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Abstract

Robustness to modeling errors and uncertainties remains a central challenge in1

reinforcement learning (RL). In this work, we address this challenge by leveraging2

diffusion models to train robust RL policies. Diffusion models have recently gained3

popularity in model-based RL due to their ability to generate full trajectories "all at4

once", mitigating the compounding errors typical of step-by-step transition models.5

Moreover, they can be conditioned to sample from specific distributions, making6

them highly flexible. We leverage conditional sampling to learn policies that are7

robust to uncertainty in environment dynamics. Building on the established con-8

nection between Conditional Value at Risk (CVaR) optimization and robust RL, we9

introduce Adversarial Diffusion for Robust Reinforcement Learning (AD-RRL).10

AD-RRL guides the diffusion process to generate worst-case trajectories during11

training, effectively optimizing the CVaR of the cumulative return. Empirical re-12

sults across standard benchmarks show that AD-RRL achieves superior robustness13

and performance compared to existing robust RL methods.14

1 Introduction15

Reinforcement Learning (RL) has produced agents that surpass human-level performance in various16

domains [29, 55, 46, 45, 30]. However, the same policies are notoriously sensitive to small dynamics17

changes, sensor noise, or hardware mismatch, all of which can cause dramatic performance collapse.18

In safety–critical domains such as robotics, finance, or healthcare—where collecting new data is19

expensive, risky, or legally restricted—robustness to modeling errors is at least as important as20

maximizing nominal reward.21

Model-based RL improves sample efficiency by learning a world-model and planning within it, but22

faces two key robustness obstacles: (i) compounding errors, which accumulate over long horizons23

[56, 8]; and (ii) the Sim2Real gap, where controllers that succeed in simulation fail after minor24

real-world deviations [41, 6]. Compounding error occurs in autoregressive models, where the model25

predicts one step ahead and then is fed its own prediction back: the state predicted at time t is used to26

predict the state at t+1. Small one-step errors accumulate, the trajectory moves away from reality,27

and performance degrades. The Sim2Real gap arises because, even with a highly accurate simulator28

that minimizes unrealistic artifacts, simulated physics can never perfectly replicate reality. This29

discrepancy leads to reduced real-world performance due to inherent modeling inaccuracies. To30

overcome these challenges, RL algorithms should be made more robust by optimizing not only the31

expected return but also the performance under adverse or uncertain dynamics.32

Recently, diffusion models have been proposed to mitigate compounding errors by generating entire33

trajectories rather than predicting one step at a time [38, 17]. While this reduces error accumulation,34

diffusion models remain imperfect: the trajectories they generate may deviate from real-world35

dynamics. As a result, transferring policies learned in simulation to the real world remains challenging.36
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Despite recent progress, diffusion-based RL methods often struggle to maintain robustness when37

deployed in environments with unseen or perturbed dynamics.38

Adversarial and risk-sensitive approaches have been explored to enhance robustness against model39

errors. These methods introduce worst-case perturbations during planning [35, 37], or optimize40

Conditional Value at Risk (CVaR) objectives, which have been shown to improve resilience to both41

reward variability and model inaccuracies [34, 5]. In this work, we show that diffusion models and42

CVaR-based approaches can be seamlessly integrated to complement each other. We propose Adver-43

sarial Diffusion for Robust Reinforcement Learning (AD-RRL), a novel algorithm that combines the44

strengths of diffusion models and CVaR-based robustness. By leveraging trajectory-level generation45

to mitigate compounding errors and incorporating risk-aware objectives, AD-RRL enhances the46

adaptability and robustness of RL agents to modeling mismatches and environmental uncertainty.47

More precisely, we make the following contributions.48

(a) We present Adversarial Diffusion (AD), a guided diffusion model that for a given policy, generates49

trajectories that are challenging for the agent and result in relatively low rewards. These trajectories50

are either rare in the current environment or originate from unexplored regions of the domain.51

We show that by learning from such adversarial scenarios, the agent can improve its robustness52

to modeling errors. To generate these trajectories, we leverage the CVaR framework, applied to53

trajectory rewards, and demonstrate how guided diffusion can be used to efficiently implement this54

objective. This mechanism forms the foundation of AD.55

(b) Building on this, we introduce AD-RRL, our RL algorithm that integrates AD within the Advan-56

tage Actor-Critic (A2C) framework. AD-RRL significantly enhances the agent’s adaptability and57

robustness. We empirically evaluate AD-RRL across multiple environments from the Gym/MuJoCo58

suite, showing that it achieves superior robustness to modeling errors. In transfer scenarios involving59

variations in physics parameters, AD-RRL consistently outperforms state-of-the-art baselines.60

2 Related Work61

Model-Based Reinforcement Learning. In Model-Based Reinforcement Learning, the agent62

uses a model to generate new data, through which it is possible to plan further without interacting63

with the environment. This is essential for settings where collecting new data is impossible, illegal64

or dangerous. The parametric approach has received a lot of attention thanks to the constant65

improvements of function approximators, such as Deep Neural Networks [32, 7, 18, 16, 53]. Recently,66

Variational Auto Encoders [19] and Transformers [54] have seen many successful applications as67

powerful models for environment dynamics [28, 39, 42, 12, 11], leading to state-of-the-art methods68

in terms of sample efficiency and performance [13]. These methods rely on bootstrapping to generate69

trajectory samples. The state prediction generated by the model is fed again as input to the model70

to predict the next state. As a result, these methods introduce two sources of error: one coming71

from an imperfect model and one from the input of the model always being wrong, except for the72

first timestep. The sum of these errors is commonly known as the Compounding Error problem of73

Model-Based methods. Multi-step prediction solutions have been proven effective even before the74

introduction of Diffusion models, for example by learning H models to look H steps into the future75

[3]. It goes without saying that this approach results in a much higher learning complexity with76

respect to single-model approaches. Only recently, with Diffusion models becoming more popular,77

we have seen the rise of more efficient multi-step Model-Based RL methods [38, 17].78

Diffusion Models in Reinforcement Learning. Diffusion models are inspired by non-equilibrium79

thermodynamics [47, 15], defining data generation as an iterative denoising process. Beyond being80

powerful function approximators, they also offer a natural way to condition the data generation81

process on labels [10]. Recently, diffusion models have gained significant attention in the RL82

community. They have been used to model system dynamics, generating trajectory segments by83

predicting either states [1, 58], actions [4, 22], or both [17, 24]. Guidance techniques can further84

refine trajectory generation by conditioning the process on value estimates, promoting high-expected-85

reward sequences. Additionally, diffusion models have been employed for policy modeling [56, 14]86

and value function approximation [26]. Most research on diffusion models in RL has focused on the87

offline setting. In this paper, we shift the focus to the online case, building on PolyGRAD—an online,88

Dyna-style Model-Based RL method that uses diffusion for modeling dynamics [38]. While prior89

work primarily uses conditioning to generate high-reward trajectories, we take the opposite approach.90
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Our goal is to generate challenging trajectories—those that are underexplored or unlikely—so the91

agent can learn a more robust policy, better suited to handling changes in dynamics and modeling92

errors.93

Robust Reinforcement Learning. Classical RL can struggle to generalize when test environments94

deviate from training due to model errors or shifts. Robust RL addresses this by accounting for95

uncertainty in actions, states, and dynamics. One line of work regularizes transition probabilities96

within a defined uncertainty set [9, 20, 25]. This kind of methods, despite being theoretically sound97

and robust, do not scale well to more complex environment.98

A well-known approach to tackling complex robust RL problems while maintaining theoretical99

guarantees is to frame the optimization problem as a two-player game [31]. In this framework, two100

players are trained iteratively to solve a maximin optimization problem: the primary agent aims101

to maximize the expected cumulative reward, while an adversarial agent attempts to minimize it102

by introducing disturbances. For instance, in Robust Adversarial Reinforcement Learning (RARL)103

[35], the adversary applies external forces to disturb the environment’s dynamics. Max-min TD3104

(M2TD3) [50] follows a similar strategy, solving a maximin problem to maximize the expected105

reward under worst-case scenarios within an uncertainty set. In Noisy Action Robust MDPs [51],106

the adversary perturbs the agent’s actions, while in State Adversarial MDPs [48], the adversary107

introduces perturbations to the state, resulting in a Partially Observable MDP formulation.108

Several Robust RL algorithms use CVaR to constrain their optimization problems [57]. For instance,109

CVaR-PPO is an extension of PPO [44] solving a risk-sensitive constrained optimization problem110

that constrains the CVaR to a given threshold.111

Finally, we have algorithms using Domain Randomization (DR) [52], where the agent maximizes the112

expected return on average, over a predefined uncertainty set for some given environment parameters.113

These classes of methods have been proven very effective in domains such as robotics [23]. However,114

they do not aim to be robust to the worst-case scenarios, and might fall short when tested on115

environments outside of their training distribution.116

3 Background and Problem Statement117

3.1 Markov Decision Processes and Reinforcement Learning118

Consider a Markov Decision Process (MDP) M = ⟨S,A, P, r, γ, ρ⟩, where S and A are the state119

and action spaces, respectively, P (·|s, a) is the transition probability function, r(·|s, a) is the reward120

function, γ is the discount factor and ρ is the initial state distribution. By interacting with the MDP, a121

Reinforcement Learning agent is able to collect sequences of states, actions and rewards, forming122

trajectories τ = (s0, a0, r0, . . . , sH , aH , rH). The objective of the Reinforcement Learning agent is123

to learn an optimal policy π⋆ maximizing the policy value vπ(s) = Eπ[
∑∞

i=0 γ
irt+i+1|st = s]. In124

this paper, we consider a model-based RL setting, where we use a diffusion model to approximate125

the distribution of trajectories under a given policy. Specifically, if pπ denotes the true distribution of126

the trajectories τ under policy π, the diffusion model samples trajectories with distribution pθ close127

to pπ . We adopt a Dyna-style approach [49], where the diffusion model and the policy are iteratively128

updated: the policy is improved using data collected from the model, while the model is improved129

using samples gathered from the target environment using the learned policy.130

3.2 Robust RL through the Conditional Value at Risk.131

We now discuss Conditional Value at Risk (CVaR) and its connection to Robust RL.132

Conditional Value at Risk. When learning policies robust to modeling errors, a framework133

commonly used is the one of Conditional Value at Risk. We define the return of a trajectory τ by134

Z(τ ) =
∑H

t=0 γ
trt, where rt is the reward obtained at time t in this trajectory1. Under a policy π,135

Z(τ ) is a random variable with cdf F . The Value-at-Risk (VaR) of Z at confidence level α ∈ (0, 1)136

corresponds to its α quantile:137

VaRπ
α(Z) = max{z|F (z) ≤ α}. (1)

1To avoid cluttering, we write Z instead of Z(τ ) unless it is required to avoid misunderstandings.
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The Conditional Value-at-Risk (CVaR) of Z is then defined as the expected value of Z on the lower138

α-portion of its distribution139

CVaRπ
α(Z) = Eπ[Z|Z ≤ VaRπ

α(Z)]. (2)

CVaR dual formulation and its connection to robustness to modeling errors. An alternative140

way of defining CVaR stems from its dual formulation [2, 40]:141

CVaRπ
α(Z) = min

ξ∈Uα,π
CVaR

Eτ∼pπ [ξ(τ )Z(τ )], (3)

where ξ acts as a perturbation of the return Z. This perturbation belongs to the set Uα,π
CVaR, called the142

risk envelope and defined as143

Uα,π
CVaR :=

{
ξ : ∀τ , ξ(τ ) ∈

[
0,

1

α

]
,Eτ∼pπ [ξ(τ )] = 1

}
. (4)

(3) states that the CVaR of Z can be defined as its expected value under a worst-case perturbed144

distribution.145

In RL, optimizing a CVaR objective introduces robustness to model misspecification. This is exactly146

because of the dual form of CVaR, where the trajectory distribution is distorted by an adversarial147

density ξ(τ ). CVaR optimization in this case equals maximizing the worst-case discounted reward148

when adversarial perturbations are budgeted over the whole trajectory rather than at each time step149

[5]. The connection between CVaR and robustness to modeling errors is well established in the RL150

field [34, 37, 35], and the dual formulation is at the core of our method, as explained in Section 4 and151

Appendix B.152

3.3 Diffusion Models153

In this work, we adopt a model-based approach to learn robust policies. To achieve this, we harness154

the efficiency of diffusion processes to learn a parameterized model pθ of the trajectory distribution.155

This model allows us to sample trajectories τ as if they were generated by the true MDP, enabling156

policy training on these synthetic trajectories.157

Diffusion models generate data by progressively refining noisy inputs through an iterative denoising158

process, pθ(τ i−1|τ i). This process reverses the forward diffusion, q(τ i|τ i−1), which gradually cor-159

rupts real data by adding random noise. Each step of the denoising process is typically parameterized160

as a Gaussian distribution161

pθ(τ i−1|τ i) = N (µθ(τ i, i),Σi), (5)
with learned mean and fixed covariance matrices, both depending on the diffusion step i.162

The denoising process is formulated as163

pθ(τ 0:N ) = p(τN )

N∏
i=1

pθ(τ i−1|τ i), (6)

where p(τN ) ≈ N (0, I) and τ 0 is the real (i.e., noiseless) trajectory. The parameters θ are learned164

by optimizing the variational lower bound on the negative log likelihood:165

θ⋆ = argmin
θ

Eτ0
[− log pθ(τ 0)], (7)

where pθ(τ 0) =
∫
pθ(τ 0:N )dτ 1:N .166

Guided diffusion. A classifier p(y|τ 0) adding information about the sample to be reconstructed167

(e.g., the optimality of the trajectory) can enhance the generative performance of the diffusion model168

[10]169

pθ(τ 0|y) ∝ pθ(τ 0)p(y|τ 0). (8)
By leveraging the classifier’s gradient, we can guide the denoising process toward generating samples170

that align more closely with the classifier’s predictions. This method, called Classifier-Guided171

Diffusion, generates trajectory samples according to172

pθ(τ i−1|τ i, y) = N (µθ(τ i, i) +Σigi,Σi) (9)
where gi = ∇τ log p(y|τ )|τ=µθ(τ i,i).173
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3.4 Problem statement174

We consider a model-based Reinforcement Learning setting. For a given policy π, we learn a model175

pθ of the distribution of the corresponding trajectories. Our goal is to use pθ to improve the policy176

and its robustness to modeling errors.177

We formulate the problem of learning a robust policy using the following optimization problem:178

π⋆
α = argmax

π
CVaRπ

α(Z) (10)

= argmax
π

min
ξ∈Uα,π

CVaR

Eτ∼pπ [ξ(τ )Z(τ )]. (11)

(10) describes the objective to obtain the policy that maximizes the return on the worst α-percentile179

of the trajectories, in terms of cumulative return. However, directly sampling trajectories from this180

worst α-percentile is challenging. In our approach, we leverage the dual definition of CVaR, solving181

instead the double optimization problem described in (11). The problem can be seen as a game182

where an adversarial agent ξ is perturbing the trajectories distribution under a given policy π. We183

model this distribution via a diffusion model pθ , which allows us to leverage guiding techniques. We184

introduce adversarial guiding, a method that steers the diffusion process toward sampling trajectories185

that minimize the expected return for the agent. Because the adversarial guide actively seeks to186

reduce return, the generated trajectories naturally fall within the worst α-percentile. We formally187

demonstrate that the resulting adversarially guided diffusion models can be adapted to actually sample188

from the worst α-percentile. We also empirically validate our approach.189

4 Adversarially Guided Diffusion Models190

In this section, we consider a fixed policy π, and for notational convenience, we drop the correspond-191

ing superscripts. We explain below how to efficiently generate adversarial trajectories, sampled from192

the set of trajectories Cα := {τ : Z(τ ) ≤ VaRα(Z)}.193

Sampling suboptimal trajectories. To steer the diffusion process towards the set Cα we need to194

define the proper guidance classifier, as in (8). We start from the definition of CVaRα,pθ
(Z) given in195

(2). The index pθ indicates that the trajectory τ from which the return is computed is generated using196

the diffusion model pθ. We have:197

CVaRα,pθ
(Z) = Eτ0∼pθ

[Z(τ 0)|τ 0 ∈ Cα], (12)

=

∫
Z(τ 0)pθ(τ 0|τ 0 ∈ Cα)dτ 0, (13)

= min
ξ∈Uα,π

CVaR

∫
Z(τ 0)ξ(τ 0)pθ(τ 0)dτ 0, (14)

where the last equality follows from the dual definition of CVaR presented in (3). To steer the198

generating process towards trajectories from Cα, we can use the classifier pθ(τ 0 ∈ Cα|τ 0), since199

pθ(τ 0|τ 0 ∈ Cα) ∝ pθ(τ 0)pθ(τ 0 ∈ Cα|τ 0).200

Notice also that if we define ξ⋆(τ 0) as the solution to the minimization problem in (14), i.e., the201

bounded trajectory perturbation minimizing the cumulative reward under the dynamics pθ, we have202

ξ⋆(τ 0)pθ(τ 0) = pθ(τ 0|τ 0 ∈ Cα) ∝ pθ(τ 0)pθ(τ 0 ∈ Cα|τ 0).

In other words, weighting the distribution with the classifier pθ(τ 0 ∈ Cα | τ 0) is equivalent, up to a203

proportionality constant, to weighting pθ(τ0) according to an adversarial perturbation ξ⋆. We can204

hence think of applying a guided diffusion to implement this perturbation. However, the set Cα is205

not known. To address this limitation, and following the approach of [21], we introduce a smooth206

approximation of pθ(τ 0 ∈ Cα | τ 0), namely exp(−c0
∑H

t=1 γ
trt) for some constant c0 > 0. This207

approximation is intuitively reasonable, as it biases the generation process toward trajectories with208

lower cumulative rewards.209

In the following two subsections, we describe how this guided diffusion can be implemented and how210

it influences the diffusion process. We also discuss how to tune the guided diffusion to ensure that the211

resulting adversarial perturbation ξ remains within the risk envelope Uα,π
CVaR defined in (4).212
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4.1 Perturbed diffusion model213

We use the classifier pθ(τ i ∈ Cα|τ i) so that the trajectories τ i generated at every step i of the214

diffusion process belong to the set Cα. We assume that pθ(τ i ∈ Cα|τ i) ≈ exp (−ci
∑H

t=1 γ
tr

(i)
t )215

for some value ci > 0 as we did for τ0. In the last approximation, the reward r
(i)
t represents the216

reward collected at time t in trajectory τ i for the i-th step of the diffusion process.217

As a slight extension of the guided diffusion principle presented in Section 3.3, we establish the218

following result (essentially obtained by applying (9) with y = {τ i ∈ Cα}).219

Lemma 4.1. Assume that the denoising process is Gaussian, that is (5) holds. Assume that for all220

i ∈ [N ], the approximation pθ(τ i ∈ Cα|τ i) = exp (−ci
∑H

t=1 γ
tr

(i)
t ) holds. Then, we can sample221

trajectories from pθ(τ 0|τ 0 ∈ Cα) using diffusion steps of the form:222

pθ(τ i−1|τ i, τ i−1 ∈ Cα) = N (µθ(τ i, i)− ciΣigi,Σi), (15)
where gi = ∇τZ(µθ(τ i, i)) for i ∈ [N ].223

The lemma is proved in Appendix A for completeness. The conditional sampling procedure induces224

the following perturbed model:225

p̄θ(τ 0) = pθ(τ 0|τ 0 ∈ Cα) ∝
∫ N∏

i=1

pθ(τ i−1|τ i, τ i−1 ∈ Cα)p(τN )dτ 1:N . (16)

We refer to this sampling procedure as an Adversarially Guided Diffusion Model.226

4.2 Selecting c1, . . . , cN227

Note that the Adversarially Guided Diffusion Model depends on the constants c1, . . . , cN , and recall228

that the resulting perturbation must lie within the risk envelope defined in (4). In the following, we229

establish conditions on these constants to ensure this requirement is satisfied. To that end, we first230

show in Appendix B that our model p̄θ admits a product-form representation:231

Lemma 4.2. The Adversarially Guided Diffusion Model can be expressed as p̄θ(τ 0) = ξ(τ 0)pθ(τ 0),232

where ξ(τ 0) =
∫
ξ(τ0:N )pθ(τ0:N )dτ1:N

pθ(τ0)
and where ξ(τ 0:N ) :=

∏N
i=1 ξ(τ i, τ i−1) with233

ξ(τ i, τ i−1) := exp

(
−1

2
(2ciD

T
i gi + c2i g

T
i Σgi)

)
, (17)

and Di := (τ i−1 − µθ(τ i, i)).234

Note that by definition (since p̄θ is a distribution), we have that Eτ∼pθ
[ξ(τ 0)] = 1. Hence, we235

just need to verify that ξ(τ 0) ≤ 1/α for all τ 0 to ensure that ξ belongs to the risk envelope. We236

define R such that the trajectories τ i lie in a bounded space C = {τ i : ||τ i||∞ ≤ R} and such that237

||µθ(τ i, i)||∞ < R. In the following proposition, proved in Appendix C, we provide conditions on238

c1, . . . , cN so that this holds.239

Proposition 4.3. For all i ∈ [N ], let ηi(α,N) ≥ 0 such that
∏N

i=1 ηi(α,N) = 1
α .240

(a) When for all i ∈ [N ],241

ci ≤ min

(√
2 log ηi(α,N)

gT
i Σigi

,
R− ||µθ(τ i, i)||∞
||Σigi||∞

)
, (18)

then we have: for all τ 0, ξ(τ 0) ≤ 1/α.242

(b) Let i ∈ [N ]. Assume that Σi is a diagonal matrix with (Σi)jj ∈ [0, 1). Assume ηi(α,N) =
(
1
α

) 1
N .243

Then, for N large enough, (18) holds as soon as ci ≤
√

2 log ηi(α,N)

gT
i Σigi

.244

Since our diffusion model uses a cosine noise schedule as in [33], we have that for all i ∈ [N ]245

Σi = βiI with βi ∈ [0, 1), so we can set ci =
√

2 log ηi(α,N)

gT
i Σigi

to ensure that ξ belongs to the risk246

envelope.247

Remark 4.4. Note that in our analysis, we have assumed for simplicity that the states and the actions248

were a one-dimensional vector, so that trajectories become Gaussian vectors. We can extend the249

analysis to the case where states and actions are multidimensional at the expense of considering250

trajectories as Gaussian matrices. Refer to Appendix D for details.251
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5 Algorithms252

We now introduce Adversarial Diffusion for Robust Reinforcement Learning (AD-RRL), which253

alternates between model improvement and policy improvement steps (see Algorithm 1). AD-RRL254

leverages the adversarial conditional sampling discussed in the previous section to sample trajectories255

in the worst α-percentile in terms of return. Our approach is primarily inspired by PolyGRAD [38]256

and Diffuser [17].257

We adopt the common assumption that the policy follows a Gaussian distribution over the action258

space, parameterized by µω(s) and σω(s). The policy is deployed in the real environment to collect259

new data, which is then used to train both the dynamics model p̄θ and the cumulative reward function260

Zϕ. Following the standard approach in Dyna-like algorithms [49], we generate synthetic trajectories261

using our learned models (Algorithm 2). These trajectories are then used to train the policy via an262

on-policy Reinforcement Learning algorithm.263

Algorithm 1 Adversarial Diffusion for Robust
Reinforcement Learning (AD-RRL)

1: Input: environment, E;
2: Initialize: policy, πω; adversarial denoising

model, p̄θ; cumulative reward function Zϕ;
data buffer, D; training iterations M

3: for m = 1, . . . ,M do
4: Sample τ ∼ E using πω , add τ to D
5: Improve p̄θ, Zϕ on D ▷ Algorithm 3
6: Sample {τ̂} ∼ p̄θ ▷ Algorithm 2
7: Improve πω on {τ̂} using RL
8: end for

Algorithm 2 Adversarial Diffusion Trajectory
Sampling

1: Input: adversarial denoising model p̄θ;
2: reward model Zϕ; buffer D; level α

3: τ̂N ∼ N (0, I)
4: s0 ∼ D
5: for i = N, . . . , 1 do
6: set ŝ0 ← s0 in τ̂ i

7: ci =
√
2 log ηi(α,N)/gT

i Σigi

8: τ̂ i−1 ∼ N
(
µθ(τ̂ i, i)− ciΣigi, Σi

)
9: end for

10: return τ̂ 0

Algorithm 3 illustrates the training procedure for both our diffusion models and is presented in264

Appendix E, alongside additional implementation details. The pseudocode provided is simplified. In265

reality, the diffusion model consists of a noise prediction function ϵθ(τ̂ i, i) from which the mean is266

computed in closed form [15]. This model is trained using the following objective function (derived267

from (7))268

L(θ) = Ei,ϵ,τ0
[||ϵ− ϵθ(τ i, i)||2],

where i ∼ U({1, . . . , N}) is the diffusion process step, ϵ ∼ N (0, 1) is the target noise and τ i is the269

trajectory τ 0 ∼ D after i steps of the forward diffusion process adding noise ϵ. We update θ K times,270

each time by randomly sampling the step i. The model Zϕ is trained to predict the cumulative reward271

of the trajectory samples τ i.272

Both the adversarial diffusion model p̄θ and the cumulative reward function Zϕ are used to sample273

adversarially generated trajectories in the worst α−percentile. At every step of the diffusion process,274

we perform inpainting by substituting a real starting state s0 into the generated noisy trajectory τ̂ i.275

We then proceed to compute ci according to (18) and the gradient gi = ∇sZϕ. Notice that the276

gradient is taken with respect to s, so we only adversarially corrupt the states of the trajectory. To277

ensure that the generated actions are consistent with the generated states, we use the PolyGRAD278

diffusion guidance method [38], which generates a sequence of actions guided by the gradient of the279

policy πω .280

6 Experiments281

In this section, we empirically evaluate how robust our method is. During training, the agent interacts282

with a fixed instance of the environment. At test time, we alter key physics-related parameters and283

assess the agent’s performance against both robust and non-robust baselines. Our experiments are284

conducted on several optimal control tasks from the MuJoCo suite: InvertedPendulum, Reacher,285

Hopper, HalfCheetah, and Walker. All agents are trained in the default MuJoCo/OpenAI Gym286

environment (fixed physics), for 1.5M steps. Additional results are provided in Appendix F.287
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Baseline methods. We evaluate AD-RRL against several state-of-the-art baselines for robust288

reinforcement learning:289

(a) Domain Randomization (DR) [52], widely used in robotics [23, 27], improves policy generalization290

by maximizing expected return over a distribution of dynamics. However, it does not explicitly291

account for worst-case or lower-percentile outcomes. We implement DR using PPO and refer to the292

resulting method as DR-PPO.293

(b) Max-Min TD3 (M2TD3) [50] frames robustness as a minimax optimization problem, training294

an actor-critic model to maximize performance under the worst-case dynamics sampled from a295

predefined uncertainty set.296

(c) CVaR-PPO (CPPO) [57] augments Proximal Policy Optimization with a CVaR constraint, leading297

to a policy-gradient algorithm that explicitly controls the policy’s risk.298

Additionally, we compare AD-RRL to other baselines in RL.299

(d) PolyGRAD [38], a diffusion-based model that our work builds upon, generates synthetic trajec-300

tories via policy-guided diffusion and trains policies in an online model-based setting. It improves301

sample efficiency but lacks explicit robustness to adverse dynamics.302

(e) TRPO [43] and PPO [44], two strong model-free baselines, are also included for comparison.303

TRPO constrains policy updates using a KL-divergence trust region, while PPO employs a clipped304

surrogate objective for improved computational efficiency.305

Robustness under varying physical parameters. To verify the robustness of AD-RRL, we vary306

several physical parameters of the environment at test time. For Hopper and Cheetah, we vary body307

mass, ground friction and environment gravity. For Walker, we modify friction and mass. For Reacher,308

we vary all the actuators’ gears (i.e., the torque produced by the actions). For InvertedPendulum, we309

change the cart mass, the pole mass and environment gravity.310

In Figure 1, we plot the return under the different algorithms and for selected environments and311

varying parameters. Additional plots are provided in Appendix F.2. In most environments, AD-RRL312

consistently outperforms both robust and non-robust baselines. PPO and TRPO appear surprisingly313

stable, which is likely a consequence of the well-tuned Stable-Baselines3 implementations—but314

are still matched or surpassed by AD-RRL. At the same time, AD-RRL consistently outperforms315

both DR-PPO and M2TD3, demonstrating greater stability and achieving higher cumulative rewards316

across all environments.317

Furthermore, a direct comparison with PolyGRAD (the foundation of our algorithm) highlights that318

our modifications significantly improve performance under diverse test-time conditions, enhancing319

robustness to large parameter shifts and model misspecifications. This can be clearly seen in Figure 1d320

or Figure 1g. In the Reacher environment (Figure 1i) the difference in performance is less evident, but321

our model still performs consistently better or on par with the baselines. It is also clear from Figures 1a322

and 1b that while PolyGRAD achieves slightly better performance on the nominal environment (as323

observed in Table 1), it sacrifices robustness under perturbed conditions.324

For some environments—see for example Figure 1a and Figure 3b (presented in Appendix F), AD-325

RRL performance degrades for extreme changes in the modified parameter (but it remains better than326

other algorithms). We hypothesize that this is because our model is generating challenging trajectories327

which are nonetheless plausible under the agent policy and environment dynamics. Extreme changes328

in the environment physics do not reflect these constraints, and relevant trajectories might not be329

generated often.330

Performance on the nominal (training) environments. Table 1 reports the final episode returns331

(mean ± one standard error) for five MuJoCo continuous-control tasks. Best results are highlighted332

in bold. The results are obtained on the training environment, with the nominal physics parameters.333

AD-RRL attains the best mean return on four of the five domains, substantially outperforming334

the other baselines, showing that our risk-sensitive training does not trade nominal optimality for335

robustness. Only on Hopper, PolyGRAD performs better than AD-RRL, but the margin falls within336

overlapping confidence intervals. On the easy Inverted Pendulum task, multiple methods (AD-RRL,337

DR-PPO, PPO) reach the maximum score of 1000, as expected.338

Sample efficiency. The learning curves in Appendix F.1 (see Appendix F) show that AD-RRL339

reaches higher or matching final performance with the same number of samples as the baselines,340
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Figure 1: Average return across variations in selected physics parameters. Shaded regions indicate ±
one standard error.

Hopper Cheetah Walker Reacher InvertedPendulum
AD−RRL 3280.23± 13.83 4126.11 ± 246.96 4357.80 ± 187.37 −3.97 ± 0.13 1000.00 ± 0.00
PolyGRAD 3346.99 ± 52.39 3879.16± 626.40 3489.48± 456.70 −4.48± 0.13 1000.00 ± 0.00
M2TD3 361.73± 13.71 3117.16± 55.34 2948.03± 598.77 −21.28± 5.75 634.76± 192.46
CPPO 2595.64± 298.35 2173.30± 422.97 2164.30± 510.60 −6.06± 0.32 979.85± 20.15
DR−PPO 2315.90± 482.17 2429.46± 558.93 2385.19± 589.49 −15.80± 1.44 1000.00 ± 0.00
PPO 2998.90± 432.28 2408.20± 546.33 1894.03± 349.06 −5.17± 0.57 1000.00 ± 0.00
TRPO 3270.27± 273.04 2014.91± 539.64 3090.80± 267.79 −6.22± 0.85 960.60± 39.40

Table 1: Return on the training environment (nominal physics parameters) for MuJoCo continuous-
control tasks.

and in several cases converges faster. Hence, our adversarially guided diffusion not only preserves341

(or improves) performance on the training environment (with nominal physics parameters), but also342

matches the sample efficiency of state-of-the-art model-based and model-free alternatives.343

7 Conclusion and Future Work344

In this work we introduced AD-RRL, a novel approach to robust RL. AD-RRL is based on Ad-345

versarial Diffusion (AD), a diffusion model that can sample adversarial trajectories by leveraging346

the Conditional Value at Risk (CVaR) framework. AD enables agents to learn from adversarial347

scenarios that are either rare or unexplored in the environment. We demonstrated that AD-RRL,348

based on this diffusion model, significantly enhances the robustness of RL agents in the presence of349

modeling errors. Through empirical evaluation on multiple Gym/MuJoCo environments, we showed350

that AD-RRL outperforms current state-of-the-art robust RL methods.351

AD relies on a specific strategy for guiding the diffusion process, and exploring alternative guidance352

methods presents a promising avenue for future work. Potential directions include (i) modifying the353

overall diffusion objective beyond the current CVaR framework, and (ii) enhancing the diffusion354

model architecture or algorithms to reduce computational overhead.355

9



References356

[1] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal. Is conditional generative357

modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.358

[2] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. Mathematical359

finance, 9(3):203–228, 1999.360

[3] K. Asadi, D. Misra, S. Kim, and M. L. Littman. Combating the compounding-error problem361

with a multi-step model. arXiv preprint arXiv:1905.13320, 2019.362

[4] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion363

policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics364

Research, page 02783649241273668, 2023.365

[5] Y. Chow, A. Tamar, S. Mannor, and M. Pavone. Risk-sensitive and robust decision-making: a366

cvar optimization approach. Advances in neural information processing systems, 28, 2015.367

[6] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. Tobin, P. Abbeel, and368

W. Zaremba. Transfer from simulation to real world through learning deep inverse dynamics369

model. arXiv preprint arXiv:1610.03518, 2016.370

[7] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of371

trials using probabilistic dynamics models. Advances in neural information processing systems,372

31, 2018.373

[8] I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and P. Abbeel. Model-based reinforce-374

ment learning via meta-policy optimization. In Conference on Robot Learning, pages 617–629.375

PMLR, 2018.376

[9] E. Derman, M. Geist, and S. Mannor. Twice regularized mdps and the equivalence between377

robustness and regularization. Advances in Neural Information Processing Systems, 34:22274–378

22287, 2021.379

[10] P. Dhariwal and A. Nichol. Diffusion models beat gans on image synthesis. Advances in neural380

information processing systems, 34:8780–8794, 2021.381

[11] D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. Advances in382

neural information processing systems, 31, 2018.383

[12] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering Atari with discrete world models.384

arXiv preprint arXiv:2010.02193, 2020.385

[13] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world386

models. arXiv preprint arXiv:2301.04104, 2023.387

[14] P. Hansen-Estruch, I. Kostrikov, M. Janner, J. G. Kuba, and S. Levine. IDQL: Implicit q-learning388

as an actor-critic method with diffusion policies. arXiv preprint arXiv:2304.10573, 2023.389

[15] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural390

information processing systems, 33:6840–6851, 2020.391

[16] T. Jafferjee, E. Imani, E. Talvitie, M. White, and M. Bowling. Hallucinating value: A pitfall392

of dyna-style planning with imperfect environment models. arXiv preprint arXiv:2006.04363,393

2020.394

[17] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior395

synthesis. arXiv preprint arXiv:2205.09991, 2022.396

[18] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell, K. Czechowski, D. Erhan,397

C. Finn, P. Kozakowski, S. Levine, et al. Model-based reinforcement learning for Atari. arXiv398

preprint arXiv:1903.00374, 2019.399

[19] D. P. Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.400

10



[20] N. Kumar, K. Levy, K. Wang, and S. Mannor. Efficient policy iteration for robust markov401

decision processes via regularization. arXiv preprint arXiv:2205.14327, 2022.402

[21] S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.403

arXiv preprint arXiv:1805.00909, 2018.404

[22] X. Li, V. Belagali, J. Shang, and M. S. Ryoo. Crossway diffusion: Improving diffusion-based405

visuomotor policy via self-supervised learning. In 2024 IEEE International Conference on406

Robotics and Automation (ICRA), pages 16841–16849. IEEE, 2024.407

[23] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Reinforcement learning408

for versatile, dynamic, and robust bipedal locomotion control. The International Journal of409

Robotics Research, page 02783649241285161, 2024.410

[24] Z. Liang, Y. Mu, M. Ding, F. Ni, M. Tomizuka, and P. Luo. Adaptdiffuser: Diffusion models as411

adaptive self-evolving planners. arXiv preprint arXiv:2302.01877, 2023.412

[25] Z. Liu, Q. Bai, J. Blanchet, P. Dong, W. Xu, Z. Zhou, and Z. Zhou. Distributionally robust413

q-learning. In International Conference on Machine Learning, pages 13623–13643. PMLR,414

2022.415

[26] B. Mazoure, W. Talbott, M. A. Bautista, D. Hjelm, A. Toshev, and J. Susskind. Value function416

estimation using conditional diffusion models for control. arXiv preprint arXiv:2306.07290,417

2023.418

[27] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull. Active domain randomization. In419

Conference on Robot Learning, pages 1162–1176. PMLR, 2020.420

[28] V. Micheli, E. Alonso, and F. Fleuret. Transformers are sample-efficient world models. arXiv421

preprint arXiv:2209.00588, 2022.422

[29] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee, E. Johnson,423

O. Pathak, A. Nazi, et al. A graph placement methodology for fast chip design. Nature,424

594(7862):207–212, 2021.425

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,426

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-427

forcement learning. nature, 518(7540):529–533, 2015.428

[31] J. Morimoto and K. Doya. Robust reinforcement learning. Neural computation, 17(2):335–359,429

2005.430

[32] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-431

based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International432

Conference on Robotics and Automation (ICRA), pages 7559–7566. IEEE, 2018.433

[33] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In Interna-434

tional conference on machine learning, pages 8162–8171. PMLR, 2021.435

[34] T. Osogami. Robustness and risk-sensitivity in markov decision processes. Advances in neural436

information processing systems, 25, 2012.437

[35] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta. Robust adversarial reinforcement learning.438

In International conference on machine learning, pages 2817–2826. PMLR, 2017.439

[36] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:440

Reliable reinforcement learning implementations. Journal of Machine Learning Research,441

22(268):1–8, 2021.442

[37] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine. Epopt: Learning robust neural network443

policies using model ensembles. arXiv preprint arXiv:1610.01283, 2016.444

[38] M. Rigter, J. Yamada, and I. Posner. World models via policy-guided trajectory diffusion. arXiv445

preprint arXiv:2312.08533, 2023.446

11



[39] J. Robine, M. Höftmann, T. Uelwer, and S. Harmeling. Transformer-based world models are447

happy with 100k interactions. arXiv preprint arXiv:2303.07109, 2023.448

[40] R. T. Rockafellar. Coherent approaches to risk in optimization under uncertainty. In OR Tools449

and Applications: Glimpses of Future Technologies, pages 38–61. Informs, 2007.450
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A Adversarially Guided Diffusion Models: Proofs of results from Section 4.1520

Proof of Lemma 4.1. For a sufficiently smooth function r, the conditional distribution p̄θ(τ i|τ i+1)521

can be approximated using a Gaussian. Following [47, Appendix C] (see also [10]) we know that522

pθ(τ i−1|τ i, τ i−1 ∈ Cα) ≈ N (µθ(τ i, i) +Σihi,Σi)

where hi = ∇τ log pθ(τ ∈ Cα|τ )|τ=µθ(τ i,i).523

Since we assume that the approximation pθ(τ i ∈ Cα|τ i) = exp (−ci
∑H

t=1 γ
tr

(i)
t ) holds, we get524

that525

hi = ∇τ log p(τ ∈ Cα|τ )|τ=µθ(τ i,ti)

= −ci
T∑

t=1

∇st,atr(st, at)|(st,at)=µt
θ(τ i,i)

= −ci∇τZ(τ )|τ=µθ(τ i,i),

where µt
θ(τ i, i) is the t-th state-action pair of µθ(τ i, i). Substituting, we get526

pθ(τ i−1|τ i, τ i−1 ∈ Cα) = N (µθ(τ i, i)− ciΣigi,Σi), (19)
where gi = ∇τZ(τ )|τ=µθ(τ i,i).527

Proof of Equation (16). As mentioned earlier, to sample from pθ(τ 0|τ 0 ∈ Cα), we multiply each528

intermediate distribution in the diffusion process by ri(τ i), with ri(τ i) = exp(−ci
∑H

t=1 γ
tr

(i)
t ),529

where the notation r
(i)
t refers to the t-th reward in τ i for the i-th diffusion step. This means that the530

corresponding modified distribution p̄θ satisfies in the intermediate diffusion step i:531

p̄θ(τ i) =
1

Z̄i
ri(τ i)pθ(τ i), (20)

where Z̃i is the normalizing constant. Next, we use the same strategy as that used in [47] to determine532

the diffusion process p̄θ(τ i|τ i+1). Note first that:533

p̄θ(τ i) =

∫
p̄θ(τ i|τ i+1)p̄θ(τ i+1)dτ i+1.

Plugging (20), the previous condition can be rewritten as534

pθ(τ i) =

∫
p̄θ(τ i|τ i+1)

Z̄i

Z̄i+1

ri+1(τ i+1)

ri(τ i)
pθ(τ i+1)dτ i+1. (21)

However, we know that pθ also satisfies:535

pθ(τ i) =

∫
pθ(τ i|τ i+1)pθ(τ i+1)dτ i+1.

This implies that (21) holds if:536

p̄θ(τ i|τ i+1) = pθ(τ i|τ i+1)
Z̄i+1ri(τ i)

Z̄iri+1(τ i+1)
.

Now defining the normalization constant Z̄i(τ i+1) =
Z̄i+1

Z̄iri+1(τ i+1)
, we get537

p̄θ(τ i|τ i+1) =
1

Z̄i(τ i+1)
pθ(τ i|τ i+1)ri(τ i).

We conclude that pθ(τ i|τ i+1, τ i ∈ Cα) ∝ p̃θ(τ i|τ i+1). Therefore, we have shown that:538

pθ(τ 0|τ 0 ∈ Cα) = p̄θ(τ 0),

=

∫
p̄θ(τ 0|τ 1)p̄θ(τ 1)dτ 1,

=

∫
p̄θ(τ 0|τ 1) · · · p̄θ(τN−1|τN )pθ(τN )dτ 1, . . . , τN ,

∝
∫

pθ(τ 0|τ 1, τ 0 ∈ Cα) · · · pθ(τN−1|τN , τN−1 ∈ Cα)pθ(τN )dτ 1, . . . , τN .

539
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B Adversarial guide as a multiplicative perturbation: Proof of Lemma 4.2540

Proof of Lemma 4.2. Let’s define a denoising diffusion model pθ(τ i−1|τ i), and a perturbed de-541

noising step of the form pθ(τ i−1|τ i, τ i−1 ∈ Cα) = N (µθ(τ i, i) − ciΣigi,Σi). Since the two542

distributions are Gaussians with known mean and covariance matrices, we have543

pθ(τ i−1|τ i, τ i−1 ∈ Cα) = N (µθ(τ i, i)− ciΣigi,Σi)

= K exp

(
−1

2
(Di + ciΣigi)

TΣ−1
i (Di + ciΣigi)

)
= K exp

(
−1

2
(DT

i ΣiDi + 2ciD
T
i gi + c2i g

T
i Σigi)

)
= K exp

(
−1

2
DT

i ΣiDi

)
exp

(
−1

2
(2ciD

T
i gi + c2i g

T
i Σigi)

)
= N (τ i−1|µθ(τ i, i),Σi) exp

(
−1

2
(2ciD

T
i gi + c2i g

T
i Σigi)

)
= ξ(τ i, τ i−1)pθ(τ i−1|τ i)

where K = 1
(2π)d/2|Σi|1/2

, Di = (τ i−1 − µθ(τ i, i)), and ξ(τ i, τ i−1) =544

exp
(
− 1

2 (2ciD
T
i gi + c2i g

T
i Σgi)

)
. N (τ i−1|µθ(τ i, i),Σi) is the density of the Gaussian545

distribution of τ i−1, with mean µθ(τ i, i) and covariance matrix Σi.546

If we define ξ(τ 0:N ) =
∏N

i=1 ξ(τ i, τ i−1), we have547

pθ(τ 0:N |τ 0 ∈ Cα) = ξ(τ 0:N )p(τ 0:N )

So we can define548

p̄θ(τ 0) = pθ(τ 0|τ 0 ∈ Cα) =

∫
pθ(τ 0:N |τ 0 ∈ Cα) = 1)dτ 1:N

=

∫
ξ(τ 0:N )p(τ 0:N )dτ 1:N

=

∫
ξ(τ 0:N )p(τ 0:N )dτ 1:N

P (τ 0)
P (τ 0)

= ξ(τ 0)P (τ 0)

with ξ(τ 0) =
∫
ξ(τ0:N )p(τ0:N )dτ1:N

P (τ0)
.549

C Attaining the duality constraint on ξ(τ 0): Proof of Proposition 4.3550

Proof of Proposition 4.3.551

Proof of (a): From Lemma 4.2 we know that ξ(τ 0) =
∫
ξ(τ0:N )p(τ0:N )dτ1:N

P (τ0)
. We want to have552

ξ(τ 0) ≤ 1
α , this is equivalent to553 ∫

ξ(τ 0:N )p(τ 0:N )dτ 1:N

P (τ 0)
≤ 1

α
,∫

ξ(τ 0:N )p(τ 0:N )dτ 1:N ≤
1

α

∫
p(τ 0:N )dτ 1:N .

One way to achieve this is to impose ξ(τ 0:N ) =
∏N

i=1 ξ(τ i, τ i−1) ≤ 1
α . This is satisfied also by554

constraining the single terms of the product using ηi(α,N) such that ξ(τ i, τ i−1) ≤ ηi(α,N) and555 ∏N
i=1 ηi(α,N) = 1

α .556

However, τ i−1 is a random quantity to which we do not have access at step i of the diffusion process.557

Therefore, to satisfy the constraints on the single terms we impose558

max
τ i−1

ξ(τ i−1, τ i) ≤ ηi(α,N).
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ξ(τ i−1, τ i) is maximized for (τ i−1 − µθ(τ i, i))
Tg < 0, so we want (τ i−1 − µθ(τ i, i))

T to be a559

vector opposite to g. We can take τ i−1 = µθ(τ i, i)− ciΣigi.560

We assume that the trajectories τ i lie in a bounded space C = {τ i : ||τ i||∞ ≤ R}, where561

||τ i||∞ = maxs∈τ i
||s||∞. From this assumption it follows that562

||τ i−1||∞ ≤ R

||µθ(τ i, i)− ciΣigi||∞ ≤ R

||µθ(τ i, i)||∞ + ci||Σigi||∞ ≤ R

ci ≤
(R− ||µθ(τ i, i)||∞)

||Σigi||∞
.

Substituting τ i−1 = µθ(τ i, i)− ciΣigi into ξ(τ i−1, τ i) ≤ ηi(α,N) and developing we get563

−1

2
(−2c2i gT

i Σigi + c2i g
T
i Σigi) ≤ log ηi(α,N)

ci ≤

√
2 log ηi(α,N)

gT
i Σigi

.

So combining the two inequalities we can take564

ci ≤ min

(√
2 log ηi(α,N)

gT
i Σigi

,
R− ||µθ(τ i, i)||∞
||Σigi||∞

)
. (22)

Proof of (b): To find the minimum between the terms in Equation (22), we analyze the denominators565

and numerators. For the denominators,
√
gT
i Σigi and ||Σigi||∞ = maxj |(Σigi)j |, it is equivalent566

to compare gT
i Σigi and ||Σigi||2∞.567

Since our diffusion model adopts a cosine scheduler for the covariance matrix, Σi is diagonal with568

elements (Σi)jj ∈ [0, 1). We can write the j−th element of Σigi as (Σigi)j = eTj Σigi, where ej569

is a basis vector. Then using Cauchy-Schwarz inequality we get570

|(Σigi)j |2 = |eTj Σigi|2

≤ (eTj Σiej)(g
T
i Σigi),

with eTj Σiej ≤ 1 by definition of Σi. It follows that |(Σigi)j |2 ≤ gT
i Σigi, and since this is true571

for all j we can conclude that572

max
j
|(Σigi)j |2 ≤ gT

i Σigi

||Σigi||∞ ≤
√

gT
i Σigi

When comparing the numerators of both terms in Equation (22), since log ηi(α,N) = 1
N log

(
1
α

)
,573

for N large enough,
√
2 log ηi(α,N) < R− ||µθ(τ i, i)||∞.574

So ci ≤
√

2 log ηi(α,N)

gT
i Σigi

satisfies the dual CVaR constraints.575

D Adaptation to Matrix Normal Distribution576

Here we extend the analysis to the case where states and actions are multidimensional, and we577

consider trajectories as Gaussian matrices.578

We define p(τ i−1|τ i) as579

p(τ i−1|τ i) =MN(τ i−1|Mθ(τ i, i),U i,V i)
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whereMN(τ i−1|Mθ(τ i, i),U i,V i) is a Matrix Normal Distribution with mean Mθ(τ i, i) ∈ Rn×p,580

row and column covariances U i ∈ Rn×n and V i ∈ Rp×p.581

The probability density function of this Matrix Normal Distribution is defined as582

MN(τ i−1|Mθ(τ i, i),U i,V i) := Ki exp

(
−1

2
Tr[V −1

i (τ i−1 −Mθ(τ i, i))
TU−1

i (τ i−1 −Mθ(τ i, i))]

)
where Tr[·] is the trace operator, Ki =

1
(2π)np/2|V i|n/2|Ui|n/2 and | · | is the determinant of a matrix.583

Define Gi ∈ Rn×p as the gradient ∇τZ with respect to the second order tensor representing the584

trajectory τ ∈ Rn×p evaluated at Mθ(τ i, i). Also define Γi = U iGiV i for notation convenience.585

Consider the perturbed distribution with a mean Mθ(τ i, i)− ciΓi , we get586

pθ(τ i−1|τ i, τ i−1 ∈ Cα)

= exp

(
−1

2
Tr[V −1(τ i−1 −Mθ(τ i, i) + ciΓi)

TU−1(τ i−1 −Mθ(τ i, i) + ciΓi)]

)
= K exp

(
−1

2
Tr[V −1(τ i−1 −Mθ(τ i, i))

TU−1(τ i−1 −Mθ(τ i, i))]

)
ξ(τ i, τ i−1)

with587

ξ(τ i, τ i−1) = exp

(
−1

2
Tr[V −1

i (2ci(τ i−1 −Mθ(τ i, i))
TU−1

i Γi + c2iΓ
T
i U

−1
i Γi)]

)
.

As we did in Appendix C, we take ξ(τ i, τ i−1) ≤ ηi(α,N). We can take τ i−1 = Mθ(τ i, i)− ciΓi588

and get589

exp

(
−1

2
Tr[V −1

i (2ci(τ i−1 −Mθ(τ i, i))
TU−1

i Γi + c2iΓ
T
i U

−1
i Γi)]

)
≤ ηi(α,N)

−1

2
Tr[V −1

i (−2c2iΓ
T
i U

−1
i Γi + c2iΓ

T
i U

−1
i Γi)] ≤ log ηi(α,N)

Tr[V −1
i (ΓT

i U
−1
i Γi)c

2
i )] ≤ 2 log ηi(α,N),

giving590

ci ≤

√
2 log ηi(α,N)

Tr[V −1
i (U iGiV i)TU

−1
i (U iGiV i))]

.

Under the same assumptions of Appendix C, we get that591

||τ i−1||∞ ≤ R

||Mθ(τ i, i)− ciU iGiV i||∞ ≤ R

||Mθ(τ i, i)||∞ + ci||U iGiV i||∞ ≤ R

ci ≤
(R− ||Mθ(τ i, i)||∞)

||U iGiV i||∞
.

So we can pick592

ci = min

(√
2 log ηi(α,N)

Tr[V −1
i (U iGiV i)TU

−1
i (U iGiV i))]

,
(R− ||Mθ(τ i, i)||∞)

||U iGiV i||∞

)

Following the same reasoning as in Appendix C, if the covariance matrices U i and V i are diagonal593

with elements in [0, 1) we can pick594

ci =

√
2 log ηi(α,N)

Tr[V −1
i (U iGiV i)TU

−1
i (U iGiV i))]
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E Implementation details595

Our method makes use of three MLPs: the policy πω , the adversarial denoising diffusion model p̄θ596

and the learned cumulative reward function Zϕ.597

Policy network and training. The policy πω is parameterized in the same way as PolyGRAD [38].598

We consider a Gaussian policy of the form πω = N (µω(s), σω), where ω are the parameters of the599

MLP. The standard deviation of the policy is a single learnable parameter σω, independent of the600

state.601

The policy is trained using Advantage Actor Critic (A2C) with Generalised Advantage Estimation602

(GAE). The optimizer used is ADAM. The hyperparameters can be found in Table 2.603

Parameter Value
Batch size 512
Synthetic trajectory length 10
GAE λ 0.9
Critic learning rate 3e-4
Actor learning rate 3e-5
Discount factor, γ 0.99
Entropy bonus weight 1e-5

Table 2: Hyperparameters for A2C training.

Adversarial Diffusion and Cumulative Reward models. Our implementation builds directly604

on top of PolyGRAD. We follow the same training procedure, summarized in Algorithm 3. For605

the Diffusion Model, we use the same MLP architecture as PolyGRAD, trained by minimizing606

the L2 loss with ADAM optimizer. The MDP has skip connections at every layer, and features a607

learneable embedding of the diffusion step i, which is common for Diffusion Architectures [17]. The608

hyperparameters are summarized in Table 3.609

Parameter Value
Hidden size 1024
Length of generated trajectory 10
Batch size 256
Diffusion step embedding size 128
Number of layers 6
Learning rate 3e-4

Table 3: Hyperparameters for adversarial diffusion training.

When computing ci according to (18), we chose R = 3σi, where σi is the standard deviation of the610

diffusion process2 at step i. In our implementation we choose ηi(α,N) =
(
1
α

) 1
N .611

The cumulative reward model Zϕ follows the same structure and hyperparameters of the Diffusion612

Model (also the step embedding), with a final linear layer producing a scalar output. It is optimized613

using the L2 loss and the ADAM optimizer.614

2In Denoising Diffusion Probabilistic Models, the standard deviation is fixed at every step i according to a
known scheduling rate [15].
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Algorithm 3 Diffusion model training

1: Input: adversarial denoising model p̄θ; cumulative reward function Zϕ; data buffer, D; diffusion
steps N ; training iterations K

2: for k = 1, . . . ,K do
3: Improve p̄θ (7) using {τ 0} ∼ D.
4: Train Zϕ to predict the reward Z(τ 0).
5: end for

Baselines implementation The implementation of PolyGRAD was taken from the respective615

github repository [38]. The same was done for CPPO and M2TD3: for M2TD3, we created a new616

config file for Reacher, where we set the range of the actuator gear to [50.0, 500.0]. For TRPO and617

PPO we used the implementation from Stable-Baselines3 [36]. We used Domain Randomization618

on top of the PPO baseline, training with values of the mass and parameters uniformly sampled619

according to the uncertainty intervals specified in Table 4.620

Environment Mass Friction Mass pole Mass cart Act. gear
Hopper [0.5, 6.5] [0.1, 3.0] — — —
HalfCheetah [3.5, 9.5] [0.2, 0.8] — — —
Walker [0.5, 6.5] [0.5, 2.0] — — —
Cartpole — — [2.5, 10.0] [5.0, 20.0] —
Reacher — — — — [50.0, 500.0]

Table 4: Uncertainty sets used for domain randomization.

Computational resources The training of AD-RRL and Polygrad was performed on three different621

machines. On a cluster node with one A100 GPU, Icelake CPU and 256 GB of RAM.622

The remaining model-free baselines were trained on a laptop with an Intel i7-1185G7 CPU, Mesa623

Intel Xe Graphics GPU and 32 GB of RAM.624

In table 5 we report the wall-clock training time for each algorithm . As it is expected, the model-based625

algorithms (AD-RRL and PolyGRAD) are slower than the model-free ones. This is a well-known626

shortcoming of Model-Based RL methods, even more so when using Diffusion Models, known for627

their longer training times when compared to standard MLPs. AD-RRL is slower than PolyGRAD628

since it employes an additional Diffusion Model to approximate the cumulative reward of a trajectory.629

Algorithm Hopper Halfcheetah Walker InvertedPendulum Reacher

AD−RRL (ours)† 3-20-00 3-20-00 3-20-00 3-20-00 3-20-00
Polygrad† 2-14-00 2-14-00 2-14-00 2-14-00 2-14-00
M2TD3‡ 0-02-00 0-03-30 0-02-45 0-02-45 0-02-45
CPPO‡ 0-00-30 0-00-30 0-00-30 0-00-30 0-00-30
PPO‡ 0-00-30 0-00-30 0-00-30 0-00-30 0-00-30
TRPO‡ 0-00-30 0-00-30 0-00-30 0-00-30 0-00-30
DR−PPO‡ 0-00-30 0-00-30 0-00-30 0-00-30 0-00-30

Table 5: Wall-clock training time (days–hours–minutes) needed to reach the reported performance
on the MuJoCo tasks. Times are rounded up to the nearest quarter hour. †Trained on cluster node.
‡Trained on laptop.
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F Additional Results630

In this section, we provide additional plots to support our conclusions.631

F.1 Training curves632

Figure 2 shows the learning curves for AD-RRL and all the baselines for the considered MuJoCo633

tasks. Across seeds, AD-RRL reaches its final performance at least as quickly as the other methods.634

AD-RRL also achieves a final score matching or surpassing that of the baselines. This is particularly635

clear for the Cheetah and Walker environments, presented in Figures 2d and 2e. These results confirm636

that our method is more robust to modeling errors but does not sacrifice optimality in the training637

environment or learning speed.638
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Figure 2: Training-return curves for five MuJoCo tasks. Shaded areas represent one standard error.
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F.2 Varying parameters639

In Figure 3 we present additional parameters variations for the InvertedPendulum and Cartpole640

environment. The pattern is consistent with the plots presented in Figure 1: AD-RRL achieves on par641

or higher returns than both robust and non-robust baselines as the dynamics deviate from nominal642

values. The only exception appears to be for higher variations of the cart mass, in the Inverted643

Pendulum environment (Figure 3b), where the additional inertia pushes most methods toward failure644

and AD-RRL similarly shows a performance decline.645
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Figure 3: Average Return for varying physical parameters. Shaded areas represent one standard error.

G Limitations and future work646

Computation time. Guided diffusion requires dozens of reverse–diffusion steps for every synthetic647

trajectory and an extra gradient evaluation at each step. Consequently AD–RRL is slower than its648

precursor PolyGRAD, and both model–based methods need a higher training time (wall-clock) than649

the model-free baselines, even though they are more sample efficient. Improving the training time for650

diffusion models (e.g., fine-tuning the network size or the number of denoising steps) sounds like a651

natural next step.652

Smooth–dynamics assumption. Our derivation employs a Gaussian approximation and the computa-653

tion of gradients ∇τZ(τ). Both of these presuppose reasonably smooth rewards and state transitions.654

Some tasks might break this assumption, causing inaccurate guidance. Extending adversarial diffusion655

to domains with non-smooth dynamics is left for future work.656

Scope of the evaluation. Our evaluation focused on simulated control tasks. A natural next step657

is a Sim2Real study. That is, AD–RRL is trained entirely in simulation and then deployed on real658

hardware, measuring how much the adversarial-diffusion training reduces the Sim2Real performance659

drop.660
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H Societal impact statement661

Our contribution is methodological: we propose a technique for making model-based RL more robust662

to dynamics misspecification. Robustness is typically beneficial—e.g., safer robot control or fewer663

failures in medical-decision support—yet any improvement in sample efficiency or policy quality664

can also lower the barrier to deploying RL in high-stakes settings. In domains such as healthcare,665

finance, or autonomous driving, deployment must therefore be accompanied by domain-specific666

safety checks, bias audits, and human oversight. Our work does not introduce new data-collection667

practices, nor does it touch sensitive attributes, but it could be combined with decision pipelines668

that do. We encourage future users of this method to evaluate downstream ethical, legal, and safety669

implications before real-world deployment.670
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NeurIPS Paper Checklist671

1. Claims672

Question: Do the main claims made in the abstract and introduction accurately reflect the673

paper’s contributions and scope?674

Answer: [Yes]675

Justification: We specified all the claims and assumptions in the abstract and introduction.676

The claims are backed up by lemmata, propositions and empirical results.677

Guidelines:678

• The answer NA means that the abstract and introduction do not include the claims679

made in the paper.680

• The abstract and/or introduction should clearly state the claims made, including the681

contributions made in the paper and important assumptions and limitations. A No or682

NA answer to this question will not be perceived well by the reviewers.683

• The claims made should match theoretical and experimental results, and reflect how684

much the results can be expected to generalize to other settings.685

• It is fine to include aspirational goals as motivation as long as it is clear that these goals686

are not attained by the paper.687

2. Limitations688

Question: Does the paper discuss the limitations of the work performed by the authors?689

Answer: [Yes]690

Justification: We discuss the limitations of our algorithm in the Experiments and Conclusions691

and Future work sections.692

Guidelines:693

• The answer NA means that the paper has no limitation while the answer No means that694

the paper has limitations, but those are not discussed in the paper.695

• The authors are encouraged to create a separate "Limitations" section in their paper.696

• The paper should point out any strong assumptions and how robust the results are to697

violations of these assumptions (e.g., independence assumptions, noiseless settings,698

model well-specification, asymptotic approximations only holding locally). The authors699

should reflect on how these assumptions might be violated in practice and what the700

implications would be.701

• The authors should reflect on the scope of the claims made, e.g., if the approach was702

only tested on a few datasets or with a few runs. In general, empirical results often703

depend on implicit assumptions, which should be articulated.704

• The authors should reflect on the factors that influence the performance of the approach.705

For example, a facial recognition algorithm may perform poorly when image resolution706

is low or images are taken in low lighting. Or a speech-to-text system might not be707

used reliably to provide closed captions for online lectures because it fails to handle708

technical jargon.709

• The authors should discuss the computational efficiency of the proposed algorithms710

and how they scale with dataset size.711

• If applicable, the authors should discuss possible limitations of their approach to712

address problems of privacy and fairness.713

• While the authors might fear that complete honesty about limitations might be used by714

reviewers as grounds for rejection, a worse outcome might be that reviewers discover715

limitations that aren’t acknowledged in the paper. The authors should use their best716

judgment and recognize that individual actions in favor of transparency play an impor-717

tant role in developing norms that preserve the integrity of the community. Reviewers718

will be specifically instructed to not penalize honesty concerning limitations.719

3. Theory assumptions and proofs720

Question: For each theoretical result, does the paper provide the full set of assumptions and721

a complete (and correct) proof?722
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Answer: [Yes]723

Justification: We provide the full set of assumptions in the main body of lemmata and724

propositions, while the complete proofs are provided in the appendix (and referenced in the725

main body).726
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• The answer NA means that the paper does not include theoretical results.728

• All the theorems, formulas, and proofs in the paper should be numbered and cross-729

referenced.730

• All assumptions should be clearly stated or referenced in the statement of any theorems.731

• The proofs can either appear in the main paper or the supplemental material, but if732

they appear in the supplemental material, the authors are encouraged to provide a short733

proof sketch to provide intuition.734

• Inversely, any informal proof provided in the core of the paper should be complemented735

by formal proofs provided in appendix or supplemental material.736

• Theorems and Lemmas that the proof relies upon should be properly referenced.737

4. Experimental result reproducibility738

Question: Does the paper fully disclose all the information needed to reproduce the main ex-739

perimental results of the paper to the extent that it affects the main claims and/or conclusions740

of the paper (regardless of whether the code and data are provided or not)?741

Answer: [Yes]742
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algorithm and baselines. We also provide pseudocode for our algorithm.744

Guidelines:745

• The answer NA means that the paper does not include experiments.746

• If the paper includes experiments, a No answer to this question will not be perceived747

well by the reviewers: Making the paper reproducible is important, regardless of748

whether the code and data are provided or not.749

• If the contribution is a dataset and/or model, the authors should describe the steps taken750

to make their results reproducible or verifiable.751

• Depending on the contribution, reproducibility can be accomplished in various ways.752

For example, if the contribution is a novel architecture, describing the architecture fully753

might suffice, or if the contribution is a specific model and empirical evaluation, it may754

be necessary to either make it possible for others to replicate the model with the same755

dataset, or provide access to the model. In general. releasing code and data is often756

one good way to accomplish this, but reproducibility can also be provided via detailed757

instructions for how to replicate the results, access to a hosted model (e.g., in the case758

of a large language model), releasing of a model checkpoint, or other means that are759

appropriate to the research performed.760

• While NeurIPS does not require releasing code, the conference does require all submis-761

sions to provide some reasonable avenue for reproducibility, which may depend on the762

nature of the contribution. For example763

(a) If the contribution is primarily a new algorithm, the paper should make it clear how764

to reproduce that algorithm.765

(b) If the contribution is primarily a new model architecture, the paper should describe766

the architecture clearly and fully.767

(c) If the contribution is a new model (e.g., a large language model), then there should768

either be a way to access this model for reproducing the results or a way to reproduce769

the model (e.g., with an open-source dataset or instructions for how to construct770

the dataset).771

(d) We recognize that reproducibility may be tricky in some cases, in which case772

authors are welcome to describe the particular way they provide for reproducibility.773

In the case of closed-source models, it may be that access to the model is limited in774

some way (e.g., to registered users), but it should be possible for other researchers775

to have some path to reproducing or verifying the results.776
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reproduce the results. See the NeurIPS code and data submission guidelines (https:792

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.793

• The authors should provide instructions on data access and preparation, including how794

to access the raw data, preprocessed data, intermediate data, and generated data, etc.795

• The authors should provide scripts to reproduce all experimental results for the new796

proposed method and baselines. If only a subset of experiments are reproducible, they797

should state which ones are omitted from the script and why.798

• At submission time, to preserve anonymity, the authors should release anonymized799

versions (if applicable).800

• Providing as much information as possible in supplemental material (appended to the801

paper) is recommended, but including URLs to data and code is permitted.802

6. Experimental setting/details803

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-804

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the805

results?806

Answer: [Yes]807

Justification: We provide hyperparameters in the appendix section.808

Guidelines:809

• The answer NA means that the paper does not include experiments.810

• The experimental setting should be presented in the core of the paper to a level of detail811

that is necessary to appreciate the results and make sense of them.812

• The full details can be provided either with the code, in appendix, or as supplemental813

material.814

7. Experiment statistical significance815

Question: Does the paper report error bars suitably and correctly defined or other appropriate816

information about the statistical significance of the experiments?817

Answer: [Yes]818

Justification: Result tables and plots always include the standard error across all the simula-819

tions.820

Guidelines:821

• The answer NA means that the paper does not include experiments.822

• The authors should answer "Yes" if the results are accompanied by error bars, confi-823

dence intervals, or statistical significance tests, at least for the experiments that support824

the main claims of the paper.825

• The factors of variability that the error bars are capturing should be clearly stated (for826

example, train/test split, initialization, random drawing of some parameter, or overall827

run with given experimental conditions).828
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• The method for calculating the error bars should be explained (closed form formula,829

call to a library function, bootstrap, etc.)830

• The assumptions made should be given (e.g., Normally distributed errors).831

• It should be clear whether the error bar is the standard deviation or the standard error832

of the mean.833

• It is OK to report 1-sigma error bars, but one should state it. The authors should834

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis835

of Normality of errors is not verified.836

• For asymmetric distributions, the authors should be careful not to show in tables or837

figures symmetric error bars that would yield results that are out of range (e.g. negative838

error rates).839

• If error bars are reported in tables or plots, The authors should explain in the text how840

they were calculated and reference the corresponding figures or tables in the text.841

8. Experiments compute resources842

Question: For each experiment, does the paper provide sufficient information on the com-843

puter resources (type of compute workers, memory, time of execution) needed to reproduce844

the experiments?845

Answer: [Yes]846

Justification: In the appendix we provide detailed information about the computing resources847

used to perform the experiments.848

Guidelines:849

• The answer NA means that the paper does not include experiments.850

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,851

or cloud provider, including relevant memory and storage.852

• The paper should provide the amount of compute required for each of the individual853

experimental runs as well as estimate the total compute.854

• The paper should disclose whether the full research project required more compute855

than the experiments reported in the paper (e.g., preliminary or failed experiments that856

didn’t make it into the paper).857

9. Code of ethics858

Question: Does the research conducted in the paper conform, in every respect, with the859

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?860

Answer: [Yes]861

Justification: We reviewed the NeurIPS Code of Ethics and we do not use sensitive data.862

Guidelines:863

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.864

• If the authors answer No, they should explain the special circumstances that require a865

deviation from the Code of Ethics.866

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-867

eration due to laws or regulations in their jurisdiction).868

10. Broader impacts869

Question: Does the paper discuss both potential positive societal impacts and negative870

societal impacts of the work performed?871

Answer: [Yes]872

Justification: We discuss potential negative societal impacts in the appendix.873

Guidelines:874

• The answer NA means that there is no societal impact of the work performed.875

• If the authors answer NA or No, they should explain why their work has no societal876

impact or why the paper does not address societal impact.877
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• Examples of negative societal impacts include potential malicious or unintended uses878

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations879

(e.g., deployment of technologies that could make decisions that unfairly impact specific880

groups), privacy considerations, and security considerations.881

• The conference expects that many papers will be foundational research and not tied882

to particular applications, let alone deployments. However, if there is a direct path to883

any negative applications, the authors should point it out. For example, it is legitimate884

to point out that an improvement in the quality of generative models could be used to885

generate deepfakes for disinformation. On the other hand, it is not needed to point out886

that a generic algorithm for optimizing neural networks could enable people to train887

models that generate Deepfakes faster.888

• The authors should consider possible harms that could arise when the technology is889

being used as intended and functioning correctly, harms that could arise when the890

technology is being used as intended but gives incorrect results, and harms following891

from (intentional or unintentional) misuse of the technology.892

• If there are negative societal impacts, the authors could also discuss possible mitigation893

strategies (e.g., gated release of models, providing defenses in addition to attacks,894

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from895

feedback over time, improving the efficiency and accessibility of ML).896

11. Safeguards897

Question: Does the paper describe safeguards that have been put in place for responsible898

release of data or models that have a high risk for misuse (e.g., pretrained language models,899

image generators, or scraped datasets)?900

Answer: [NA]901

Justification: NA902

Guidelines:903

• The answer NA means that the paper poses no such risks.904

• Released models that have a high risk for misuse or dual-use should be released with905

necessary safeguards to allow for controlled use of the model, for example by requiring906

that users adhere to usage guidelines or restrictions to access the model or implementing907

safety filters.908

• Datasets that have been scraped from the Internet could pose safety risks. The authors909

should describe how they avoided releasing unsafe images.910

• We recognize that providing effective safeguards is challenging, and many papers do911

not require this, but we encourage authors to take this into account and make a best912

faith effort.913

12. Licenses for existing assets914

Question: Are the creators or original owners of assets (e.g., code, data, models), used in915

the paper, properly credited and are the license and terms of use explicitly mentioned and916

properly respected?917

Answer: [Yes]918

Justification: We credit all the authors of software used in the paper (like the experiments919

baselines).920

Guidelines:921

• The answer NA means that the paper does not use existing assets.922

• The authors should cite the original paper that produced the code package or dataset.923

• The authors should state which version of the asset is used and, if possible, include a924

URL.925

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.926

• For scraped data from a particular source (e.g., website), the copyright and terms of927

service of that source should be provided.928
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• If assets are released, the license, copyright information, and terms of use in the929

package should be provided. For popular datasets, paperswithcode.com/datasets930

has curated licenses for some datasets. Their licensing guide can help determine the931

license of a dataset.932

• For existing datasets that are re-packaged, both the original license and the license of933

the derived asset (if it has changed) should be provided.934

• If this information is not available online, the authors are encouraged to reach out to935

the asset’s creators.936

13. New assets937

Question: Are new assets introduced in the paper well documented and is the documentation938

provided alongside the assets?939

Answer: [Yes]940

Justification: We provide details about our model (hyperparameters and pseudocode) and941

the code itself.942

Guidelines:943

• The answer NA means that the paper does not release new assets.944

• Researchers should communicate the details of the dataset/code/model as part of their945

submissions via structured templates. This includes details about training, license,946

limitations, etc.947

• The paper should discuss whether and how consent was obtained from people whose948

asset is used.949

• At submission time, remember to anonymize your assets (if applicable). You can either950

create an anonymized URL or include an anonymized zip file.951

14. Crowdsourcing and research with human subjects952

Question: For crowdsourcing experiments and research with human subjects, does the paper953

include the full text of instructions given to participants and screenshots, if applicable, as954

well as details about compensation (if any)?955

Answer: [NA]956

Justification: NA957

Guidelines:958

• The answer NA means that the paper does not involve crowdsourcing nor research with959

human subjects.960

• Including this information in the supplemental material is fine, but if the main contribu-961

tion of the paper involves human subjects, then as much detail as possible should be962

included in the main paper.963

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,964

or other labor should be paid at least the minimum wage in the country of the data965

collector.966

15. Institutional review board (IRB) approvals or equivalent for research with human967

subjects968

Question: Does the paper describe potential risks incurred by study participants, whether969

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)970

approvals (or an equivalent approval/review based on the requirements of your country or971

institution) were obtained?972

Answer: [NA]973

Justification: NA974

Guidelines:975

• The answer NA means that the paper does not involve crowdsourcing nor research with976

human subjects.977

• Depending on the country in which research is conducted, IRB approval (or equivalent)978

may be required for any human subjects research. If you obtained IRB approval, you979

should clearly state this in the paper.980
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• We recognize that the procedures for this may vary significantly between institutions981

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the982

guidelines for their institution.983

• For initial submissions, do not include any information that would break anonymity (if984

applicable), such as the institution conducting the review.985

16. Declaration of LLM usage986

Question: Does the paper describe the usage of LLMs if it is an important, original, or987

non-standard component of the core methods in this research? Note that if the LLM is used988

only for writing, editing, or formatting purposes and does not impact the core methodology,989

scientific rigorousness, or originality of the research, declaration is not required.990

Answer: [NA]991

Justification: NA992

Guidelines:993

• The answer NA means that the core method development in this research does not994

involve LLMs as any important, original, or non-standard components.995

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)996

for what should or should not be described.997
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