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Abstract
In this work, we introduce Progressive Normal-
izing Flows (PNF), a generative network that al-
lows to model high-dimensional input data dis-
tributions by progressively training several flow-
based modules. Competing generative models,
such as GANs or autoencoders, do not aim at
learning probability density of real data, while
flow-based models realize this objective at a pro-
hibitive cost of highly-dimensional internal repre-
sentation. Here, we address these limitations and
introduce a new strategy to train flow-based mod-
els. We progressively train consecutive models at
increasing data resolutions, which allows to con-
struct low-dimensional representations, as done
in autoencoders, while directly approximating the
log-likelihood function. Additional feature of our
model is its intrinsic ability to upscale data resolu-
tion in the consecutive stages. We show that PNF
offers a superior or comparable performance over
the state of the art.

1. Introduction
Generative models trained to sample realistic data-points,
such as images, are a mainstream field of machine learning,
with multiple applications ranging from 3D shape optimiza-
tion (Spurek et al., 2020) to high energy physics simula-
tions (Deja et al., 2020).

Existing approaches include GANs (Goodfellow et al.,
2014), autoencoders (Kingma & Welling, 2013) and in-
vertible flows (Uria et al., 2014; Jain et al., 2020). GANs
give high quality results, yet their main working princi-
ple relies on the competition between adversarially trained
networks, while the sampling prior distribution is not ex-
plicitly modeled and hence does not provide an intuitive
data sample representation. The second family of gener-
ative models, autoencoder-based methods, does not share
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Figure 1. In PNF we start with a density model on a downscaled
image. Next we we progressively add information encoded by a
conditional flow model (bottom images) which allows us to up-
sample specific dimension of the image. In two steps of upscaling
we upsample both dimensions, and finally obtain a high-resolution
image (upper left).

the limitation of GANs, as these models can simultane-
ously fit a data manifold and approximate its prior distri-
bution (Kingma & Welling, 2013; Tolstikhin et al., 2017;
Knop et al., 2020). More precisely, generative autoencoders
map data into lower-dimensional latent space regularized to
follow a certain distribution, e.g. Gaussian, and reconstruct
it back. However, neither GANs nor autoencoder-based
models are able to explicitly learn the probability density of
real data in the input space.

The third family of generative models, flow-based methods,
aims to address this limitation by constructing an invertible
transformation from data space to a Gaussian distribution,
called Normalizing Flow (Rezende & Mohamed, 2015).
Contrary to the other methods, the model explicitly learns
the data distribution, and therefore, the resulting loss func-
tion is defined as a negative log-likelihood. The main chal-
lenge in modeling flows is finding the invertible function
that allows efficient computation of Jacobian determinant.
For discrete flows, like NICE (Dinh et al., 2014), RealNVP
(Dinh et al., 2016) and Glow (Kingma & Dhariwal, 2018)
that issue is solved by application of the so-called coupling
layers. The continuous flows, like FFJORD (Grathwohl
et al., 2018) use Jacobian trace due to the transformation
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Progressive normalizing flows

specified by an ordinary differential equation.

Another important group of flow-based approaches are au-
toregressive methods, like IAF (Kingma et al., 2016) or
MAF (Papamakarios et al., 2017) that uses chain rule and
aims at modeling conditional distributions on single vari-
ables with an invertible transformations. Good approxima-
tion of negative log-likelihood, however, comes at a price of
a high-dimensional internal representation which is costly
both in terms of memory required to store the model, as
well as the computational effort needed to train it.

In this work, we address these limitations of the existing
generative models and introduce Progressive Normalizing
Flows (PNF) model that takes the best of autoencoder and
flow-based methods. Our approach combines the ability
to construct low-dimensional representation, as done in
autoencoder-based methods, with the direct approximation
of the data distribution using negative log-likelihood func-
tion of flow-based models.

The main idea of PNF is to train several conditional flow
generative models that learn the data distribution at recur-
sively reduced resolutions, see Fig. 1. We use cascading
multiple flow stages: the first flow model is trained us-
ing base resolution (e.g. 8 × 8 pixels), the second one is
trained on a resolution increased twice along a given axis
(e.g. 16× 8), but with the conditioning mechanism taking
the results of the base resolution model. This operation is
recursively repeated until the model can output data sam-
ples in the desired resolution. To enable convergence of our
model we represent data at subsequent stages by encoding
the mean and divergence values, which allows to effectively
train flow-based modules.

Our contributions can be summarized as follows:

• We introduce a divide-and-conquer progressive strat-
egy to effectively train a high-dimensional flow-based
generative models.

• We introduce a new PNF generative network that takes
the best of two worlds of autoencoder and flow-based
generative models: our approach constructs a low-
dimensional data representation, while directly approx-
imating the log-likelihood function.

• PNF has the latent given by images in lower resolution,
which consequently allows the upsampling of images.

2. Description of PNF
Basic idea of PNF We aim to define the generative model
on high resolution images in a progressive fashion. In au-
toregressive models, we order the image pixels in a given
way (Jain et al., 2020), and produce the next pixels by sam-
pling from conditional distribution. In our paper, we apply a
similar strategy, but we progressively increase the resolution

of the images. We sample higher resolution images from
distribution conditioned on lower resolution versions.

To describe it, let us denote Iij the set of images of res-
olution 2id × 2jd (i, j = 0, 1, . . . , k) and let us fix the
image M ∈ Ik (Ik := Ikk). We denote by Mij ∈ Iij
the image M downscaled to the resolution 2id× 2jd. Let
us note, that one can obtain the image M with the knowl-
edge of the following information: the image M00, the
information necessary to upscale the resolution from Mii

to get the image Mi,i+1, and from Mi,i+1 to Mi+1,i+1, for
i = 0, 1, . . . , k − 1. We will describe this idea more for-
mally in the two following paragraphs. In the first, we give
a detailed description in the case of one dimensional data
(one-dimensional vector), and then we show how we can
adapt it to the case of images (two-dimensional matrix).

Theory: progressive approach in RD PNF is based on
the fusion of the ideas standing behind autoregressive den-
sity models (Uria et al., 2014; Jain et al., 2020) and wavelet
approach to data analysis and compression (in particular
Haar wavelets).

Let us recall the basic idea of autoregressive models. We
assume that our data lies in RD, and to model the density
we apply the formula

p(x) =

D∏
i=1

p(xi |x1, . . . , xi−1), x = (x1, . . . , xD).

In our approach we use a version of autoregressive ap-
proach, but for a special decomposition of the space. To
do this, we will need the following notation: given vectors
(x1, .., xn), (y1, .., yn) ∈ Rn we define

x⊕ y = (x1 + y1, x1 − y1, . . . , xn + yn, xn − yn) ∈ R2n.

For x ∈ R2n we additionally define two operators

Sx := (x1+x2

2 , . . . , x2n−1+x2n

2 ) ∈ Rn,

∆x := (x1−x2

2 , . . . , x2n−1−x2n

2 ) ∈ Rn.

Observe that Skx is the point x with decreased resolution,
and that for x ∈ R2n we have

x = Sx+ ∆x.

Applying the above formula k times for x ∈ RD (D = 2kd)
we get

x = Sx⊕∆x = (S2x⊕∆Sx)⊕∆x = . . .

= [Skx⊕∆Sk−1x⊕ . . .⊕∆Sx]⊕∆x.
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Progressive normalizing flows

Then we can apply the autoregressive density formula:

p(x) = C1 · p(∆x |Sx) · p(Sx)

= C2 · p(∆x |Sx) · p( ∆Sx|S2x ) · p(S2x)

= . . . = Ck · p(Skx) ·
d∏

i=1

p(∆Sk−ix |Sk−i+1x), (1)

where Ck is the inverse of th absolute value of the determi-
nant of the map

RD = Rk × [R20d × . . .× R2kd] 3 (v, v0, v1, . . . , vd)→
→ [(v ⊕ v1)⊕ . . .]⊕ vd ∈ RD.

PNF: model summary Let us now summarize what is
the final result of applying the conditional flow model to
our data X in the procedure described above. For x ∈ R2ld

and j < l, by x[j] = Sl−jx ∈ R2jd we denote the point
x “downscaled” to the resolution 2jd. Thus if by X we
denote the true random vector from which our data X was
generated, byX[l] we denote the rescaling ofX to respective
lower resolution. Then we obtain:

• invertible map φ : Rd → Rd, such that ifU ∼ N(0, I),
then φ(U) ∼ X[0],

• for j < l “upsampling” maps Φjl : R2jd ×
R(2l−2j)d → R2ld such that if x ∼ X[j] and U ∼
N(0, I), then Φjl(x, U) ∼ X[l].

Moreover, downscaling of Φjl(x, U) recreates x, i.e.

Φjl(x, U)[j] = x for x ∈ R2jd, U ∈ R(2l−2j)d. (2)

Let us now observe that the above hierarchy gives us a latent
model for X . Namely by the latent space Z we take Rd, on
which we sample by taking φ(U) for U ∼ N(0, I). Then
the following mappings: encoder E : RD → Z and decoder
D : Z → RD, are given by

Ex = x[k] and Dz = Φ0,k(z, 0).

Observe that we upsample from Z by taking the fixed zero
noise. As always, the lower dimensional manifold spanned
by Z is given byM = DZ. Moreover, by (2) we obtain
that E and D are right invertible, i.e.

DEz = z, z ∈ Z.

In other words, we obtain that the following map

pM : RD 3 x→ DEx ∈M

is a true projection ontoM, that is

pMx = x, x ∈M.

Observe that the above does not hold for the standard autoen-
coder models, as in the above we only obtain approximate
identity.

PNF for images Now we describe the natural modifi-
cation of the above approach for matrices (representation
of images). As before, we consider M ∈ RD×D, where
D = 2kd. Then we need the operators Sx, Sy ∆x,∆y and
operations ⊕x, ⊕y , which are componentwise analogues of
the operators S, ∆ and operation ⊕. Notice that Si

xS
j
yM

denote the image, where we reduce the resolution in x by
2i, and in y by 2j . Namely, we have

M = SxM ⊕x ∆xM = [SySxM ⊕y ∆ySxM ]⊕x ∆xM

= . . . = [((Sk
yS

k
xM ⊕y ∆yS

k−1
y Sk

xM)⊕y . . .]⊕x ∆xM ;

see Figure 1, where we depict the operations ⊕x and ⊕y .

Then one can obtain the analogue of formula (1), which
allows to compute the probability of the image M in the
original scale, by computing the probability of M in re-
duced resolution multiplicated by the respective conditional
probabilities which tell us “how much probabability” we
have to add to increase the resolution.

Thus, exactly as is the case for vectors, PNF applied to
images gives us the following features:

• density model on images,

• ability to upscale the resolution,

• lower dimensional manifold with the true projection.

3. Experiments
The main step in the training process of PNF is to train: 1◦

the baseline flow model f0 modelling significantly reduced
resolution images from the original dataset, 2◦ several con-
ditional flow generative models which can be used in the
process of upscaling the image resolution. We can use PNF
approach appropriate number of times and finally compare,
e.g., the resulting log-likelihood with the methods applied
directly to high-resolution images from the original dataset.
For the baseline generative flow model, we use RealNVP;
see. (Dinh et al., 2016). We follow the same multi-scale
architecture for all conditional models, as well.

For the toy-example, we choose MNIST dataset, upscaled to
32× 32 pixels. Following (Dinh et al., 2016), we also con-
sider CIFAR-10 (Krizhevsky et al., 2009) and CelebFaces
Attributes (Liu et al., 2015) (CelebA, downscaled to 64× 64
pixels) datasets. To illustrate the point of our approach dur-
ing the training phase, in the of case the original dataset
with images of the size D × D (D = 4d), we proceed as
follows. First we train the baseline RealNVP model f0 for
the downscaled images of the size d × d. Next, we keep
progressing by modelling four conditional flow models fx1 ,
fy1 , fx2 , fy2 trained on the images rescaled to the resolution
2d× d, 2d× 2d, 4d× 2d, 4d× 4d = D ×D, respectively.
The training and conditioning observations are provided by
application of Sx, Sy and ∆x,∆y operators, described in
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Figure 2. Upscaling pipeline with PNF models. From the left:
image sampled by baseline RealNVP model f0 trained on low-
resolution (8× 8 pixels) MNIST dataset, upscaled images of the
size 16× 8, 16× 16, 32× 16, 32× 32 pixels with PNF models
fx
1 , f

y
1 , f

x
2 , f

y
2 , respectively.

Figure 3. Upscaling pipeline with PNF models. From the left:
image sampled by baseline RealNVP model f0 trained on low-
resolution (16× 16 pixels) CelebA dataset, upscaled images of the
size 32× 16, 32× 32, 64× 32, 64× 64 pixels with PNF models
fx
1 , f

y
1 , f

x
2 , f

y
2 , respectively.

Section 2; see also Figure 1, where we depict the process
of these operations in the case of test image from CelebA
dataset.

For example, in the case of base images rescaled to 32× 32
(MNIST and CIFAR-10 case), we train the following models:

• baseline flow model f0 for images 8× 8,

• conditional flow models fx1 , fy1 , fx2 , fy2 for images
∆z(I) conditioned by Sz(I) (z ∈ {x, y}), where I is
of the size 16×8, 16×16, 32×16, 32×32, respectively.

Figure 2 shows a sample image generated by the above
model f0 and resulting upscaled images by using the gener-
ative models fx1 , fy1 , fx2 , fy2 ; when upscaling the images we
sample from generative flow models with a fixed zero noise.

In the case of MNIST dataset we consider both dense (lin-
ear) and convolutional architectures for RealNVP coupling
layers. In the dense case, we use 6 affine coupling layers
as invertible dense neural networks (18 layers). We follow
(Dinh et al., 2016) and use the same architecture for convo-
lutional coupling layers of RealNVP models for CIFAR-10
(same for MNIST) and CelebA datasets. Figure 3 is analog
of Figure 2, but with PNF trained on CelebA dataset.

For the purpose of comparison, for each considered dataset
(images of D ×D pixels), i.e. MNIST (D = 32), CIFAR-
10 (D = 32) and CelebA (D = 64), we train the reference
baseline model f and all the five PNF models f0, fx1 , fy1 , fx2 ,
fy2 . We use regular train/test splits for each dataset. For the
analysis, we compare the log-likelihood value (and resulting

Figure 4. Upscaling the low-resolution CelebA images. Columns
from the left: downscaled (16 × 16 pixels) test CelebA image,
upscaled images with PNF models fx

1 , fy
1 , fx

2 and fy
2 , respectively.

Table 1. Log-likelihood and bits-per-dimension (in parenthesis)
values for baseline RealNVP and our PNF models. For the MNIST
dataset we considered both dense (top value) and convolutional
(bottom) architecture of the coupling layers.

DATA SET REALNVP PNF

MNIST
4433.35 (1.75) 4857.89 (1.16)
4473.32 (1.70) 4264.79 (2.00)

CIFAR-10 9421.04 (3.57) 8891.81 (3.82)

CELEBA 46787.85 (2.51) 44092.34 (2.82)

bits-per-dimension) obtained by baseline model f and all
PNF models; we evaluate the models using testing split for
each considered dataset. For the training process we chose
ADAM algorithm (Da, 2014) with default hyperparameters
and use an L2 regularization on the weight scale parameters
with coefficient 5 ·10−5. We train all flow models by setting
the prior pZ to be an isotropic unit norm Gaussian.

In the case of CIFAR-10 and CelebA datasets the baseline
models reproduces the results in (Dinh et al., 2016). Let
us remark that, in the case of CelebA dataset, we trained
the baseline model for more iterations and achieved better
bits-per-dimension value (see Table 1) than the one given in
reference paper (Dinh et al., 2016).

4. Conclusion
In this paper we introduced a new flow-based architecture,
which can be seen as the fusion of classical flow models
and autoregressive models. Since we split the space as done
in the case of the wavelet transform, we obtain progressive
densites of the data scaled to respective lower resolution.
This allows us to view the lower resolution images as the
latent, which is decoded to the original resolution by the
upscaling given by the respective flow model with zero
noise.
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