
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENTIABLE RULE INDUCTION FROM RAW SE-
QUENCE INPUTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Rule learning-based models are widely used in highly interpretable scenarios for
their transparent structures. Inductive logic programming (ILP) is a form of ma-
chine learning that induces rules from facts and keeps the interpretability. Differ-
entiable ILP models enhance their learning ability in a robust and scalable manner
with the advantages of neural networks. However, most differentiable ILP meth-
ods learn from symbolic datasets. Learning from raw data needs an ILP model to
tackle the label leakage problem: The inability to map continuous inputs to sym-
bolic variables without explicit supervision. In this work, we incorporate a self-
supervised differentiable clustering model and a novel differentiable ILP model to
learn from raw data without leaking the labels. The learned rules describe the raw
data with its features. We demonstrate that our method learns generalized rules
from time series and images intuitively and precisely.

1 INTRODUCTION

The deep learning models have obtained impressive performances on tabular classification, time se-
ries forecasting, image recognition, etc. While in highly trustworthy scenarios such as health care,
finance, and policy-making process (Doshi-Velez & Kim, 2017), lacking explanations for decision-
making prevents the applications of these complex deep learning models. However, the rule-learning
models have interpretability intrinsically to explain the classification process. Inductive logic pro-
gramming (ILP) is a form of logic-based machine learning that aims to learn logic programs for gen-
eralization and interpretability from training examples and background knowledge (Cropper et al.,
2022). Traditional ILP methods design deterministic algorithms to induce rules from symbolic data
to more generalized formal symbolic first-order languages (Quinlan, 1990; Blockeel & Raedt, 1998).
However, these symbolic ILP methods face robustness and scalability problems when learning from
large-scale and ambiguous datasets (Evans et al., 2021; Hocquette et al., 2024). With the sake
of robustness of neural networks, the neuro-symbolic ILP by combining neural networks and ILP
methods can learn from noisy data (Evans & Grefenstette, 2018; Manhaeve et al., 2018; Gao et al.,
2022a) and can be applied to large-scale datasets (Yang et al., 2017; Gao et al., 2024; Phua & Inoue,
2024). However, existing neuro-symbolic ILP methods are mainly learned from discrete symbolic
data or fuzzy symbolic data that the likelihoods are generated from a pre-trained neural network
module (Evans et al., 2021; Shindo et al., 2023). Learning logic programs from raw data is pre-
vented because of the label leakage problem, which is common in neuro-symbolic research (Topan
et al., 2021): The leakage happens by introducing labels of ground objects for inducing rules (Evans
& Grefenstette, 2018; Shindo et al., 2023). In fact, generating rules to describe objects in raw data
without label information is necessary, especially when some objects are easily overlooked or lack
labels yet are important for describing the data.

In this study, we propose Neural Rule Learner (NeurRL) that specifically focuses on learning logic
programs directly from raw sequences, such as time series data and flattened image data. Compared
to previous approaches with label leakage, which first obtain object labels from pre-trained neural
networks and then use differentiable ILP methods to induce rules supervised by these labels, our
method does not use a pre-trained neural network to generate symbolic labels. Instead, we use unsu-
pervised machine learning methods, specifically differentiable clustering, to discretize the data into
different features. Then, a differentiable rule-learning module is applied to find rules that describe
input classes based on the distributions of the corresponding features. Thus, the model can be trained
efficiently in a fully differentiable manner while avoiding the label leakage problem.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The detailed contributions of this study are as follows: Firstly, we formally defined the ILP learning
task from raw inputs based on the learning from the interpretation transition setting of ILP. Secondly,
we design a fully differentiable learning framework from raw sequences to symbolic rules, where we
also propose a novel interpretable rule-learning module with multiple dense layers. Lastly, we test
the model on various time series data and image data to prove the effectiveness and interpretability
of the model.

2 RELATED WORK

Inductive logic programming (ILP), introduced by Muggleton & Feng (1990); Muggleton & Raedt
(1994), learns logic programs from symbolic positive and negative examples with background
knowledge. Inoue et al. (2014) proposed learning from interpretation transitions, and Phua &
Inoue (2021) applied ILP to Boolean networks. Manhaeve et al. (2018); Evans & Grefenstette
(2018) adapted neural networks for differentiable and robust logic program learning, while Gao
et al. (2022b) introduced a neural network-based ILP model for learning from interpretations. This
model was later extended for scalable learning from knowledge graphs (Gao et al., 2022a; 2024).
Similarly, Liu et al. (2024) proposed a deep neural network for inducing mathematical functions.
In our work, we present a novel neural network-based model for learning logic programs from raw
numeric inputs.

In the raw input domain, Evans & Grefenstette (2018) proposed ∂ILP to learn rules from symbolic
relational data, using a pre-trained neural network to map raw input data to symbolic labels. Unlike
∂ILP, which enforces a strong language bias by predefining logic templates and limiting the number
of rule atoms, NeurRL uses only predicate types as language bias. Similarly, Evans et al. (2021)
used pre-trained networks to map sensory data to disjunctive sequences, followed by binary neural
networks to learn rules. Shindo et al. (2023) introduced αILP, leveraging object recognition models
to convert images into symbolic atoms and employing top-k searches to pre-generate clauses, with
neural networks optimizing clause weights. Our approach avoids pre-trained large-scale neural net-
works for mapping raw inputs to symbolic representations. Instead, we propose a fully differentiable
framework to learn rules directly from raw sequences. Additionally, unlike the memory-intensive
rule candidate generation required by ∂ILP and αILP, NeurRL eliminates this step, enhancing scal-
ability.

Adapting autoencoder and clustering methods in the neuro-symbolic domain shows promise. San-
sone & Manhaeve (2023) applies conventional clustering on input embeddings for deductive logic
programming tasks. Misino et al. (2022) and Zhan et al. (2022) use autoencoders and embeddings
to calculate probabilities for predefined symbols to complete deductive logic programming and pro-
gram synthesis tasks. In our approach, we use an autoencoder to learn representations for sub-areas
of raw inputs, followed by a differentiable clustering method to assign ground atoms to similar pat-
terns. The differentiable rule-learning module then searches for rule embeddings with these atoms
in a bottom-up manner (Cropper & Dumancic, 2022). Similarly, DIFFNAPS, proposed by Walter
et al. (2024), also uses an autoencoder to build hidden features and explain raw inputs. Additionally,
BotCL, introduced by Wang et al. (2023), uses attention-based features to explain the ground truth
class. However, the logical connections between the features used in DIFFNAPS and BotCL to de-
scribe the ground truth class are unclear. In contrast, rule-based explainable models like NeurRL
use feature conjunctions to describe the ground truth class.

Azzolin et al. (2023) use a post-hoc rule-based explainable model to globally explain raw inputs
based on local explanation results. In contrast, our model directly learns rules from raw inputs,
and the performance of NeurRL is not influenced by other global explainable models. Das et al.
(1998) used clustering to split sequence data into subsequences and symbolize each subsequence for
rule discovery. Our model uses a fully differentiable framework that combines clustering and rule-
learning methods to discover rules from sequence and image data, with the rule-learning module
providing gradient information to prevent cluster collapse (Sansone, 2023). He et al. (2018) viewed
similar subsequences, called motifs, as potential rule bodies. In our approach, we do not impose a
limit on the number of body atoms in a rule. Wang et al. (2019) introduced SSSL, which learns rules
from sequence data using shapelets as body atoms, maximizing dataset information gain. Our model
expands on this by using raw data subsequences as rule body atoms and evaluating rule quality with
precision and recall, a feature not present in SSSL.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES

3.1 LOGIC PROGRAMS AND INDUCTIVE LOGIC PROGRAMMING

A first-order language L = (D,F,C, V) (Lloyd, 1984) consists of predicates D, function symbols
F , constants C, and variables V . A term is a constant, variable, or expression f(t1, . . . , tn) with
f as an n-ary function symbol. An atom is a formula p(t1, . . . , tn), where p is an n-ary predicate
symbol. A ground atom (fact) has no variables. A literal is an atom or its negation; positive literals
are atoms, and negative literals are their negations. A clause is a finite disjunction of literals, and a
rule (definite clause) is a clause with one positive literal, e.g., αh∨¬α1∨¬α2∨· · ·∨¬αn. A rule r is
written as: αh ← α1, α2, . . . , αn, where αh is the head (head(r)), and {α1, α2, . . . , αn} is the body
(body(r)), with each atom in the body called a body atom. A logic program P is a set of rules. In
first-order logic, a substitution is a finite set {v1/t1, v2/t2, . . . , vn/tn}, where each vi is a variable,
ti is a term distinct from vi, and v1, v2, . . . , vn are distinct (Lloyd, 1984). A ground substitution has
all ti as ground terms. The ground instances of all rules in P are denoted as ground(P).

The Herbrand base BP of a logic program P is the set of all ground atoms with predicate symbols
from P , and an interpretation I is a subset of BP containing the true ground atoms (Lloyd, 1984).
Given I , the immediate consequence operator TP : 2BP → 2BP for a definite logic program P is
defined as: TP (I) = {head(r) | r ∈ ground(P), body(r) ⊆ I} (Apt et al., 1988). A logic program
P with m rules sharing the same head atom αh and n possible body atoms can be represented as a
matrix MP ∈ [0, 1]m×n. Each element akj in MP is defined as follows (Gao et al., 2022a): If the
k-th rule is αh ← αj1 ∧ · · · ∧ αjp , then akji = li, where li ∈ (0, 1) and

∑p
s=1 ls = 1 (1 ≤ i ≤

p, 1 < p, 1 ≤ ji ≤ n, 1 ≤ k ≤ m). If the k-th rule is αh ← αj , then akj = 1. Otherwise, akj = 0.
Each row of MP represents a rule in P , and each column represents a body atom. An interpretation
vector vI ∈ {0, 1}n corresponds to an interpretation I , where vI [i] = 1 if the i-th ground atom
is true in I , and vI [i] = 0 otherwise. Given an interpretation vector vI , the algebraic immediate
consequence operator DP : {0, 1}n → {0, 1}m is defined as follows (Sakama et al., 2021):

DP (vI) = θ(MPvI), (1)

where the function θ is a threshold function: θ(x) = 1 if x ≥ 1, otherwise θ(x) = 0. The Boolean
value of the head atom v(αh) is computed as v(αh) =

∨m
i=1 DP (vI)[i]. Additionally, Gao et al.

(2024) replaces θ(x) with a differentiable threshold function and the fuzzy disjunction
∨̃m

i=1x[i] =
1−

∏m
i=1 x[i] to obtain the differentiable immediate consequence operator.

Inductive logic programming (ILP) aims to induce logic programs from training examples and back-
ground knowledge (Muggleton et al., 2012). ILP learning settings include learning from entail-
ments (Evans & Grefenstette, 2018), interpretations (Raedt & Dehaspe, 1997), proofs (Passerini
et al., 2006), and interpretation transitions (Inoue et al., 2014). In this paper, we focus on learning
from interpretation transitions: Given a set E ⊆ 2BP × 2BP of interpretation pairs (I, J), the goal
is to learn a logic program P such that TP (I) = J for all (I, J) ∈ E.

3.2 SEQUENCE DATA AND DIFFERENTIABLE CLUSTERING METHOD

A raw input consists of an instance (x,y), where x ∈ RT1×T2×···×Td represents real-valued ob-
servations and y ∈ {0, 1}C is the class label, with C classes. A sequence input is a type of raw
input where x ∈ RT is an ordered sequence of real-valued observations (Wang et al., 2019).
A subsequence si of length l from sequence x = (x1, x2, . . . , xT) is a contiguous sequence
(xi, . . . , xi+l−1) (Das et al., 1998). All possible subsequence with length l include s1, . . . , sT−l+1.
Clustering can be used to discover new categories (Rokach & Maimon, 2005). In the paper, we adapt
the differentiable k-means method (Fard et al., 2020) to group raw data x ∈ X. First, an autoencoder
A generates embeddings hγ for x, where γ represents the parameters. Then, we set K clusters to
discretize all raw data x. The representation of the k-th cluster is rk ∈ Rp, with p as the dimension,
andR = {r1, . . . , rK} as the set of all cluster representations. For any vector y ∈ Rp, the function
cf (y;R) returns the closest representation based on a fully differentiable distance function f . Then,
the differentiable k-means problems are defined as follows:

min
R,γ

∑
x∈X

f(x, A(x; γ)) + λ

K∑
k=1

f(hγ(x), rk)Gk,f (hγ(x), α;R), (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where the parameter λ regulates the trade-off between seeking good representations for x and the
representations that are useful for clustering. The weight function G is a differentiable minimum
function proposed by Jang et al. (2017):

Gk,f (hγ(x), α;R) =
e−αf(hγ(x),rk)∑K

k′=1 e
−αf(hγ(x),rk′)

, (3)

where α ∈ [0,+∞). The larger α makes the different minimum function like the discrete minimum
function. However, the smaller α makes the training process smoother1.

4 METHODS

4.1 PROBLEM STATEMENT AND FORMALIZATION

In this subsection, we define the learning problem from raw inputs using the interpretation transition
setting of ILP and describe the language bias of rules for sequence data. We apply a neuro-symbolic
description method from Marconato et al. (2023) to describe a raw input: (i) assume the label y
depends entirely on the state of K symbolic concepts B = (a1, a2, . . . , aK), which capture high-
level aspects of x, (ii) the concepts B depend intricately on the sub-symbolic input x′ and are
best extracted using deep learning, (iii) the relationship between y and B can be specified by prior
knowledge B, requiring reasoning during inference.

In this paper, we treat each subset of raw input as a constant and each concept as a ground atom. For
example, in sequence data x ∈ X, if a concept increases from the point 0 to 10, the corresponding
ground atom is increase(x[0 : 10]). We define the body symbolization function Lb to convert a
continuous sequence x into discrete symbolic concepts, so that all symbolic concepts B in all raw
inputs X are B = Lb(X). The head symbolization function Lh maps an input x to a set of atoms:
if the class of x is the target class t, then Lh(x) = {ht}; otherwise, Lh(x) = ∅. The target atom ht

represents the target class, where ht being true means the instance belongs to the positive class. A
logic program P for binary class raw inputs consists of rules with the same head atom ht. We define
the Herbrand base BP in a logic program as the set of all symbolic concepts B in all raw inputs
and the head atom ht. For a raw input x, Lb(x) represents a set of symbolic concepts I ⊆ BP ,
which can be considered an interpretation. The task of inducing a logic program P from raw inputs
is framed within the learning from interpretation transition setting of ILP as follows:

Definition 1 (Learning from Raw Input) Given a set of raw inputs X, the learning task is to learn
a logic program P , where TP (Lb(x)) = Lh(x) holds for all raw inputs x ∈ X.

In the paper, we aim to learn rules to describe the target class with the body consisting of multiple
sequence features. Each feature corresponds to a subsequence of the sequence data. Besides, each
feature includes the pattern information and region information of the subsequence. Based on the
pattern information, we further infer the mean value and tendency information of the subsequence.
Using the region predicates, we can apply NeurRL to the dataset, where the temporal relationships
between different patterns play a crucial role in distinguishing positive from negative examples.
Specifically, we use the following rules to describe the sequence data with the target class:

ht ← patterni1(Xj1), regionk1
(Xj1), . . . , patternin1

(Xjn2
), regionkn3

(Xjn2
), (4)

where the predicate patterni indicates the i-th pattern in all finite patterns within all sequence
data, the predicate regionk indicates the k-th region in all regions in a sequence, and the variable
Xj can be substituted by a subsequence of the sequence data. For example, pattern1(x[0 : 5]) and
region0(x[0 : 5]) indicate that the subsequence x[0 : 5] matches the pattern with index one and
belongs to the region with index zero, respectively. A pair of atoms, patterni(X)∧regionk(X),
corresponds to a feature within the sequence data. In this pair, the variables are identical, with
one predicate representing a pattern and the other representing a region. We infer the following
information from the rules in format (4): In a sequence input x, if all pairs of ground patterns and
regions atoms substituted by subsequences in x are true, then the sequence input x belongs to the
target class represented by the head atom ht.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Dense
layer

Em
be

dd
in

gs

Encoder Decoder

Differentiable
k-means

All
subsquences s

of a series x

Reconstructed
subquences s’

Deep
rule learning

module

Logic programs P
r1r1

r3r3

r2r2

r4r4

z

Label of the series x

Extract

Predicted label

Legend

Differentiable path

Predict

Loss for autoencoder
（supervised）

Loss for DeepFOL
(suoervised)

Loss for differentiable k-
means (unsupervised)

Dense
layer

Dense
layerDense

layer

vIvI

v(ht)v(ht)

(a) Learning pipeline.

a1a1

a1 ∧ a2a1 ∧ a2 a3 ∧ a4a3 ∧ a4

h ← (a1 ∧ a2 ∧ a3) ∨ (a3 ∧ a4)h ← (a1 ∧ a2 ∧ a3) ∨ (a3 ∧ a4)

a2a2 a3a3 a4a4

a3a3

0.58 0.4

0.58 0.4

0.9
Input nodes

First layer

Second layer

Fuzzy disjunction

M1M1

M2M2

a1 ∧ a2 ∧ a3a1 ∧ a2 ∧ a3
0.34 0.23 0.36

0.45 0.5

0.9

a3 ∧ a4a3 ∧ a4
0.41 0.45

(b) Deep rule-learning module.

Figure 1: The learning pipeline of NeurRL and the rule-learning module.

4.2 DIFFERENTIABLE SYMBOLIZATION PROCESS

In this subsection, we design a differentiable body symbolization function L̃b, inspired by differen-
tiable k-means (Fard et al., 2020), to transform numeric sequence data x into a fuzzy interpretation
vector vI ∈ [0, 1]n. This vector encodes fuzzy values of ground patterns and region atoms substi-
tuted by input subsequences. A higher value in vI [i] indicates the i-th atom in the interpretation I
is likely true. Using the head symbolization function J = Lh(x), we determine the target atom’s
Boolean value v(ht), where v(ht) = 1 if J = {ht} and v(ht) = 0 if J = ∅. Building on (Gao et al.,
2024), we learn a logic program matrix MP ∈ [0, 1]m×n such that

∨̃m

i=1DP (vI)[i] = v(ht) holds.
The rules in format (4) are then extracted from MP , generalized from the most specific clause with
all pattern and region predicates.

The architecture of NeurRL is presented in Fig. 1a: To learn logic program P from the sequence data,
we first divide each sequence input x into shorter subsequences s of length l, using a unit step stride.
The encoder recognizes subsequence data s to an embedding space z2, and the decoder reconstructs
the subsequence data s′ from the embedding space z. The differentiable k-means described in
Section 3.2 distribute the embeddings z and consequently assign input subsequence s into different
groups r, and each group of subsequences having a similar pattern. Then, we can obtain the fuzzy
interpretation vector vI and Boolean values of target atom v(ht) corresponding to each sequence
instance. Lastly, the differentiable rule-learning module can be applied to learn high-level rules
describing the target class with vI ’s as inputs and v(ht)’s as labels corresponding to all sequence
inputs.

Now, we describe the method to build the differentiable body symbolization function L̃b from se-
quence x to interpretation vector vI as follows: Let K be the maximum number of clusters based on
the differentiable k-means algorithm, each subsequence s with the length l in x and the correspond-
ing embedding z has a cluster index c (1 ≤ c ≤ K), and each sequence input x can be transferred
into a vector of cluster indexes c ∈ {0, 1}K×(|x|−l+1). Additionally, to incorporate temporal or
spatial information into the predicates of the target rules, we divide the entire sequence data into P
equal regions. The region of a subsequence s is determined by the location of its first point, s[0].
For each subsequence s, we calculate its cluster index vector cs ∈ [0, 1]K using the weight function
Gk,f as defined Eq. (2), where cs[k] = Gk,f (hγ(s), α;R) (1 ≤ k ≤ K and

∑K
i=1 cs[i] = 1). A

higher value in the i-th element of cs indicates that the subsequence s is more likely to be grouped
into the i-th cluster. Hence, we can transfer the sequence input x ∈ RT to cluster index tensor with
the possibilities of cluster indexes of subsequences in all regions cx ∈ [0, 1]K×lp×P , where lp is the
number of subsequence in one region of input sequence data ⌈|x| /P ⌉. To calculate the cluster index
possibility of each region, we sum the likelihood of cluster index of all subsequence within one re-
gion in cluster index tensor cx and apply softmax function to build region cluster matrix cp ∈ RK×P

1We set α to 1000 in the whole experiments.
2Note that based on different types of input data, the structure of the encoder can be different. We use fully

connected layers as the encoder and decoder in the paper.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

as follows:

c[i, j] =

lp∑
k=1

cx[i, k, j], cp[i, j] =
ec[i,j]∑K
i=1 e

c[i,j]
. (5)

Since the region cluster matrix cp contains clusters index for each region and each cluster corre-
sponds to a pattern, we flatten cp into a fuzzy interpretation vector vI , which serves as the input to
the deep rule-learning module of NeurRL.

4.3 DIFFERENTIABLE RULE-LEARNING MODULE

In this section, we define the novel deep neural network-based rule-learning module to induce rules
from fuzzy interpretation vectors. Based on the label of the sequence input x, we can determine
the Boolean value of target atom v(ht). Then, using fuzzy interpretation vectors vI as inputs and
Boolean values of the head atom v(ht) as labels y, we build a novel neural network-based rule-
learning module as follows: Firstly, each input node receives the fuzzy value of a pattern or region
atom stored in vI . Secondly, one output node in the final layer reflects the fuzzy values of the head
atom. Then, the neural network consists of k dense layers and one disjunction layer. Lastly, let the
number of nodes in the k-th dense layer be m, then the forward computation process is formulated
as follows:

ŷ =
∨̃m

i=1
(gk ◦ gk−1 ◦ · · · ◦ g1(vI)) [i], (6)

where the i-th dense layer is defined as:

gi(xi−1) =
1

1− d
ReLU (Mixi−1 − d) , (7)

with d as the fixed bias3. The matrix Mi is the softmax-activated of trainable weights M̃i ∈ Rnout×nin

in each dense layer of the rule-learning module:

Mi[i, j] =
eM̃i[i,j]∑nin
j=1 e

M̃i[i,j]
. (8)

With the differentiable body symbolization function L̃b and the rule-learning module of NeurRL
denoted as NR, we now define a target function that integrates the autoencoder module, clustering
module, and rule-learning module as follows:

minR,γe,γl

∑
s∈x,x∈X f1 (s, A (s; γe)) + λ1

∑K
k=1 f1 (hγe

(s), rk)Gk,f1(hγe
(s), α;R) + λ2f2

(
NR

(
L̃b (x) ; γl

)
, y
)
,

(9)
where γe and γl represent the trainable parameters in the encoder and rule-learning module, re-
spectively. The loss function f1 and f2 are set to mean square error loss and cross-entropy loss
correspondingly. The parameters λ1 and λ2 regulate the trade-off between finding the concentrated
representations of subsequences, the representations of clusters for obtaining precise patterns, and
the representations of rules to generalize the data4. Fig. 1a illustrates the loss functions defined in
the target function (9). The supervised loss functions are applied to the autoencoder (highlighted in
orange boxes) and the rule-learning module (highlighted in blue boxes), respectively. The unsuper-
vised loss function is applied to the differentiable k-means method.

To train the model, we first pre-train an autoencoder to obtain subsequence embeddings, then ini-
tialize the cluster embeddings using k-means clustering (Lloyd, 1982) based on these embeddings.
Finally, we jointly train the autoencoder, clustering model, and rule-learning model using the tar-
get function (9) to optimize the embeddings, clusters, and rules simultaneously. We analyze the
interpretability of the rule-learning module NR. In the logic program matrix MP defined in Sec-
tion 3.1, the sum of non-zero elements in each row,

∑n
j=1 MP [i, j], is normalized to one, matching

3In our experiments, we set the fixed bias as 0.5.
4In our experiments, we assigned equal weights to finding representations, identifying clusters, and discov-

ering rules by setting λ1 = λ2 = 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the threshold in the function θ in Eq. (1). The conjunction of the atoms corresponding to non-zero
elements in each row of MP can serve as the body of a rule. Similarly, in the rule-learning module
of NeurRL, the sum of the softmax-activated weights in each layer is also one. Due to the properties
of the activation function ReLU(x−d)/(1−d) in each node, a node activates only when the sum of
the weights approaches one; otherwise, it deactivates. This behavior mimics the threshold function
θ in Eq. (1).

Similar to the logic program matrix MP , the softmax-activated weights in each layer also have
interpretability. When the fuzzy interpretation vector and Boolean value of the target atom fit the
forward process in Eq. (6), the atoms corresponding to non-zero elements in each row of the i-th
dense softmax-activated weight matrix Mi form a conjunction. From a neural network perspective,
the j-th node in the i-th dense layer, denoted as n

(i)
j , represents a conjunction of atoms from the

previous (i − 1)-th dense layer (input layer). The likelihood of these atoms appearing in the con-
junction is determined by the softmax-activated weights Mi[j, :] connecting to node n

(i)
j . In the

final k-th dense layer, the disjunction layer computes the probability of the target atom ht. The
higher likelihood conjunctions, represented by the nodes in the k-th layer, form the body of the rule
headed by ht. To interpret the rules headed by ht, we compute the product of all softmax-activated
weights Mi as the program tensor: MP =

∏k
i=1 Mi, where MP ∈ [0, 1]m×n. The program ten-

sor has the same interpretability as the program matrix, with high-value atoms in each row forming
the rule body and the target atom as the rule head. The number of nodes in the last dense layer
m determines the number of learned rules in one learning epoch. Fig. 1b shows a neural network
with two dense layers and one disjunction layer in blue. The weights in orange represent significant
softmax-activated values, with input nodes as atoms and hidden nodes as conjunctions. Multiplying
the softmax weights identifies the atoms forming the body of a rule headed by the target atom.

We use the following method to extract rules from program tensor MP : We set multiple thresholds
τ ∈ [0, 1] when the value of the element in each row of MP is larger than the threshold τ , then we
regard the atom corresponding to these elements as one of body atom in the rule with the format (4).
We calculate the precision and recall of rules on the discretized fuzzy interpretation vector generated
from the test dataset, and the threshold to discrete continuous fuzzy interpretation vector vI is set
to 0.5. Then, we keep the high-precision rules as the output. The precision and recall of a rule are
defined as follows:

precision =
nbody ∧ head

nbody
, recall =

nbody ∧ head

nhead
, (10)

where nbody ∧ head denotes the number of discretized fuzzy interpretation vectors vI that satisfy the
rule body and have the target class as the label. Similarly, nbody represents the number of discretized
fuzzy interpretation vectors that satisfy the rule body, while nhead refers to the number of instances
with the target class. When obtaining rules in the format (4), we can highlight the subsequences
satisfying the pattern and region predicates above on the raw inputs for more intuitive interpretability.

5 EXPERIMENTAL RESULTS

5.1 LEARNING FROM SYNTHETIC DATA

In this subsection, we evaluate the model on synthetic time series data based on triangular pulse
signals and trigonometric signals. Each signal contains two key patterns, increasing and decreasing,
with each pattern having a length of five units. To test NeurRL’s learning capability on a smaller
dataset, we set the number of inputs in both the positive and negative classes to two for both the
training and test datasets. In each class, the difference between two inputs at each time point is a
random number drawn from a normal distribution with a mean of zero and a variance of 0.1. The
positive test inputs are plotted in blue, and the negative test inputs in orange in Fig. 2. We set both
the length of each region and the subsequence length to five units, and the number of clusters is
set to three in this experiment. NeurRL is tasked with learning rules to describe the positive class,
represented by the head atom hp. If the ground body atoms, substituted by subsequences of an input,
hold true, the head atom hp is also true, indicating that the target class of the input is positive.

The rules with 1.0 precision (p) and 1.0 recall (r) are shown in Fig. 2. The rule in Fig. 2a states that
when pattern0 (cluster index 0) appears in region1 (from time points 5 to 9), the time series

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

label is positive. Similarly, the rule in Fig. 2b indicates that when pattern0 appears in region2

(from time points 10 to 14), the label is positive. We highlight subsequences that satisfy the rule
body in red in Fig. 2, inferring that the pattern’s trend is decreasing. These red patterns perfectly
distinguish positive from negative inputs.

hp ← pattern0(X) ∧ region1(X) (p = 1, r = 1)hp ← pattern0(X) ∧ region1(X) (p = 1, r = 1)

(a) The signals based on triangular pulse.

hp ← pattern0(X) ∧ region2(X) (p = 1, r = 1)hp ← pattern0(X) ∧ region2(X) (p = 1, r = 1)

(b) The signals based on trigonometry function.

Figure 2: The synthetic data and the learned rules.

5.2 LEARNING FROM UCR DATASETS

In this subsection, we experimentally demonstrate the effectiveness of NeurRL on 13 randomly se-
lected datasets from UCR (Dau et al., 2019), as used by Wang et al. (2019). To evaluate NeurRL’s
performance, we consider the classification accuracy from the rules extracted by the deep rule-
learning module (denoted as NeurRL(R)) and the classification accuracy from the module itself
(denoted as NeurRL(N)). The number of clusters in this experiment is set to five. The subsequence
length and the number of regions vary for each task. We set the number of regions to approxi-
mately 10 for time series data. Additionally, the subsequence length is set to range from two to five,
depending on the specific subtask.

The baseline models include SSSL (Wang et al., 2019), Xu (Xu & Funaya, 2015), and BoW (Wang
et al., 2013). SSSL uses regularized least squares, shapelet regularization, spectral analysis, and
pseudo-labeling to auto-learn discriminative shapelets from time series data. Xu’s method constructs
a graph to derive underlying structures of time series data in a semi-supervised way. BoW generates
a bag-of-words representation for time series and uses SVM for classification. Statistical details,
such as the number of classes (C.), inputs (I.), series length, and comparison results are shown in
Tab. 1, with the best results in bold and second-best underlined. The NeurRL(N) achieves the most
best results, with seven, and NeurRL(R) achieves five second-best results.

Table 1: Classification accuracy on 13 binary UCR datasets with different models.

Dataset C. I. Length Xu BoW SSSL NeurRL(R) NeurRL(N)

Coffee 2 56 286 0.588 0.620 0.792 0.964 1.000
ECG 2 200 96 0.819 0.955 0.793 0.820 0.880
Gun point 2 200 150 0.729 0.925 0.824 0.740 0.873
ItalyPow.Dem. 2 1096 24 0.772 0.813 0.941 0.926 0.923
Lighting2 2 121 637 0.698 0.721 0.813 0.689 0.738
CBF 3 930 128 0.921 0.873 1.000 0.909 0.930
Face four 4 112 350 0.833 0.744 0.851 0.914 0.964
Lighting7 7 143 319 0.511 0.677 0.796 0.737 0.878
OSU leaf 6 442 427 0.642 0.685 0.835 0.844 0.849
Trace 4 200 275 0.788 1.00 1.00 0.833 0.905
WordsSyn 25 905 270 0.639 0.795 0.875 0.932 0.946
OliverOil 4 60 570 0.639 0.766 0.776 0.768 0.866
StarLightCurves 3 9236 2014 0.755 0.851 0.872 0.869 0.907
Mean accuracy 0.718 0.801 0.859 0.842 0.891

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

To demonstrate the benefits of the fully differentiable learning pipeline from raw sequence inputs to
symbolic rules, we compare the accuracy and running times (in seconds) between NeurRL and its
deep rule-learning module using the non-differentiable k-means clustering algorithm (Lloyd, 1982).
We use the same hyperparameter to split time series into subsequences for two methods. Results
in Tab. 2 show that the differentiable pipeline significantly reduces running time without sacrificing
rule accuracy in most cases.

Table 2: Comparisons with non-differentiable k-means clustering algorithm.

Dataset Non-differentiable k-means Differentiable k-means
accuracy running time (s) accuracy running time (s)

Coffee 0.893 313 0.964 42
ECG 0.810 224 0.820 65
Gun point 0.807 102 0.740 35
ItalyPow.Dem. 0.845 114 0.926 63
Lighting2 0.672 1166 0.689 120

hp ← pattern2(X) ∧ region1(X) ∧ pattern1(Y) ∧ region2(Y) (p = 0.83, r = 0.89)hp ← pattern2(X) ∧ region1(X) ∧ pattern1(Y) ∧ region2(Y) (p = 0.83, r = 0.89)

(a) A rule from ECG dataset.

hp ← pattern0(X) ∧ region6(X) (p = 0.99, r = 0.90)hp ← pattern0(X) ∧ region6(X) (p = 0.99, r = 0.90)

(b) A rule from ItalyPow.Dem. dataset.

Figure 3: Selected rules from two UCR datasets.

The learned rules from the ECG and ItalyPow.Dem. datasets in the UCR archive are shown in Fig. 3.
In Fig. 3a, red highlights subsequences with the shape pattern2 in the region region1, while
green highlights subsequences with the shape pattern1 in the region region2. The rule suggests
that when data decreases between time points 15 to 25 and then increases between time points 30
to 40, the input likely belongs to the positive class. The precision and recall for this rule are 0.83
and 0.89, respectively. In Fig. 3b, red highlights subsequences with the shape pattern0 in the
region region6. The rule indicates that a lower value around time points 18 to 19 suggests the
input belongs to the positive class, with precision and recall of 0.99 and 0.90, respectively.

5.3 LEARNING FROM IMAGES

p = 0.94, r = 0.31p = 0.94, r = 0.31p = 0.99, r = 0.43p = 0.99, r = 0.43 p = 0.90, r = 0.76p = 0.90, r = 0.76p = 1, r = 1p = 1, r = 1 p = 98, r = 89p = 98, r = 89

Positive
Class

Negative
Class

Figure 4: Rules from MNIST datasets.

In this subsection, we ask the model to learn rules to describe and discriminate two classes of im-
ages from MNIST datasets. We divide the MNIST dataset into five independent datasets, where

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

each dataset contains the positive class presented in the upper row of Fig. 4 and the negative class
presented in the lower row of Fig. 4. For two-dimensional image data, we first flatten the image data
to one-dimensional sequence data. Then, the sequence data can be the input for the NeurRL model
to learn the rules. The lengths of subsequence and region are both set to three. Besides, the number
of clusters is set to five. After generating the highlighted patterns based on the rules, we recover the
sequence data to the image for interpreting these learned rules.

We present the rule with the precision larger than 0.9 and the highlight features (or areas) corre-
sponding to the learned rule in Fig. 4. Each highlight feature corresponds to a pair of region and
pattern atoms in a learned rule. To interpret the rules in Fig. 4, we can interpret them like importance
attention (Zhang et al., 2019), where the colored areas include highly discriminative information for
describing positive inputs compared with negative inputs. For example, in the first column of Fig. 4,
if the highlighted areas are in black at the same time, then the image class is one. Otherwise, the
image class is zero. Compared with attention, we calculate the precision and recall to evaluate these
highlight features quantitatively.

Number of Clusters Number of Regions Number of Subsequence

(a) On ECG dataset.

Number of Clusters Number of Regions Number of Subsequence

(b) On ItalyPow.Dem. dataset.

Figure 5: Results of ablation study. Hyperparameter values vs. accuracy.

5.4 ABLATION STUDY

We conducted ablation studies using default hyperparameters, except for the one being explored. In
this study, the number of clusters and regions influences the number of atoms in the learned rules,
while the number of subsequences depends on the length of potential patterns. Hence, these three
hyperparameters collectively describe the sensitivity of NeurRL. We present the accuracy of both
NeurRL(N) and NeurRL(R) on the time series tasks ECG and ItalyPow.Dem. from the UCR archive.

From Fig. 5, we observe that NeurRL’s sensitivity varies across tasks, and the subsequence length is
a sensitive hyperparameter when the sequence length is small, as seen in the ItalyPow.Dem. dataset.
Properly chosen hyperparameters can achieve high consistency in accuracy between rules and neural
networks. Notably, increasing the number of clusters and regions does not reduce accuracy linearly.
This suggests that the rule-learning module effectively adjusts clusters within the model.

6 CONCLUSION

Inductive logic programming (ILP) is a rule-based machine learning method that supports data in-
terpretability. Differentiable ILP offers advantages in scalability and robustness. However, label
leakage remains a challenge when learning rules from raw data, as neuro-symbolic models require
intermediate feature labels as input. In this paper, we propose a novel fully differentiable ILP model,
Neural Rule Learner (NeurRL), which learns symbolic rules from raw sequences using a differen-
tiable k-means clustering module and a deep neural network-based rule-learning module. The dif-
ferentiable k-means clustering algorithm groups subcomponents of inputs based on the similarity
of their embeddings, and the learned clusters can be used as input for the rule-learning module to
induce rules that describe the ground truth class of input based on its features. The proposed model
can not only learn rules from time series but also learn from images. Compared to other rule-based
models, NeurRL achieves comparable classification accuracy while offering interpretability through
quantitative metrics. Currently, the atoms in the learned rules describe subareas of a raw input. In the
future, we aim to learn rules where an atom represents a set of instances, enabling the application
of learning rules to explain digital semantics (Evans et al., 2021) without label leakage. Besides,
learning knowledge from data with many missing values is a potential research area, as explaining
knowledge through pattern-based rules is limited by significant missing data in time series.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of declarative knowledge.
In Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan Kaufmann,
1988.

Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò, and Andrea Passerini. Global explain-
ability of gnns via logic combination of learned concepts. In Proceedings of the 11th International
Conference on Learning Representations, ICLR-23, 2023.

Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order logical decision trees. Artif.
Intell., 101(1-2):285–297, 1998.

Andrew Cropper and Sebastijan Dumancic. Inductive logic programming at 30: A new introduction.
J. Artif. Intell. Res., 74:765–850, 2022.

Andrew Cropper, Sebastijan Dumancic, Richard Evans, and Stephen H. Muggleton. Inductive logic
programming at 30. Mach. Learn., 111(1):147–172, 2022.

Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and Padhraic Smyth. Rule dis-
covery from time series. In Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining (KDD-98), pp. 16–22. AAAI Press, 1998.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The UCR time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019. https://www.cs.ucr.
edu/˜eamonn/time_series_data_2018/.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. J. Artif. Intell.
Res., 61:1–64, 2018.

Richard Evans, Matko Bosnjak, Lars Buesing, Kevin Ellis, David P. Reichert, Pushmeet Kohli, and
Marek J. Sergot. Making sense of raw input. Artif. Intell., 299:103521, 2021.

Maziar Moradi Fard, Thibaut Thonet, and Éric Gaussier. Deep k-means: Jointly clustering with
k-means and learning representations. Pattern Recognit. Lett., 138:185–192, 2020.

Kun Gao, Katsumi Inoue, Yongzhi Cao, and Hanpin Wang. Learning first-order rules with differ-
entiable logic program semantics. In Proceedings of the 31st International Joint Conference on
Artificial Intelligence, IJCAI-22, pp. 3008–3014, 2022a.

Kun Gao, Hanpin Wang, Yongzhi Cao, and Katsumi Inoue. Learning from interpretation transition
using differentiable logic programming semantics. Mach. Learn., 111(1):123–145, 2022b.

Kun Gao, Katsumi Inoue, Yongzhi Cao, and Hanpin Wang. A differentiable first-order rule learner
for inductive logic programming. Artif. Intell., 331:104108, 2024.

Yuanduo He, Xu Chu, Guangju Peng, Yasha Wang, Zhu Jin, and Xiaorong Wang. Mining rules from
real-valued time series: A relative information-gain-based approach. In 2018 IEEE 42nd Annual
Computer Software and Applications Conference, COMPSAC-18, pp. 388–397. IEEE Computer
Society, 2018.

Céline Hocquette, Andreas Niskanen, Matti Järvisalo, and Andrew Cropper. Learning MDL logic
programs from noisy data. In Proceedings of the 39th Annual AAAI Conference on Artificial
Intelligence, AAAI-24, pp. 10553–10561. AAAI Press, 2024.

Katsumi Inoue, Tony Ribeiro, and Chiaki Sakama. Learning from interpretation transition. Mach.
Learn., 94(1):51–79, 2014.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
Proceedings of the 5th International Conference on Learning Representations, ICLR-17, 2017.

11

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y. Hou, and Max Tegmark. KAN: kolmogorov-arnold networks. CoRR, abs/2404.19756,
2024.

John W. Lloyd. Foundations of Logic Programming, 1st Edition. Springer, 1984.

Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28(2):129–136, 1982.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. In Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing Systems, NeurIPS-18,
pp. 3753–3763, 2018.

Emanuele Marconato, Gianpaolo Bontempo, Elisa Ficarra, Simone Calderara, Andrea Passerini, and
Stefano Teso. Neuro-symbolic continual learning: Knowledge, reasoning shortcuts and concept
rehearsal. In Proceedings of the 40th International Conference on Machine Learning, ICML-23,
volume 202, pp. 23915–23936. PMLR, 2023.

Eleonora Misino, Giuseppe Marra, and Emanuele Sansone. VAEL: bridging variational autoen-
coders and probabilistic logic programming. In Advances in Neural Information Processing Sys-
tems 35: Annual Conference on Neural Information Processing Systems, NeurIPS-22, 2022.

Stephen H. Muggleton and Cao Feng. Efficient induction of logic programs. In Algorithmic Learn-
ing Theory, First International Workshop, ALT-90, pp. 368–381. Springer/Ohmsha, 1990.

Stephen H. Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods. J.
Log. Program., 19/20:629–679, 1994.

Stephen H. Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter A. Flach, Katsumi Inoue,
and Ashwin Srinivasan. ILP turns 20 - biography and future challenges. Mach. Learn., 86(1):
3–23, 2012.

Andrea Passerini, Paolo Frasconi, and Luc De Raedt. Kernels on prolog proof trees: Statistical
learning in the ILP setting. J. Mach. Learn. Res., 7:307–342, 2006.

Yin Jun Phua and Katsumi Inoue. Learning logic programs using neural networks by exploiting
symbolic invariance. In Proceedings of the 30th international conference on Inductive Logic Pro-
gramming, ILP-21, volume 13191 of Lecture Notes in Computer Science, pp. 203–218. Springer,
2021.

Yin Jun Phua and Katsumi Inoue. Variable assignment invariant neural networks for learning logic
programs. In Proceedings of the 18th International Conference on Neural-Symbolic Learning and
Reasoning, NeSy-24, volume 14979 of Lecture Notes in Computer Science, pp. 47–61. Springer,
2024.

J. Ross Quinlan. Learning logical definitions from relations. Mach. Learn., 5:239–266, 1990.

Luc De Raedt and Luc Dehaspe. Clausal discovery. Mach. Learn., 26(2-3):99–146, 1997.

Lior Rokach and Oded Maimon. Clustering methods. In The Data Mining and Knowledge Discovery
Handbook, pp. 321–352. Springer, 2005.

Chiaki Sakama, Katsumi Inoue, and Taisuke Sato. Logic programming in tensor spaces. Ann. Math.
Artif. Intell., 89(12):1133–1153, 2021.

Emanuele Sansone. The triad of failure modes and a possible way out. In Proceedings of the
37th Annual Conference on Neural Information Processing Systems on the 4th Workshop on Self-
Supervised Learning: Theory and Practice (SSL, NeurIPS-23), 2023.

Emanuele Sansone and Robin Manhaeve. Learning symbolic representations through joint genera-
tive and discriminative training. In Proceedings of the 11th International Conference on Learning
Representations on Neurosymbolic Generative Models Workshops (NeSy-GeMs, ICLR-23), 2023.

Hikaru Shindo, Viktor Pfanschilling, Devendra Singh Dhami, and Kristian Kersting. αILP: thinking
visual scenes as differentiable logic programs. Mach. Learn., 112(5):1465–1497, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sever Topan, David Rolnick, and Xujie Si. Techniques for symbol grounding with SATNet. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems, NeurIPS-21, pp. 20733–20744, 2021.

Nils Philipp Walter, Jonas Fischer, and Jilles Vreeken. Finding interpretable class-specific patterns
through efficient neural search. In Proceedings of the 38th AAAI Conference on Artificial Intelli-
gence, AAAI-24, volume 38, pp. 9062–9070, 2024.

Bowen Wang, Liangzhi Li, Yuta Nakashima, and Hajime Nagahara. Learning bottleneck concepts
in image classification. In Proceedings of the 34th IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR-23, pp. 10962–10971, 2023.

Haishuai Wang, Qin Zhang, Jia Wu, Shirui Pan, and Yixin Chen. Time series feature learning with
labeled and unlabeled data. Pattern Recognit., 89:55–66, 2019.

Jin Wang, Ping Liu, Mary Fenghua She, Saeid Nahavandi, and Abbas Z. Kouzani. Bag-of-words
representation for biomedical time series classification. Biomed. Signal Process. Control., 8(6):
634–644, 2013.

Zhao Xu and Koichi Funaya. Time series analysis with graph-based semi-supervised learning. In
2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA-15, pp.
1–6. IEEE, 2015.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for knowl-
edge base reasoning. In Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems, NIPS-17, pp. 2319–2328, 2017.

Eric Zhan, Jennifer J. Sun, Ann Kennedy, Yisong Yue, and Swarat Chaudhuri. Unsupervised learn-
ing of neurosymbolic encoders. Trans. Mach. Learn. Res., 2022, 2022.

Han Zhang, Ian J. Goodfellow, Dimitris N. Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. In Proceedings of the 36th International Conference on Machine Learning,
ICML-19, volume 97 of Proceedings of Machine Learning Research, pp. 7354–7363. PMLR,
2019.

13

	Introduction
	Related work
	Preliminaries
	Logic Programs and Inductive Logic Programming
	Sequence data and Differentiable Clustering Method

	Methods
	Problem Statement and formalization
	Differentiable symbolization process
	Differentiable rule-learning module

	Experimental results
	Learning from synthetic data
	Learning from UCR datasets
	Learning from images
	Ablation study

	Conclusion

