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Abstract
In order for a natural language understanding001
benchmark to be useful in research, it has to002
consist of examples that are diverse and dif-003
ficult enough to discriminate among current004
and near-future state-of-the-art systems. How-005
ever, we do not yet know what kinds of pas-006
sages and their sources help us collect a va-007
riety of challenging examples. In this study,008
we crowdsource multiple-choice reading com-009
prehension questions for passages taken from010
seven qualitatively distinct sources, analyz-011
ing what attributes of passages contribute to012
the difficulty and question types of the col-013
lected examples. We find that passage source,014
length, and readability measures do not signifi-015
cantly affect question difficulty. Among seven016
question types we manually annotate, ques-017
tions that require numerical reasoning and log-018
ical reasoning are relatively difficult but their019
frequencies depend on the passage sources.020
These results suggest that when creating a new021
benchmark dataset, we do not have to use dif-022
ficult passages but select passage sources care-023
fully so that it has questions that involve lin-024
guistic phenomena we are interested in.025

1 Introduction026

State-of-the-art systems have shown performance027

comparable with humans on many recent natural028

language understanding (NLU) datasets (Devlin029

et al., 2019; Sun et al., 2021), suggesting that these030

benchmarks will no longer be able to measure fu-031

ture progress. To move beyond this, we will need032

to find better ways of building difficult datasets,033

ideally without sacrificing diversity or coverage034

(Bowman and Dahl, 2021). To obtain such human-035

written examples at scale, there are active lines036

of crowdsourcing research on protocols of worker037

handling and feedback (Nangia et al., 2021) and the038

design of collection task (Ning et al., 2020; Rogers039

et al., 2020). However, we do not have clear infor-040

mation on what aspects of text sources affect the041

difficulty and diversity of examples.042

MCTest: Tony walked home from school on his birthday.
He was surprised to see a lot of cars in front of his house.
When he opened the door and entered the house, he heard
a lot of people yell, “Surprise!” It was a surprise party for
his birthday. His parents called all his friends’ parents and
invited them to come to a party for Tony. [...]
Q: Who were invited to the party and by who?
� Tony’s parents invited only his friends
� Tony invited his friends and their parents
� Tony’s parents invited his friends’ parents
X� Tony’s parents invited his friends and their parents

ReClor: Humanitarian considerations aside, sheer eco-
nomics dictates that country X should institute, as country
Y has done, a nationwide system of air and ground trans-
portation for conveying seriously injured persons to special-
ized trauma centers. Timely access to the kind of medical
care that only specialized centers can provide could save
the lives of many people. [...]
Q: What is the economic argument supporting the idea of

a transportation system across the nation of Country X?
� Building the transportation system creates a substantial

increase of jobs for the locals
X� Increasing access to specialized medical centers can

lower the chance of the workforce population dying
� Transportation ticket prices directly contribute to the

government’s revenue
� Country Y was successful with their attempts to poten-

tially save lives so Country X should try it as well

Figure 1: Example questions for passages from simple
narratives (MCTest) and technical arguments (ReClor).

Crowdsourced datasets in reading comprehen- 043

sion use passages taken from a variety of sources 044

such as news articles, exams, and blogs about 045

which questions are written (Lai et al., 2017; 046

Trischler et al., 2017; Rogers et al., 2020). The 047

first example in Figure 1 is from MCTest (Richard- 048

son et al., 2013), whose passages are written in 049

grade-school-level English. The second example 050

is from ReClor (Yu et al., 2020), which consists 051

of passages and questions written for graduate and 052

law school admission examinations. We hypoth- 053

esize that difficult passages such as in the second 054

example are suitable for crowdsourcing challeng- 055

ing questions. Passages that are linguistically com- 056

plex and have dense information could help facil- 057

itate writing questions that require a wide range 058
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of linguistic and world knowledge, following intri-059

cate events, and comprehending logical arguments.060

In contrast, easy passages as in children’s stories061

likely talk about common situations and simple062

facts, which might prevent workers from writing063

such difficult questions.064

In this work, we crowdsource multiple-choice065

reading comprehension questions to analyze how066

question difficulty and types are affected by the067

choice of source passage. Using passages extracted068

from seven different sources, we ask crowdworkers069

to write questions and four answer options about070

the given passages. We compute the difference071

between human and machine accuracy and use it072

as the difficulty of questions, investigating whether073

there is a correlation between the difficulty and074

linguistic aspects of passages such as their source,075

length, and readability measures.076

In addition to a standard setting where we di-077

rectly accept crowdworkers’ submissions, we use078

an adversarial setting where they have to write079

questions that fool a strong reading comprehen-080

sion model (Bartolo et al., 2020; Kiela et al., 2021).081

Although Kaushik et al. (2021) find questions that082

require numerical reasoning frequently appear in083

the adversarial data collection of the extractive QA084

task on Wikipedia articles, our aim is to see whether085

we observe a similar trend in multiple-choice ques-086

tions written for different passage sources or if the087

adversarial setting is useful for collecting various088

types of questions there.089

We find that the difficulty of collected questions090

does not significantly correlate with the differences091

of passages in linguistic aspects such as passage092

source, passage length, Flesch–Kincaid grade level093

(Kincaid et al., 1975), syntactic and lexical sur-094

prisal, elapsed time for answering, and the average095

word frequency in a passage. In contrast, we find096

that elapsed time for writing correlates with the097

question difficulty, though only weakly. Our main098

positive finding comes through our manual anno-099

tation of the types of reasoning that each question100

targets, where we observe that questions that re-101

quire numerical reasoning and logical reasoning102

are relatively difficult and that their frequencies103

depend on the passage sources (e.g., numerical rea-104

soning is found more often in MCTest and logical105

reasoning is in ReClor). These results suggest that106

when creating a new benchmark dataset or choos-107

ing one for evaluating NLU systems, choosing a108

diverse set of passages can help ensure a diverse109

range of question types, but that difficulty in pas- 110

sages need not be a priority. Our collected datasets 111

could be useful for training reading comprehension 112

models and further analysis of requisite knowledge 113

and comprehension types in answering challenging 114

multiple-choice questions.1 115

2 Related Work 116

Crowdsourcing NLU Datasets Crowdsourcing 117

has been widely used to collect human-written ex- 118

amples at scale (Rajpurkar et al., 2016; Trischler 119

et al., 2017). Crowdworkers are usually asked to 120

write questions about a given text, sometimes with 121

constraints imposed to obtain questions that require 122

specific reasoning skills such as multi-hop reason- 123

ing (Yang et al., 2018) and understanding of tempo- 124

ral order, coreference, and causality (Rogers et al., 125

2020). In this work, to analyze examples naturally 126

written by workers, we do not consider specific 127

constraints on questions and answer options. 128

Current benchmark datasets constructed by 129

crowdsourcing may not be of quality enough to 130

precisely evaluate human-level NLU. For example, 131

Jia and Liang (2017) point out that then-state-of- 132

the-art models in SQuAD (Rajpurkar et al., 2016) 133

are easily fooled by manually injected distracting 134

sentences. Chen and Durrett (2019) and Min et al. 135

(2019) show that questions in multi-hop reasoning 136

datasets such as HotpotQA by Yang et al. (2018) do 137

not necessarily require multi-hop reasoning across 138

multiple paragraphs. Kaushik and Lipton (2018) 139

find that baseline models with question-only and 140

passage-only input often perform comparably well 141

to full-input models in widely-used datasets. 142

To investigate how to collect high-quality, chal- 143

lenging questions in crowdsourcing, Nangia et al. 144

(2021) compare different sourcing protocols and 145

find that training workers and giving feedback 146

about their submissions improve the difficulty and 147

quality of questions in reading comprehension. To 148

encourage workers to write difficult examples, Bar- 149

tolo et al. (2020) propose to collect questions using 150

a model-in-the-loop setting, where the requesters 151

only accept workers’ written questions that fool a 152

strong reading comprehension model. Although 153

this adversarial approach enables us to collect chal- 154

lenging questions efficiently, Gardner et al. (2020) 155

point out that collected examples might be biased 156

towards quirks of the adversary models. Bowman 157

1We will make our datasets, annotation instructions and
results, and crowdsourcing scripts publicly available.

2



and Dahl (2021) extend this argument, and point158

out that adversarial methods can systematically159

eliminate coverage of some phenomena. This is160

also supported by Kaushik et al. (2021), but their161

findings are limited to the extractive QA setting162

for Wikipedia articles. Our motivation is to see if163

this argument is applicable to the multiple-choice164

format with a wide range of passage sources for165

which we expect crowdworkers to write linguisti-166

cally diverse questions and answer options.167

Sources of NLU Datasets Reading comprehen-168

sion datasets are often constructed with a lim-169

ited number of passage sources. Rajpurkar et al.170

(2016) sample about five hundred articles from171

the top 10,000 articles in PageRank of Wikipedia.172

Similarly, Dua et al. (2019) curate passages from173

Wikipedia articles containing numeric values to col-174

lect questions for mathematical and symbolic rea-175

soning. Khashabi et al. (2018) construct a dataset176

in which questions are written for various passage177

sources such as news articles, science textbooks,178

and narratives. However, because their dataset is179

designed so that questions require multi-sentence180

reasoning (mainly about coreference resolution),181

we cannot use it for analyzing the variation of ques-182

tion types in general.183

In a similar vein to our work, Sugawara et al.184

(2017) find that readability metrics and question185

difficulty do not correlate in reading comprehen-186

sion datasets. Our study differs in the following two187

points which may cause different findings: First,188

their observational study of existing datasets has189

fundamental confounds because questions they ex-190

amine are constructed by different sourcing meth-191

ods (e.g., automatic generation, expert writing, and192

crowdsourcing), which could have an impact on193

the question difficulty. We aim to investigate uni-194

formly crowdsourced examples across seven dif-195

ferent sources to get insights for future data con-196

struction research using crowdsourcing. Second,197

they define question difficulty using human anno-198

tations alone, but it does not necessarily reflect199

the difficulty for current state-of-the-art models.200

In this study, we define the question difficulty as201

the human–machine performance gap using ten202

recent strong models, which enables more fine-203

grained analysis on the collected questions for a204

better benchmark of current models.205

We adopt the multiple-choice format because, as206

Huang et al. (2019) discuss, it allows us to evaluate207

the human and machine performance easily.208

3 Crowdsourcing Tasks 209

This study aims to analyze what kinds of passages 210

make reading comprehension questions difficult 211

in crowdsourcing. We use Amazon Mechanical 212

Turk to access a large pool of workers. To collect 213

difficult and quality examples, we require crowd- 214

workers to take a qualification test for accepting 215

our question writing tasks and validation tasks. 216

3.1 Worker Qualification 217

The qualification test has two parts, which we run 218

in separate tasks: question answering and writing. 219

To join the qualification test, workers have to meet 220

the following minimum qualification: based in the 221

United States, Canada, or United Kingdom, having 222

an approval rate of at least 98%, and having at least 223

1,000 approved tasks. 224

The question answering task is used to identify 225

workers who carefully answer reading comprehen- 226

sion questions. A single question answering task 227

has five questions that are randomly sampled from 228

the validation set of ReClor in which most of the 229

questions are taken from actual exams. Those who 230

correctly answer at least four out of five questions 231

proceed to the next qualification phase. 232

The question writing task is used to familiarize 233

workers with the writing task and select those who 234

can carefully write multiple-choice reading com- 235

prehension questions. We ask workers to write two 236

questions given two different passages randomly 237

sampled from the validation set of RACE (Lai et al., 238

2017). This dataset consists of self-contained pas- 239

sages that are written for middle- and high-school 240

exams in various subjects where we expect the 241

passages to enable workers to write questions eas- 242

ily. Following Nangia et al. (2021), we then review 243

workers’ submissions and grade them using a rubric 244

with four criteria: a question (1) is answerable with- 245

out ambiguity (yes or no), (2) requires reading the 246

whole passage (five-point scale), (3) is creative and 247

non-obvious (five-point scale), and (4) has distrac- 248

tor answers that could look correct to someone who 249

has not read carefully (more than one, one, or no). 250

We rank workers using this rubric and allow about 251

the top 50% workers to proceed to the main writing 252

task. We make sure that these workers write two 253

unambiguous and answerable questions. 254

3.2 Writing Task 255

In the main writing task, a worker is shown a sin- 256

gle passage and asked to write a question about it 257
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along with four answer options, one of which is the258

correct answer. We provide instructions where we259

describe that questions have to be challenging but260

still answerable and unambiguous for humans, and261

we include good and bad examples.262

Each worker who passes the qualification round263

is randomly assigned to either standard or adversar-264

ial data collection. In the standard collection, we ac-265

cept workers’ submissions without any filtering. In266

the adversarial collection, a written question is sent267

to a reading comprehension model immediately. If268

the model cannot answer that question correctly,269

we accept it. We allow workers to submit ques-270

tions (i.e., get paid) after three attempts even if they271

keep failing to fool the model. We use UnifiedQA272

3B v2 (Khashabi et al., 2020) for the adversary273

model, which is a T5-based transformer (Raffel274

et al., 2020) trained on a wide variety of question275

answering datasets such as MCTest, RACE, Narra-276

tiveQA (Kočiský et al., 2018), and SQuAD. While277

the source of training data that we use in our models278

will inevitably influence our findings, focusing on a279

model with very diverse pretraining and fine-tuning280

will minimize this effect.281

Passage Sources We use passages from the fol-282

lowing seven sources: (1) MCTest children’s narra-283

tives, (2) Project Gutenberg narratives, (3) Slate on-284

line magazine articles from the 1990s sourced from285

the Open American National Corpus (Ide and Sud-286

erman, 2006), (4) middle- and high-school exams287

from RACE, (5) graduate-level exams from ReClor,288

and (6) science and (7) arts articles from Wikipedia.289

Details for Project Gutenberg and Wikipedia arti-290

cles are presented in Appendix A. We use passages291

of the training sets of MCTest, RACE, and ReClor.292

For the other sources, we split available books and293

articles into passages. In the writing task, a passage294

is randomly taken from a passage pool in which295

there are the same number of passages extracted296

from each source.297

3.3 Validation Task298

We collect the votes of five workers for each of the299

collected questions. Those workers who passed300

the question answering task of the qualification301

round can accept the validation tasks. To incen-302

tivize workers, we include gold-labeled examples303

(Nangia et al., 2021) into the tasks (about 10% of304

the questions) and pay a bonus of $0.50 USD if305

a worker can answer those questions correctly at306

least 80% of the time. If a worker fails to answer307

them at least 60% of the time, we disqualify the 308

worker from future rounds of data collection. 309

Worker Pay and Logistics For the writing tasks, 310

the base pay is $2.00 per question, which we es- 311

timate to be about $15.00 per hour based on mea- 312

surements from our pilot runs. If a worker succeeds 313

in fooling the model in adversarial data collection, 314

the worker gets an additional bonus of $1.00. For 315

validation, a single task consisting of five questions 316

pays $2.00, which we estimate to be about $15.00 317

per hour as well. 318

4 Crowdsourcing Results 319

4.1 Dataset Construction 320

We collected a total of 4,340 questions, with 620 321

in each of the seven sources, further divided into 322

310 each for the standard and adversarial methods. 323

Each passage is paired with only one question. We 324

randomly sample two out of five validation votes 325

for validating collected examples and the remain- 326

ing three votes for measuring human performance. 327

In the validation, we regard a question as valid if 328

at least one out of the two votes is the same as the 329

writer’s gold answer. If both votes are unanimously 330

the same as the gold answer, the question is re- 331

garded as a high-agreement example. We find that 332

90.3% of collected questions are valid (92.0% for 333

standard collection and 88.7% for adversarial col- 334

lection). In addition, 65.7% of the collected ques- 335

tions are high-agreement (68.7% and 62.7% for 336

standard and adversarial collection, respectively). 337

We present the dataset and worker statistics in Ap- 338

pendices B and C. 339

4.2 Human Performance 340

Table 1 provides human and model performance. 341

Because the questions are validated using two out 342

of five human votes in the validation step above, 343

we take an average accuracy of the remaining three 344

votes (instead of taking the majority vote) to mea- 345

sure human performance. We observe 4.5% and 346

3.9% gaps between the standard and adversarial 347

collection in the valid and high-agreement ques- 348

tions respectively. 349

4.3 Machine Performance 350

To establish a model performance that is not biased 351

towards a single model, we compute the average 352

accuracy (M-avg.) of ten different models from the 353

following three classes: UnifiedQA large and 3B 354

(v2, zero-shot; Khashabi et al., 2020), RoBERTa 355
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All valid examples High-agreement portion

Source Method Human UniQA DeBERTa M-Avg. ∆ Human UniQA DeBERTa M-Avg. ∆

MCTest Dir. 84.6 68.3 84.5 74.2 10.4 90.6 71.5 88.2 77.4 13.3
Adv. 85.0 26.5 75.3 58.9 26.1 88.1 27.9 78.6 60.5 27.6
Total 84.8 47.4 79.9 66.6 18.3 89.3 49.3 83.3 68.8 20.6

Gutenberg Dir. 81.9 70.7 84.5 76.7 5.1 88.9 75.0 88.5 80.3 8.7
Adv. 77.5 26.4 80.1 61.4 16.1 81.9 28.3 82.6 64.3 17.5
Total 79.7 48.8 82.3 69.2 10.5 85.6 53.1 85.7 72.8 12.8

Slate Dir. 82.9 72.4 88.9 80.4 2.5 88.6 74.6 91.7 83.1 5.5
Adv. 77.5 26.0 71.7 61.4 16.1 85.6 27.9 76.0 65.6 20.0
Total 80.3 49.8 80.5 71.2 9.1 87.2 52.6 84.3 74.8 12.4

RACE Dir. 85.9 70.4 85.0 77.2 8.8 91.0 74.8 90.4 80.9 10.1
Adv. 84.4 28.9 69.4 58.1 26.3 90.5 31.0 73.8 60.0 30.4
Total 85.2 50.0 77.3 67.8 17.4 90.7 53.3 82.2 70.7 20.1

ReClor Dir. 87.8 72.6 88.5 77.2 10.7 90.5 79.6 91.1 81.5 9.1
Adv. 78.3 29.2 71.5 59.0 19.3 82.4 32.4 74.5 63.6 18.9
Total 83.2 51.7 80.4 68.5 14.8 86.8 58.1 83.5 73.3 13.5

Wiki. Sci. Dir. 83.0 75.9 90.6 80.5 2.5 88.3 79.0 94.9 84.2 4.1
Adv. 78.5 27.4 75.2 58.6 19.9 85.7 29.4 77.2 60.9 24.8
Total 80.8 52.1 83.0 69.8 11.0 87.1 56.3 86.8 73.6 13.6

Wiki. Arts Dir. 83.0 76.2 88.7 80.8 2.2 86.8 77.0 92.5 84.3 2.6
Adv. 76.7 25.5 73.8 61.2 15.6 83.7 25.8 75.8 63.1 20.6
Total 79.9 51.2 81.3 71.1 8.8 85.3 52.3 84.5 74.1 11.3

All sources Dir. 84.2 72.4 87.2 78.1 6.0 89.3 75.9 91.0 81.7 7.6
Adv. 79.7 27.1 73.8 59.8 19.9 85.4 29.0 76.9 62.6 22.8
Total 82.0 50.2 80.7 69.2 12.8 87.5 53.6 84.3 72.6 14.9

Table 1: Accuracy of humans and models and their difference (∆) between human accuracy and the average zero-
shot performance of ten different models (M-avg) for all valid questions and the high-agreement portion of them.
The highest and lowest gaps are highlighted in bold and underline. The questions are crowdsourced with (Adv) and
without (Dir) adversarial feedback. UniQA is the zero-shot performance by the UnifiedQA 3B model and used in
the adversarial data collection. DeBERTa is the performance by the xlarge model fine-tuned on RACE.

large (four models with different random seeds; Liu356

et al., 2019), and DeBERTa large and xlarge (v2,357

either fine-tuned on MNLI (Williams et al., 2018)358

first or not; He et al., 2020).359

The RoBERTa and DeBERTa models are all fine-360

tuned on RACE. Among these models, DeBERTa361

xlarge (MNLI-fine-tuned) performs best on RACE,362

achieving 86.8% accuracy. Because UnifiedQA363

3B (72.3% on RACE) is used in the adversarial364

data collection, it shows lower accuracies in the365

adversarially collected questions. We show the366

performance of these two models for comparison367

in Table 1. Except where noted, we do not train the368

models on any portion of our collected questions.369

Supervised Performance For each dataset, we370

evaluate the performance of DeBERTa large trained371

on the datasets other than the target dataset in a372

leave-one-out manner. Our motivation is to see373

whether the accuracy values significantly improve374

by training (i.e., the human–model gaps decrease).375

If there is a large gain, it implies that the datasets376

have simple patterns among examples that the mod-377

els can exploit. The result shows no significant378

gains in the adversarial datasets, while the standard 379

datasets show some small gains (see Appendix D). 380

Partial-Input Performance As Kaushik and 381

Lipton (2018) point out, reading comprehension 382

datasets might have annotation artifacts that enable 383

models to answer questions without passages or 384

question sentences. To investigate such artifacts 385

in our collected examples, we evaluate model per- 386

formance with the ablation of questions (P+A), 387

passages (Q+A), and both questions and passages 388

(A only). We see large drops in the zero-shot per- 389

formance by DeBERTa xlarge. In addition, we 390

do not observe a big performance improvement 391

in the supervised performance by DeBERTa large 392

(MNLI-fine-tuned) as well. These results demon- 393

strate that the collected questions and answer op- 394

tions do not have severe annotation artifacts in any 395

passage sources (see Appendix E). 396

4.4 Human–Model Performance Gap 397

We compute the human–model performance gap 398

(∆) between the human and the average model ac- 399

curacies. There is not a large variation in the gap 400

across passage sources in the high-agreement por- 401
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tion (∆ = 14.9 ± 3.5). We observe the highest402

human performance for RACE questions and the403

lowest for Wikipedia arts, while seeing the high-404

est model performance for MCTest and the lowest405

for Slate. Surprisingly, the questions sourced from406

MCTest, which consists of easy narrative passages,407

show the largest gap in the standard method and the408

total of both methods. The RACE questions give409

the largest gaps in the adversarial method, while410

MCTest shows the second-largest. Although Re-411

Clor consists of passages for graduate-level exams,412

it shows smaller gaps than RACE, which consists413

of passages for middle- and high-school English414

exams. Gutenberg passages are written for adults,415

but we do not observe that the examples written for416

those passages show larger gaps than the examples417

for MCTest. Rather, Gutenberg shows the lowest418

gaps among the adversarial questions. These obser-419

vations are inconsistent with our initial hypothesis.420

5 Linguistic Analysis421

We analyze how linguistic aspects of the collected422

examples correlate with the human–model perfor-423

mance gap computed in the experiments. To get a424

better estimate of human performance, we use high-425

agreement examples (Nie et al., 2020). For ease of426

comparison, we split these examples into two sub-427

sets: easy (∆ ≤ 20%) and hard (∆ ≥ 40%). These428

subsets have 2,023 and 596 examples respectively.2429

5.1 Readability Measures430

We compute the correlation between the human–431

model performance gap and readability measures432

across all valid examples (Pearson’s r and p-value)433

and independence between the distributions of the434

easy and hard subsets about the measures (p-value435

in Welch’s t-test, which is a paired t-test where we436

do not know if two distributions have the same vari-437

ance). We plot the density distributions of the easy438

and hard subsets here, while Appendix provides439

the instance-wise plots of all valid examples.440

Passage Length We report the number of words441

(except for punctuation) as the passage length.3442

Across all examples, we observe Pearson’s r =443

0.01 (p = 0.41) (the full plot is in Appendix G).444

The t-test shows p = 0.49. Therefore, there does445

not appear to be any relationship between passage446

length and question difficulty.447

2Appendix F provides the frequency of easy and hard ex-
amples across the passage sources and the collection methods.

3We analyze question and option length in Appendix H.
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Figure 2: Passage length (number of words) of easy
and hard examples.
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Figure 3: Flesch–Kincaid grade level of easy and hard
examples.

Flesch–Kincaid Grade Level We use the 448

Flesch–Kincaid grade level (Kincaid et al., 1975) 449

as a basic metric of text readability. This metric 450

defines readability based on approximate US grade 451

level with no upper bound (higher is more diffi- 452

cult to read). It is computed for a passage using 453

the average number of words that appear in a sen- 454

tence and the average number of syllables in a word 455

(See Appendix I for details). The correlation be- 456

tween the grade and human–model performance 457

gap is r = −0.09 (p < 0.001) and the t-test shows 458

p < 0.001. This result demonstrates that, surpris- 459

ingly, passage readability has a small negative ef- 460

fect on the question difficulty, perhaps pointing to 461

an interfering effect whereby our pre-qualified hu- 462

man validation annotators are more likely to make 463

mistakes on more complex passages. 464

Syntactic and Lexical Surprisal The Flesch– 465

Kincaid grade level only takes the sentence length 466

and the number of syllables into account. To better 467

estimate the passage difficulty in terms of the psy- 468

cholinguistic modeling of human text processing, 469

we use syntactic and lexical surprisal measures de- 470

fined by Roark et al. (2009). These measures are 471

computed using an incremental parsing and proved 472

to be useful for predicting human reading time. 473

We observe r = 0.001 (p = 0.97) for syntactic 474

surprisal and r = −0.008 (p = 0.63) for lexical 475
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Figure 4: Syntactic and lexical surprisal for easy and
hard examples.

0 100 200 300 400 500 600
Elapsed time for question answering (sec)

0.000

0.002

0.004

0.006

0.008

0.010

De
ns

ity

easy
hard

Figure 5: Elapsed time (seconds) for answering easy
and hard examples.

surprisal in all examples. We do not observe any476

statistically significant difference between the easy477

and hard subsets (syntactic p = 0.68 and lexical478

p = 0.89 in the t-test; see Figure 4). Appendix J479

describes details of the calculation.480

Annotation Speed Inspired by the psycholin-481

guistic study of text complexity (Gibson, 1998;482

Lapata, 2006), we measure an average time of an-483

swering questions by crowdworkers in the valida-484

tion tasks (Figure 5). This measures the elapsed485

time of both reading a given passage and thinking486

about its question, which is used as an approxi-487

mation of reading time (as a proxy of text read-488

ability). The correlation coefficient (r = −0.07489

with p < 0.001) and t-test (p = 0.51) show that490

there is only a small negative correlation. We also491

measure the elapsed time for writing questions as a492

reference (in Appendix K), observing that there is493

a weak positive correlation between writing time494

and question difficulty (r = 0.05 with p = 0.001).495

Word Frequencies Chen and Meurers (2016) an-496

alyze the effect of word frequencies in text read-497

ability. Following their analysis, we use word fre-498

quencies per one million words reported in SUB-499

TLEXus (Brysbaert and New, 2009) to calculate500

an average frequency of words appearing in a pas-501

sage as a measure of passage difficulty in terms of502

vocabulary (a lower average frequency implies be-503
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ns

ity

easy
hard

Figure 6: Average word frequency (per one million
words) of a passage in easy and hard examples.

ing more difficult for reading). We do not observe 504

any statistically significant difference by the t-test 505

p = 0.40 (Figure 6) and Pearson’s r = 0.02 with 506

p = 0.29 (see Appendix L for details). 507

5.2 Question Types 508

We analyze how passage sources and collection 509

methods affect question types in this section. 510

Question Words We automatically extract wh- 511

words that first appear in the valid questions for 512

analyzing the distribution of question types. If no 513

wh-word is extracted, it is regarded as a polar ques- 514

tion. Figure 7 plots the question words and their 515

two subsequent words (except articles) in the easy 516

and hard questions, where we observe that the hard 517

questions are generic, not specific to given passages 518

(e.g., which of the following is correct?) more often 519

than the easy questions. This probably results from 520

the difference between the standard and adversar- 521

ial data collection. The workers in the adversarial 522

collection tend to write generic questions, while 523

those in the standard collection write questions that 524

are a bit more balanced (e.g., there are more why 525

and how questions). We also notice that the hard 526

questions have more how many questions. This 527

is likely due to the fact that it is easy for anno- 528

tators to learn that numeric questions often fool 529

the adversary model. These observations imply 530

that adversarial data collection tends to concentrate 531

the distribution of questions towards a few specific 532

question types (e.g., generic and numeric). This 533

is consistent with observations in Kaushik et al. 534

(2021). See Appendix M for details. 535

Comprehension Types Following Bartolo et al. 536

(2020) and Williams et al. (2020), we analyze what 537

kind of comprehension is required for answering 538

collected questions. We sample a total of 980 high- 539

agreement questions, 70 from each of all passage 540

sources and collection methods, and then manually 541
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Figure 7: Question words and their two subsequent words in easy and hard examples.
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Figure 8: Frequency of comprehension types in easy
and hard examples for each collection method.

annotate them with one or more labels of seven542

comprehension types. The definitions, examples,543

and detailed results are presented in Appendix M.544

Regarding the easy and hard subsets (708 and 199545

examples respectively), Figure 8 shows the fre-546

quency of comprehension types across the ques-547

tion difficulty and the collection methods. We548

can see that numeric, spatial/temporal, and log-549

ical questions appear more often in the hard subset550

in both collection methods. Looking at the fre-551

quency across the passage sources, we find that552

MCTest has numeric questions more than the other553

sources. We also observe that the adversarial col-554

lection generally increases numeric questions and555

decreases non-factoid questions (e.g., how and why556

questions). Spatial/temporal and logical questions557

are less frequent than other comprehension types,558

but we find logical questions more often in ReClor.559

On the other hand, spatial/temporal questions are560

rarer in Slate, ReClor, and Wikipedia science arti-561

cles. Overview/attitude questions are not relatively 562

difficult, Slate passages have them most often. Al- 563

though the definition of our comprehension types 564

is coarse, these results show that there are some 565

trends across the sources and collection methods. 566

6 Conclusion 567

To make an NLU benchmark useful, it has to con- 568

sist of examples that are linguistically diverse and 569

difficult enough to discriminate among state-of- 570

the-art models. We crowdsource multiple-choice 571

reading comprehension questions for passages ex- 572

tracted from seven different sources, analyzing 573

what kinds of passages make questions difficult 574

and diverse. Although we expect that the difficulty 575

of passages affects the difficulty of questions, the 576

collected questions do not show any strong corre- 577

lation between the human–machine performance 578

gap and passage source, length, and readability 579

measures. In contrast, we find that there is a weak 580

correlation between question difficulty and elapsed 581

time for writing examples by workers. Our manual 582

annotation of question types reveals that questions 583

requiring numerical reasoning and logical reason- 584

ing are relatively difficult but their frequencies vary 585

across the passage sources. These results suggest 586

that when creating a new benchmark dataset, we 587

need to select passage sources carefully, regardless 588

of the length and difficulty of passages, so that the 589

resulting dataset has questions that require under- 590

standing of linguistic phenomena we are interested 591

in. We should take care of that especially in the ad- 592

versarial setting because an adversary model could 593

concentrate the distribution of questions towards a 594

few specific question types. 595
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Ethics Statement596

We aim to accelerate scientific progress on robust597

general question answering, which could translate598

downstream to useful tools. We are not looking599

at possible sources of social bias, though this is-600

sue should be highly relevant to those considering601

sources to use as training data for applied systems.602

We are using Amazon Mechanical Turk despite603

its history of sometimes treating workers unfairly604

(Kummerfeld, 2021), especially in recourse for un-605

fair rejections. We make sure that our own pay606

and rejection policies are comparable to in-person607

employment, but acknowledge that our study could608

encourage others to use Mechanical Turk, and that609

they might not be so careful.610
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B Dataset Statistics 913

Table 2 presents the frequency of valid, high- 914

agreement, and invalid examples across the passage 915

sources and collection methods. 916

C Worker Statistics 917

1,050 workers joined the question-answering phase 918
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Source Method Valid High

MCTest Dir. 91.6 71.3
Adv. 91.3 73.9
Total 91.5 72.6

Gutenberg Dir. 91.3 67.1
Adv. 89.0 59.4
Total 90.2 63.2

Slate Dir. 90.0 66.1
Adv. 85.5 59.0
Total 87.7 62.6

RACE Dir. 94.8 70.3
Adv. 91.6 67.7
Total 93.2 69.0

ReClor Dir. 92.9 72.6
Adv. 86.1 60.6
Total 89.5 66.6

Wiki. Sci. Dir. 92.3 69.0
Adv. 88.4 58.1
Total 90.3 63.5

Wiki. Arts Dir. 91.0 64.5
Adv. 88.7 60.0
Total 89.8 62.3

All sources Dir. 92.0 68.7
Adv. 88.7 62.7
Total 90.3 65.7

Table 2: Frequency of valid and high-agreement exam-
ples.

batches. No worker answered more than 730 ques-926

tions. Data collection took about a month including927

the qualification round and the validation batches.928

D Supervised Model Performance929

Table 3 shows that the supervised performance of930

the DeBERTa large model.931

E Partial-Input Model Performance932

Tables 4 and 5 report the zero-shot performance by933

DeBERTa xlarge and the supervised performance934

by DeBERTa large (MNLI).935

F Easy and Hard Subsets936

Table 6 presents the frequency of easy and hard937

examples across passage sources and collection938

methods.939

G Passage Length940

Figure 9 shows the plot between the passage length941

and the human–model performance gap.942

H Question and Option Length943

We plot the question and average option length (the944

number of words except for punctuation) in the945

high-agreement examples in Figure 10 across the946

Source Method Valid High

MCTest Dir. 70.7+6.9 72.2+6.6

Adv. 65.6+1.8 68.0+2.5

Gutenberg Dir. 79.2+5.6 82.1+5.5

Adv. 76.0+2.4 79.6+3.0

Slate Dir. 77.1+3.8 79.1+3.1

Adv. 74.2+0.8 77.0+1.0

RACE Dir. 78.2+8.6 79.6+9.3

Adv. 71.8+2.3 72.6+2.2

ReClor Dir. 74.6+1.6 76.1+1.0

Adv. 72.6−0.4 74.6−0.5

Wiki. Sci. Dir. 78.5+7.7 79.4+8.5

Adv. 74.8+4.1 74.9+4.0

Wiki. Arts Dir. 80.7+6.6 79.7+5.4

Adv. 75.3+1.2 75.2+1.0

Table 3: Supervised performance of DeBERTa large.
The accuracy of each row is given by the model trained
on the questions of the other rows (leave-one-out train-
ing). Subscript values show the difference from its zero-
shot accuracy.
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Figure 9: Passage length (number of words) and
human–model performance gap. Pearson’s r = 0.01
with p = 0.41.

collection methods and Figure 11 across the easy 947

and hard subsets. The distributions of question and 948

option length have slightly higher variances in the 949

standard data collection than in the adversarial data 950

collection. This result is consistent with Nangia 951

et al. (2021). 952

I Readability Level 953

Figure 12 shows the plot between Flesch–Kincaid 954

grade level (Kincaid et al., 1975) and the human– 955

model performance gap. We compute the grade 956

level (L) of a passage using the following formula: 957

L = 0.39 ∗m + 11.8 ∗ n− 15.59 (1) 958

where m is the average length of the sentences and 959

n is the average number of syllables of the words in 960
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Source Meth. P+A Q+A A only

MCTest Dir. 73.3−14.9 39.8−48.4 29.4−58.8

Adv. 55.5−23.1 41.5−37.1 34.5−44.1

Total 64.2−19.1 40.7−42.7 32.0−51.3

Gutenberg Dir. 75.5−13.0 40.9−47.6 31.7−56.7

Adv. 55.4−27.2 42.4−40.2 34.2−48.4

Total 66.1−19.6 41.6−44.1 32.9−52.8

Slate Dir. 72.7−19.0 45.9−45.9 32.7−59.0

Adv. 54.1−21.9 44.3−31.7 33.9−42.1

Total 63.9−20.4 45.1−39.2 33.2−51.0

RACE Dir. 75.7−14.7 49.5−40.8 36.2−54.1

Adv. 49.0−24.8 43.3−30.5 31.9−41.9

Total 62.6−19.6 46.5−35.7 34.1−48.1

ReClor Dir. 78.7−12.4 44.4−46.7 35.1−56.0

Adv. 55.9−18.6 41.5−33.0 26.6−47.9

Total 68.3−15.3 43.1−40.4 31.2−52.3

Wiki. Sci. Dir. 76.2−18.7 45.8−49.1 33.2−61.7

Adv. 54.4−22.8 35.6−41.7 26.7−50.6

Total 66.2−20.6 41.1−45.7 30.2−56.6

Wiki. Arts Dir. 70.0−22.5 49.0−43.5 44.5−48.0

Adv. 53.8−22.0 44.6−31.2 26.3−49.5

Total 62.2−22.3 46.9−37.6 35.8−48.7

All src. Dir. 74.6−16.5 45.0−46.0 34.7−56.3

Adv. 54.0−22.9 41.9−35.0 30.6−46.3

Total 64.8−19.5 43.6−40.8 32.8−51.6

Table 4: Zero-shot performance of DeBERTa xlarge
trained on RACE with ablation settings. From the in-
put, we ablate questions (P+A), passages (Q+A), and
both question and passages (A only). Subscripts show
the difference from the full-input accuracy.

Method P+A Q+A A only

Dir. 71.6 ±0.8
+0.6 46.0 ±2.2

+4.7 38.6 ±1.5
+5.4

Adv. 51.9 ±1.3
+1.2 41.5 ±2.2

+1.5 32.7 ±0.6
+3.3

Table 5: Supervised performance (three-fold cross val-
idation) of DeBERTa large on the partial input. Super-
scripts are standard deviation and subscripts are gains
from the zero-shot performance.

the passage. To estimate the number of syllables in961

a word, we use the implementation of the sonority962

sequencing principle (Bartlett et al., 2009) in NLTK963

(Bird et al., 2009).6964

J Syntactic and Lexical Surprisal965

Figures 13 and 14 show syntactic and lexical sur-966

prisal measures in all examples. Following Roark967

et al. (2009), we compute a surprisal value for each968

word, then take an average for each sentence, and969

finally take an average again over the passage. We970

use an incremental parser using a lexicalized prob-971

6https://www.nltk.org/_modules/nltk/
tokenize/sonority_sequencing.html

Source Method Easy Hard

MCTest Dir. 7.8 6.5
Adv. 6.4 12.9
Total 14.2 19.5

Gutenberg Dir. 8.2 4.5
Adv. 5.9 7.0
Total 14.1 11.6

Slate Dir. 8.6 2.9
Adv. 6.1 7.9
Total 14.6 10.7

RACE Dir. 8.7 5.2
Adv. 5.6 13.1
Total 14.3 18.3

ReClor Dir. 9.1 5.2
Adv. 5.4 9.1
Total 14.5 14.3

Wiki. Sci. Dir. 9.3 3.2
Adv. 4.9 10.1
Total 14.2 13.3

Wiki. Arts Dir. 8.5 3.2
Adv. 5.5 9.2
Total 14.0 12.4

#Questions 2,023 596

Table 6: Frequency (%) of easy and hard questions
across the passage sources and collection methods.
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Figure 10: Question and option length (number of
words) of examples collected in the standard and ad-
versarial methods.

abilistic context-free grammar.7 972

K Elapsed Time for Answering 973

Questions 974

Figure 15 shows the plot of elapsed time for answer- 975

ing questions by humans in the validation tasks. 976

We measure the elapsed time from when a worker 977

opens a task to when the worker submits their an- 978

swer. In addition, we measure the elapsed time for 979

writing questions as a reference (Figures 16 and 980

17). We observe that workers take a bit longer time 981

for writing hard examples than for easy examples. 982

7https://github.com/roarkbr/
incremental-top-down-parser
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Figure 11: Question and option length (number of
words) of easy and hard examples.
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Figure 12: Flesch–Kincaid grade level and human–
model performance gap. Pearson’s r = −0.09 with
p < 0.001.

L Average Word Frequencies983

Figure 18 plots the average word frequencies of984

all examples. We refer to SUBTLEXus (Brysbaert985

and New, 2009) for the word frequencies per one986

million words in a corpus of American English987

subtitles.988

M Question and Comprehension Types989

Figure 19 shows the frequency of the question990

words and their two subsequent words for each991

collection method. Figures 20 and 21 show the box992

plots between human–model performance gaps and993

questions words and comprehension types respec-994

tively. The triangle markers indicate mean values995

and black bars indicate medians. Figures 22 and996

23 show the frequency of question types and com-997

prehension types across the passage sources and998

collection methods. In the annotation of compre-999

hension types, a question can have multiple labels.1000

Therefore the sum of the frequencies may exceed1001

100%.1002

The definitions of comprehension types and their1003
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Figure 13: Syntactic surprisal for all valid examples.
Pearson’s r = 0.001 with p = 0.97.
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Figure 14: Lexical surprisal for all valid examples.
Pearson’s r = −0.01 with p = 0.63.

examples are as follows: 1004

1. Factuality (true/false/likely) is reasoning of 1005

which answer option most (or least) describes 1006

facts or events in a given passage. 1007

2. Factoid simply asks about described events 1008

or entities mainly with typical what questions. 1009

3. Non-factoid is related to why and how ques- 1010

tions such as ones asking about the causal- 1011

ity, character’s attitude, and the process of 1012

described events. 1013

4. Overview/Attitude is for questions that ask 1014

about the summary, theme, and conclusion of 1015

the content of a given passage and the author’s 1016

attitude and claim that readers can derive from 1017

it. 1018

5. Numeric indicates questions that require 1019

arithmetic reasoning. 1020
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Figure 15: Elapsed time (seconds) for answering ques-
tions. Pearson’s r = −0.07 with p < 0.001.
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Figure 16: Elapsed time (seconds) for writing easy and
hard examples. The t-test shows p = 0.004.

6. Spatial/Temporal is related to understanding1021

of place and locations (spatial) or the tempo-1022

ral order or duration (temporal) of described1023

events.1024

7. Logical is pertinent to logical reasoning and1025

arguments described in a passage.1026

Table 7 shows examples of questions and options1027

for the comprehension types. After extracting ques-1028

tion words, we review about 100 questions to col-1029

lect keywords that determine comprehension types1030

(e.g., “reason” for non-factoid,“best summarize”1031

for overview/attitude and “if” for logical). We then1032

write simple rules that highlight these keywords,1033

which help us manually annotate the remaining1034

questions within about five hours.1035
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Figure 17: Elapsed time (seconds) for writing all exam-
ples. Pearson’s r = 0.05 with p = 0.001.
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Figure 18: Average word frequencies using the values
of SUBTLEXus. Pearson’s r = 0.02 with p = 0.29.
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(c) Adversarial collection

Figure 19: Question words and their two subsequent words in the standard and adversarial collection methods.

all what which who when where why how polar

Question words

75

50

25

0

25

50

75

100

Hu
m

an
-m

od
el

 p
er

fo
rm

an
ce

 g
ap

 (%
)

All
Dir.
Adv.

Figure 20: Question words and human–model perfor-
mance gaps.
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Figure 21: Comprehension types and human–model
performance gaps.
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Figure 22: Frequency of question types (wh words) across passage sources and collection methods.
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Figure 23: Frequency of comprehension types across passage sources and collection methods. Because a question
can have multiple labels, the sum of the frequencies may exceed 100%.
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Comprehension Type
(source, difficulty)

Example

Factuality
(Gutenberg, easy)

Q: Which of the following is not mentioned in the passage?
A: � An Earl lived in a house that had a relatively low profile. / � There
were some other buildings near the Manor. / � Scroope is a village that is
closely linked to an Earl’s home. / X� Scroope Manor was sold to the village
by the Earl.

Factoid
(Wiki. science, easy)

Q: What helps many fish keep their buoyancy in water?
A: � muscles on either side of the backbone / � fins / X� a swim bladder /
� a streamlined body

Non-factoid
(Wiki. arts, hard)

Q: How did a major portion of English words enter the English language?
A: � French speakers can understand many English words without having
to undergo any orthographical change. / � Many words in Old English
are from Old Norse. / X� About one-third of words in English entered the
language from the long contact between French and English. / � Romance
languages have "Latinate" roots.

Overview/Attitude
(Slate, easy)

Q: Which of the following is a criticism the author has about Dick Riordan?
A:�He’s not transparent about his typical lunch looks like, which highlights
his lack of wisdom. / X� He’s okay syphoning resources from elsewhere to
himself for personal gain. / �Much like Hillary Clinton, he lacks any sort
of coherent persona. / � He is responsible for the vast swaths of one-story
buildings that cover the entire landscape of L.A.

Numeric
(RACE, hard)

Q: How old was Mary Shelley when she died?
A: �Mary Shelley was in her thirties when she died. / �Mary Shelley died
when she was forty four years old. /X�Mary Shelley died when she was in
her fifties. / �Mary Shelley lived well into her eighties before she died.

Spatial/Temporal
(MCTest, easy)

Q: When did it start to rain?
A: X� It started to rain after Will ate his biscuit and jam. / � It started to rain
after Will heard the thunder. / � It started to rain while Will was at the store.
/ � It started to rain on Will’s walk home from the store.

Logical
(ReClor, hard)

Q: Which statement, if true, would weaken the conclusion of the passage?
A: � Archaeologists have found remains of shipwrecks from 2000 BC
between Crete and southern Greece. /X� The earliest bronze artifacts found
in southern Greece date to 3000 BC. / � The Minoans were far more
accomplished in producing bronzeware than any other civilization in the area
at the time. / � The capacity of Minoan bronze furnaces was extraordinarily
large compared to other societies in 2000 BC.

Table 7: Examples of the comprehension types taken from our collected data.
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