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Abstract—Robotic motion in unknown cluttered environments
often failures from catastrophic collisions and obstructions due to
constrained free-motion space and light-suffer challenges.
Multimodal tactile perception with force and proximity sensing
offers inherent advantages in overcoming these limitations. This
paper proposes a tactile-based interactive motion planning method
(TI-P) using multimodal tactile sensing, which utilizes real-time
tactile feedback to perceive the environment and infer the force-
displacement characteristics of interacting objects. These
interaction features are integrated into a sampling-based motion
planner to predict the maximum connectivity probability of
candidate trajectories. Subsequently, the planner interpolates
sampled points and extrapolates the motion of objects along the
trajectory to compute the optimal interaction forces for driving the
robot. Simulation results demonstrate that the proposed planner
effectively guides the robot to compliantly manipulate obstacles in
its path, significantly improving motion adaptability in unknown
cluttered environments.

Keywords—interactive motion planning, tactile perception,
unknown cluttered environments, perception-motion closed loop

I. INTRODUCTION

The recent surge in research interest surrounding the
autonomous motion of robotic agents in cluttered environments
stems from their potential applicability in community-level
scenarios [1-4]. These applications span unstructured domains
such as households[5] and elderly care facilities[6], where
environmental unpredictability necessitates superior motion
adaptability compared to structured industrial environments.

The primary objective of deploying robots in community
environments is replace human labor, mitigate workforce
shortages, and enhance daily convenience[5, 7]. However, such
environments often feature highly cluttered spaces due to
efficient space utilization and human living habits. This results
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in light-suffer and constrained free-motion space, posing
significant challenges to robotic perception and movements.
While visual perception remains prone to high uncertainty,
catastrophic collisions may lead to motion failure. In contrast,
humans rely on tactile perception to perceive their surroundings
and reconfigure the spatial state of manipulable objects to
facilitate movement—a capability that remains challenging for
robots to replicate.

Prior studies have incorporated tactile feedback at the
control level to achieve compliant environmental interaction
through contact force regulation [2, 8]. However, the success of
such methods heavily depends on predefined motion
trajectories. Recent advances explore tactile-aware motion
planning to enhance robotic adaptability in cluttered scenes [9-
11]. For instance, [9] introduced a movement primitive-based
planning method, where tactile signals are mapped to
predefined motion primitives for tactile-guided navigation. In
environments with movable objects, a physics simulation-aided
planner is proposed[11]. The pre-optimizes actions in
simulation can prevent catastrophic collisions. Nevertheless,
these methods rely on prior knowledge of object interaction
properties, limiting their deployment in unknown environments.
Ideally, robots should autonomously infer interaction
characteristics and integrate such knowledge into planners to
generate adaptive interaction strategies.

Inspired by human tactile-guided interaction behaviors, we
propose a Tactile-based Interactive Motion Planner (TI-P)—a
closed-loop framework constrained by multi-dimensional
object interaction features. The TI-P architecture comprises:

1) An environment understanding module that infers
object interaction features from multimodal tactile data
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generated during bodily interactions, enabling behavior-guided
perception;

2) A planner module that generates interpretable
interaction actions using these features, achieving perception-
guided behavior.

By integrating real-time tactile inference with spatial state
reconfiguration of operational objects, TI-P actively expands
the free motion space, significantly enhancing robotic
adaptability in unknown cluttered environments (Fig.1).

The planner employs a sampling-based method to compute
intermediate waypoints with maximal connectivity probability,
using operational-weighted grid maps and target positions as
constraints [12]. These waypoints are interpolated to generate a
reference trajectory. For execution, an impedance controller
tracks the trajectory while maintaining compliant interaction
[13] (Fig.2).
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Fig.1: Overview of Tactile-based Interactive Motion Planner (TI-P).

We constructed a cluttered tabletop environment in PyBullet

[14] to evaluate TI-P, simulating real-world community settings.

The scene contains cylindrical objects with randomized
physical properties, fixed at arbitrary locations. During testing,
the workflow begins by generating a random target pose within
the workspace with number range of [1, 4]. And then loading
six objects occupying 57% of the workspace volume. Ten trials
were conducted for each test condition.
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Fig.2: Example comparing the performance of sampling-based planners under
constrained free-motion workspace. (a) A boundary-constrained sampling-
based planner fails to find a feasible path due to the absence of collision-free
solutions. (b) An operational-feature-constrained sampling-based planner
successfully completes the task in the same constrained workspace by inferring
object interaction characteristics to generate interactive trajectories.

We benchmarked TI-P against a boundary-constrained
sampling-based planner (BS-P) with impedance control.

Experimental results demonstrate that TI-P achieves a 55%
higher success rate, attributed to two key advantages:

1. The baseline fails when intermediate arm links are blocked
by fixed objects. TI-P circumvents this by dynamically
delineating restricted zones in the configuration space.

2. The baseline’s impedance control generates insufficient
interaction forces to displace movable objects. TI-P overcomes
this by applying force compensation based on real-time
interaction characteristics @ identification.

TABLE L. PERFORMANCE EVALUATION AMOBG TI-P AND BS-P
Planning Number of target points
Methods 1 2 3 4
TI-P 100% 100% 80% 60%
BS-P 30% 10% 0% 0%

Furthermore, we tested the motion performance of TI-P in a
cluttered and crowded cabinet scenario. This environment
contains a large number of movable and immovable everyday
objects. These items are tightly arranged inside the cabinet,
making it difficult for the robot to find a collision-free path. The
objective of the experiment was to have the robotic arm reach
and touch a beverage located deep

inside the cabinet.

Fig. 3: Sequence of the robot touching the beverage inside the cabinet.

The test results demonstrate that TI-P can reliably update the
manipulation cost of objects in the environment through tactile
perception data. These updated costs are then used to constrain
the sampling-based motion planning method. When the robot
made contact with the kettle, tactile exploration led to its
manipulation cost being updated to 1. Since this exceeded the
maximum manipulation capability (Fig. 3a), a bypass strate%y
was adopted (Fig. 3b). Subsequently, upon contact with the
plastic bottle and given its lower manipulation cost, the robot
expanded the free motion space by repositioning the bottle (Fig.
3c§, ultimately achieving contact with the beverage (Fig. 3d).
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