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Abstract—Robotic motion in unknown cluttered environments 

often failures from catastrophic collisions and obstructions due to 
constrained free-motion space and light-suffer challenges. 
Multimodal tactile perception with force and proximity sensing 
offers inherent advantages in overcoming these limitations. This 
paper proposes a tactile-based interactive motion planning method 
(TI-P) using multimodal tactile sensing, which utilizes real-time 
tactile feedback to perceive the environment and infer the force-
displacement characteristics of interacting objects. These 
interaction features are integrated into a sampling-based motion 
planner to predict the maximum connectivity probability of 
candidate trajectories. Subsequently, the planner interpolates 
sampled points and extrapolates the motion of objects along the 
trajectory to compute the optimal interaction forces for driving the 
robot. Simulation results demonstrate that the proposed planner 
effectively guides the robot to compliantly manipulate obstacles in 
its path, significantly improving motion adaptability in unknown 
cluttered environments. 

Keywords—interactive motion planning, tactile perception, 
unknown cluttered environments, perception-motion closed loop 

I. INTRODUCTION  
The recent surge in research interest surrounding the 

autonomous motion of robotic agents in cluttered environments 
stems from their potential applicability in community-level 
scenarios [1-4]. These applications span unstructured domains 
such as households[5] and elderly care facilities[6], where 
environmental unpredictability necessitates superior motion 
adaptability compared to structured industrial environments. 

The primary objective of deploying robots in community 
environments is replace human labor, mitigate workforce 
shortages, and enhance daily convenience[5, 7]. However, such 
environments often feature highly cluttered spaces due to 
efficient space utilization and human living habits. This results 

in light-suffer and constrained free-motion space, posing 
significant challenges to robotic perception and movements. 
While visual perception remains prone to high uncertainty, 
catastrophic collisions may lead to motion failure. In contrast, 
humans rely on tactile perception to perceive their surroundings 
and reconfigure the spatial state of manipulable objects to 
facilitate movement—a capability that remains challenging for 
robots to replicate. 

Prior studies have incorporated tactile feedback at the 
control level to achieve compliant environmental interaction 
through contact force regulation [2, 8]. However, the success of 
such methods heavily depends on predefined motion 
trajectories. Recent advances explore tactile-aware motion 
planning to enhance robotic adaptability in cluttered scenes [9-
11]. For instance, [9] introduced a movement primitive-based 
planning method, where tactile signals are mapped to 
predefined motion primitives for tactile-guided navigation. In 
environments with movable objects, a physics simulation-aided 
planner is proposed[11]. The pre-optimizes actions in 
simulation can prevent catastrophic collisions. Nevertheless, 
these methods rely on prior knowledge of object interaction 
properties, limiting their deployment in unknown environments. 
Ideally, robots should autonomously infer interaction 
characteristics and integrate such knowledge into planners to 
generate adaptive interaction strategies.  

Inspired by human tactile-guided interaction behaviors, we 
propose a Tactile-based Interactive Motion Planner (TI-P)—a 
closed-loop framework constrained by multi-dimensional 
object interaction features. The TI-P architecture comprises:   

1) An environment understanding module that infers 
object interaction features from multimodal tactile data 

mailto:2310292@tongji.edu.cn
mailto:yanmin.zhou@tongji.edu.cn
mailto:wangzhipeng@tongji.edu.cn
mailto:11132@tongji.edu.cn
mailto:hebin@tongji.edu.cn


generated during bodily interactions, enabling behavior-guided 
perception;   

2) A planner module that generates interpretable 
interaction actions using these features, achieving perception-
guided behavior.  

By integrating real-time tactile inference with spatial state 
reconfiguration of operational objects, TI-P actively expands 
the free motion space, significantly enhancing robotic 
adaptability in unknown cluttered environments (Fig.1).  

The planner employs a sampling-based method to compute 
intermediate waypoints with maximal connectivity probability, 
using operational-weighted grid maps and target positions as 
constraints [12]. These waypoints are interpolated to generate a 
reference trajectory. For execution, an impedance controller 
tracks the trajectory while maintaining compliant interaction 
[13] (Fig.2). 

 
Fig.1: Overview of Tactile-based Interactive Motion Planner (TI-P). 

We constructed a cluttered tabletop environment in PyBullet 
[14] to evaluate TI-P, simulating real-world community settings. 
The scene contains cylindrical objects with randomized 
physical properties, fixed at arbitrary locations. During testing, 
the workflow begins by generating a random target pose within 
the workspace with number range of [1, 4]. And then loading 
six objects occupying 57% of the workspace volume. Ten trials 
were conducted for each test condition. 

 
Fig.2: Example comparing the performance of sampling-based planners under 
constrained free-motion workspace. (a) A boundary-constrained sampling-
based planner fails to find a feasible path due to the absence of collision-free 
solutions. (b) An operational-feature-constrained sampling-based planner 
successfully completes the task in the same constrained workspace by inferring 
object interaction characteristics to generate interactive trajectories. 

We benchmarked TI-P against a boundary-constrained 
sampling-based planner (BS-P) with impedance control. 

Experimental results demonstrate that TI-P achieves a 55% 
higher success rate, attributed to two key advantages:  

1. The baseline fails when intermediate arm links are blocked 
by fixed objects. TI-P circumvents this by dynamically 
delineating restricted zones in the configuration space.   

2. The baseline’s impedance control generates insufficient 
interaction forces to displace movable objects. TI-P overcomes 
this by applying force compensation based on real-time 
interaction characteristics  identification. 

TABLE I.  PERFORMANCE EVALUATION AMOBG TI-P AND BS-P 

Planning 
Methods 

Number of target points 
1 2 3 4 

TI-P 100% 100% 80% 60% 

BS-P 30% 10% 0% 0% 

 

Furthermore, we tested the motion performance of TI-P in a 
cluttered and crowded cabinet scenario. This environment 
contains a large number of movable and immovable everyday 
objects. These items are tightly arranged inside the cabinet, 
making it difficult for the robot to find a collision-free path. The 
objective of the experiment was to have the robotic arm reach 
and touch a beverage located deep inside the cabinet.

 
Fig. 3: Sequence of the robot touching the beverage inside the cabinet. 

The test results demonstrate that TI-P can reliably update the 
manipulation cost of objects in the environment through tactile 
perception data. These updated costs are then used to constrain 
the sampling-based motion planning method. When the robot 
made contact with the kettle, tactile exploration led to its 
manipulation cost being updated to 1. Since this exceeded the 
maximum manipulation capability (Fig. 3a), a bypass strategy 
was adopted (Fig. 3b). Subsequently, upon contact with the 
plastic bottle and given its lower manipulation cost, the robot 
expanded the free motion space by repositioning the bottle (Fig. 
3c), ultimately achieving contact with the beverage (Fig. 3d). 
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