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Abstract

We introduce Masked Multiscale Reconstruction (MMR), a self-supervised pre-1

training framework for photoplethysmography (PPG) signals that leverages the2

discrete wavelet transform. MMR is pretrained on ∼18M unlabeled 10-second PPG3

segments collected from over ∼41K smartwatch users largely in naturalistic field4

settings. The pretraining task is defined to randomly mask out subsets of wavelet5

coefficients derived from multi-resolution decomposition of raw PPG signals and6

train the encoder to reconstruct them. This enables the model to capture patterns7

across scales from fine-grained waveform morphology to long-term temporal dy-8

namics crucial for diverse downstream tasks. On 10 of 13 health-related tasks,9

MMR trained on large-scale wearable PPG data outperforms or matches state-of-10

the-art open-source PPG foundation models and other self-supervised baselines.11

An ablation study of wavelet design further underscores the value of wavelet-based12

representations, paving the way toward robust and generalizable PPG foundation13

models.14

1 Introduction15

Photoplethysmography (PPG) has emerged as a key sensing modality in wearables, powering applica-16

tions from cuffless blood pressure estimation [Song et al., 2019], arrhythmia detection [Bashar et al.,17

2019] to stress monitoring [Namvari et al., 2022]. Its ubiquity in consumer devices creates an oppor-18

tunity for large-scale, continuous monitoring of cardiovascular health and the development of digital19

biomarkers [Charlton et al., 2022a, Lee and Akamatsu, 2025]. Traditional PPG models relied on20

handcrafted features or small datasets [Shao et al., 2021, Han et al., 2020]; however, recent foundation21

models such as [Abbaspourazad et al., 2024a, Pillai et al., 2024, Saha et al., 2025] have leveraged vast22

amounts of unlabeled datasets, establishing a new paradigm for large-scale representation learning.23

While seminal works such as [Abbaspourazad et al., 2024a] explore patient-wise contrastive learning24

and [Pillai et al., 2024] introduce morphology-awareness through proxies like sVRI binning and SQI25

regression, these approaches remain primarily rooted in the time domain. Time-only representations26

overlook the spectral structure of PPG, where physiological rhythms unfold across multiple frequency27

bands. Standard Fourier methods attempt to capture these patterns but impose a stationarity assump-28

tion, leading to poor localization and resolution in non-stationary signals [Mallat, 2002]. Explicitly29

modeling the spectral domain is therefore beneficial for capturing the hierarchical, multi-resolution30

structure of PPG—rich information that purely temporal features or proxy objectives may fail to31

represent [Chen et al., 2025].32

Wavelet decomposition [Daubechies, 1992] provides a natural way to analyze non-stationary signals33

in the time–frequency domain. By adaptively trading time and frequency resolution, wavelets capture34

short-lived fine details at higher frequencies while preserving coarse, long-term dynamics at lower35

frequencies. This multi-resolution view is critical, as physiological signals carry information across36
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Figure 1: Masked Multiscale Reconstruction for Photoplethysmography (PPG) signals.

multiple scales, from local waveform morphology, which has been linked to vascular health [Charlton37

et al., 2022b], to longer-term rhythm dynamics, crucial for tasks such as heart rate variability [Namvari38

et al., 2022]. Motivated by these insights, we propose a masked multi-scale reconstruction framework39

for PPG, in which raw signals are decomposed into multiple resolution bands and a foundation model40

is trained to reconstruct masked coefficients across scales. To summarize, our contributions are: (i)41

We pretrain a large-scale wavelet-based PPG foundation model on ∼50K hours of PPG data with42

a masked multiscale reconstruction objective, enabling the model to capture rich time–frequency43

information across multiple scales. (ii) We demonstrate strong generalization across 13 diverse44

downstream tasks and provide detailed ablations that examine the impact of design choices such as45

wavelet family, decomposition scales, and patch size.46

2 Background47

Foundation models (FMs) for biosignals have recently shown strong promise, with large-scale48

self-supervised pretraining on ECG and PPG data from wearables demonstrating transferable repre-49

sentations across diverse downstream tasks [Abbaspourazad et al., 2024b, Pillai et al., 2024, Saha50

et al., 2025, Yang et al., 2023]. Yet most of these approaches treat signals purely in the time domain,51

overlooking spectral information that carries important physiological cues. A growing body of52

frequency-aware FMs [Zhang et al., 2022, Liu et al., 2023, Kara et al., 2024, Cheng et al., 2025, Fu53

and Hu, 2025, Duan et al., 2024] shows that explicitly modeling spectral content improves robustness54

and transferability. Wavelet analysis offers a natural way to capture both temporal localization and55

multi-resolution frequency structure, and has long been applied to PPG for denoising, feature extrac-56

tion, and disease detection [Alafeef and Fraiwan, 2020, Singh et al., 2023, Shao et al., 2021]. Recent57

deep learning approaches incorporate wavelets in end-to-end pipelines, such as wavelet-informed58

tokenization [Masserano et al., 2024], and the combination of learnable wavelet decompositions with59

frequency-guided masking for biosignal foundation models [Chen et al., 2025]. Our work extends60

this line and introduces a multi-resolution masked pretraining framework for large-scale PPG data61

collected from smartwatches in real-world settings. By leveraging the fact that health tasks rely on62

information at multiple signal granularities, our approach provides more physiologically grounded63

and transferable representations (Refer Appendix A).64

3 Method65

PPG wavelet coefficients are patched, encoded, and reconstructed in a multi-scale framework for66

robust representation learning as shown in Fig. 1.67

Discrete wavelet transform (DWT). The discrete wavelet transform (DWT) decomposes a signal68

into an approximation AJ and detail bands {Dj}Jj=1 using paired low- and high-pass filters, with69

each level downsampled by half to provide joint time–frequency localization. At sampling rate fs,70

the j-th level spans the frequency range [fs/2j+1, fs/2
j ]. We apply a level-4 Haar DWT (selected as71
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Table 1: Linear probing results across downstream tasks. Best scores are bold, second best underlined,
with 95% CIs in gray brackets.

Classification - AUROC (↑) SimCLR PaPaGei-P PaPaGei-S LSM MMR
Hypertension - Lab 57.93 [54.2 – 61.2] 67.78 [64.7 – 71.2] 56.69 [52.4 – 59.9] 54.74 [51.0 – 58.4] 67.47 [63.9 – 70.9]
Hypertension 64.12 [57.4 – 71.1] 62.10 [54.2 – 68.6] 61.46 [54.3 – 67.6] 54.28 [51.0 – 58.4] 60.69 [46.8 – 60.9]

PVC Detection 71.78 [71.1 – 72.5] 80.38 [79.7 – 80.9] 74.61 [73.9 – 75.3] 72.29 [71.5 – 72.9] 82.47 [81.8 – 83.1]

HDL 41.12 [38.4 – 45.9] 49.71 [46.2 – 54.0] 33.43 [29.8 – 36.8] 56.53 [52.9 – 59.9] 62.41 [58.1 – 66.7]

LDL 49.41 [46.5 – 52.5] 64.30 [61.1 – 67.5] 50.94 [47.7 – 54.0] 56.51 [53.1 – 59.5] 61.50 [58.7 – 64.6]

Platelets 61.49 [59.0 – 63.9] 74.31 [72.0 – 76.8] 62.14 [59.4 – 64.7] 56.30 [53.7 – 58.8] 66.18 [63.9 – 68.5]

Potassium 64.55 [62.2 – 66.3] 81.20 [79.6 – 82.8] 71.53 [69.4 – 73.6] 67.34 [65.3 – 69.5] 82.85 [81.1 – 84.3]

Sodium 50.88 [46.7 – 54.8] 60.71 [57.4 – 64.5] 50.65 [47.0 – 54.7] 49.04 [45.2 – 53.0] 71.90 [69.0 – 74.8]

Triglyceride 51.51 [49.4– 53.6] 44.36 [42.4 – 46.3] 50.63 [48.3 – 53.0] 55.23 [53.2 – 57.2] 47.50 [45.4 – 49.6]

Average 56.97 ± 8.97 64.98 ± 11.93 56.89 ± 11.74 58.02 ± 6.76 66.99 ± 10.47

Regression - MAE (↓)
Sys. BP (Lab) 12.08 [11.6 – 12.6] 11.99 [11.5 – 12.5] 12.15 [11.6 – 12.7] 12.13 [11.6 – 12.6] 13.12 [12.6 – 13.6]

Dias. BP (Lab) 10.80 [10.4 – 11.4] 10.38 [10.0 – 10.7] 10.78 [10.4 – 11.1] 10.72 [10.4 – 11.0] 9.66 [9.2 – 9.9]

Sys. BP 13.12 [11.9 – 14.4] 12.93 [11.7 – 14.3] 13.04 [11.8 – 14.4] 13.12 [11.9 – 14.4] 12.80 [11.6 – 14.1]

Dias. BP 10.19 [9.3 – 11.0] 10.28 [ 9.3 – 11.1] 10.30 [9.4 – 11.1] 10.37[9.5 – 11.2] 10.28 [9.4 – 11.1]

Average 11.55 ± 1.14 11.40 ± 1.12 11.57 ± 1.09 11.59 ± 1.10 11.47 ± 1.52

optimal setting based on ablations in Section 4.2) using PyWavelets [Lee et al., 2019], yielding one72

approximation and four detail subbands. The high-frequency subbands (2) dominated by noise and73

with close to zero coefficients are discarded. The remaining subbands are interpolated and arranged74

in order of increasing frequency to form a 2-D coefficient map of shape [nbands, time].75

Masked Multiscale Reconstruction – MMR. We adopt a Vision Transformer (ViT) en-76

coder–decoder within the masked autoencoder framework [He et al., 2022]. The 2-D wavelet77

coefficient map is divided into non-overlapping patches of size (1, 25) along the temporal axis,78

producing a sequence of tokens for each subband. Fixed 2-D sine–cosine positional embeddings79

are added to encode temporal and spectral structure. During pretraining, 75% of patches are ran-80

domly masked, and the decoder reconstructs the missing coefficients from the visible context. This81

Masked Multiscale Reconstruction (MMR) objective encourages the encoder to model dependencies82

across wavelet scales, enabling coarse bands to support fine-scale recovery and fine bands to refine83

coarse trends. Training minimizes mean-squared error (MSE) between reconstructed and original84

coefficients over the masked patches.85

Experimental Setting We pretrain our encoder with unlabeled 10-second PPG segments collected86

from different [REDACTED] smartwatches, where the majority of the segments (∼95%) are sampled87

at a low rate of 25 Hz (due to battery constraints in the wild). Each segment is upsampled, band-pass88

filtered, and z-score normalized before wavelet decomposition is applied. The dataset is split 80:2089

into training and validation sets for pretraining. To evaluate generalization, the pretrained encoder is90

linearly probed for a set of 13 downstream clinically motivated tasks. Classification tasks include91

the detection of hypertension, premature ventricular contractions (PVCs), and abnormal laboratory92

measures (e.g., high/low lipids, electrolytes, platelets), whereas for regression tasks, we perform the93

prediction of systolic and diastolic blood pressure in both field and laboratory data collection settings.94

4 Results95

We compare against various baselines such as SimCLR [Chen et al., 2020], masked auto encoding96

(time-domain) as done in LSM [Narayanswamy et al., 2024], and the open-source PaPaGei family97

(-S, -P variants )[Pillai et al., 2024]. We further analyze design choices through ablation studies.98

4.1 Main Results99

MMR performs competitively across the majority of downstream tasks, matching or surpassing strong100

baselines such as the PaPaGei family, LSM, and SimCLR. Across 13 classification and regression101

tasks, MMR achieved the top score in 7 (PVC detection, hypertension-lab, diastolic BP, potassium,102
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HDL, etc.) and came close in nearly all others (61.50 vs 64.30 for LDL, 10.28 vs 10.19 for Dias. BP.103

MAE), resulting in top-2 performance in 10/13 tasks overall. In classification, MMR achieved strong104

AUROC scores, including state-of-the-art performance for PVC detection (82.5) and hypertension-lab105

(67.5). It also had the highest classification scores for abnormal conditions, such as high HDL(62.41),106

sodium (71.90), and potassium (82.85). Notably, MMR outperforms SimCLR and LSM (trained107

on the same wearable data as MMR) by up to +18 AUROC points (e.g., high potassium: 82.8 vs.108

64.0) and by +10% for PVC detection, respectively. It also outperforms PaPaGei-S by margins of109

10–15 AUROC points on several tasks. For regression, MMR achieved the lowest error in diastolic110

BP-lab (9.66), in the field setting, ranked second for diastolic BP (10.28 vs. 10.19), and led systolic111

BP regression. Across most tasks, PaPaGei-P remains a strong baseline, while the other variants112

(PaPaGei-s) lag significantly behind MMR. Importantly, these results were achieved using real-world113

wearable PPG data sampled at a low rate, compared to PaPaGei models trained on clean, high-114

frequency (125–500 Hz) clinical signals. Despite the lower sampling rate and higher noise inherent115

in field data, MMR not only competes but often surpasses clinical-data-trained models.116

4.2 Ablation Studies117

Table 2: AUROC scores for two tasks. Ablation of MMR
across wavelet family, decomposition level, and patch size.
Pretrained on 5% of the full dataset.

Configuration Hypertension (avg. lab, field) PVC

db4 – Level 4 – Patch 50 61.54 73.65
db4 – Level 6 – Patch 50 63.77 70.83
db4 – Level 7 – Patch 50 64.82 70.05
db4 – Level 6 – Patch 25 64.87 69.94
db4 – Level 6 – Patch 100 62.90 70.92
haar – Level 6 – Patch 50 64.11 74.84
bior3.5 – Level 6 – Patch 50 61.28 68.52

We ablated a 1M-sample subset, varying118

wavelet family, decomposition level, and119

patch size, and evaluated on two represen-120

tative tasks (Table 2).121

Wavelet Families: cn exhibit distinct trade-122

offs in DWT. The Daubechies-4 (db4) pro-123

vides stable performance across both tasks124

(Hypertension 63.8%, PVC 70.8%). Haar125

wavelet family achieves the highest PVC126

score (74.8%) while maintaining compet-127

itive Hypertension performance (64.1%).128

This can be attributed to Haar’s compact nature and sharp discontinuities, which can emphasize129

abrupt waveform changes that are critical for detecting ectopic beats [Yang et al., 2019]. By contrast,130

db4 and biorthogonal3.5 offer smoother base functions, which may miss key transients necessary for131

PVC detection.132

Decomposition Level: governs the number of multi-resolution sub-bands/hierarchy available for133

analysis. The db4 wavelet attains 61.5% Hypertension accuracy at Level 4, increasing to 64.9% at134

Levels 7, suggesting that deeper decompositions with additional sub-bands yield more informative135

representations for classification [Singh et al., 2023, Attivissimo et al., 2023]. In contrast, PVC scores136

within the db4 family peak at Level 4 and decrease with deeper decompositions (70.0% at Level 7).137

Patch size: regulates the granularity of the temporal context provided to the encoder. Smaller patches138

(25) achieve the best Hypertension score (64.9%), whereas a patch size of 50 offers a balanced trade-139

off, with reasonable Hypertension (63.4%) and strong PVC (71.1%). Large patches (100) reduce140

Hypertension to (62.9%), emphasizing that a longer window may average out subtle morphological141

patterns.142

In summary, our experiments show that different tasks benefit from distinct temporal and frequency143

scales. This supports the hypothesis that multi-scale PPG information provides complementary cues,144

highlighting wavelet-based representations as an effective pretraining strategy for adaptive and robust145

physiological monitoring with PPG.146

5 Discussion and Future Work147

Pretraining on diverse smartwatch data with wavelet-based multi-scale reconstruction of PPG signals148

provides a strong foundation for robust physiological feature learning and downstream cardiovascular149

tasks. Future directions include dynamically learning or adapting to different levels of decompistion,150

incorporating frequency information through positional embeddings or cross-scale reconstruction151

where subbands are masked and reconstructed, and further analyzing the frequency–time components152

the model attends to for deeper interpretability. Advancing along these directions could yield richer153

and more generalizable PPG foundation models for real-world health applications.154
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A Appendix259

A.1 Extended Related Work260

Self-supervised pretraining has emerged as the dominant paradigm for large-scale biosignal modeling.261

For example, [Abbaspourazad et al., 2024b] trained foundation models on PPG and ECG from ∼141K262

Apple Watch users, demonstrating the value of contrastive learning at scale. In parallel, [Pillai et al.,263

2024] introduced PaPaGei , an open-source PPG foundation model trained on 20M unlabeled fingertip264

PPG segments that explicitly leverages waveform morphology, while [Saha et al., 2025] developed265

Pulse-PPG using 100 days of field data from 120 participants, showing improved efficiency and gen-266

eralizability. Beyond single-modality PPG, multimodal biosignal foundations transfer representations267

across ECG, PPG, and other signals either via knowledge distillation [Abbaspourazad et al., 2024a]268

or unified embeddings [Yang et al., 2023]. Related work has also applied masked reconstruction on269

multivariate health time series, yielding strong generative and discriminative performance on tasks270

such as activity classification [Narayanswamy et al., 2024, Xu et al., 2025]. Together, these advances271

reflect a shift from task-specific models to general-purpose foundation models for biosignals.272

While these foundation models highlight the value of large-scale self-supervision, most treat signals273

purely in the time domain. A growing body of work shows that explicitly incorporating spectral274

information provides a powerful inductive bias for robust and transferable representations. For275

instance, Time-Frequency Consistency [Zhang et al., 2022] proposed aligning time- and frequency-276

domain views via contrastive loss, while bioFAME [Liu et al., 2023] introduced a frequency-aware277

transformer encoder with multi-head spectral filters. Similarly, FreqMAE [Kara et al., 2024] leveraged278

temporal-shifting encoders to model spectral content in multimodal IoT data. More recent approaches,279

such as FAT [Cheng et al., 2025], FEI [Fu and Hu, 2025], and MF-CLR [Duan et al., 2024], further280

illustrate how spectral modeling can enhance time-series representation learning. These findings281

suggest that frequency-aware pretraining can serve as a complementary approach to large-scale282

training for physiological signals such as PPG.283

Wavelet analysis provides a natural way to capture information at different temporal scales by284

decomposing signals into multi-resolution frequency bands. Earlier PPG studies applied discrete285

wavelet transforms (DWT) for denoising and handcrafted features, for example in respiratory rate286

estimation [Alafeef and Fraiwan, 2020], hypertension and diabetes detection [Singh et al., 2023],287

and peak stabilization pipelines [Shao et al., 2021]. More recently, deep learning models have288

incorporated wavelets end-to-end, such as wavelet-based tokenization for time-series foundation289

models [Masserano et al., 2024] and PhysioWave [Chen et al., 2025], which couples learned wavelet290

decompositions, frequency guided masking with Transformers for physiological signals such as ECG291

and EMG. Our work extends this line and introduces a multi-resolution masked pretraining framework292

for large-scale PPG data collected from smartwatches in real-world settings. By leveraging the fact293

that health tasks rely on information at multiple signal granularities, our approach provides more294

physiologically grounded and transferable representations.295

A.2 Training Setup296

We pretrain MMR using the AdamW [Loshchilov and Hutter, 2017] optimizer with a base learning297

rate of 1× 10−4, cosine decay schedule, and linear warmup over the first 10% of steps. Training is298

performed for ∼69K steps with a batch size of 512, weight decay of 1e-5, and gradient clipping at299

1.0, while adopting the same augmentations (i.e., time-flip, adding Gaussian noise, and stretching300

along the temporal axis ) as LSM [Narayanswamy et al., 2024] to the PPG signal before wavelet301

decomposition. The backbone follows a ViT-Small configuration (∼7M parameters) with 8 encoder302

blocks (hidden size 256, 4 heads, feedforward size 1024) and a lightweight decoder of 2 blocks303

(hidden size 192, 4 heads) used only during pretraining for reconstruction. Hyperparameter tuning304

was minimal, limited to a small grid search over 2–3 learning rates ∈ {1e-2, 1e-3, 1e-4}and decay305

values ∈ 1e-3, 1e-4, 1e-5}a, with sweeps and ablations run on a subset of the pretraining data (∼ 1M306

data points). All experiments are conducted on 4 Tesla T4 GPUs (16GB each) with distributed data307

parallel (DDP) training in PyTorch [Paszke et al., 2019]. For the baselines, we use the pretrained308

weights for the PaPaGei family while we pretrain SimCLR and LSM on our pretraining data.309
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Table 3: Downstream datasets. Counts are (#positive / #negative) segments

Task Setting Train (pos/neg) Test (pos/neg)

Hypertension Lab (protocol) 746 / 3124 561 / 398
Naturalistic (field) 542 / 373 140 / 104

PVC Detection Wearable 14419 / 166270 4491 / 37947

Laboratory Tests

HDL Clinical reports 4117 / 3805 283 / 807
LDL Clinical reports 2518 / 3155 779 / 613
Sodium Clinical reports 3928 / 2700 1115 / 239
Potassium Clinical reports 4755 / 5746 1689 / 835
Paleteletes Clinical reports 3096 / 3590 1291 / 712

A.3 Dataset details310

We pretrain on data collected from various types of [REDACTED] smartwatches where PPG is311

sampled at different sampling frequencies (e.g., 100, 25 Hz). These datasets provide diverse signals312

collected under [REDACTED] distinct studies and user groups. Such data closely reflect real-world313

conditions, making them highly representative for PPG-based wearable applications.314

We evaluate on several downstream datasets collected in different settings:315

• Hypertension-Lab: 63 users (50 train / 13 test) with protocolized data collection; segments:316

746 positive / 3124 negative for training, and 561 positive / 398 negative for testing.317

• Hypertension-Field: 915 train users / 244 test users; segments: 542 positive / 373 negative318

for training, and 140 positive / 104 negative for testing.319

• PVC detection: 14,419 positive / 166,270 negative segments for training, and 4,491 positive320

/ 37,947 negative segments for testing.321

• Laboratory biomarkers (HDL, LDL, Sodium, Potassium): smaller user-sparse datasets322

(≈15–30 users per task) with class imbalance; segment splits are provided in Table 3.323

All analyses/tasks are performed at the segment level. To mitigate imbalance during linear probing,324

we downsample the majority class in the training (not in the test) split. Random forest classifiers and325

linear regression models are used for probing with a 4-fold cross-validation. We also compute 95%326

confidence intervals via bootstrapping with 500 resampling runs similar to [Pillai et al., 2024].327

Hypertension Classification We define hypertension as a binary classification task based on clinical328

guidelines: individuals are labeled as Hypertensive (label 1) if their systolic blood pressure is329

≥ 130 mmHg or diastolic blood pressure is ≥ 80 mmHg, and Normal (label 0) otherwise. We apply330

buffer thresholds of ±8 mmHg around the diagnostic cutoffs.331

PVC Detection Premature Ventricular Contractions (PVCs) are early heartbeats originating in the332

ventricles [Cha et al., 2012]. They can indicate underlying cardiac conditions or increased risk of333

arrhythmias. We label high PVC burden as class 1 and low PVC burden as class 0.334

Laboratory Tests For various laboratory tests (explained below as per [National Library of Medicine335

(US), 2020]), we adopt a binary classification scheme where high values are labeled as class 1 and336

class 0 otherwise.337

• Sodium: Elevated sodium (hypernatremia) is linked to dehydration or adrenal gland/kidney338

dysfunction.339

• Potassium: High potassium (hyperkalemia) may cause cardiac arrhythmias; low potassium340

(hypokalemia) is associated with muscle weakness, fatigue and rhythm disturbances.341

• Platelets: Elevated platelet counts can signal inflammation or clotting risk.342

• Low-Density Lipoprotein LDL: High LDL is a risk factor for peripheral artery disease and343

heart stroke.344

• High-Density Lipoprotein HDL: High HDL helps lower heart disease and heart attack.345
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• Triglycerides: Elevated triglycerides increase cardiovascular risk and are often associated346

with metabolic syndrome347
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