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Figure 1: FleVRS is a single model trained to support standard, promptable and open-vocabulary
fine-grained visual relationship segmentation (<subject mask, relationship categories, object
mask>). It can take images only or images with structured prompts as inputs, and segment all existing
relationships or the ones subject to the text prompts.

Abstract

Visual relationship understanding has been studied separately in human-object
interaction (HOI) detection, scene graph generation (SGG), and referring relation-
ships (RR) tasks. Given the complexity and interconnectedness of these tasks, it is
crucial to have a flexible framework that can effectively address these tasks in a
cohesive manner. In this work, we propose FleVRS, a single model that seamlessly
integrates the above three aspects in standard and promptable visual relationship
segmentation, and further possesses the capability for open-vocabulary segmenta-
tion to adapt to novel scenarios. FleVRS leverages the synergy between text and
image modalities, to ground various types of relationships from images and use
textual features from vision-language models to visual conceptual understanding.
Empirical validation across various datasets demonstrates that our framework out-
performs existing models in standard, promptable, and open-vocabulary tasks, e.g.,
+1.9 mAP on HICO-DET, +11.4 Acc on VRD, +4.7 mAP on unseen HICO-DET.
Our FleVRS represents a significant step towards a more intuitive, comprehensive,
and scalable understanding of visual relationships.

1 Introduction

An image is not merely a collection of objects. Understanding the visual relationships between
different entities at pixel-level through segmentation is a fundamental task in computer vision, which
has broad applications in autonomous driving [28, 58], behavior analysis [65, 67], navigation [10, 15,
22, 27], etc. Furthermore, segmenting relational objects extends beyond mere detection, playing a
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Method Standard Promptable Open-vocabulary One/Two-stage Model
HOI SGG

RLIPv2 [92] ✓ ✓ ✗ ✓ Two
UniVRD [101] ✓ ✓ ✗ ✗ Two

SSAS [38] ✗ ✗ ✓ ✗ One
GEN-VLKT [47] ✓ ✗ ✗ ✓ One

FleVRS (Ours) ✓ ✓ ✓ ✓ One

Table 1: Comparisons with previous representative methods in three aspects of model capabili-
ties. To the best of our knowledge, our FleVRS is the first one-stage model capable of performing
standard, promptable, and open-vocabulary visual relationship segmentation all at once.

crucial role in improving visual understanding and providing a more comprehensive abstraction on
the visual contents and interactions among them.

Ideally, a visual relationship segmentation (VRS) model should demonstrate flexibility across three
key dimensions. 1) Capability of segmenting various types of relationships, including both
human-centric and generic ones. These relationships are defined as triplets in the form of <subject,
predicate, object>. Human-object interaction (HOI) detection [4, 18], which we adapt into
HOI segmentation in our work, exemplifies this capability, such as <person, ride, horse> in
Fig. 1. Panoptic scene graph generation (SGG) [55, 81, 85], captures generic spatial or semantic
relationships among pairs of objects in an image, e.g., bench on pavement in Fig. 1. A unified
model that can handle these tasks concurrently is essential, as it eliminates the need for separate
designs and modifications for each specific task. 2) Grounding of relational subject-object pairs
with different prompts. Given various textual prompts, the model should output the desired entities
and relationships, facilitating a more natural and intuitive user interface. For instance, it should
be able to detect just the person in an image or all possible interactions between a person and
a horse, as illustrated in Fig. 1. 3) Open-vocabulary recognition of visual relationships. In
realistic open-world applications, the model should generalize to new scenarios without requiring
annotations for new concepts not seen during training. This capability includes detecting novel
objects, relationships, and their combinations.

Existing models in visual relationship segmentation (VRS) have targeted aspects of the desired capabil-
ities but fall short of providing a comprehensive solution, as detailed in Tab. 1. Models have typically
focused on tasks like human-object interaction (HOI) detection [23, 35, 47, 57, 72, 95, 97, 108] and
panoptic SGG [50, 71, 81, 85, 93, 104]. Although models such as [92, 101] have attempted to unify
VRS under a single framework, they need additional pretraining on HOI datasets (Tab. 1) and lack
features such as promptable segmentation, which allows for dynamic entity and relationship genera-
tion based on textual prompts, as well as capabilities for open-vocabulary promptable segmentation.
Efforts to detect instances referred to by textual prompts have been made [21, 38, 75, 107], but these
models fail to capture all desired entities or relationships comprehensively and struggle with classi-
fying multi-label interactions between the pairs, limiting their effectiveness in complex scenarios.
Although recent vision-language grounding models like [29, 52, 83] and multimodal large language
models such as [2, 5, 76, 78, 88] exhibit enhanced capabilities in grounding instances specified by
free-form text and show strong generalization over novel concepts, they still do not generate the
required pairs in the format of segmentation masks. Furthermore, these models require significant
computational resources and additional vision models for precise localizations. For open-vocabulary
VRS, existing works [47, 91, 92] leverage textual embeddings to transfer knowledge. However,
models [91, 92] fall short in grounding diverse prompts, while [47] is exclusively designed for HOI
detection, not generic VRS.

To address the limitations in existing models, we introduce FleVRS, a flexible one-stage framework
capable of performing standard, promptable, and open-vocabulary visual relationship segmentation
simultaneously. Our approach integrates human-centric (HOI segmentation) and generic VRS
(Panoptic SGG) by adopting SAM [36] to unify different types of annotations into segmentation
masks and using a query-based Transformer architecture that outputs triplets in the format <subject,
predicate, object>. The model enhances its interactive capabilities by accepting textual prompts
as inputs. These prompts are converted into textual queries that assist the decoder in accurately
identifying and localizing objects within the relationships. Additionally, we unify the labels from
different datasets into a shared textual space, transforming classification into a process of matching
with a set of textual features. Leveraging textual features from the CLIP model [64], we enable
the effective matching of visual features with textual knowledge of novel concepts. This design
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Figure 2: Examples of converting HOI detection boxes to masks. We filter out low-quality masks
during training by computing IoU between the mask and box.

inherently supports open-vocabulary and promptable relationship segmentation without pre-defining
the number of object or predicate categories, facilitating dynamic and extensive adaptability.

Our FleVRS proposes a unified framework that integrates standard, promptable, and open-vocabulary
VRS tasks into a single system, as detailed in Tab. 1, providing greater flexibility compared to
existing methods. It employs a mask-based approach to effectively manage various VRS tasks,
enabling adaptation to different types of annotations, including HOI detection and panoptic SGG.
Our architecture incorporates dynamic prompt handling, which supports both prompt-based and
open-vocabulary settings, allowing our model to combine promptable queries with open-vocabulary
capabilities to ground novel relational objects.

We evaluate our FleVRS on standard, promptable, and open-vocabulary VRS tasks, i.e., HOI segmen-
tation [4, 18] and panoptic SGG [85]. Crucially, we demonstrate competitive performance from three
perspectives – standard (40.5 vs. 39.1 mAP on HICO-DET [4]), promptable (56.8 vs. 33.5 sIoU on
VRD [55]), and open-vocabulary (31.7 vs. 25.6 mAP for “unseen object” on HICO-DET [4]) visual
relationship segmentation.

In summary, our main contributions are as follows: 1) We introduce a flexible one-stage framework
capable of segmenting both human-centric and generic visual relationships across various datasets.
2) We present a promptable visual relationship learning framework that effectively utilizes diverse
textual prompts to ground relationships. 3) We demonstrate competitive performance in both standard
close-set and open-vocabulary scenarios, showcasing the model’s strong generalization capabilities.

2 Related Work

Visual Relationship Detection (VRD) is split into two lines of works, including human-object
interaction (HOI) detection [4, 18] and panoptic scene graph generation (SGG) [37, 85]. They
are defined as detecting triplets in the form of <subject, predicate, object> triplet, where
subject or object includes object box and category. HOI detection aims to detect human-centric
visual relationships, while PSG focuses on generic object pairs’ relationships. Previous works [1,
13, 16, 32, 35, 41, 41, 47, 57, 81, 89, 95, 96, 97, 100, 104, 105, 106] usually train specialist models
on a single data source and tackle them separately. Departing from this traditional bifurcation,
UniVRD [101] initiated the development of a unified model for VRD, with subsequent efforts like [91,
92] advancing relational understanding through large-scale language-image pre-training. Unlike the
two-stage approach of [92], which performs object detection before decoding visual relationships,
our method employs a one-stage design that decodes objects and their relationships simultaneously.
Crucially, our model extends beyond standard VRD capabilities to support promptable and open-
vocabulary visual relationship segmentation, enhancing detailed scene comprehension.

Referring relationship and visual grounding. The most relevant work to ours is referring visual
relationship introduced in [38], where the model detects the subject and object depicting the structured
relationship <subject, predicate, object>. One-stage [38, 75], two-stage [63, 107] and three-
stage [21] methods are proposed to localize the two entities’ boxes iteratively based on the given
structured prompt <subject, predicate, object>. Unlike these methods, our approach allows
for more flexible textual prompts without requiring the complete specification of the triplet. As shown
in Fig. 1, our model can handle queries that include a single item (e.g., predicate) or a combination
of two (e.g., predicate and object). Additionally, our method is capable of performing standard
and open-vocabulary VRS. Visual grounding represents another related area, where models output
bounding boxes [7, 8, 20, 29, 40, 52, 83] or object masks [9, 17, 44, 45, 51, 56, 79, 87, 99] in response
to textual inputs. This process requires reasoning over the entities mentioned in the text to identify
the corresponding objects in the visual space. However, our task fundamentally differs from this.

3



…
…<subject, object>

Input Image

𝐐𝐯

𝐐𝐭

×

Output Triplet

…
…

<         ,          ,         >
𝐐𝐯

𝐐𝐭

Image 
Encoder

Textual 
Encoder

Pixel Decoder

Relationship 
Decoder

Latent queries Textual queries

Subject mask Object mask

Subject class Object class

Predicate classPromptable VRS

Figure 3: Overview of FleVRS. In standard VRS, without textual queries, the latent queries perform
self- and cross-attention within the relationship decoder to output a triplet for each query. For
promptable VRS, the decoder additionally incorporates textual queries Qt, concatenated with Qv.
This setup similarly predicts triplets, each based on Qv outputs aligned with features from the
optional textual prompt Qt.

In our FleVRS, the promptable VRS task goes beyond mere identification; it involves outputting
segmentation masks for both subject and object pairs along with categorizing their relationships. This
capability is essential for understanding and interpreting complex relational dynamics.

Vision and language models Recent advancements in large-scale pre-trained vision-language mod-
els (VLM) [39, 64, 68, 69, 82, 94] and multimodal large language models (MLLM) [2, 5, 76, 78, 88]
have demonstrated impressive performance and generalization capabilities across a variety of vision
and multimodal tasks [36, 109, 110]. However, these models primarily focus on entity-level general-
ization, with open-vocabulary VRS receiving less attention. While recent efforts in zero-shot HOI
detection [47, 61, 80, 92] often utilize CLIP [64] for category classification, their open-vocabulary
capabilities lack the flexibility needed for prompt-driven input. Although current VLMs and MLLMs
are adept at grounding novel concepts from text, they require significant computational resources and
additional visual models, and cannot directly generate comprehensive segmentation masks for subject
and object pairs. In contrast, our FleVRS provides a lightweight solution that effectively supports
various types of open-vocabulary VRS, enabling category classification and the integration of novel
concepts from prompts.

3 Method

3.1 Overview

Standard VRS. Given an image I, the goal of standard visual relationship segmentation (VRS)
is to detect all the visual relationships of interest, either human-centric (i.e., HOI detection) or the
generic ones (SGG), in terms of triplets in the form of <subject, predicate, object> (masks
and object categories of subject and object, and the predicate category). The subject is
always human in HOI detection, whereas it can be any type of object in SGG (may or may not be
human). We consider the panoptic setting [85] of SGG, where a model needs to generate a more
comprehensive scene graph representation based on panoptic segmentation rather than rigid bounding
boxes, providing a clear and precise grounding of objects. To produce fine-grained masks, we convert
existing bounding box annotations from HOI detection datasets [4, 18] into segmentation masks
using the foundation model SAM [36], as illustrated in Fig. 2. We employ a filtering approach based
on Intersection over Union (IoU) to filter out inaccurate masks. Details are in Appendix.

Promptable VRS. Our FleVRS optionally accepts textual prompts as inputs, enabling users to specify
visual relationships for promptable VRS. It accommodates three types of structured text prompts: a
single element (e.g., <?, predicate, ?>), any two elements (e.g., <subject, predicate, ?>,
<subject, ?, object>), or all three elements. Consequently, the model outputs only the triplets
that match the specified elements in the prompt, as depicted in the right column of Fig. 1. Without
textual prompts, it functions as a standard VRS model, exhaustively generating all possible triplets,
illustrated in the left part of Fig.1.
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Open-vocabulary VRS. In practice, it’s essential for a VRS model to adapt to new concepts, including
new categories of entities (i.e., subject and object), predicates, and their various combinations.
Expanding these concept vocabularies to encompass a wider range is particularly challenging due to
the vast potential combinations and the long-tail distribution of these categories. Thus, our goal is
to equip the model to operate in an open-vocabulary setting, where it can effectively handle these
diversities. It it important to note that the above three capabilities are complementary; for example,
the text prompts in promptable VRS can include novel object or predicate categories.

To this end, we propose integrating the above three aspects into a single unified framework. Since
these settings are complementary, a general-purpose model should be capable of performing various
combinations of these three functions. Additionally, their inherent similarities make it more intuitive
to consolidate them within a flexible, unified approach.

3.2 Model Architecture

Inspired by the success of Transformer-based segmentation models [6, 109], we design a dual-query
system for our VRS model, illustrated in Fig. 3. Latent queries, a set of learned embeddings, generate
triplets (which may be empty) to formulate output masks and relationship categories. For promptable
VRS, textual queries derived from input prompts are incorporated. We employ an image encoder
and a pixel decoder to extract visual features, coupled with a relationship decoder that processes
<subject, object> pairs and their interrelations. For open-vocabulary VRS, our approach shifts
from traditional classification to a matching strategy that aligns visual and textual features for both
object and predicate categories, enhancing the model’s adaptability to new concepts. Each component
of this architecture is elaborated further below.

Image Encoder. Specifically, given the image I ∈ RH×W×3, it is first fed into the image encoder
EncI to obtain multi-scale low-resolution features F =

{
Fs ∈ RCF×H

s ×W
s

}
, where the stride of

the feature map s ∈ {4, 8, 16, 32}, and CF is the number of channels.

Pixel Decoder. A Transformer-based pixel decoder Decp is used to upsample F and gradually
generate high-resolution per-pixel embeddings P. P is then passed to the relationship decoder DecR
to compute cross-attention with query features.

Textual Encoder. When a text prompt is provided for promptable VRS, we use the textual encoder
EncT to encode it into a set of textual queries Qt ∈ RNt×Cq , where Nt is the number of tokens in
the textual queries, and Cq denotes the channel number of query features. In practice, we use the
textual encoder from CLIP [64] as EncT. The format of the text prompt can be a single item (e.g.
“<p>predicate</p>”), two of them (“<s>subject</s><p>predicate</p>”), or all three of them,
where “predicate” and “subject” denote category names of predicate and subject, respectively.
“<s>”, “<o>”, “<p>” are used as separate tokens between subject, predicate and object in
the text prompt. We could use natural language as the textual prompt instead of using a structured
format. However, collecting the textual VRD data is not trivial, and we leave it as an extension of our
model in future work.

Relationship Decoder. The relationship decoder DecR, based on a Transformer decoder design,
processes pixel decoder outputs P and latent queries Qv to generate all possible triplets for standard
VRS. Inside, masked attention [6] utilizes masks from earlier layers for foreground information. Each
Qv output feeds into five parallel heads: two mask heads for subject and object masks (Ms,Mo),
two class heads for their categories (Cs, Co), and another class head for relationship prediction (Cp)
During training, Hungarian matching aligns predicted triplets with ground truth. For standard VRS
inference, triplets above a confidence threshold are considered final predictions. For promptable
VRS, EncT transforms text prompts into textual queries Qt that are concatenated with Qv and input
into DecR. This process, which uses self- and cross-attention mechanisms, generates <subject,
predicate, object> triplets, similar to standard VRS. An additional matching loss during training
ensures the model predicts triplets as specified by the text prompt. During inference, we calculate
similarity scores between the textual query feature (last token’s feature of Qt) and the latent query
outputs. We then select entities and relationships specified in the textual prompt from the top k
triplets for the final outputs.

Matching with textual features. To enable open-vocabulary VRS, our FleVRS uses the CLIP
textual encoder [64] to match visual features with candidate textual features for object and predicate
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categories. We convert these categories into textual features using prompt templates, such as “A photo
of [predicate-ing]” for HOI segmentation and “A photo of something [predicate-ing] (something)”
for panoptic SGG.1 The model computes matching scores between predicted class embeddings and
these textual features, allowing classification beyond the fixed vocabulary of the training set and
facilitating open-vocabulary VRS. Textual prompts are similarly encoded, and their features are used
to calculate similarity scores for promptable VRS inference.

3.3 Loss functions

We use Hungarian matching during training to find the matched triplets with ground truth ones. For
standard VRS, we compute focal losses Ls

b, Lo
b and dice losses Ls

d, Lo
d on subject and object

mask predictions, cross-entropy losses Ls
c, Lo

c , Lp
c on subject, object, and predicate category

classifications, which can be written as

L =λb

∑
i∈{s,o}

Li
b + λd

∑
j∈{s,o}

Lj
d +

∑
k∈{s,o,p}

λk
cLk

c , (1)

where λb, λd, and λc are hyper-parameters for adjusting the weights of each loss. λs
c, λo

c , λp
c are

different classification loss weights for subject, object, and predicate. For promptable VRS,
we adopt an additional matching loss Lg between the matched triplet class embedding and the textual
query feature (the last token feature of Qt), which is in the form of cross-entropy loss. The final
training loss is written as

L =λb

∑
i∈{s,o}

Li
b + λd

∑
j∈{s,o}

Li
d +

∑
k∈{s,o,p}

λk
cLk

c + λgLg, (2)

where λg controls the weight of Lg . Lc depends on the text prompt. For example, given <subject,
predicate>, there will not have Ls

c and Lp
c terms in Eq. (2), with subject and predicate

categories being given. See the appendix for the concrete values of loss weights.

4 Experiments

4.1 Experimental Settings

Datasets For HOI segmentation, we utilize two public benchmarks: HICO-DET [4] and V-COCO [18].
To fit Our FleVRS, we use SAM [36] to transform box annotations into masks and apply Non-
Maximum Suppression (NMS) to remove overlapping masks with an IoU threshold greater than
0.1. We omit no_interaction annotations from HICO-DET due to incomplete annotation, leaving
44,329 images (35,801 training, 8,528 testing) with 520 HOI classes from 80 objects and 116
actions.2 V-COCO is built from COCO [49], comprising 10,396 images (5,400 training, 4,964
testing), featuring 80 objects and 29 actions, and includes 263 HOI classes. Both datasets align with
COCO’s object categories. For panoptic SGG, we use the PSG dataset [85], sourced from COCO and
VG [37] intersections, containing 48,749 images (46,572 training, 2,177 testing) with 133 objects
and 56 predicates.

Data Structure for open-vocabulary HOI segmentation Following prior studies [3, 23], we evaluate
HICO-DET under three scenarios: (1) Unseen Composition (UC), where some HOI classes are absent
despite all object and verb categories being present; (2) Unseen Object (UO), where certain object
classes and their corresponding HOI triplets are excluded from training; and (3) Unseen Verb (UV),
where specific verb classes and their associated triplets are similarly omitted. In UC, the Rare
First (RF-UC) approach targets tail HOI classes, while Non-rare First (NF-UC) focuses on head
categories. Originally, UC included 120/480/600 categories for unseen/seen/full sets, which reduces
to 115/405/520 after removing no_interaction annotations. For UO, we select 12 unseen objects
from 80, resulting in 88/432 unseen/seen HOI categories.

Evaluation Metric For standard HOI segmentation, we convert the predicted masks to bounding
boxes to compare with current methods, and follow the setting in [4] to use the mean Average
Precision (mAP) for evaluation. We also turn the outputs of other methods into masks and report

1Omit “something” for spatial relationships.
2interchangeable with “verb”, “predicate”.
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<?, flip, skateboard> <?, wash, bus>

<?, ride, boat> <?, hold, baseball glove> <person, straddle, ?>

<person, pull, ?><person, hold, ?>

<person, hold, ?>

<person, ?, skis> 
[stand on, wear]

<person, ?, kite> 
[hold, carry]

<person, ?, laptop> 
[hold, read]

<person, ?, motorcycle>  
[ride, sit on]

(a) Text prompt: <?, object, predicate> (b) Text prompt: <subject, predicate, ?>

(c) Text prompt: <subject, ?, object>

Figure 4: Qualitative results of promptable VRS on HICO-DET [4] test set. We show visual-
izations of subject and object masks and relationship category outputs, given three types of text
prompts. In (c), we show the predicted predicates in bold characters. Unseen objects and predicates
are denoted in red characters.

mask mAP for thorough comparison. An HOI triplet prediction is a true positive if (1) both predicted
human and object bounding boxes/masks have IoU larger than 0.5 w.r.t. GT boxes/masks; (2) Both
the predicted object and verb categories are correct. For HICO-DET, we evaluate the three different
category sets: all 520 HOI categories (Full), 112 HOI categories (less than 10 training instances)
(Rare), and the other 408 HOI categories (Non-Rare). For VCOCO, we report the role mAPs in two
scenarios: (1) S1: 29 actions including 4 body motions; (2) S2: 25 actions without the no-object HOI
categories. For standard panoptic SGG, following [85], we use R@K and mR@K metrics, which
calculate the triplet recall and mean recall for every predicate category, given the top K triplets from
the model. A successful recall requires both subject and object to have mask-based IoU larger than
0.5 compared to their GT masks, with the correct predicate classification in the triplet.

Implementation Details Following [6, 109], we use 100 latent queries and 9 decoder layers in the
relationship decoder. We adopt Focal-T/L [84] for the Image Encoder and DaViT-B/L for the pixel
decoder. We use the textual encoder from CLIP to encode input text prompt and subject, object, and
predicate categories. During training, we set the input image to be 640 × 640, with batch size of
64. We optimize our network with AdamW [54] with a weight decay of 10−4. We train all models
for 30 epochs with an initial learning rate of 10−4 decreased by 10 times at the 20th epoch. To
improve training efficiency, we initialize Our FleVRS using the pre-trained weights from [109]. For
all experiments, the parameters of the textual encoder are frozen except its logit scales. The loss
weights λb, λd, λc and λgrd (superscript omitted) are set to 1,1,2, and 2. More details are in the
appendix.

4.2 Standard VRS

We evaluate our method on three benchmarks, i.e. HICO-DET [4], VCOCO [18] for HOI segmenta-
tion, and PSG [85] for the panoptic SGG.

HOI segmentation Since Our FleVRS leverages mask supervision, either converting mask results into
bounding boxes or transforming bounding boxes from previous methods’ output into masks does not
facilitate a completely equitable comparison. For the utmost fairness in comparison, we report both
box mAP and mask mAP from the above ways. As shown in Table 2, Our FleVRS shows superior
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Model Backbone Default (%)

box/mask mAPF box/mask mAPR box/mask mAPN

Bottom-up methods
SCG [96] ResNet-50 31.3 / 31.3 24.7 / 25.0 33.3 / 35.5
UPT [97] ResNet-101 32.6 / 34.9 28.6 / 29.4 33.8 / 36.1
STIP [100] ResNet-50 32.2 / 30.8 28.2 /28.6 33.4 / 32.5
ViPLO [60] ViT-B 37.2 / 39.1 35.5 / 37.8 37.8 / 39.7
Additional training with object detection data
UniVRD [101] ViT-L 37.4 / - 28.9 / - 39.9 / -
PViC [98] Swin-L 44.3 / - 44.6 / - 44.2 / -
RLIPv2 [92] Swin-L 45.1 / 48.6 45.6 / 44.3 43.2 / 49.8

Single-stage methods
HOTR [33] ResNet-50 25.1 / 26.5 17.3 / 18.5 27.4 / 29.0
QPIC [70] ResNet-101 29.9 / 30.5 23.0 / 23.1 31.7 / 33.1
CDN [95] ResNet-101 32.1 / 33.9 27.2 / 28.9 33.5 / 36.0
RLIP [91](VG+COCO) ResNet-50 32.8 / 34.4 26.9 / 27.7 34.6 / 36.5
GEN-VLKT [47] ResNet-101 35.0 / 35.6 31.2 / 32.6 36.1 / 37.8
ERNet [48] EfficientNetV2-XL 35.9 / - 30.1 / - 38.3 / -
MUREN [35] ResNet-50 32.9 / 35.4 28.7 / 30.1 34.1 / 37.6
Ours Focal-L 38.1 / 40.5 33.0 / 34.9 39.5 / 42.4

Table 2: Quantitative results on the HICO-DET test set. We report both box and mask mAP under
the Default setting [4] containing the Full (F), Rare (R), and Non-Rare (N) sets. no_interaction
class is removed in mask mAP. The best score is highlighted in bold, and the second-best score is
underscored. ’-’ means the model did not release weights and we cannot get the mask mAP . Due to
space limit, we show the complete table with more models in the appendix.

Model Backbone APS#1
role APS#2

role

Bottom-up methods
VSGNet [72] ResNet-152 51.8 / - 57.0 / -
ACP [34] ResNet-152 53.2 / - - / -
IDN [43] ResNet-50 53.3 / - 60.3 / -
STIP [100] ResNet-50 66.0 / 66.2 70.7 / 70.5
Additional training with object detection data
UniVRD [101] ViT-L 65.1 / - 66.3 / -
PViC [98] Swin-L 64.1 / - 70.2 / -
RLIPv2 [92] Swin-L 72.1 / 71.7 74.1 / 73.5

Single-stage methods
HOTR [33] ResNet-50 55.2 / 55.0 64.4 / 64.1
DIRV [11] EfficientDet-d3 56.1 / - - / -
CDN [95] ResNet-101 63.9 / 61.3 65.8 / 63.2
RLIP [91] ResNet-50 61.9 / 61.3 64.2 / 64.0
GEN-VLKT [47] ResNet-101 63.6 / 61.8 65.9 / 64.0
ERNet [48] EfficientNetV2-XL 64.2 / - - / -
Ours Focal-L 65.2 / 66.5 66.5 / 67.9

Table 3: Quantitative results on V-COCO. We report both box and mask mAP .The best score is
highlighted in bold, and the second-best score is underscored. ’-’ means the model did not release
weights and we cannot get the mask mAP . Due to space limit, we show the complete table with
more models in the appendix.

performance over current single-stage methods in terms of box and mask mAP on HICO-DET. We
also achieve competitive performance on VCOCO [18], as shown in Table 3. The advantages of Our
FleVRS come from: (1) one-stage Transformer-based design with fine-grained training supervision
for VRS. With subject and object masks, the model has more accurate supervision, compared with box
annotations that contain redundancy [85]. (2) good language-visual alignment with the large-scale
pretrained model [64]. Our FleVRS achieves competitive results without additional training on
large-scale detection datasets [101]. Among one-stage HOI methods, our approach is simpler and
able to tackle different datasets without modifications to the structure.

Panoptic SGG From Table 4, Our FleVRS can achieve competitive results in terms of R@50 and
R@100 without elaborated designs for PSG, compared with most of previous work. Our FleVRS is
not superior to HiLo [104], which is mainly due to the long-tail distribution of the dataset and the
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Method Backbone R/mR@20 R/mR@50 R/mR@100

Adapted from SGG methods
IMP [81] VGG-16 17.9 / 7.35 19.5 / 7.88 20.1 / 8.02
MOTIFS [93] VGG-16 20.9 / 9.60 22.5 / 10.1 23.1 / 10.3
VCTree [71] VGG-16 21.7 / 9.68 23.3 / 10.2 23.7 / 10.3
GPSNet [50] VGG-16 18.4 / 6.52 20.0 / 6.97 20.6 / 7.17

One-stage PSG methods
PSGTR [85] ResNet-101 28.2 / 15.4 32.1 / 20.3 35.3 / 21.5
PSGFormer [85] ResNet-101 18.0 / 14.2 20.1 / 18.3 21.0 / 19.8
Training with additional data
HiLo [104] Swin-L 40.6 / 29.7 48.7 / 37.6 51.4 / 40.9

Ours Focal-L 27.0 / 15.4 31.0 / 18.3 31.7 / 18.8

Table 4: Quantitative results on PSG. The best score is highlighted in bold, and the second-best
score is underscored.

limitation of using CLIP to encode abstract relationships (e.g., entering, exiting). The model tends
to predict high-frequency relationships and is hard to understand and predict low-frequency ones.
Ablation study. We ablate Our FleVRS by testing different encoding strategies for relationships

via the textual encoder in 7. Specifically, we compare encoding object and predicate categories
as <person, predicate, object> triplets or separately, associating the results with either triplet
cross-entropy (CE) loss or disentangled CE loss. Results reveal that while HICO-DET benefits
from the disentangled CE loss, allowing better generalization to novel concepts, VCOCO performs
better with triplet CE loss due to the challenge of distinguishing verbs without corresponding objects
in various contexts (e.g., differentiating “eat” in “a person eating an apple” vs “a person eating”).
Further experiments with various backbones demonstrate performance enhancements with larger
models. Additionally, incorporating a box head for supervision alongside mask supervision enhances
performance, which is attributed to the masked attention mechanism inspired by [6]. Exploring the
potential synergies of training across multiple datasets, we find that while unified training improves
VCOCO’s performance due to its smaller size, HICO-DET and PSG show limited gains. This
disparity is likely due to the different predicate categories used in PSG compared to HICO-DET and
VCOCO.

Comparison with previous works. UniVRD uses a two-stage approach, where the model
first detects independent objects and then decodes relationships between them, retrieving boxes
from the initial detection stage. In contrast, our method employs a one-stage approach,
where each query directly corresponds to a <subject, object, predicate> triplet. This tran-
sition improves time efficiency from O(MxN) to O(K), where M is the number of subject
boxes, N is the number of object boxes, and K is the number of interactive pairs. Our ap-
proach also provides greater flexibility by learning a unified representation that encompasses
object detection, subject-object association, and relationship classification in a single model.

No subject No object Only predicate
S-IoU O-IoU S-IoU O-IoU

Conv-based methods
VRD [55] 0.208 0.008 0.024 0.026
SSAS [38] 0.335 0.363 0.334 0.365

Ours 0.568 0.364 0.556 0.366

Table 5: Comparison of promptable
VRD results with the baseline on VRD
dataset [55].

In terms of training data, we use much fewer train-
ing data (x50 less, without using VG [37] and Ob-
jects365 [66]) and Our FleVRS with the Focal-L [84]
backbone is much smaller than UniVRD [101] (164M
vs 640M) with LiT(ViT-H/14), we achieve comparable
results(37.4 vs 38.1 on HICO-DET). While our method
does not match RLIPv2 [92] in performance, this is
due to different design philosophies and goals. RLIPv2
is a two-stage approach optimized for large-scale pre-
training and relies on separately trained detectors. Our
FleVRS, however, is not designed for pretraining and
does not include a separately trained detector. Our focus is on enhancing the flexibility of the VRS
model without directly training on extensive curated data(x50 more, VG and Objects365). Thus, the
differences in performance are attributed to the scale and design objectives. We further discuss the
FLOPs and the number parameters of the backbone compared to previous works in the Appendix.

4.3 Promptable VRS

We evaluate the ability of promptable VRS on the VRD dataset [55], to compare with [38]. As in
Table 5, Our FleVRS can locate entities given flexible text query inputs and performs better localizing
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subjects and objects. Our FleVRS gets particular better results on localizing subjects (0.568 vs 0.335,
0.556 vs 0.334), which is mainly because there are fewer categories in subjects compared with
objects and lots of subjects are humans, making it easier to segment subjects. We further evaluate our
promptable VRS approach on HICO-DET and PSG, as they contain rich relationship labels. Since
there are no previous baselines, we show qualitative results in Fig. 4. We visualize the subject and
object masks with the highest matching score for each example. We can see that the model is able
to localize subject and object masks and predict their relationships given the structured textual
prompt. We further perform postprocessing way to search triplets from standard VRS output, which
serves as another baseline to show the effectiveness of our method. Please refer to section E in the
appendix for results and discussions of fair comparison.

Difference with standard REC tasks The referring expression comprehension (REC) tasks on
benchmarks like RefCOCO [30], RefCOCO+ [59], and RefCOCOg [90] are designed to detect
objects based on free-form textual phrases, such as "a ball and a cat" or "Two pandas lie on a climber."
In contrast, the promptable VRS task in our work focuses on detecting subject-object pairs within a
structured prompt format, such as <?, sit_on, bench> or <person, ?, horse>, as illustrated
in Fig. 1 of the main paper. Our FleVRS is designed to encode and compute similarity scores for
each of these elements separately. Our primary focus is on relational object segmentation based on a
single structured query, which differs significantly from the objectives of REC benchmarks.

4.4 Open-vocabulary VRS

We conduct open-vocabulary experiments following the defined zero-shot HOI detection setting [23,
25, 26, 47] on HICO-DET. As shown in Table 6, Our FleVRS surpasses previous single-dataset
methods across all settings, with its open-vocabulary capabilities stemming from the knowledge
transferred from CLIP [64]. GEN-VLKT [47] also leverages CLIP to facilitate open-vocabulary
capabilities by encoding <person, predicate, object> as a triplet and using it for HOI category
classification. In contrast, our approach separates the encoding of predicate and object, enhancing
the model’s generalization ability over novel concepts.

Method Unseen Seen Full
Rare First Unseen Composition
VCL [24] 10.06 24.28 21.43
ATL [25] 9.18 24.67 21.57
FCL [26] 13.16 24.23 22.01
GEN-VLKT [47] 21.36 32.91 30.56
Ours 26.06 39.61 36.60
Non-rare First Unseen Composition
VCL [24] 16.22 18.52 18.06
ATL [25] 18.25 18.78 18.67
FCL [26] 18.66 19.55 19.37
GEN-VLKT [47] 25.05 23.38 23.71
Ours 26.62 31.17 30.17
Unseen Object
FCL [26] 0.00 13.71 11.43
ATL [25] 5.05 14.69 13.08
GEN-VLKT [47] 10.51 28.92 25.63
Ours 14.48 35.28 31.71
Unseen Verb
GEN-VLKT [47] 20.96 30.23 28.74
Ours 21.50 35.63 33.09

Table 6: Results of open-vocabulary HOI
detection on HICO-DET.

Variant HICO-DET VCOCO PSG
mask mAPF mask APS#1

role R/mR@20

Different losses
Disentangled CE loss 40.5 62.1 27.0 / 15.4
Triplet CE loss 36.8 66.5 25.5 / 14.6
Disentangled CE loss + Triplet CE loss 39.0 64.5 26.5 / 14.8

Different visual backbones
Focal Tiny 34.2 59.8 25.8 / 15.0
Focal Large 40.5 66.5 27.0 / 15.4

Different design choices
Box head only 33.0 62.0 -
Mask head only 40.5 66.5 27.0 / 15.4
Mask and box head 41.2 67.0 -

Different training datasets
Single source 40.5 66.5 27.0
HICO-DET+VCOCO 40.3 66.9 -
HICO-DET+VCOCO+PSG 40.0 66.4 27.6

Table 7: Ablations of different loss types, backbones,
design choices and training sets. We adopt the Focal-
L backbone by default.

5 Conclusion

In this work, we present a novel approach for visual relationship segmentation that integrates the three
critical aspects of a flexible VRS model: standard VRS, promptable querying, and open-vocabulary
capabilities. Our FleVRS demonstrates the ability to not only support HOI segmentation and panoptic
SGG but also to do so in response to various textual prompts and across a spectrum of previously
unseen objects and interactions. By harnessing the synergistic potential of textual and visual features,
our model delivers promising experimental results on existing benchmark datasets. We hope our
work can serve as a solid stepping stone for pursuing more flexible visual relationship segmentation
models.
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A Limitations and Future Work

Deploying our model in real-world scenarios requires specialized pretraining data for relationship un-
derstanding, which is notably scarce. The lack of automated annotation pipelines and dependence on
the CLIP model pose scalability challenges due to specific resource requirements. Ideally, we aim for
a single general-purpose framework that can be trained on multiple datasets and enhance performance
across various tasks and benchmarks. However, achieving this remains a challenge with our current
model. We leave the exploration of how to synergize different datasets and develop effective training
strategies to future work. While integrating free-form text inputs is more natural as large language
models evolve, it necessitates additional preprocessing to align with our framework. Furthermore, the
absence of comparable methods for promptable VRS makes complete fair benchmarking difficult.

B Model Structure Details

We use Focal T/L [84] network as the image encoder EncI. Given the image I ∈ RH×W×3, we pass
it to EncI and obtain multi-scale features of different strides and channals F = {Fs|s = 4, 8, 16, 32},
where s is the stride.

Then, the pixel decoder Decp gradually upsample F to generate high-resolution per-pixel embeddings
P = {Pi|i = 1, 2, 3, 4}, where i is the layer number and different Pis have the same channel number
but different resolutions. P will then input to DecR.

Under standard VRS, DecR takes latent queries Qv and P as inputs. Under promptable VRS, we
use the textual encoder EncT to encode the textual prompt into a set of textual queries Qt and
concatenate Qt with the latent queries Qv, and input them to DecR. Inside DecR, cross- and
self-attention are computed among queries and per-pixel embeddings, where masked attention [6] is
adopted to enhance the foreground regions of predicted masks.

On top of latent queries output Qv
o ∈ RNv×Cq (Nv is the number of latent queries, Cq is the channel

number), there are five heads, producing predictions in parallel. They are two mask heads fMs
(·),

fMo
(·) for predicting subject and object masks (Ms,Mo), and two class heads gCs

(·), gCo
(·) for

predicting their object categories (Cs, Co). Another class head gCp
is used to predict relationships Cp

for this <subject, object> pair. Detailed operations can be written as

Ms = Up [P4 · fMs
(Qv

o )] , (3)
Mo = Up [P4 · fMo

(Qv
o )] , (4)

Cs = Ts · gCs
(Qv

o ), (5)
Co = To · gCo(Q

v
o ), (6)

Cp = Tp · gCp(Q
v
o ), (7)

where Up[·] denotes the upsampling operation, Ts, To and Tp denote candidate textual features
of subject, object and predicate categories that are encoded by CLIP [64]. The mask embeddings
fMs

(Qv
o ) and fMo

(Qv
o ) compute the dot products with the last layer’s per-pixel embedding P4,

respectively, and upsample to the original resolution as final mask predictions.

Training. We employ Hungarian matching to align predicted triplets with ground truth, calculating
mask and category classification losses on these matches. For promptable VRS, we introduce a
matching loss to assess the similarity between the matched triplet embedding and the textual prompt’s
feature, formulated as a cross-entropy loss. The triplet embedding combines class embeddings from
class heads. For the textual prompt’s feature, we use the last token’s feature from textual queries
Qt. For instance, with a textual prompt like <subject, predicate, ?>, where the subject and
predicate are specified, the similarity measurement utilizes the summation of their class embeddings
gCs

(Qv
o ) + gCp

(Qv
o ).

Inference. Under standard VRS, we compute the confidence score of each triplet, which comes
from the product of subject, object, and predicate classification scores. We take top ks (ks = 100)
triplets to compute mean average precision for HOI segmentation and mean recall for panoptic SGG.
Under promptable VRS, we compute similarities between the textual prompt’s feature and triplet
embeddings and choose kf (kf = 10) as the final predicted triplets.
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(a) Text prompt: <?, object, predicate> (b) Text prompt: <subject, predicate, ?>

(c) Text prompt: <subject, ?, object>

<?, walk, bicycle> <?, load, bus>

<?, sit on, coach> <?, jump, skateboard>

<person, ?, knife> 
[hold, wield]

<person, ?, dining table> 
[eat_at, sit_at]

<person, ?, hotdog> 
[eat, hold]

<person, ?, skateboard> 
[jump, ride]

<person, load, ?> <person, sit on, ?>

<person, lie on, ?> <person, straddle, ?>

Figure 5: Qualitative results of promptable and open-vocabulary VRS on HICO-DET [4] test
set. We show visualizations of the predicted triplet with the highest matching score, including subject,
object masks, and predicted predicate categories. There are three types of textual prompts shown
in (a), (b), and (c), with unseen concepts in the rightmost columns. In (c), we show the predicted
predicates in bold characters. Unseen objects and predicates are denoted in red characters. Note that
the subject is always “person” in HICO-DET.

C Implementation details

We set the input image size to be 640 × 640, with batch size as 64. The model is optimized
with AdamW [54] with a weight decay of 10−4. We set Nv = 100 and Nv = 200 for Focal-T
and Focal-L backbones, respectively, and Cq = 512. The structure of pixel decoder Decp is a
Transformer encoder with 6 encoder layers and 8 heads. The structure of relationship decoder DecR
is a Transformer decoder with 9 decoder layers.

Standard HOI segmentation The model only takes the image as input without textual prompts.
Since the subject class is always “person" in HOI segmentation, we omit the subject class head. The
model is trained with 30 epochs, with an initial learning rate of 10−4 (10−5 for the image encoder)
decreased by 10 times at the 20th epoch. The loss weights λb, λd, λo

c and λp
c are set to be 2, 1, 1, 2.

Promptable HOI segmentation To enable promptable HOI segmentation, we build three types of tex-
tual prompts: 1) “<s>person</s><p>predicate</p>”; 2) “<p>predicate</p><o>object</o>”;
3) “<s>person</s><o>object</o>”. We evaluate the model on HICO-DET [4] since it contains
richer human-object interactions than VCOCO [18]. During training, we randomly sample various
types of text prompts and simultaneously train different objectives using distinct loss terms. To
prevent the model from learning shortcuts, we select one ground truth triplet per training image and
pair it with a randomly chosen textual prompt type. This approach ensures a balanced distribution of
labeled training data for promptable VRS across different prompt types.

Standard panoptic SGG We use the subject class head to predict the subject category and the model
does not have textual prompts as inputs. The model is trained with 60 epochs, with an initial learning
rate of 10−4 (10−5 for the image encoder) decreased by 10 times at the 40th epoch. The loss weights
λb, λd, λs

c, λo
c and λp

c are set to be 2, 1, 1, 1, 2.

Promptable panoptic SGG Similar to promptable HOI segmentation, there are three types of textual
prompts: 1) “<s>subject</s><p>predicate</p>”; 2) “<p>predicate</p><o>
object</o>”; 3) “<s>subject</s><o>object</o>”. Similarly, during training, we randomly
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(a) Text prompt: <?, object, predicate> (b) Text prompt: <subject, predicate, ?>

(c) Text prompt: <subject, ?, object>

<coach, ?, floor> 
[over]

<bo-le,  ?, cabinet> 
[on]

<person, ?, sur6oard> 
[in, lie on, carry, touch]

<teddy bear, ?, chair> 
[over, beside, on]

<truck, on, ?> <person, hold, ?>

<person, ride, ?> <car, driving on, ?>

<?, standing on, road> <?, on, floor>

<?, driving on, road> <?, over, pavement>

Figure 6: Qualitative results of promptable and open-vocabulary VRS on PSG [85] test set. We
show visualizations of the predicted triplet with the highest matching score, including subject, object
masks, and predicted predicate categories. There are three types of textual prompts shown in (a), (b),
and (c), with unseen concepts in the rightmost columns. In (c), we show the predicted predicates in
bold characters. Unseen objects and predicates are denoted in red characters.

sample different types of text prompts, and different objectives are trained simultaneously with
different loss terms. We also keep a balanced distribution of labeled training data for panoptic SGG.
We set the weight of grounding loss λg to be 2, while other weights are the same as standard panoptic
SGG.

Open-vocabulary promptable VRS We adopt the zero-shot setting from [47] for open-vocabulary
HOI segmentation. To streamline our approach, we integrate the open-vocabulary promptable setting
within the broader context of open-vocabulary VRS. In this setting, ’open-vocabulary’ refers to
handling both seen and unseen categories in the input textual prompts. We randomly exclude object
and predicate categories during training and assess our model on these as well as on seen categories.
Given the absence of existing benchmarks for this specific challenge, we present qualitative results
demonstrating our model’s proficiency in open-vocabulary promptable VRS.

D Qualitative results of promptable and open-vocabulary VRS

We show qualitative results of promptable and open-vocabulary VRS on HOI segmentation and
panoptic SGG by giving the model different types of structured textual prompts. For simplicity, we
show examples of omitting only one component of the triplet. We can see that our model is able to
localize the correct subject and object and complement the missing element corresponding to the
given textual prompt, e.g. <person, ?, dining_table> in Fig. 5(c) and <truck, on, ?> in Fig. 6(b). The
model can also predict multiple interactions for the same subject-object pair, as shown in Fig. 5(c)
and Fig. 6(c). We further trained two versions by removing unseen objects and unseen predicates,
respectively. We show that our model can detect novel objects and predicates by feeding unseen
concepts in textual prompts, as in the rightmost columns of Fig. 5 and Fig. 6. Fig. 6(b) shows the
model outputs multiple instances in one subject mask due to similar patterns occurring in the training
set. Note that the flexible VRD task is more difficult on the PSG [85] dataset due to its complexity
of scenes, while we make the first attempt and our model is still able to show promising grounding
results.
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Model Backbone Default (%)

box/mask mAPF box/mask mAPR box/mask mAPN

Bottom-up methods
InteractNet [14] ResNet-50 9.9 / - 7.2 / - 10.8 / -
iCAN [12] ResNet-50 14.8 / - 10.5 / - 16.2 / -
No-Frills [19] ResNet-152 17.2 / - 12.2 / - 18.7 / -
DRG [13] ResNet-50 24.5 / - 19.5 / - 26.0 / -
VSGNet [72] ResNet-152 19.8 / - 16.1 / - 20.9 / -
FCMNet [53] ResNet-50 20.4 / - 17.3 / - 21.6 / -
IDN [43] ResNet-50 23.4 / - 22.5 / - 23.6 / -
ATL [25] ResNet-101 23.8 / - 17.4 / - 25.7 / -
SCG [96] ResNet-50 31.3 / 31.3 24.7 / 25.0 33.3 / 35.5
UPT [97] ResNet-101 32.6 / 34.9 28.6 / 29.4 33.8 / 36.1
STIP [100] ResNet-50 32.2 / 30.8 28.2 /28.6 33.4 / 32.5
ViPLO [60] ViT-B 37.2 / 39.1 35.5 / 37.8 37.8 / 39.7
Additional training with object detection data
UniVRD [101] ViT-L 37.4 / - 28.9 / - 39.9 / -
PViC [98] Swin-L 44.3 / - 44.6 / - 44.2 / -
RLIPv2 [92] Swin-L 45.1 / 48.6 45.6 / 44.3 43.2 / 49.8

Single-stage methods
DIRV [11] EfficientDet-d3 21.8 / - 16.4 / - 23.4 / -
PPDM-Hourglass [46] DLA-34 21.9 / - 13.9 / - 24.3 / -
HOI-Transformer [108] ResNet-101 26.6 / - 19.2 / - 28.8 / -
GGNet [103] Hourglass-104 29.2 22.1 / - 30.8 / -
HOTR [33] ResNet-50 25.1 / 26.5 17.3 / 18.5 27.4 / 29.0
QPIC [70] ResNet-101 29.9 / 30.5 23.0 / 23.1 31.7 / 33.1
CDN [95] ResNet-101 32.1 / 33.9 27.2 / 28.9 33.5 / 36.0
RLIP [91](VG+COCO) ResNet-50 32.8 / 34.4 26.9 / 27.7 34.6 / 36.5
GEN-VLKT [47] ResNet-101 35.0 / 35.6 31.2 / 32.6 36.1 / 37.8
ERNet [48] EfficientNetV2-XL 35.9 / - 30.1 / - 38.3 / -
MUREN [35] ResNet-50 32.9 / 35.4 28.7 / 30.1 34.1 / 37.6
Ours Focal-L 38.1 / 40.5 33.0 / 34.9 39.5 / 42.4

Table 8: Quantitative results on the HICO-DET test set. We report both box and mask mAP under
the Default setting [4] containing the Full (F), Rare (R), and Non-Rare (N) sets. no_interaction
class is removed in mask mAP. The best score is highlighted in bold, and the second-best score is
underscored. ’-’ means the model did not release weights and we cannot get the mask mAP .

E Quantitative results of standard VRS

Due to the large number of works on HOI detection, we show the complete comparison with previous
methods in Fig. 8 and Fig. 9. Our model achieves competitive results on both datasets, especially
compared with other single-stage methods. From Table 9, MUREN [35] gets the best result on
VCOCO (68.8 vs. 65.2, 68.2 vs. 66.5), but cannot achieve a similarly strong result on HICO-DET
(32.9 vs. 38.1, 35.4 vs. 40.5), where the verb categories are more complicated.

Fair Comparison. Since existing models use bounding box annotations to train and evaluate mAP ,
we ensure fair comparisons by converting our model’s output masks into bounding boxes to compute
box mAP . Additionally, we apply released weights from previous methods, transform their output
boxes into segmentation masks using SAM [36], and report mask mAP . In both metrics, our model
demonstrates superior performance.

We further train the existing HOI detectors CDN [95], STIP, GEN-VLKT the same SAM generated
data used in our paper, which leads to worse accuracy on HICO-DET, as in Tab. 10. Thus, the major
performance improvements of our work are due to both the SAM-labeled data and our architectural
design.

At the same time, we also train our model with bounding boxes only, where we get decreased accuracy
(mAP of 30.7 vs 36.3). We attribute it to the network architecture derived from Mask2Former [6],
which is mainly designed for pixel-wise segmentation tasks.

FLOPs and the number parameters of the backbone compared to previous works. As in Table
2 and 3 of the main paper, we have done extensive comparisons with previous methods, including
backbones on ResNet-50/101/152, EfficientNet, Hourglass, Swin Transformers, and LiT architectures.
For previous methods that utilize ResNet backbone for HOI detection and PSG, our comparison
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Model Backbone APS#1
role APS#2

role

Bottom-up methods
InteractNet [14] ResNet-50 40.0 / - - / -
GPNN [62] ResNet-50 44.0 / - - / -
iCAN [12] ResNet-50 45.3 / - 52.4 / -
TIN [42] ResNet-50 47.8 / - 54.2 / -
DRG [13] ResNet-50 51.0 / - - / -
IP-Net [77] ResNet-50 51.0 / - - / -
VSGNet [72] ResNet-152 51.8 / - 57.0 / -
PMFNet [73] ResNet-50 52.0 / - - / -
PD-Net [102] ResNet-50 52.6 / - - / -
CHGNet [74] ResNet-50 52.7 / - - / -
FCMNet [53] ResNet-50 53.1 / - - / -
ACP [34] ResNet-152 53.2 / - - / -
IDN [43] ResNet-50 53.3 / - 60.3 / -
STIP [100] ResNet-50 66.0 / 66.2 70.7 / 70.5
Additional training with object detection data
VCL [24] ResNet-101 48.3 / - - / -
SCG [96] ResNet-50 54.2 / 49.2 60.9 / 53.4
UPT [97] ResNet-101 61.3 / 60.3 67.1 / 65.6
UniVRD [101] ViT-L 65.1 / - 66.3 / -
PViC [98] Swin-L 64.1 / - 70.2 / -
RLIPv2 [92] Swin-L 72.1 / 71.7 74.1 / 73.5

Single-stage methods
UnionDet [31] ResNet-50 47.5 / - 56.2 / -
HOI-Transformer [108] ResNet-101 52.9 / - - / -
GGNet [103] Hourglass-104 54.7 / - - / -
HOTR [33] ResNet-50 55.2 / 55.0 64.4 / 64.1
DIRV [11] EfficientDet-d3 56.1 / - - / -
QPIC [70] ResNet-101 58.3 / - 60.7 / -
CDN [95] ResNet-101 63.9 / 61.3 65.8 / 63.2
RLIP [91] ResNet-50 61.9 / 61.3 64.2 / 64.0
GEN-VLKT [47] ResNet-101 63.6 / 61.8 65.9 / 64.0
ERNet [48] EfficientNetV2-XL 64.2 / - - / -
MUREN [35] ResNet-50 68.8 /68.2 71.0 / 70.2
Ours Focal-L 65.2 / 66.5 66.5 / 67.9

Table 9: Quantitative results on V-COCO. We report both box and mask mAP .The best score is
highlighted in bold, and the second-best score is underscored. ’-’ means the model did not release
weights and we cannot get the mask mAP .

Model Trained with original boxes Trained with SAM masks
CDN 31.4 28.5
STIP 32.2 29.7

GEN-VLKT 35.6 32.1

Table 10: Results of box mAP on HICO-DET test set. We train existing HOI detectors with a
mask head, by using the masks we generated through SAM.

includes VSGNet, ACP, No-Frills, which use ResNet-152. To the best of our knowledge, larger
ResNet, such as ResNet-200, and ResNet-269, are not used in previous methods on related tasks.
ResNet, we have included the largest model ResNet-152, which has 65M parameters and 15 GFLOPs.
Other baselines are not using the ResNet backbone, for example, UniVRD is using LiT(ViT-H/14)
backbone. It has 632M parameters and 162 GFLOPs, a lot more than our198M parameters and 15.6
GFLOPs, but still performs worse than our model.

F Fair comparison of promptable VRS

Postprocessing of standard VRS outputs. Since no existing models share the same settings as
promptable VRS, we create a baseline for fair comparison. Typically, promptable VRS can be
addressed by filtering standard VRS outputs. We post-process outputs from our standard VRS model
to extract the desired triplets and compared their mAP with those from promptable VRS. The
post-processed results yield a lower mAP (15.7 vs. 26.8), primarily because the selected triplets
often have lower confidence scores. Additionally, the post-processing approach is slower, taking 8
seconds compared to 5 seconds for directly prompting the model to retrieve the desired triplet.
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Grounding ability compared with prompt-based vision-language models. Although promptable
VRS is similar to vision-language models like GLIP [40] and MDETR [29] in grounding capabilities,
it has distinct objectives. Unlike these models, which focus on entities, promptable VRS outputs
triplets, making direct comparisons infeasible. Previous models are not equipped to handle the
promptable relationship understanding task directly. To explore this, we modify our structural design
to incorporate multiple text prompts as inputs, which are individually processed with their matching
scores aggregated for classification. This experimental setup, however, results in reduced performance,
increased inference time (26s vs. 5s), and higher GPU memory usage (5G vs. 3G). Thus, we argue
that the proposed structure is suitable for tackling promptable VRS.

G Masks generated by SAM

Clarifications of choosing segmentation masks We firstly illustrate the importance of choosing
segmentation masks over boxes in Fig. 7. Traditional bounding boxes often include overlapping and
ambiguous information, leading to redundancy. Segmentation masks, by accurately delineating object
boundaries, provide a more precise and clear representation, reducing such redundancy, which is also
illustrated in [85] and [86]. Besides, segmentation masks provide enhanced visual understanding and
comprehensive contextual analysis. Additionally, object detection models often struggle to precisely
extract foreground objects, which is why they are typically combined with segmentation models like
SAM for fine-grained image tasks. Our model, however, presents a unified model that can localize
both subjects and objects, along with their corresponding segmentation masks.

Figure 7: Illustration of the importance of using masks instead of bounding boxes. We show
examples where one object is occluded by other objects. We show both bounding box annotations
and masks generated with SAM, where only the masks can correctly locate the pure object.

Noise handling in using masks generated by SAM. To address potential noise and inaccuracies in
masks generated by SAM, we employ a filtering approach based on Intersection over Union (IoU). We
compute the IoU between the generated masks and the original box annotations. Masks with an IoU
score below a threshold of 0.2 are considered to have significant deviations from the ground truth and
are filtered out. This threshold is chosen to balance the trade-off between including sufficient mask
data and excluding those with substantial inaccuracies. The chosen IoU threshold helps ensure that
only masks with a reasonable overlap with the ground truth annotations are retained. This threshold
is set based on empirical evaluation and aims to minimize the impact of masks that are too noisy or
incorrect, while still retaining as much useful data as possible. After using this strategy, we conduct
analysis on 200 samples. We tested various thresholds and found this gets the best balance between
denoising and data retaining(95% valid data retraining).

More visualizations of generated masks. We have included additional visualizations in Fig. 8
to illustrate the fine-grained masks generated from the bounding box annotations of existing HOI
detection datasets. These visualizations indicate that converting to masks significantly reduces the
redundancy in the box annotations. Additionally, as shown in Fig. 8 (d), filtering with IoU helps
eliminate low-quality masks.
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(a) (b) (c) (d)

Figure 8: Samples of fine-grained masks generated by converting existing bounding box annota-
tions with SAM. Samples are chosen from the HICO-DET dataset. Green boxes are original box
annotations. Duplicated boxes are suppressed after converting to the mask, as shown in (a). There are
also failure cases where no masks are generated with the given box annotations, as in (d).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and section 1 introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not have theoretical result in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide implementation details in section 4 and supplementary section B.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In section 4 and supplementary section B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In section 4 and supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have made sure.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Do not have societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Do not have such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Citations are complete.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: No new assets released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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