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Abstract

We introduce Masked Multiscale Reconstruction (MMR), a self-supervised pre-
training framework for photoplethysmography (PPG) signals that leverages the
discrete wavelet transform. MMR is pretrained on ~18M unlabeled 10-second PPG
segments collected from over ~41K smartwatch users largely in naturalistic field
settings. The pretraining task is defined to randomly mask out subsets of wavelet
coefficients derived from multi-resolution decomposition of raw PPG signals and
train the encoder to reconstruct them. This enables the model to capture patterns
across scales from fine-grained waveform morphology to long-term temporal dy-
namics crucial for diverse downstream tasks. On 10 of 13 health-related tasks,
MMR trained on large-scale wearable PPG data outperforms or matches state-of-
the-art open-source PPG foundation models and other self-supervised baselines.
An ablation study of wavelet design further underscores the value of wavelet-based
representations, paving the way toward robust and generalizable PPG foundation
models.

1 Introduction

Photoplethysmography (PPG) has emerged as a key sensing modality in wearables, powering applica-
tions from cuffless blood pressure estimation [Song et al., 2019], arrhythmia detection [Bashar et al.,
2019] to stress monitoring [Namvari et al., 2022]]. Its ubiquity in consumer devices creates an oppor-
tunity for large-scale, continuous monitoring of cardiovascular health and the development of digital
biomarkers [[Charlton et al., 2022al, [Lee and Akamatsul [2025]]. Traditional PPG models relied on
handcrafted features or small datasets [Shao et al.,[2021} [Han et al.| 2020]]; however, recent foundation
models such as [[Abbaspourazad et al., 20244, Pillai et al.|[2024} |Saha et al.|, [2025] have leveraged vast
amounts of unlabeled datasets, establishing a new paradigm for large-scale representation learning.

While seminal works such as [[Abbaspourazad et al., 2024a] explore patient-wise contrastive learning
and [[Pillai et al.| 2024 introduce morphology-awareness through proxies like sVRI binning and SQI
regression, these approaches remain primarily rooted in the time domain. Time-only representations
overlook the spectral structure of PPG, where physiological rhythms unfold across multiple frequency
bands. Standard Fourier methods attempt to capture these patterns but impose a stationarity assump-
tion, leading to poor localization and resolution in non-stationary signals [Mallat, 2002[]. Explicitly
modeling the spectral domain is therefore beneficial for capturing the hierarchical, multi-resolution
structure of PPG—rich information that purely temporal features or proxy objectives may fail to
represent [[Chen et al.| [2025].

Wavelet decomposition [[Daubechies| |[1992] provides a natural way to analyze non-stationary signals
in the time—frequency domain. By adaptively trading time and frequency resolution, wavelets capture
short-lived fine details at higher frequencies while preserving coarse, long-term dynamics at lower
frequencies. This multi-resolution view is critical, as physiological signals carry information across
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Figure 1: Masked Multiscale Reconstruction for Photoplethysmography (PPG) signals.

ultiple scales, from local waveform morphology, which has been linked to vascular health [Charlton
et al.l[2022b]], to longer-term rhythm dynamics, crucial for tasks such as heart rate variability [Namvari
et al.,|2022]]. Motivated by these insights, we propose a masked multi-scale reconstruction framework
for PPG, in which raw signals are decomposed into multiple resolution bands and a foundation model
is trained to reconstruct masked coefficients across scales. To summarize, our contributions are: (i)
We pretrain a large-scale wavelet-based PPG foundation model on ~50K hours of PPG data with
a masked multiscale reconstruction objective, enabling the model to capture rich time—frequency
information across multiple scales. (ii) We demonstrate strong generalization across 13 diverse
downstream tasks and provide detailed ablations that examine the impact of design choices such as
wavelet family, decomposition scales, and patch size.

2 Background

Foundation models (FMs) for biosignals have recently shown strong promise, with large-scale
self-supervised pretraining on ECG and PPG data from wearables demonstrating transferable repre-
sentations across diverse downstream tasks [Abbaspourazad et al.| 2024b) [Pillai et al., 2024} [Sahal
let al, 2025 [Yang et al.| [2023]]. Yet most of these approaches treat signals purely in the time domain,
overlooking spectral information that carries important physiological cues. A growing body of
frequency-aware FMs [Zhang et al.| [2022] [Liu et al., [2023] [Kara et al., 2024} [Cheng et al., 2025
[and Hul 2025 [Duan et al.,[2024]] shows that explicitly modeling spectral content improves robustness
and transferability. Wavelet analysis offers a natural way to capture both temporal localization and
multi-resolution frequency structure, and has long been applied to PPG for denoising, feature extrac-
tion, and disease detection [Alafeef and Fraiwan|, [2020], [Singh et al.,[2023] [Shao et al.| 2021]]. Recent
deep learning approaches incorporate wavelets in end-to-end pipelines, such as wavelet-informed
tokenization [Masserano et al., 2024]], and the combination of learnable wavelet decompositions with
frequency-guided masking for biosignal foundation models 2025]). Our work extends
this line and introduces a multi-resolution masked pretraining framework for large-scale PPG data
collected from smartwatches in real-world settings. By leveraging the fact that health tasks rely on
information at multiple signal granularities, our approach provides more physiologically grounded
and transferable representations (Refer Appendix [A).

3 Method

PPG wavelet coefficients are patched, encoded, and reconstructed in a multi-scale framework for
robust representation learning as shown in Fig. [T}

Discrete wavelet transform (DWT). The discrete wavelet transform (DWT) decomposes a signal
into an approximation A ; and detail bands {D;} :{21 using paired low- and high-pass filters, with
each level downsampled by half to provide joint ime—frequency localization. At sampling rate f5,

the j-th level spans the frequency range [fs/271, f,/27]. We apply a level-4 Haar DWT (selected as
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Table 1: Linear probing results across downstream tasks. Best scores are bold, second best underlined,
with 95% Cls in gray brackets.

Classification - AUROC (1) SimCLR PaPaGei-P PaPaGei-S LSM MMR
Hypertension - Lab 5793 542-612]  67.78 [64.7-71.2]  56.69 5245091 5474 (510-584] 67.47 [63.9-70.9]
Hypertension 64.12 (57.4-71.1]  62.10 [542-686]  61.46 (543-676] 5428 [51.0-584]  60.69 [46.8-60.9]
PVC Detection T1.78 (71.1-7251  80.38 (79.7-809]  74.61(73.9-753] 7229 (715-729] 82.47 [81.8-83.1)
HDL 41.12 (384-459]  49.71 462540  33.43 298368 56.53 (529-599] 62.41 [58.1 - 66.7]
LDL 49.41 (465-5251 6430 (61.1-675]  50.94 (4775401  56.51 [53.1-595]  61.50 [58.7 - 64.6]
Platelets 61.49 500-6391 7431 (720-768] 62.14 (504 -647] 56.30(53.7-588] 66.18 [63.9-685]
Potassium 64.55 1622663 81.20 1796828  71.53 [69.4-736] 67.34 1653605 82.85 (81.1 843
Sodium 50.88 (4675481 60.71 (574645  50.65 (4705471 49.04 (4525301  T71.90 [69.0 - 74.8]
Triglyceride 51.51 (494-536]  44.36 1424-463]  50.63 483-530] 55.23532-572] 47.50 (454 - 49.6]
Average 56.97 + 59 64.98 + 1193 56.89 + 1174 58.02 +6.76 66.99 - 104
Regression - MAE ()

Sys. BP (Lab) 12.08 (116126 1199 (115125 12.151116-1271 1213 [116-1261  13.12 (126 - 13.6]
Dias. BP (Lab) 10.80 (1041147 10.38 (100-1077  10.78 (1041117 10.72 [10.4 - 11.0] 9.66 9.2 9.9
Sys. BP 13,12 (1191441 1293 (117-143]  13.04 (18- 144) 13,12 (119 144) 1280 (1.6 14.1]
Dias. BP 1019 93110 10.28 (93111 10.30 (9.4 - 111 10.37195 - 112] 10.28 (9.4 11.1]
Average 11.55 + 114 11.40 = 1.2 11.57 + 109 11.59 + 110 1147 + 15

optimal setting based on ablations in Section {.2) using PyWavelets [Lee et al.,2019], yielding one
approximation and four detail subbands. The high-frequency subbands (2) dominated by noise and
with close to zero coefficients are discarded. The remaining subbands are interpolated and arranged
in order of increasing frequency to form a 2-D coefficient map of shape [npands, time].

Masked Multiscale Reconstruction — MMR. We adopt a Vision Transformer (ViT) en-
coder—decoder within the masked autoencoder framework [He et al., [2022]]. The 2-D wavelet
coefficient map is divided into non-overlapping patches of size (1,25) along the temporal axis,
producing a sequence of tokens for each subband. Fixed 2-D sine—cosine positional embeddings
are added to encode temporal and spectral structure. During pretraining, 75% of patches are ran-
domly masked, and the decoder reconstructs the missing coefficients from the visible context. This
Masked Multiscale Reconstruction (MMR) objective encourages the encoder to model dependencies
across wavelet scales, enabling coarse bands to support fine-scale recovery and fine bands to refine
coarse trends. Training minimizes mean-squared error (MSE) between reconstructed and original
coefficients over the masked patches.

Experimental Setting We pretrain our encoder with unlabeled 10-second PPG segments collected
from different [REDACTED] smartwatches, where the majority of the segments (~95%) are sampled
at a low rate of 25 Hz (due to battery constraints in the wild). Each segment is upsampled, band-pass
filtered, and z-score normalized before wavelet decomposition is applied. The dataset is split 80:20
into training and validation sets for pretraining. To evaluate generalization, the pretrained encoder is
linearly probed for a set of 13 downstream clinically motivated tasks. Classification tasks include
the detection of hypertension, premature ventricular contractions (PVCs), and abnormal laboratory
measures (e.g., high/low lipids, electrolytes, platelets), whereas for regression tasks, we perform the
prediction of systolic and diastolic blood pressure in both field and laboratory data collection settings.

4 Results

We compare against various baselines such as SimCLR [Chen et al., [2020], masked auto encoding
(time-domain) as done in LSM [[Narayanswamy et al., [2024]], and the open-source PaPaGei family
(-S, -P variants )[Pillai et al.| 2024]]. We further analyze design choices through ablation studies.

4.1 Main Results

MMR performs competitively across the majority of downstream tasks, matching or surpassing strong
baselines such as the PaPaGei family, LSM, and SimCLR. Across 13 classification and regression
tasks, MMR achieved the top score in 7 (PVC detection, hypertension-lab, diastolic BP, potassium,
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HDL, etc.) and came close in nearly all others (61.50 vs 64.30 for LDL, 10.28 vs 10.19 for Dias. BP.
MAE)), resulting in top-2 performance in 10/13 tasks overall. In classification, MMR achieved strong
AUROC scores, including state-of-the-art performance for PVC detection (82.5) and hypertension-lab
(67.5). It also had the highest classification scores for abnormal conditions, such as high HDL(62.41),
sodium (71.90), and potassium (82.85). Notably, MMR outperforms SimCLR and LSM (trained
on the same wearable data as MMR) by up to +18 AUROC points (e.g., high potassium: 82.8 vs.
64.0) and by +10% for PVC detection, respectively. It also outperforms PaPaGei-S by margins of
10-15 AUROC points on several tasks. For regression, MMR achieved the lowest error in diastolic
BP-lab (9.66), in the field setting, ranked second for diastolic BP (10.28 vs. 10.19), and led systolic
BP regression. Across most tasks, PaPaGei-P remains a strong baseline, while the other variants
(PaPaGei-s) lag significantly behind MMR. Importantly, these results were achieved using real-world
wearable PPG data sampled at a low rate, compared to PaPaGei models trained on clean, high-
frequency (125-500 Hz) clinical signals. Despite the lower sampling rate and higher noise inherent
in field data, MMR not only competes but often surpasses clinical-data-trained models.

4.2 Ablation Studies

We ablated a 1M-sample subset, varying Table 2: AUROC scores for two tasks. Ablation of MMR
wavelet family, decomposition level, and across wavelet family, decomposition level, and patch size.
patch size, and evaluated on two represen- Pretrained on 5% of the full dataset.

tative tasks (Table2).

Configuration Hypertension (avg. lab, field) PVC

Wavelet Families: cn exhibit distinct trade- “gp4 — Level 4 — Patch 50 61.54 73.65
offs in DWT. The Daubechies-4 (db4) pro- ggi - ILAeve{ (7) - Eﬂtcg 28 gi-;; ;8-82

. — Leve — Patc! . .

vides stablq performance across both tasks 4~ Tevel 6 — Patch 25 64.87 6904
(Hypertension 63.8%, PVC 70.8%). Haar  db4 — Level 6 — Patch 100 62.90 70.92
3 3 3 haar — Level 6 — Patch 50 64.11 74.84

wavelet family achieves the highest PVC o35 1 eval - Patelr 50 6128 6852

score (74.8%) while maintaining compet-
itive Hypertension performance (64.1%).
This can be attributed to Haar’s compact nature and sharp discontinuities, which can emphasize
abrupt waveform changes that are critical for detecting ectopic beats [Yang et al., 2019]. By contrast,
db4 and biorthogonal3.5 offer smoother base functions, which may miss key transients necessary for
PVC detection.

Decomposition Level: governs the number of multi-resolution sub-bands/hierarchy available for
analysis. The db4 wavelet attains 61.5% Hypertension accuracy at Level 4, increasing to 64.9% at
Levels 7, suggesting that deeper decompositions with additional sub-bands yield more informative
representations for classification [Singh et al., 2023} |Attivissimo et al.,2023]. In contrast, PVC scores
within the db4 family peak at Level 4 and decrease with deeper decompositions (70.0% at Level 7).

Patch size: regulates the granularity of the temporal context provided to the encoder. Smaller patches
(25) achieve the best Hypertension score (64.9%), whereas a patch size of 50 offers a balanced trade-
off, with reasonable Hypertension (63.4%) and strong PVC (71.1%). Large patches (100) reduce
Hypertension to (62.9%), emphasizing that a longer window may average out subtle morphological
patterns.

In summary, our experiments show that different tasks benefit from distinct temporal and frequency
scales. This supports the hypothesis that multi-scale PPG information provides complementary cues,
highlighting wavelet-based representations as an effective pretraining strategy for adaptive and robust
physiological monitoring with PPG.

5 Discussion and Future Work

Pretraining on diverse smartwatch data with wavelet-based multi-scale reconstruction of PPG signals
provides a strong foundation for robust physiological feature learning and downstream cardiovascular
tasks. Future directions include dynamically learning or adapting to different levels of decompistion,
incorporating frequency information through positional embeddings or cross-scale reconstruction
where subbands are masked and reconstructed, and further analyzing the frequency—time components
the model attends to for deeper interpretability. Advancing along these directions could yield richer
and more generalizable PPG foundation models for real-world health applications.
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A Appendix

A.1 Extended Related Work

Self-supervised pretraining has emerged as the dominant paradigm for large-scale biosignal modeling.
For example, [|[Abbaspourazad et al., 2024b]] trained foundation models on PPG and ECG from ~141K
Apple Watch users, demonstrating the value of contrastive learning at scale. In parallel, [Pillai et al.}
2024]| introduced PaPaGei , an open-source PPG foundation model trained on 20M unlabeled fingertip
PPG segments that explicitly leverages waveform morphology, while [Saha et al.,2025[] developed
Pulse-PPG using 100 days of field data from 120 participants, showing improved efficiency and gen-
eralizability. Beyond single-modality PPG, multimodal biosignal foundations transfer representations
across ECG, PPG, and other signals either via knowledge distillation [Abbaspourazad et al.| [2024a]
or unified embeddings [Yang et al.,|2023]]. Related work has also applied masked reconstruction on
multivariate health time series, yielding strong generative and discriminative performance on tasks
such as activity classification [Narayanswamy et al., 2024, |Xu et al., 2025]]. Together, these advances
reflect a shift from task-specific models to general-purpose foundation models for biosignals.

While these foundation models highlight the value of large-scale self-supervision, most treat signals
purely in the time domain. A growing body of work shows that explicitly incorporating spectral
information provides a powerful inductive bias for robust and transferable representations. For
instance, Time-Frequency Consistency [Zhang et al.||2022]] proposed aligning time- and frequency-
domain views via contrastive loss, while bioFAME [Liu et al.}|2023] introduced a frequency-aware
transformer encoder with multi-head spectral filters. Similarly, FreqMAE [Kara et al.,[2024] leveraged
temporal-shifting encoders to model spectral content in multimodal IoT data. More recent approaches,
such as FAT [Cheng et al., [2025], FEI [Fu and Hu, |2025]], and MF-CLR [Duan et al.,|2024], further
illustrate how spectral modeling can enhance time-series representation learning. These findings
suggest that frequency-aware pretraining can serve as a complementary approach to large-scale
training for physiological signals such as PPG.

Wavelet analysis provides a natural way to capture information at different temporal scales by
decomposing signals into multi-resolution frequency bands. Earlier PPG studies applied discrete
wavelet transforms (DWT) for denoising and handcrafted features, for example in respiratory rate
estimation [|Alafeef and Fraiwanl [2020], hypertension and diabetes detection [Singh et al., [2023]],
and peak stabilization pipelines [Shao et al., |2021]. More recently, deep learning models have
incorporated wavelets end-to-end, such as wavelet-based tokenization for time-series foundation
models [Masserano et al., [2024]] and PhysioWave [Chen et al., 2025]], which couples learned wavelet
decompositions, frequency guided masking with Transformers for physiological signals such as ECG
and EMG. Our work extends this line and introduces a multi-resolution masked pretraining framework
for large-scale PPG data collected from smartwatches in real-world settings. By leveraging the fact
that health tasks rely on information at multiple signal granularities, our approach provides more
physiologically grounded and transferable representations.

A.2 Training Setup

We pretrain MMR using the AdamW [Loshchilov and Hutter] |2017|] optimizer with a base learning
rate of 1 x 10™%, cosine decay schedule, and linear warmup over the first 10% of steps. Training is
performed for ~69K steps with a batch size of 512, weight decay of le-5, and gradient clipping at
1.0, while adopting the same augmentations (i.e., time-flip, adding Gaussian noise, and stretching
along the temporal axis ) as LSM [[Narayanswamy et al., [2024]] to the PPG signal before wavelet
decomposition. The backbone follows a ViT-Small configuration (~7M parameters) with 8 encoder
blocks (hidden size 256, 4 heads, feedforward size 1024) and a lightweight decoder of 2 blocks
(hidden size 192, 4 heads) used only during pretraining for reconstruction. Hyperparameter tuning
was minimal, limited to a small grid search over 2-3 learning rates € {1le-2, le-3, le-4}and decay
values € le-3, le-4, le-5}a, with sweeps and ablations run on a subset of the pretraining data (~ 1M
data points). All experiments are conducted on 4 Tesla T4 GPUs (16GB each) with distributed data
parallel (DDP) training in PyTorch [Paszke et al., [2019]]. For the baselines, we use the pretrained
weights for the PaPaGei family while we pretrain SimCLR and LSM on our pretraining data.
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Table 3: Downstream datasets. Counts are (#positive / #negative) segments

Task Setting Train (pos/neg)  Test (pos/neg)
Hvpertension Lab (protocol) 746 /3124 561/398
P Naturalistic (field) 5421373 140/ 104
PVC Detection Wearable 144197166270  4491/37947
Laboratory Tests
HDL Clinical reports 4117 /3805 283 /807
LDL Clinical reports 2518 /3155 77917613
Sodium Clinical reports 3928 /2700 11157239
Potassium Clinical reports 4755 /5746 1689 / 835
Paleteletes Clinical reports 3096 /3590 1291 /712

A.3 Dataset details

We pretrain on data collected from various types of [REDACTED] smartwatches where PPG is
sampled at different sampling frequencies (e.g., 100, 25 Hz). These datasets provide diverse signals
collected under [REDACTEDY] distinct studies and user groups. Such data closely reflect real-world
conditions, making them highly representative for PPG-based wearable applications.

We evaluate on several downstream datasets collected in different settings:

* Hypertension-Lab: 63 users (50 train / 13 test) with protocolized data collection; segments:
746 positive / 3124 negative for training, and 561 positive / 398 negative for testing.

» Hypertension-Field: 915 train users / 244 test users; segments: 542 positive / 373 negative
for training, and 140 positive / 104 negative for testing.

» PVC detection: 14,419 positive / 166,270 negative segments for training, and 4,491 positive
/37,947 negative segments for testing.

* Laboratory biomarkers (HDL, LDL, Sodium, Potassium): smaller user-sparse datasets
(=15-30 users per task) with class imbalance; segment splits are provided in Table[3]

All analyses/tasks are performed at the segment level. To mitigate imbalance during linear probing,
we downsample the majority class in the training (not in the test) split. Random forest classifiers and
linear regression models are used for probing with a 4-fold cross-validation. We also compute 95%
confidence intervals via bootstrapping with 500 resampling runs similar to [Pillai et al.,[2024].

Hypertension Classification We define hypertension as a binary classification task based on clinical
guidelines: individuals are labeled as Hypertensive (label 1) if their systolic blood pressure is
> 130 mmHg or diastolic blood pressure is > 80 mmHg, and Normal (1abel 0) otherwise. We apply
buffer thresholds of +8 mmHg around the diagnostic cutoffs.

PVC Detection Premature Ventricular Contractions (PVCs) are early heartbeats originating in the
ventricles [Cha et al.,|2012]]. They can indicate underlying cardiac conditions or increased risk of
arrhythmias. We label high PVC burden as class 1 and low PVC burden as class 0.

Laboratory Tests For various laboratory tests (explained below as per [National Library of Medicine
(US),,[2020]), we adopt a binary classification scheme where high values are labeled as class 1 and
class 0 otherwise.

* Sodium: Elevated sodium (hypernatremia) is linked to dehydration or adrenal gland/kidney
dysfunction.

 Potassium: High potassium (hyperkalemia) may cause cardiac arrhythmias; low potassium
(hypokalemia) is associated with muscle weakness, fatigue and rhythm disturbances.

* Platelets: Elevated platelet counts can signal inflammation or clotting risk.

» Low-Density Lipoprotein LDL: High LDL is a risk factor for peripheral artery disease and
heart stroke.

* High-Density Lipoprotein HDL: High HDL helps lower heart disease and heart attack.



346 * Triglycerides: Elevated triglycerides increase cardiovascular risk and are often associated
347 with metabolic syndrome
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