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Abstract

Modern biomedical concept representations are
mostly trained on synonymous concept names
from a biomedical knowledge base, ignoring
the inter-concept interactions and a concept’s
local neighborhood in a knowledge base graph.
In this paper, we introduce Biomedical En-
tity Representation with a Graph-Augmented
Multi-Objective Transformer (BERGAMOT),
which adopts the power of pre-trained language
models (LMs) and graph neural networks to
capture both inter-concept and intra-concept in-
teractions from the multilingual UMLS graph.
We apply contrastive loss on textual and graph
representations to make them less sensitive to
surface forms and enable intermodal knowl-
edge exchange between two uni-modal en-
coders. BERGAMOT achieves state-of-the-
art results in zero-shot entity linking without
task-specific supervision on three monolingual
datasets and Mantra multilingual benchmark.
This work is an abridge version of our recent
paper (Sakhovskiy et al., 2024).

1 Introduction

Biomedical concepts, such as diseases, symptoms,
drugs, genes, and proteins, are critical for many
biomedical applications, including drug discov-
ery (Wu et al., 2018; Khrabrov et al., 2022), clin-
ical decision making (Sutton et al., 2020; Peiffer-
Smadja et al., 2020), and biomedical research (Lee
et al., 2016; Tutubalina et al., 2017; Sakhovskiy
et al., 2021). These concepts often have multiple
nonstandard names, necessitating medical concept
normalization (MCN) to map entity mentions to
unique identifiers from knowledge bases like the
Unified Medical Language System (UMLS) (Bo-
denreider, 2004), which captures 4 million con-
cepts. Despite the success of pre-trained language
models (PLMs) (Lee et al., 2020; Beltagy et al.,
2019; Liu et al., 2021b) for biomedical entity repre-
sentation, challenges remain, particularly regarding
bias and synonym recognition (Sung et al., 2021).

Existing research (Phan et al., 2019; Miftahutdi-
nov et al., 2021; Liu et al., 2021a; Zhou et al.,
2022) integrates knowledge into PLMs by learn-
ing from textual triples from Knowledge Bases
(KBs) using metric and contrastive learning frame-
works. CODER (Yuan et al., 2022) incorporated
term-relation similarity to enirch a PLM with KB
knowledge. However, this approach learns from in-
dividual relation triplets rather than aggregating the
whole concept’s local neighborhood in the UMLS
Knowledge Graph (KG).

2 BERGAMOT

In UMLS, concepts are provided with both multi-
ple multilingual concept names in up to 27 lan-
guages and local KG subgraphs. In this paper,
we present Biomedical Entity Representation with
Graph-Augmented Multi-Objective Transformer
(BERGAMOT) which utilizes two textual repre-
sentations (e¥, e?) and two graph representations
(g%, gY) produced by a PLM and a graph neural
networks (GNNs), respectively. The model aims to
learn synonym-robust concept representations by
learning and aligning two uni-modal encoders on
the multilingual UMLS KG. As shown in Fig. 1,
the BERGAMOT architecture includes four losses:
(i) a textual term-term contrastive loss L, that
seeks to pull textual embeddings (e, e?) of con-
cept ¢’s synonymous names closer in terms of co-
sine similarity; (ii) a node-node contrastive loss
L 0de that pulls graph embeddings (g¥, g2) repre-
senting the same concept c closer; (iii) DGI loss
Lqg; that encourages a graph encoder GNN to
distinguish if nodes N (c) are actual neighbors of
a central node c; (iv) an intermodal contrastive
loss L;y,; that aligns cross-modal embeddings pairs
(e, g*) enabling mutual information exchange be-
tween a textual and a graph encoders. The resulting
training loss is obtained as the sum of these four
losses: £ = Lgap+Lpode+Lint +NagiLagi, where
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Figure 1: BERGAMOT model’s architecture overview. Our model consists of two encoders for text and graph data.
Graph encoder uses textual embeddings from BERT as an additional input. The final loss function is a weighted
sum of four terms: term-node, node-node, term-term contrastive losses, and local-global mutual information
maximization loss on node embeddings. As an example, the local subgraph contains two relation types from UMLS:

PAR (has parent relationship) and RB (has a broader relationship).

Model Mantra QUAERO-E QUAERO-M CodiEsp-D CANTEMIST
@] @5 @ @ @ @ @ @5 @l @5
mSapBERT 73.43 78.12 32.43 41.64 39.42 51.60 45.98 61.96 52.82 61.44
mCODER 75.58 80.25 33.59 40.80 40.30 50.26 35.52 49.14 48.59 58.84
GraphSAGE- 73.51 79.00 35.30 41.60 40.94 51.24 46.45 59.55 51.93 61.54
BERGAMOT
RGCN-BERGAMOT  74.19 80.10 33.59 39.55 40.83 50.26 46.30 62.10 52.33 60.43
GAT-BERGAMOT 77.93 83.15 35.39 43.92 42.94 53.88 48.74 63.61 57.41 61.38

Table 1: Multilingual evaluation results in terms of acc@1 and acc@5 on the Mantra benchmark, two subsets of the
French QUAERO corpus, and the Spanish CodiEsp-D and CANTEMIST corpora.

Adgi 18 the weight of the DGI objective.

3 Experiments

BERGAMOT is trained on the UMLS 2020AB
release whith 4.4 million concepts and 15.9 mil-
lion unique concept names. We experiment with
three graph encoders: (i) GraphSAGE (Hamil-
ton et al., 2017), (i) RGCN (Schlichtkrull et al.,
2018), Graph attention network (GAT) (Velickovié
et al., 2018; Brody et al., 2022) and adopt current
state-of-the-art multilingual SapBERT (Liu et al.,
2021b) and CODER (Yuan et al., 2022) models
as baselines. For evaluation on the entity link-
ing task, we adopt the medical-crossing bench-
mark (Kors et al., 2015; Alekseev et al., 2022),the
French Quaero corpus (Névéol et al., 2014) Span-
ish CodiEsp-Diagnostico (Miranda-Escalada et al.,
2020b) and CANTEMIST (Miranda-Escalada et al.,
2020a) corpora with set set filtration Alekseev et al.
(2022). We employ a ranking approach over em-
beddings of mentions and potential concepts with

top-k retrieval accuracy as the evaluation metric:
Acc@k = 1 if the correct UMLS concept is re-
trieved at rank < k, otherwise Acc@k = 0.

Tab. 1 shows the acc@1 and acc@5 metrics
for Mantra benchmark as well as the the French
QUAERO corpus and the Spanish CodiEsp-D
and CANTEMIST. The best results are achieved
by GAT-BERGAMOT which consistently outper-
forms mSapBERT as well as other two BERG-
AMOT implementations on all languages proving
the effectiveness of three additional training objec-
tives that rely on graph embeddings.

4 Conclusion

We presented BERGAMOT, a graph-augmented
architecture with backbone LM designed to learn
inter-concept and intra-concept interactions from
the multilingual knowledge graph. BERGAMOT
outperforms existing language models pre-trained
on knowledge triples from UMLS on multiple mul-
tilingual concept normalization datasets.
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