence of the attention module. 221

• To address this limitation, we adopt the 222

methodology proposed by Geva et al. (2023) 223

and apply a knockout technique that directly 224

blocks the output of each module. In addi- 225

tion, we evaluate factual prediction perfor- 226

mance using the objects rate instead of AIE, 227

incorporating semantic similarity by comput- 228

ing the cosine similarity between Sentence- 229

BERT (Reimers and Gurevych, 2019) em- 230

beddings, rather than relying on exact string 231

matching. Through this approach, we em- 232

pirically confirm that the early layers of the 233

Attention module in the Qwen and DeepSeek 234

models contribute to the factual recall. 235

We present a novel finding that, in Qwen-based 236

models, the early layers of the Attention module 237

contribute more to factual association recall at the 238
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Model #Layers #Parameters
GPT-2-XL 48 1.5B

LLaMA-3.2-1B 16 1B
Qwen-2.5-1.5B 28 1.5B
DeepSeek-R1

Distill-Qwen-1.5B
28 1.5B

Table 1: Architectural details of autoregressive Trans-
former models (B = Billion parameters).

last subject token position than the MLP module.239

This contrasts with prior work (Meng et al., 2022a;240

Geva et al., 2023) that identifies the MLP as the pri-241

mary site for factual association storage. Our result242

suggests that the localization of factual associations243

can shift depending on model architecture, high-244

lighting the need for broader comparative studies245

across Transformer families.246

4 Evaluation Methods247

We build on and modify the implementations pro-248

vided by Meng et al. (2022a) and Geva et al. (2023)249

to suit our evaluation framework.250

Model Selection. We evaluate a variety of autore-251

gressive Transformer models, as summarized in252

Table 1. Additional experimental targets and evalu-253

ation results are provided in the Appendix A.254

Dataset & Prompting. We employ the COUN-255

TERFACT dataset (Meng et al., 2022a), which is256

specifically designed to test factual associations257

stored in language models. This dataset consists of258

a diverse collection of prompts that encode factual259

associations.260

To examine how each model processes the ob-261

ject in a factual association, we input only the262

subject and relation from a knowledge tuple t =263

(subject, relation, object), excluding the object.264

This setup allows us to evaluate the model’s abil-265

ity to accurately predict the object based on the266

given context. For performance evaluation, we267

sample 100 factual sentences in which the object268

was successfully predicted, and apply the evalua-269

tion methodology described in the next subsection.270

Throughout all experiments, model layers are in-271

dexed from 0 to L− 1, and our analysis focuses on272

the last subject token position, which is critical for273

triggering factual recall within the model.274

4.1 Restoration Effects275

Our first experiment #1 aims to quantitatively an-276

alyze how specific modules, layers, and token-277

position-specific activations in Transformer-based 278

language models contribute to the storage and re- 279

call of factual associations. 280

The analysis assumes two baseline execution set- 281

tings. The clean-run executes the model on an 282

uncorrupted input, yielding accurate factual predic- 283

tions. In contrast, the corrupted-run injects noise 284

into the subject representation to degrade recall 285

performance. Specifically, we perturb the subject 286

embedding by adding noise with a magnitude of 287

v = 3σsub, where σsub is the standard deviation of 288

subject embeddings collected from the dataset. 289

Based on this setup, we quantify the restoration 290

effects by restoring the activation of a module at a 291

specific layer to its clean state within the corrupted 292

run. This setup enables us to measure the causal 293

contribution of the target component to factual as- 294

sociation recall. 295

Under this setup, we use the metric Indirect Ef- 296

fect (IE) to quantify the degree to which a given 297

component contributes to factual recall. IE is com- 298

puted as the difference in prediction probability 299

of the correct token o between the restored and 300

non-restored cases (Meng et al., 2022a): 301

IE = P∗,clean h
(l)
i

[o]− P∗[o] (5) 302

where P∗[o] denotes the prediction probability of o 303

in the corrupted run, and P∗,clean h
(l)
i

[o] is the corre- 304

sponding probability when the hidden state h
(l)
i is 305

restored to its clean value. In this experiment, IE 306

is used to quantify the causal contribution of the 307

target component, where a higher IE indicates that 308

the activation of the module at the given layer has 309

a greater impact on factual recall. 310

Finally, the Average Indirect Effect (AIE) 311

aggregates IE across multiple prompts, capturing 312

the degree to which a given component consistently 313

supports factual recall across diverse contexts. 314

315

4.2 Severing Effects 316

Our second experiment #2 applies the severing ef- 317

fects to quantitatively analyze the extent to which 318

AIE-based contributions are concentrated in either 319

the Attention or MLP modules. Specifically, simi- 320

lar to the restoration effects, we start from a hidden 321

state in which activations have been restored, but 322

selectively replace only the activation of the target 323

module (e.g., Attention or MLP) with its corrupted 324

counterpart, thereby severing the information flow 325

through that module. If the AIE value significantly 326
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decreases when the activation of a specific mod-327

ule at a certain layer is corrupted, it suggests that328

the corresponding activation plays a critical role in329

factual association recall.330

The restoration and severing effects experiments331

yield diverging results, making it difficult to con-332

sistently interpret the contribution of each module.333

To address this discrepancy, we compute the Gini334

coefficient (Dorfman, 1979) over the AIE distribu-335

tion to quantify the concentration of contributions336

across layers. The Gini coefficient is defined as337

follows:338

GA =

∑
i

∑
j |AIE′

i −AIE′
j |

2L
∑

iAIE
′
i

(6)339

where L is the number of total layers, and AIE′340

denotes the normalized, layer-level aggregated AIE341

values.342

We compute the Gini coefficient to identify the343

layer with concentrated AIE, and then apply the344

severing effects to evaluate whether the AIE re-345

duction aligns proportionally with the restoration346

effects.347

4.3 Factual Prediction348

Our third experiment #3 aims to quantitatively eval-349

uate how the Attention and MLP modules inject350

factual association into the subject representation351

and functionally contribute to factual prediction.352

To this end, we execute a knockout-run, which353

sequentially applies knockout interventions to each354

layer l = 0, . . . , L − 1. Specifically, we zero out355

the updates at the last subject token position in both356

the Attention and MLP modules across five consec-357

utive layers. The intervention is applied over the358

range l̃ = l, . . . ,min{l+4, L−1}, and the model’s359

top-k output tokens under these intervention condi-360

tions are collected. These tokens are subsequently361

used as the set T , which serves as the basis for362

factual prediction evaluation.363

Prior to evaluation, we construct a candidate364

object set O corresponding to each subject. We365

retrieve relevant paragraphs from Wikipedia us-366

ing BM25 (Robertson et al., 1995; Geva et al.,367

2023), followed by tokenization and the removal of368

stopwords and subword fragments. The resulting369

candidate set consists of non-common tokens that370

frequently co-occur with the subject and can be371

considered plausible object expressions.372

Language models with a relatively large num-373

ber of parameters often produce outputs that are374

semantically accurate but lexically differ from the 375

canonical object tokens. As a result, conventional 376

string match-based metrics significantly underes- 377

timate the objects rate. To mitigate this limita- 378

tion, we adopt a semantic similarity-based evalua- 379

tion method using Sentence-BERT (Reimers and 380

Gurevych, 2019). 381

Therefore, instead of relying on exact string 382

matching, we compute the cosine similarity be- 383

tween the Sentence-BERT embeddings of the gen- 384

erated tokens and the object candidates. Tokens 385

that exceed a predefined similarity threshold τ with 386

any element in O are regarded as semantically 387

valid. This design allows for robust and generaliz- 388

able evaluation of factual prediction by accounting 389

for lexical variation, improving upon string match- 390

based methods used in prior work (Geva et al., 391

2023). 392

The objects rate is defined as the average propor- 393

tion of semantically valid tokens among the top-k 394

outputs for each subject: 395

ObjectsRate =
|Oτ |
|T |

× 100 (7) 396

where T denotes the set of top-k tokens (with k = 397

50) generated by the model for a given subject, and 398

Oτ is defined as: 399

Oτ = {t ∈ T | ∃o ∈ O, sim(t, o) ≥ τ} (8) 400

Here, O is the candidate object set for each subject, 401

and sim(t, o) denotes the cosine similarity between 402

the generated token t and the object candidate o. 403

The similarity threshold is set to τ = 0.72, and 404

the objects rate is averaged across all subjects to 405

yield a generalized measure of factual prediction 406

performance. 407

5 Evaluation Results 408

5.1 Restoration Effects Analysis 409

To analyze the components contributing to the 410

recall of factual associations, we use the restoration 411

effects experiment to compute the Average Indirect 412

Effect (AIE). The experiments are conducted 413

on autoregressive Transformer-based models 414

including GPT, LLaMA, Qwen, and DeepSeek, 415

with a particular focus on the last subject token, 416

which plays a crucial role in factual association 417

recall. 418

Figure 2 shows the results of the restoration 419

2Detailed in Appendix B.

5



G
P
T
-2
-X
L

L
L
aM
A
-3
.2
-1
B

Q
w
en
-2
.5
-1
.5
B

D
ee
p
S
ee
k
-R
1

D
is
ti
ll
-Q
w
en
-1
.5
B

Figure 2: Restoration effects across multiple autoregressive Transformer models.

effects experiment, visualizing the layer-wise420

and module-wise AIE distribution across all421

token positions for each model. In GPT and422

LLaMA, AIE values are elevated in the early MLP423

layers, reflecting a canonical pattern of factual424

recall (Meng et al., 2022a). By contrast, Qwen and425

DeepSeek exhibit notably high AIE values in the426

early layers of the Attention module, suggesting427

that, unlike GPT and LLaMA, they store factual428

associations in the early Attention layers.429

430

5.2 Severing Effects Analysis431

To quantitatively analyze whether AIE-based con-432

tributions are more concentrated in the Attention or433

MLP modules, we perform a severing effects exper-434

iment in which we remove the outputs of specific435

layers and measure the resulting changes in AIE.436

As prior results (Figure 2) indicate that the early437

layers of both modules exhibit relatively high AIE438

values, we design the experiment to target layers 0439

through 15 for each module.440

Figure 3 shows the results of the severing ef-441

fects experiment, focusing on layers with high AIE442

values identified in the previous restoration effects443

analysis. In GPT and LLaMA, the AIE values are 444

elevated in the early MLP layers, and severing these 445

layers leads to a substantial reduction in AIE. By 446

contrast, in Qwen and DeepSeek, although the early 447

Attention layers exhibit high AIE values, severing 448

these layers results in only a minimal decrease. 449

This indicates that while the Attention module ap- 450

pears to contribute significantly in the restoration 451

effects experiment, its influence is not effectively 452

suppressed in the severing effects setting. 453

To quantitatively explain this discrepancy, we 454

compute the Gini coefficient of the layer-wise AIE 455

distribution, as shown in Figure 4. The results show 456

that in the Qwen and DeepSeek models, the AIE 457

contribution of the Attention module is highly con- 458

centrated in the fourth layer. In contrast, in the 459

GPT and LLaMA models, contributions from both 460

the Attention and MLP modules are more evenly 461

distributed. Based on this analysis, we conduct an 462

additional experiment that selectively severs the 463

layers with the highest concentration of contribu- 464

tions in each module. The results are summarized 465

in Table 2. Severing the MLP layers leads to a clear 466

drop in AIE, while severing the Attention layers 467

yields only a minimal reduction. This outcome can 468
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Effect with 
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GPT-2-XL LLaMA-3.2-1B Qwen-2.5-1.5B DeepSeek-R1

Distill-Qwen-1.5B

Figure 3: Severing effects across multiple autoregressive Transformer models (restricted to layers 0–15 to verify
whether severing early layers significantly reduces AIE, consistent with the concentration observed in the restoration
effects experiment).
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Figure 4: Gini coefficient-based concentration analysis
in Attention and MLP modules across autoregressive
Transformer models (numbers above bars indicate the
layer with the highest concentration).

be attributed to the structural characteristics of the469

Attention mechanism. In the Attention module, in-470

formation can propagate through alternative paths471

even when specific routes are blocked, which miti-472

gates the impact of severing a particular layer (El-473

hage et al., 2021). In contrast, the MLP module474

operates independently on each token, and severing475

it directly disrupts the flow of information. These476

structural differences account for the observed dis-477

parity in AIE reduction between the two modules in478

the severing effects experiment (Geva et al., 2021).479

5.3 Factual Prediction Analysis480

To more precisely evaluate the contribution of the481

Attention module, we conduct a factual prediction482

experiment using a knockout approach that com-483

pletely blocks the output of the target module.484

Figure 5 shows the change in objects rate when485

a knockout is applied to each layer of the Attention486

and MLP modules. In GPT and LLaMA, blocking487

the early MLP layers leads to a substantial drop488

in objects rate, whereas in Qwen and DeepSeek,489

blocking the early Attention layers also results in490

Model Attention
(Drop rate)

MLP
(Drop rate)

GPT-2-XL 31.32% 69.52%
LLaMA-3.2-1B 10.82% 89.40%
Qwen-2.5-1.5B 8.25% 83.55%
DeepSeek-R1

Distill-Qwen-1.5B
-0.14% 83.60%

Table 2: Effect of severing highly concentrated layers
selected by the Gini coefficient on AIE. A larger drop
rate indicates greater layer influence (for Qwen and
DeepSeek, severing Attention layers with high Gini
scores results in only a small drop).

a substantial drop. These results suggest that GPT 491

and LLaMA primarily store factual associations in 492

the early layers of the MLP module, while Qwen 493

and Qwen-based DeepSeek store a substantial por- 494

tion of such associations in the early layers of the 495

Attention module, which plays a critical role in the 496

recall of factual associations. These findings indi- 497

cate that the factual prediction experiment provides 498

a more appropriate and reliable means of assessing 499

the contribution of the Attention module than the 500

severing effects experiment. 501

6 Practical Implications 502

Our study highlights important differences in how 503

language models store and recall facts, depend- 504

ing on their architecture, which have important 505

practical implications. For example, in Qwen- 506

based architectures, where factual recall is con- 507

centrated in early Attention layers, knowledge edit- 508

ing methods (Meng et al., 2022a,b; Li et al., 2024; 509

Fang et al., 2024) should adapt accordingly: tar- 510

geting Attention modules rather than MLPs. Simi- 511

larly, interpretability tools (Clark et al., 2019; Be- 512

linkov, 2022) and attribution analyses (Vig, 2019) 513

7



G
P
T
-2
-X
L

L
L
aM
A
-3
.2
-1
B

Q
w
en
-2
.5
-1
.5
B

D
ee
p
S
ee
k
-R
1

D
is
ti
ll
-Q
w
en
-1
.5
B

Figure 5: Factual prediction evaluation after knockout of Attention and MLP outputs across autoregressive Trans-
former models. Red boxes indicate points where blocking either the Attention or MLP module in early layers causes
a substantial drop in objects rate, suggesting that the corresponding module plays a critical role in factual association
recall.

should focus on these components to better trace514

factual reasoning. These insights can also guide515

architecture-aware model compression (Sanh et al.,516

2020), where preserving key Attention layers may517

help retain factual knowledge.518

7 Related Work519

Language models go beyond predicting sequences520

based solely on frequently occurring word patterns,521

as they internally store and utilize factual asso-522

ciations (Petroni et al., 2019; Jiang et al., 2020;523

Roberts et al., 2020). Early research on factual524

association recall focuses on probing methods,525

which train classifiers on frozen representations526

to evaluate whether specific properties are embed-527

ded within the internal representations of language528

models (Ettinger et al., 2016; Adi et al., 2016; Be-529

linkov et al., 2017; Hupkes et al., 2018; Conneau530

et al., 2018; Elazar et al., 2021). However, such ap-531

proaches are limited in explaining how these prop-532

erties functionally influence model predictions (Be-533

linkov, 2022).534

To address these limitations, recent work turns535

to causal analysis, which estimates the functional536

contributions of internal components by applying537

counterfactual interventions (Vig et al., 2020; Pearl,538

2022). A prominent method that applies this con-539

cept to hidden representation analysis is causal540

tracing, which enables the layer-level and module-541

level attribution of factual predictions (Meng et al.,542

2022a). Recent work actively explores causal trac- 543

ing, which now serves as a central analytical frame- 544

work for model interpretability (Dai et al., 2022; 545

Mohebbi et al., 2023; Hase et al., 2023; Geva 546

et al., 2023; Dar et al., 2023) and knowledge edit- 547

ing (Meng et al., 2022a,b; Li et al., 2024; Fang 548

et al., 2024). 549

8 Conclusion 550

We conducted a comprehensive evaluation of fac- 551

tual association recall to examine whether prior 552

findings based on GPT models generalize across 553

a broader range of autoregressive Transformer ar- 554

chitectures. To this end, we designed our evalu- 555

ation methods to highlight structural differences 556

in factual recall behavior across models. Our re- 557

sults reveal that Qwen-based models behave dif- 558

ferently from previously reported patterns: factual 559

recall is more strongly concentrated in the Atten- 560

tion modules, rather than the MLPs. Our findings 561

have important implications for the deployment of 562

Transformer models in real-world applications. In 563

particular, understanding which layers and modules 564

are responsible for storing factual knowledge is es- 565

sential for improving performance in knowledge- 566

intensive tasks, enabling more precise model edit- 567

ing, and supporting interpretability. 568

8



Limitations569

While we analyze where factual associations are570

stored across a range of autoregressive Trans-571

former models, including GPT, LLaMA, Qwen,572

and DeepSeek, the internal mechanisms by which573

these associations are recalled during inference574

remain insufficiently understood. Furthermore,575

despite observing model-specific recall patterns,576

how factual associations are dynamically accessed577

across different architectures remains unclear. In578

addition, although our results indicate that the579

storage locations of factual associations may vary580

depending on the model architecture, the inter-581

pretation of such structural differences is lim-582

ited, warranting further investigation. Addressing583

these limitations is crucial for applications such as584

knowledge editing across existing and emerging585

Transformer-based architectures.586
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A Additional Experimental Analysis772

We extend our experiments to autoregressive Trans-773

former models with varying parameter sizes, as774

listed in Table 3, and conduct additional evalua-775

tions accordingly.776

A.1 Resotration Effects Analysis777

We extend the restoration effects experiment by778

conducting additional analyses on autoregressive779

Transformer models with varying parameter scales.780

We show the restoration effects results separately781

for each model family. Figure 6 shows the results782

for the GPT family, and Figures 7, 8, and 9 show783

the results for the LLaMA, Qwen, and DeepSeek784

families, respectively.785

First, the analysis of GPT-family models reveals786

that the MLP modules in the early layers at the last787

subject token play a primary role in storing factual788

associations. Notably, GPT-2 Large exhibits a dis-789

tinct pattern, where the Attention modules in the790

early layers also make a significant contribution to791

recalling factual associations.792

Second, the analysis of LLaMA-family models793

reveals that, similar to the GPT family, the MLP794

modules in the early layers at the last subject token795

play a major role in storing factual associations.796

Third, the analysis of Qwen-family models re-797

veals that both MLP and Attention modules con-798

tribute to the storage of factual associations primar-799

ily in the early layers at the last subject token. This800

suggests that Qwen models leverage multiple mod-801

ules within the early layers jointly in the process of802

storing factual associations.803

Finally, the analysis of DeepSeek-family models804

reveals that the pattern of factual association stor-805

age varies depending on the base model used for806

distillation. Qwen-based models store factual asso-807

ciations in the early layers at the last subject token808

through both Attention and MLP modules, whereas809

LLaMA-based models show no clear contribution810

from the Attention modules at the same position.811

Furthermore, the distillation models exhibit factual812

association recall structures similar to their base813

models and display generally consistent patterns.814

These results suggest that the location of factual815

association storage may vary depending on struc-816

tural differences in model architecture.817

Prior work, such as ROME (Meng et al., 2022a),818

suggests that in models with a small number of lay-819

ers, factual associations may be stored in the early820

layers of the attention module at the position of821

Model #Layers #Parameters
GPT-2-Small 12 0.124B

GPT-2-Medium 24 0.335B
GPT-2-Large 36 0.774B

GPT-J-6B 28 6B
LLaMA-3.1-8B 32 8B
LLaMA-3.2-3B 28 3B
Qwen-2.5-0.5B 24 0.5B
Qwen-2.5-3B 36 3B
Qwen-2.5-7B 28 7B
Qwen-2.5-14B 48 14B
DeepSeek-R1

Distill-Qwen-7B
28 7B

DeepSeek-R1
Distill-LLaMA-8B

32 8B

DeepSeek-R1
Distill-Qwen-14B

48 14B

Table 3: Architectural configurations of autoregressive
Transformer models with varying parameter scales (B =
billion parameters).

the last subject token. However, our experimental 822

results show that clear activation is not observed in 823

the attention module at the last subject token posi- 824

tion in models with a small number of layers, such 825

as GPT-Small, GPT-Medium, and LLaMA-3.2–3B. 826

These findings suggest that the contribution of the 827

attention module to factual association storage is 828

not determined solely by the number of layers, but 829

may also be influenced by other architectural fac- 830

tors. 831

A.2 Severing Effects Analysis 832

We extend the original severing effects experiment, 833

which was limited to layers 0-15, to cover all layers, 834

and perform additional analyses on autoregressive 835

Transformer models with varying parameter scales. 836

Figure 10 shows the results of the extended sev- 837

ering effects experiments conducted across the full 838

layer range. Figures 11, 12, 13, and 14 show 839

the outcomes for the GPT, LLaMA, Qwen, and 840

DeepSeek families, respectively. The analysis 841

of all model families — including GPT, LLaMA, 842

Qwen, and DeepSeek — reveals that severing the 843

MLP modules in the early layers at the last subject 844

token leads to a substantial drop in AIE, indicating 845

their critical role in factual association recall. No- 846

tably, while Qwen and DeepSeek models exhibit 847

high AIE values for the early Attention modules at 848

the last subject token in the severing effects experi- 849
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Figure 6: Restoration effects in GPT-family autoregressive Transformer models with varying parameter scales.

ments, the severing effects experiments show that850

severing these Attention modules does not result in851

as large a decrease in AIE as observed for the MLP852

modules.853

Based on these results, we extend the previ-854

ous Gini coefficient-based concentration experi-855

ments by conducting additional analyses across856

a range of autoregressive Transformer models to857

quantitatively examine the distribution characteris-858

tics of AIE within the Attention and MLP mod-859

ules. Figure 15 shows the results of the Gini860

coefficient-based concentration analysis. Most861

GPT-family and LLaMA-family models, except862

for GPT-2-Small and GPT-2-Large, exhibit a rela-863

tively uniform distribution of AIE across the Atten-864

tion and MLP modules. In contrast, Qwen-family865

and DeepSeek-family models show a concentrated866

distribution of AIE within specific layers of the At-867

tention module, indicating that factual associations868

tend to be stored in a more concentrated manner869

within certain layers of the Attention module.870

A.3 Factual Prediction Analysis871

We extend the previous factual prediction experi-872

ments by conducting additional evaluations on a873

variety of autoregressive Transformer models. 874

The factual prediction results are presented sepa- 875

rately for each model family. Figure 16 presents the 876

results for the GPT family, and Figures 17, 18, and 877

19 correspond to the LLaMA, Qwen, and DeepSeek 878

families, respectively. 879

Most GPT-family models exhibit a substantial 880

drop in objects rate when the early layers of the 881

MLP module are blocked, suggesting that these 882

layers are key locations where factual associations 883

are recalled. 884

Within the LLaMA family, LLaMA 3.1-8B 885

shows a similar pattern to GPT models, with a 886

significant objects rate drop when early MLP lay- 887

ers are blocked, indicating that factual associations 888

are primarily recalled in that region. In contrast, 889

LLaMA 3.2-3B shows a clear drop in objects rate 890

when early Attention layers are blocked, implying 891

that factual recall primarily occurs in the early At- 892

tention module. 893

Most models in the Qwen family also demon- 894

strate that early Attention layers play a central 895

role in factual association recall, as evidenced by 896

marked decreases in objects rate when these layers 897

are blocked. 898
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Figure 7: Restoration effects in LLaMA-family autoregressive Transformer models with varying parameter scales.

For the DeepSeek family, DeepSeek-R1-Distill-899

LLaMA-8B exhibits factual recall concentrated in900

the early MLP layers, while DeepSeek-R1-Distill-901

Qwen-14B shows that both early Attention and902

MLP layers contribute to factual recall. Meanwhile,903

DeepSeek-R1-Distill-Qwen-7B produces inconsis-904

tent results, indicating the need for further investi-905

gation in future work.906

B Semantic Similarity Threshold907

This section explains the rationale behind the se-908

mantic similarity threshold of 0.7 used in the fac-909

tual prediction experiment.910

Language models with a relatively large number911

of parameters exhibit expressive capabilities. As912

a result, evaluating their outputs solely based on913

surface-level string matching is insufficient to cap-914

ture their semantic appropriateness. To address this915

limitation, this study adopts a quantitative evalua-916

tion method based on semantic similarity.917

For computing semantic similarity, this study918

employs all-MiniLM-L6-v2, a pre-trained language919

model based on Sentence-BERT (Reimers and920

Gurevych, 2019). Each word pair is encoded into921

embeddings, and cosine similarity is used to quan-922

tify their semantic closeness. Pairs with a similarity923

score of 0.7 or higher are considered semantically924

similar. This threshold is selected as a conserva-925

tive and empirically grounded criterion to ensure926

a clearer separation between semantically similar927

and dissimilar cases, thereby enhancing consis-928

tency and precision in evaluation. Although lower929

similarity scores may sometimes correspond to se-930

mantically related expressions, a threshold of 0.7 is931

adopted to maintain reliability and interpretability.932

To support the validity of this threshold, Table 4933

Word A Word B Similarity Score
table sadness 0.09
law noodles 0.17

rocket freedom 0.24
chair depression 0.32

urinary water 0.40
task project 0.56

publicity advertising 0.62
student school 0.65
movie cinema 0.68

combat fight 0.71
computer laptop 0.71

art painting 0.72
middle mid 0.75

city urban 0.86
purchase buy 0.87

bike bicycle 0.92
sofa sofa 1.00

Table 4: Examples of semantic similarity scores for
word pairs measured by Sentence-BERT.

presents examples of sentence pairs spanning a 934

range of similarity scores. These examples demon- 935

strate that semantic similarity–based evaluation en- 936

ables more fine-grained and accurate assessment 937

than methods relying solely on surface-level string 938

matching. 939

C Implementation Details 940

All language model families used in our ex- 941

periments—including GPT, LLaMA, Qwen, and 942

DeepSeek—are loaded via the Hugging Face Trans- 943

formers3 library, which provides a unified interface 944

for model and tokenizer handling. 945

3https://huggingface.co/
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Figure 8: Restoration effects in Qwen-family autoregressive Transformer models with varying parameter scales.

During preprocessing as described in Section 4.3,946

we use NLTK4 to remove stopwords from prompts.947

For candidate selection, we apply BM25 ranking948

using the rank_bm255 python package.949

Meng et al. (2022a) is released under the MIT950

License, and Geva et al. (2023) under the Apache951

License 2.0, both of which we build upon and mod-952

ify to support our evaluation framework and to953

extend their functionalities for a broader set of au-954

toregressive Transformer architectures.955

4https://www.nltk.org/
5https://github.com/dorianbrown/rank_bm25
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Figure 9: Restoration effects in DeepSeek-family autoregressive Transformer models with varying parameter scales.
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Figure 10: Severing effects across multiple autoregressive Transformer models (all layers).
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Figure 11: Severing effects across GPT-family autoregressive Transformer models at varying parameter scales.
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Figure 12: Severing effects across LLaMA-family autoregressive Transformer models at varying parameter scales.
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Figure 13: Severing effects across Qwen-family autoregressive Transformer models at varying parameter scales.
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Figure 14: Severing effects across DeepSeek-family autoregressive Transformer models at varying parameter scales.
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Figure 15: Gini coefficient-based concentration analysis of causal effects in Attention and MLP modules across
autoregressive Transformer models with varying parameter scales (numbers above bars indicate the layer with the
highest concentration).
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Figure 16: Factual prediction evaluation after knockout of Attention and MLP outputs across GPT-family autore-
gressive Transformer models with varying parameter scales.
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Figure 17: Factual prediction evaluation after knockout of Attention and MLP outputs across LLaMA-family
autoregressive Transformer models with varying parameter scales.
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Figure 18: Factual prediction evaluation after knockout of Attention and MLP outputs across Qwen-family
autoregressive Transformer models with varying parameter scales.

Figure 19: Factual prediction evaluation after knockout of Attention and MLP outputs across DeepSeek-family
autoregressive Transformer models with varying parameter scales.
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