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Abstract
In this paper, we examine the manufacturability
gap in state-of-the-art generative models for 3D
object representations. Many models for generat-
ing 3D assets focus on rendering virtual content
and do not consider the constraints of real-world
manufacturing, such as milling, casting, or injec-
tion molding. We demonstrate that existing gener-
ative models for computer-aided design represen-
tation do not generalize outside of their training
datasets or to unmodified real, human-created ob-
jects. We identify limitations with the current
approaches, including missing manufacturing-
readable semantics, the inability to decompose
complex shapes into parameterized segments ap-
propriate for computer-aided manufacturing, and
a lack of appropriate scoring metrics to assess the
generated output versus the true reconstruction.
The academic community could greatly impact
real-world manufacturing by rallying around path-
ways to solve these challenges. We offer revised,
more realistic datasets and baseline benchmarks
as a step in targeting the challenge. In evaluating
these datasets, we find that existing models are
severely overfit to simpler data.

1. Introduction
Consider the shape in Figure 1. How would one create this
shape as an output of a generative AI model? Consider the
input and output modalities. Could you describe the shape
with sufficient detail in text as input? What level of precision
would be required to retain the filleted edges and smooth
curves if a discrete output, such as a mesh or point cloud,
were generated? Is there any way to create the clean surface
segmentation seen in the leftmost image? How would this
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shape be created using modern manufacturing processes?

Figure 1. Example of a shape decomposed into its parametric
boundary form on the left, discretely triangulated on the right

Modern physical environments are replete with a wide range
of complex shapes and assemblies, most often realized
through mass-manufacturing processes such as subtractive
machining, casting, injection molding, or forming. Tra-
ditionally, these objects are designed by humans via a se-
quence of operations specified in computer-aided design
software, which outputs a parametric boundary representa-
tion of the shape. Humans have the ability to both construct
and decompose an object into logical sections or segments,
even if sections do not have a nominal “classification” or
semantic function. The shape in Figure 1 has clearly defined
geometric segments as indicated on the left. It loses seman-
tic context and precision when represented by a collection
of triangles stitched together, as seen on the right.

From a mathematical standpoint, these shapes are necessar-
ily “2-manifold watertight” objects (White, 2001), meaning
that if each individual shape was represented as a polygonal
mesh, every edge would be incident to exactly two faces. In
addition to these raw physical constraints of the real world,
in practice parametrized, continuous-boundary models al-
low for ease of editing, simulation (due to differentiability
and interpolation) (Szabó & Babuška, 2021), and automated
manufacturing (often involving feature-based machining)
(Nasir & Sassani, 2021). Often formatted as either STEP
or BREP files, these geometries usually bear additional use-
ful features such as perfect symmetry, perfectly parallel
or orthogonal surface normals, and completely consistent
curvature (no bumps i.e. variability in surface normal rate-
of-change) on a given surface. In contrast, discrete primitive
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representations such as point clouds, voxels, and meshes,
are usually suitable only for digital rendering and basic 3D
printing given they have none of these desirable properties.
For mass manufacturing, usually continuous equation-level
‘perfect’ accuracy is expected from CAD – errors will in-
evitably occur in the manufacturing process, approximating
a shape with straight line segments and triangles to begin
with would add an even greater level of error.

However, generating parametric, continuous-boundary rep-
resentations natively out of generative AI models (that is,
either BREP or CAD sequence generation) remains a chal-
lenge, and converting models into these forms is also non-
trivial. Consequently, state-of-the-art (SOTA) 3D generation
methods can be broadly categorized into two main classes
(more strictly defined in the next section 1.1):

1. Models capable of generating complex objects in terms
of discrete primitives (including neural radiance fields,
point clouds, meshes, and voxels).

2. Models capable of generating simple objects in para-
metric boundary form, which to date have struggled
with producing content that represents anything more
than simple geometries. This is often called primitive-
to-CAD generation.

We evaluate both types of models in this paper against a
more realistic dataset and show the limitations of both.

What is desired for real-world manufacturing, is the ability
to generate complex objects in parametric boundary form.
Existing generative models do not train on datasets that have
such features (as discussed further on) and do not generalize
well to them. We have identified a common pattern in these
generative strategies that prevents more effective generaliza-
tion – a restrictive featurization step early on that is heavily
dependent on hard labeling – and propose an augmented
segmentation dataset that emphasizes a diverse, fine-grained
segmentation of geometric shapes beyond conventional se-
mantic or geometric primitive segmentation.

1.1. Definitions and Constraints

We introduce definitions of terms as well as some important
geometric and manufacturing requirements for creation of
3D shapes that exhibit CNC-based manufacturability.

Continuous vs. Discrete Shape Representations As
stated above, most shapes that are eventually manufactured
come from continuous representations with easily identifi-
able and editable features. A variety of file formats exist,
including STEP and BREP. They contain high-level rep-
resentations of shapes, either as pre-defined parametrized
objects or as free-form equations that describe a surface.

#24 = CIRCLE(’NONE’,#5177,1.5);
#25 = DIRECTION(’NONE’,(0.0,-1.0,0.0));
#26 = FACE_OUTER_BOUND(’NONE’,#6369,.T.);
#27 = ORIENTED_EDGE(’NONE’,*,*,#8503,.F.);

...
#5177 = VERTEX_POINT(’NONE’,#396);

Figure 2. Example of a portion of a STEP file in ASCII form, with
explicitly defined high-level features.

There are also many discrete representation formats for
shapes, including meshes, point clouds, and voxels. Meshes,
commonly saved as STL or OBJ files, are a collection of
vertices and edges without any defined features and are
evaluated in this work.

solid name

facet normalni nj nk

outer loop
vertexv1x v1y v1z
vertexv2x v2y v2z
vertexv3x v3y v3z

endloop
endfacet



+

endsolid name

Figure 3. STL ASCII format, which is a collection of triangular
faces (facets) and vertices. {...}+ indicates that the content is
repeated for each facet. Values in italics are single precision floats,
with positive vertices.

SOTA generation models for CAD reconstruction tasks take
discrete representations of shape as input. To evaluate the
performance of such models, it is crucial to derive the STL
files (and from there, sample point clouds and their normals
from generated meshes) from a dataset of parametric bound-
ary files (e.g., STEP) to measure the reconstruction fidelity
relative to the ground truth.

1.2. Classes of Objects

For the purposes of this paper, we shall define complex
objects along the following criteria and simple objects as
objects that do not match one of the following criteria.

A shape can generally be absolutely defined in one of three
ways: its raw geometry, its construction sequence, or its
machining sequence (including the tool path). We define
complex objects as objects that satisfy any one condition
(not necessarily all) of the following from three general but
sometimes overlapping systems for defining a shape:

1. Geometric properties If the geometry in parametric
boundary form contains more than 15 faces (the median
of the unrestricted Thang3D dataset) or includes multiple
spline-fit faces, it exhibits complex geometric properties.
A spline-fit face is a surface in a 3D model defined using
splines, allowing for smooth, freeform shapes rather than
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simple geometric primitives like planes or cylinders. These
faces are typically created using Bézier curves, B-splines, or
NURBS, which interpolate between control points to form
complex contours.

2. Construction sequence When building a parametric
shape, longer sequences—those exceeding 10 steps or in-
volving more than seven extrude operations—tend to align
more closely with realistic manufacturing processes. Com-
plexity increases when the construction sequence extends
beyond basic sketch-extrude-union-intersect operations to
include advanced functions such as lofting, sweeps, skews,
twists, mirrors, and CAD-specific tools like threaded hole
creators, fillets, patterning, or coil creators.

3. Machining sequence Machining complexity increases
when an object contains machinable features such as bevels,
fillets, chamfers, revolutions, or threading. Additional com-
plexity arises when multiple non-planar machining features
are present, or when the object requires multiple machines
or multiple tool-head changes during production.

1.3. Requirements For Manufacturing Processes

Geometrically speaking, a boundary-less 2-manifold is a
topological space M whose points all have open disks home-
omorphic to R2 as neighborhoods. Colloquially known as
“proper meshes” or “watertight meshes,” this indicates that
in a small locality anywhere on the mesh, the mesh is guar-
anteed to be planar. Strictly speaking, a 2-manifold mesh
is a discrete approximation of a smooth surface where ev-
ery vertex’s local neighborhood—often called its ”star”—is
topologically equivalent to an open disk (and there are no
half-disks since there are no boundaries in what we call valid
meshes). Just as each point on a continuous 2-manifold
locally resembles the Euclidean plane, each vertex in a man-
ifold mesh must have incident faces arranged in a single,
connected, cyclic order without gaps or overlaps.

Further clarifying ‘watertight’ in strict geometric terms:

1. A self-intersection is an intersection of two faces of the
same mesh.

2. A non-manifold edge does not have exactly two inci-
dent faces.

3. The star of a vertex is the union of all its incident faces.
4. A non-manifold vertex is a vertex where the corre-

sponding star is not connected when the vertex is re-
moved.

5. A mesh is 2-manifold if it contains neither self-
intersections, nor non-manifold edges, nor non-
manifold vertices.

6. A 2-manifold mesh is watertight if each edge has ex-
actly two incident faces, i.e., no boundary edges exist.

In practice, any holes, self-intersecting faces, or isolated
faces, edges, and vertices violate these constraints and must
be rectified before further processing can be applied (Deck-
ner, 2024). This usually involves a threshold-based patching
algorithm (Bernardini et al., 1999) that often requires human
direction as there is no automated algorithm that can handle
arbitrarily dense meshes. While some path-planning and
slicing tools can handle small errors in the mesh, these kinds
of errors will cause critical printing and structural stability
issues even for custom 3D printing and especially at smaller
layer heights (Montalti et al., 2024).

In subtractive manufacturing (e.g., CNC milling or turning)
tight tolerances and advanced feature-based tool-path plan-
ning algorithms often dictate parametric inputs to the CAM
software (Bianconi et al., 2006). Tolerance defines the per-
missible variation in a part’s dimensions and geometry from
its nominal design (Jensen, 2024), directly affecting how
well parts fit together, their mechanical performance, and
their durability under operational stress. Tight tolerances
minimize defects such as misalignment or excess wear in
assembled systems (Bode et al., 2022), reducing the need for
post-processing and ensuring precise interactions between
parts. In additive manufacturing, where layers of material
are built up incrementally, tolerance control is equally cru-
cial to avoid cumulative errors that could lead to weak points,
poor surface finish, or dimensional inaccuracy. When tight
tolerances are required, additive manufacturing is generally
followed by subtractive finish machining.

Most mass-manufacturing operations, such as routing, turn-
ing, milling, engraving, screw machining, and metal cast-
ing, typically hold tolerances around ±0.005 inches (Ye,
2024). Cutting processes using specialized gasket tools
or rail cutting tolerate around ±0.030 inches, while steel
rule die cutting allows ±0.015 inches. Injection molding
and laser powder-bed fusion both operate around ±0.1 mm
(±0.0039 inches). Across these processes, a general pur-
pose surface finish is commonly specified as an average
roughness of 125 microinches (Ye, 2024).

As meshes scale in size, so too do their errors. For practical
applications, it is crucial that they remain under an abso-
lute tolerance for error regardless of the dimensions of the
created object.

Preservation of “Soft Edges” Bevels, chamfers, and fil-
lets are common features across many manufactured shapes
as shown in Figure 4. Both the generation and preservation
of these “soft edges” are essential to real-world applications
as these features offer critical mechanical and manufactur-
ing advantages, often making important contributions to
factors-of-safety and tool-path accessibility. True clean an-
gle cuts are often difficult to achieve, while sharp angles
meeting at joints concentrate stress and are not capable of
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withstanding as much force as those with gradual transitions
(Belingardi et al., 2002; Zielecki et al., 2017).

Figure 4. Examples of soft (fillet, chamfer, revolve) and hard (cut,
extrude) features from the Fusion360 Segmentation Dataset as
shown in (Lambourne et al., 2021).

1.4. Evaluation Datasets

With these constraints in mind, we sought a dataset that
closely reflects real-world manufacturing scenarios by in-
cluding both the construction sequence and the correspond-
ing continuous boundary form (STEP or BREP). We derive
mesh approximations of the STEP files in STL format to
compare how accurately discrete representations capture the
original geometry.

Most 3D CAD generation datasets have been intentionally
restricted in ways that do not align with most real manu-
factured shapes. The DeepCAD Dataset (Wu et al., 2021)
which was parsed from the ABC Dataset (Koch et al., 2019)
intentionally only targets sketch-extrude sequences. MF-
CAD++ (Colligan et al., 2022) is a synthetic dataset that
was not created by humans, which tends to have a much sim-
pler construction sequence involving single base extrusion
with multiple subsequent ”features” added. A recent dataset,
CAD MLLM (Xu et al., 2024b), intentionally suppresses
chamfer and fillet operations.

Our evaluation dataset is built upon the Fusion360 (F360)
Gallery Segmentation Dataset of roughly 35,000 parts as
it has models incorporating advanced construction features
such as fillets and chamfers and is also designed by humans.
Even so, some CAD operations were suppressed for sim-
plification (Lambourne et al., 2021). The dataset includes
corresponding STEP and STL representations of each part,
though more precise STL meshes can be generated. We
sample from these mesh approximations to generate point
clouds along with associated surface normals, then label
each point as a ‘segment’ according to their corresponding
BREP face in the dataset. Notably, these labels do not cor-
respond to any particular primitive class – they merely act

as segment clusters based on the BREP geometric split of
the object. We posit that true BREP reconstruction requires
this geometric level of segmentation. Additionally, we also
evaluate on 200 models downloaded from the Thang3D
online CAD file repository, which have no restrictions or
simplifications.

2. Evaluation of Existing 3D Generation Work
We evaluate SOTA models in mesh generation as well as
CAD reconstruction against the F360 segmentation dataset,
and evaluate CAD reconstruction on the Thang3D dataset.
We demonstrate that mesh alone, even at extremely high grid
resolutions with noiseless inputs, is not precise or accurate
enough for standard manufacturing techniques. We also
demonstrate that SOTA CAD reconstruction similarly fails
to reconstruct a mathematically valid object over 80% of
the time on the complex datasets.

2.1. Limitations of SOTA Mesh & NeRF Generation

Recently, many 3D shape generation papers have appeared
that generate objects either as point clouds, voxels, or
meshes (Mittal et al., 2022; Siddiqui et al., 2024; Liu et al.,
2023b; Lin et al., 2023; Wen et al., 2019; Xu et al., 2024a;
Liu et al., 2024a). Still other works have delved deeper in
text-to-3D-generation using NeRF or some form of it, in-
cluding DreamFusion (Poole et al., 2022), ProlificDreamer
(Zeng et al., 2023), Phidias (Wang et al., 2025), and others
(Liu et al., 2023a; Zeng et al., 2023; Xie et al., 2024). These
rendering-based approaches could, in theory, be used to
generate meshes by surface meshing of the points. How-
ever, these models introduce variability, noise, and error
even before the final output since they generate from en-
codings. Further, we demonstrate that even if these models
could create meshes from precise inputs, the remeshing even
from an infinitely fine-grained input discretization (e.g., a
neural radiance field (NeRF) which offers a continuous im-
plicit representation) would not satisfy the manufacturing
requirements listed above. For the purpose of this paper, we
evaluate meshes created from a neural radiance field under
what we consider perfect conditions, namely:

1. The initial mesh being sampled is noiseless, exactly
2-manifold and water-tight.

2. The model can sample from as many “camera” posi-
tions and angles as necessary.

3. “Camera” angles are also known and exactly calculated.
4. No noise is added.

Using the F360 segmentation dataset, we allowed Instant-
NGP (Müller et al., 2022) to train until either the total loss
is less than 0.0025 or 250,000 steps are reached, with the
results shown in Table 1. The output resolution for every
mesh is 256 x 256 x 256, which is greater than the resolution
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Has Feature # % NM Avg Chamf NM Edges
Fillets 7166 55 0.034±0.06 5.54±18.1
Chamfers 3045 60 0.029±0.05 6.76±12.7
Revolve 3975 69 0.036±0.07 6.45±10.5
>7 Extrudes 432 45 0.056±0.08 6.45±10.5
All 34871 50 0.029±0.07 6.67±22.1

Table 1. Comparison of shape metrics for NeRF generated from
the F360 segmentation dataset, where all shapes are scaled to fit
in the unit sphere. The first column specifies the feature in the
subset, the second column gives the number of samples with that
feature, the third column gives the percent of non-manifold (NM)
generated meshes for objects with that feature, the fourth column
gives the average chamfer distance and standard deviation between
the original mesh and the NeRF output, and the final column gives
the average number of non-manifold edges and standard deviation.

or maximum face number of any of the prior discrete gen-
eration models listed above. We remesh the output neural
radiance field using an improved marching cubes algorithm,
and all benchmarks are evaluated against these meshes.

Evaluation Even under these “optimal” circumstances,
nearly 50% of these shapes contained non-manifold edges
as seen in Table 1, with some having egregious errors. The
reconstruction model especially struggled to accurate cap-
ture the objects that had revolutions, chamfers, or fillets.
Objects with curves (fillets, chamfers, revolutions) and ob-
jects with many extrusions fared exceptionally poorly.

The median chamfer distance, though small as a percent er-
ror ranging from 1-3%, scales proportionally with the mesh.
Some poor meshing approximations are shown in Figure 8,
where one can observe choppiness in the mesh compared
to the BREP files. For a 4 inch-long object, for example,
the chamfer distance errors referenced in Table 1 would
be an order of magnitude larger than that of the absolute
tolerances listed earlier.

Issues with Mesh Formatting In a mesh representation,
the magnitude of errors generally are too great to be con-
sidered valid for machining. Greater challenges persist in
attempts to fix these errors. In the manufacturing space,
STL files (often misleadingly thought of as valid ‘meshes’
despite a lack of adjacency information) are often known as
“triangle soup” due to their unstructured, featureless nature
as a collection of vertices and edges. As such, they are not
capable of direct, targeted editing by CAD software and
instead are patched via various thresholding algorithms in-
cluding merging vertices, edges and faces, adding additional
faces, unstitching negative gaps, and retriangulation – all
based on human-chosen thresholds (Campen et al., 2012).
While these algorithms might be able to eventually produce
2-manifold, watertight meshes, they will not be able to re-
solve general skewing errors on the mesh itself as illustrated
in Figure 8. They also tend to produce situations where the

repair of one error tends to drive the creation of another
error (Campen et al., 2012).

Minute changes in surface normals and curvature are hard to
patch automatically, and smoothing algorithms must make
qualitative trade offs between preserving sharp features and
achieving a smooth surface. Even advanced methods like
anisotropic, Taubin, or bilateral smoothing struggle with
complex or fine meshes and volume preservation. Without
defined contour lines or features, the mesh is barely editable
beyond simple scaling, even if errors could be patched and
surfaces were smoothed. With high face counts and strict
tolerances, this format is not feasible for general manufac-
turing production.

2.2. Limitations of SOTA Primitive-to-CAD

Given these issues, greater focus by researchers has shifted
to what is known as primitive-to-CAD reconstruction, where
a CAD representation is generated from a mesh or point
cloud input. Point2CAD (Liu et al., 2024b) introduces a
pipeline for reconstructing CAD models from point clouds
by segmenting the cloud into clusters and fitting geometric
primitives or freeform surfaces using a novel neural rep-
resentation. This approach focuses on a hybrid of neural
and analytical methods to address topological consistency,
thereby capturing edges and corners with a new level of
accuracy. Point2Cyl (Uy et al., 2022) maps input points
to extrusion cylinders in a construction sequence. Their
predecessor, DeepCAD (Wu et al., 2021), introduced the
first deep generative model based on transformer-encoder
architectures that outputs 3D shapes as sequences of CAD
operations, addressing the limitations of traditional genera-
tive models that rely on discrete representations like meshes
and point clouds.

CAD-SIGNet (Khan et al., 2024) uses an auto-regressive
neural network that reconstructs CAD design histories from
point clouds, leveraging a multi-modal transformer archi-
tecture with cross-attention and a Sketch Instance Guided
Attention (SGA) module for enhanced detail accuracy. Most
recently, CAD-MLLM (Xu et al., 2024b) presents a multi-
modal framework that generates parametric CAD models
conditioned on various input modalities, including text, im-
ages, and point clouds. CAD-MLLM leverages a large
multimodal dataset, Omni-CAD, and utilizes large language
models to align these different modalities into a coherent
CAD generation process. The approach outperforms prior
models in CAD generation; however, it again only focuses
on sketch-extrude-boolean sequences while explicitly re-
moving chamfers and fillets so we hypothesize it will likely
face the same challenges as Point2CAD.

All of the aforementioned generative models loosely follow
a similar pipeline, shown in Figure 5, that is initially based
on splitting a primitive form (meshes, points, voxels) into
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Figure 5. Common model pipeline for primitive-to-CAD recon-
struction, where a primitive is broken down to create feature vec-
tors according to pre-defined classes or labeled tokens.

% Manifold
Model ABC* Fusion 360 Thang3D

Point2CAD 92.1 18.9 6.9
Point2Cyl 81.2 12.3 0

Table 2. Comparison of Primitive-to-CAD reconstruction models
across datasets, showing what percentage were manifold shapes.
*ABC evaluation performed on a random subset of 10,000 shapes.

geometric segments or mapping an encoded primitive to a
set of explicit CAD-related tokens. These subsets are then
turned into features, which are fed into another model or
models. The inability to properly extract features leads to
major inaccuracies later in the pipelines because unrecog-
nized segments cannot be matched to existing primitives.

Evaluation We test the Point2CAD and Point2Cyl models
using both the F360 segmentation dataset and the Thang3D
dataset. We densely sample 10,000-point point clouds and
their corresponding surface normals from the mesh version
of each file as input. Ground-truth segmentation is defined
by labeling each point in the sampled point cloud according
to its closest BREP face.

Results shown in Table 2 indicate that the segmentation step
does not perform well on the F360 segmentation dataset
or the Thang3D dataset. Over 80% of the reconstruction
outputs of the F360 segmentation dataset and over 90%
of the Thang3D dataset are non-manifold for Point2CAD.
Furthermore, this table alone is not a true capture of the
error, as further discussed in section 3. Intrinsically, any
model that relies on a set number of discrete input points
will be mathematically incapable of representing arbitrarily
complex surfaces. The state of many of the output files is
so distorted that it is of little value to attempt to compute
chamfer distance between it and the ground truth objects, as
exemplified in Figure 6.

Has Features # of Samples % NM NM Edges
Fillets 7166 94 3423±2813
Chamfers 3045 90 2783±1906
Revolve 3975 89 2224±1428
> 7 Extrudes 432 98 3267±2840

All 34871 81 1834±4194

Table 3. Metrics for Point2CAD output CAD files where the orig-
inal shape is scaled to fit in the unit sphere. The first column
specifies the feature in the subset, the second column gives the
number of samples with that feature, the third column gives the
percent of parts having meshes that are non-manifold (NM), and
the final column gives the average number of non-manifold edges
and standard deviation.

Figure 6. Examples of Point2CAD reconstruction errors where (a)
shows the original shape, (b) shows the sampled point cloud, and
(c) shows the attempted reconstruction.

3. Existing Challenges
Classless Segmentation and Decomposition The stitch-
ing together of primitives via boolean operations, as in con-
structive solid geometry, results in a much smaller subset of
shapes than what is seen in the modern world today. Humans
possess an innate ability to partition complex shapes by iden-
tifying coherent regions of continuous or similarly varying
surface characteristics, such as curvature or normal direc-
tion, even when those regions do not conform to standard
geometric primitives (e.g., planes, cylinders, or spheres).
We can construct a wide variety of non-prismatic objects
purely by deciding what geometric features we would like
the object to contain as opposed to selecting from subset of
classes and applying boolean operations to them. We are
also capable of recognizing when there are multiple valid
geometric decompositions for a shape, and when decompo-
sitions are invalid.
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In contrast, nearly all reconstruction and generation, includ-
ing all the work discussed in this paper, has been heav-
ily predicated on featurization performed on the basis of a
small vocabulary of defined classes, either geometrically or
via their construction sequence (usually limited to sketch-
extrude sequences, with some extra commands such as ’slot’
or ’hole’). Inheriting from the RANSAC primitive-fitting al-
gorithms (Schnabel et al., 2007) before them, these models
are able to use simpler metrics such as Mean Intersection
over Union (mIoU) to train since they act on common ge-
ometries associated with pre-defined labels. Whether it is
assigning subsets of the primitives to a geometric shape
(Point2CAD, ParseNet, BrepGen) or assigning subsets of
primitives to CAD sequence instructions (CAD SigNet
(Khan et al., 2024), DeepCAD, HierarchicalCAD (Colligan
et al., 2022)), there is always a “label.” The hard association
of classes to primitive subsets as opposed to a more generic,
parametric understanding of geometry is intrinsically limit-
ing.

Permutation Invariant Metrics Achieving classless seg-
mentation and decomposition necessitates a loss function
that does not actually weight based on what specific label
is chosen for each section, but rather that the sections are
properly segmented. However, achieving a fully differen-
tiable, permutation-invariant loss function that is not based
on a discrete matching algorithm is challenging.

mIoU is a popular metric for segmentation performance,
but it has two notable drawbacks in practice. First, as with
training loss, it is not permutation invariant in the context
of instance-level segmentation; different ways of match-
ing predicted segments to ground truth labels can produce
different mIoU scores, which forces the use of a separate,
typically non-differentiable matching step (e.g., the Hungar-
ian algorithm) to align predictions with targets before the
IoU can be computed. This lack of permutation invariance
stems from the fact that IoU is evaluated pairwise and thus
depends heavily on how instances are paired. Second, mIoU
does not explicitly account for scenarios where the model
fails to predict an entire segment altogether—if a ground
truth segment does not have a corresponding prediction,
it is not penalized in a straightforward way by the mIoU
computation alone. These limitations motivate the use of
more sophisticated metrics that can both handle one-to-one
matching in a principled way and penalize missing or extra
segments.

Reconstruction to Generation – Component Mapping
Since a limited number of components are being used as
input features for generation models such as CADSigNet,
BrepGen, and CAD-MLLM, anything beyond these seg-
ments will inherently be out of distribution, limiting the
output space of existing generation models.

Imprecise Noise in Training Chamfers and fillets that
are a very small fraction of the total size of an object can
have a great impact on its mechanical properties. However,
a common issue across many segmentation, reconstruction
and generation models including Point2CAD, SamPart3D
(Yang et al., 2024), BrepGen and Point2Cyl is the introduc-
tion of noise to the input primitive based on a flat threshold
relative to the overall size of the object (often scaled to be
within the unit sphere). Added noise obscures finer features
and introduces a mollification or blurring of segments that
makes it challenging to differentiate if an edge or corner is
intended to be truly rounded or sharp.

Mechanically Valid Shapes A shape being geometrically
valid does not mean it will be mechanically valid according
to all requirements and constraints. Mechanical design (i.e.,
performed by humans) is largely based on how physical
forces, along with other effects such as heat, will interact
with the designed object. Designs are generally verified with
physics-based simulation, such as finite-element analysis,
and eventually validated in real-world testing. Knowledge
of how these systems work is a key component in the me-
chanical design process. Embedding that knowledge, which
is dependent on design requirements and constraints, as well
as guaranteeing explainability, fault tolerance, and factors
of safety into a neural network remains an open challenge.
Some progress been made in physics-informed neural net-
works (Raissi et al., 2019). Ensuring that there is a possible
machining sequence that will create the shape (e.g., tool-
path accessibility) is yet another challenge.

Input Modalities Most generative design has targeted
either image-to-3D or text-to-image-to-3D. In contrast, me-
chanical design by humans is performed through visual 3D
interfaces with actions that translate to mathematical surface
descriptors. Text and/or images are not sufficiently precise
to describe a shape even for human design. The creation
by industry of domain-specific language (the BREP/STEP
vocabulary and ‘grammar’ structure) and visual interfaces
to generate the language files ensures that shape by design
is specified such that all surfaces have perfect 1:1 mapping
in 3-space. It remains to be seen whether any input modality
with greater ambiguity could truly be used in an industry
setting, or if there are better inputs that can be used along-
side machine-learning techniques that are more quantitative,
like inputs to a deterministic topology optimizer.

4. Shape Decomposition: Open Challenge
We recognize that many of the issues with the aforemen-
tioned pipeline models such as Point2CAD arise from the
initial featurization step being restricted to a certain subset
of classes, which only recognizes basic primitives or basic
CAD sequences that have clearly defined labels. We intro-
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duce the relabeled F360 segmentation dataset as well as the
fully unrestricted Thang3D dataset to address this issue.

Using ground-truth segmentation according to the BREP
face assignments (i.e., ground-truth decomposition), the re-
construction error decreases, shown by the reconstruction
percentage dropping to 47% non-manifold for the F360
dataset — all without any retraining of downstream models.
Though these numbers are still below a practical thresh-
old, they underscore the importance of generating much
finer-grained decomposition than what is typically achieved
by current segmentation efforts (such as being able to seg-
ment a fillet from a connecting plane), then leveraging those
pieces as a far more diverse set of input features. To reach
human-level complexity in design and construction, 3D gen-
eration models must be able to decompose and featurize
geometry at the granularity that a human would – that is,
create the BREP faces. We call this process “geometric de-
composition” to distinguish it from the coarser, more limited
geometric segmentation common in previous work, which
often has hard labels attached to each kind of segment.

4.1. ParSeNet Geometric Decomposition

We test the ParSeNet segmentation model (Sharma et al.,
2020) naively from the checkpoint created by training on
the ABC dataset as used in Point2CAD using advanced
sampling. We calculate the curvature (change in normal
between the faces) for each edge in the mesh and densely
oversample around high curvature edges proportional to the
length of the edge, with a minimum number of samples per
edge being 10. All objects are normalized to be within the
unit sphere and samples of points with their normals are
taken from the mesh.

We define edge curvature as the angle, θ, between normals
on either face associated with the edge. We assume every
mesh is 2-manifold and watertight, meaning every edge
will have exactly 2 connected faces. We also define a
sampling threshold t around these high curvature edges
as t = 0.035 md where md is the minimum dimension of
the bounding box of the object.

We define high curvature edges as any edges where θ is
greater than 0.3 radians and ensure at least 25% of all sam-
pled points across the mesh come from locations within the
threshold t sample zone around these edges. This guaran-
tees a significant number of points will come from areas
with high curvatures. The remaining 75% of samples are
evenly distributed across the mesh surface according to face
area, with a minimum number of three samples per face.
After all samples are calculated, 10,000 points are randomly
selected from the total number of points sampled.

The results are summarized in Table 4. The high curvature
oversampling marginally improves the mIoU metric for all

Class mmIoU # M. Seg # F. Segs
Fillets 0.22 0.55 16.53
Chamfers 0.22 0.463 16.80
Revolve 0.23 0.467 11.07
> 7 Extr. 0.16 0.02 44.42
All 0.23 1.52 8.90
Fillets (NN) 0.54 0.15 14.71

Chamfers (NN) 0.53 0.09 15.05
Revolve (NN) 0.51 0.17 9.84
> 7 Extr. (NN) 0.42 0.01 44.1
All (NN) 0.62 0.42 8.47

Table 4. Comparison of decomposition metrics, testing ParSeNet.
mmIoU is matched mean IOU, meaning the average IoU for
matched segments, ignoring completely missed or false segments.
# M. Seg is the average number of missing segments (i.e., seg-
ments not identified). # F. Seg is the average number of false
segments (i.e., identified segments that do not exist in the ground
truth BREP). The bottom half of the table are results from evalua-
tion with no normals (NN) input, just points.

classes. We speculate that a greater number of input points
or a continuous input representation would improve the
quality of segmentation as it is challenging to accurately
capture all features with just 10,000 points.

Notably, the model performed worse with surface normals
introduced than without it, in contrast to the data provided by
the original ParseNet paper. While out of distribution data
is always challenging, we hypothesize the model is over-
indexing on sharp changes in normals as a class delimiter
as opposed to truly parametrizing according to the normal
vectors’ values or rate of change of the normal vectors.

5. Alternative Views
Perhaps we do not need classless decomposition, we simply
need more classes. This is a decidedly algorithmic approach,
as opposed to a human one. While increasing total numbers
of classes and/or parametrizing them will likely improve per-
formance in reconstructing and generating diverse shapes,
it fundamentally does not address the issue that humans
split and generate shapes along logical geometric bound-
aries – not based on which class is most likely to be the next
predictable token or what split will guarantee decomposed
segments will fit into existing labels. The intrinsic questions
“does this split create some sort of geometric consistency
within the segments?” and “does this split increase the like-
lihood of a specific class or token?” might be linked, but
the latter is far less general than the former. Our goal is for
generative models to develop an intuitive understanding of
geometry. It should be entirely possible to create segments
that have never been seen before and do not fit any one class
(or alternatively fit multiple) based on the local geometry of
a shape – humans do this regularly.
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Others might challenge the necessity of strictly coupling
generative AI with tightly parameterized models for mass-
manufacturing. Some believe additive manufacturing,
where flexible mesh or voxel-based representations can al-
ready suffice, reduce the urgency for painstaking parameter-
ization. There is also the question of whether older CAD
paradigms should remain a firm requirement, given that
neural and implicit representations can capture high-fidelity
geometry and might be converted downstream to machin-
able formats. Early-stage approximations are highlighted for
their conceptual value, with critics suggesting that enforcing
precise tolerances during ideation risks stifling creativity.

While it is true that additive manufacturing workflows, non-
parametric neural representations, approximate early-stage
models, and human-in-the-loop iterations can each serve
various purposes in modern product development, these
viewpoints do not diminish the overall necessity of bridg-
ing generative 3D models with the strict manufacturing
constraints demanded by high-volume, precision-focused
industries. Humans in the loop will always want an output
that they can edit easily. Additive manufacturing remains a
complement rather than a complete substitute for subtrac-
tive processes like CNC machining, especially for parts that
must meet tight tolerances or require specific finish qualities.
Even so, as discussed above, many additive algorithms will
not tolerate current mesh errors in SOTA mesh-generation
models. Neural representations and learned implicit func-
tions, while powerful, still require clear pathways to produce
parameterized outputs that standard CAM pipelines can in-
terpret; relying on post-hoc conversion from implicit to
explicit geometry can introduce new sources of error and
there is currently no automated pipeline for doing such con-
versions with arbitrary complexity. Approximate or creative
designs are undeniably useful for concept generation but
still require heavy human involvement and ultimately could
take more time recreating in CAD software than it would
have been to start from scratch with expert knowledge.

6. Conclusion
We have critically evaluated the limitations of existing
datasets and modeling approaches for segmentation and
reconstruction of parametric boundary-defined 3D shapes.
We emphasize the inadequacies of mesh and other discrete
representations for the purposes of real-world creation and
demonstrate that many existing pipeline-style models and
their training datasets do not effectively generalize to real
world parts, highlighting the need for datasets that encom-
pass greater geometric and manufacturing complexity. We
also show that a significant portion of the error from these
sets of models occurs in the featurization step, which is inca-
pable of breaking down shapes into sufficiently elementary
parts for reconstruction. We introduce a revised version of

the F360 segmentation dataset that is labeled according to
each shape’s BREP decomposition in addition to a smaller
labeled dataset of real parts from Thang3D in an attempt to
encourage more geometric diversity within the CAD gen-
eration space as well as much finer-grained segmentation
(referred to here as shape decomposition). Finally, we estab-
lish a baseline for shape decomposition, using the modified
F360 segmentation dataset and ParseNet, that is more accu-
rate to the requirements for creating real-world objects and
brings primitive forms closer to their higher-level BREP
counterparts, allowing for better training on downstream
tasks.

These findings underscore the importance of dataset diver-
sity and authenticity to the problem it is trying to solve as
well as the critical role initial featurization plays in pipeline
style models for 3D generation tasks. We hope this aug-
mented dataset will spur further developments in advanc-
ing parametric segmentation and reconstruction techniques,
paving the way for more robust solutions to address the
challenges of bringing useful shapes off the screen and into
the real world.

7. Future Work
Achieving BREP-level accuracy in shape decomposition
is the first step in bridging the gap between current gener-
ated 3D shape outputs and manufacturability. Future work
could include attempting segmentation with non-discrete
forms such as implicit neural representations, encoded mesh
patches, or other ways of processing arbitrarily complex
shapes where a finite number of discrete points would be
too large to efficiently train as input and adding other geo-
metric features would allow the models to converge faster.

Once fine-grained decomposition is achieved, next steps
would involve training any of the aforementioned down-
stream pipeline models to reconstruct complex shapes as
parametric boundary objects with these new input segments
as features. The final goal would be to generate these sort
of parametric boundary representations directly from ML
models for the complex shapes presented in the real world.

Looking even further into the future, generating shapes
in parametric boundary representation with some knowl-
edge of physical parameters, machining accessibility, and
even stricter requirements similar to topology optimization
where a parameter like mass or volume was minimized while
factors-of-safety was still enforced, remains a fascinating
open challenge.
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A. Appendix
Edge Curvature Equation:

θ = cos−1

(
n1 · n2

∥n1∥ ∥n2∥

)
.

Figure 7. Examples of remeshed BREPs from the Fusion360 Segmentation Dataset with curvature precision errors (straight line segments
do not approximate the shape within standard machining tolerances when scaled to 4 inches along the longest dimension).

Process Tolerance
Router ± 0.005 in
Lathe ± 0.005 in
Router (Gasket Cutting Tools) ± 0.030 in
Milling (3-axis) ± 0.005 in
Milling (5-axis) ± 0.005 in
Engraving ± 0.005 in
Rail Cutting Tolerances ± 0.030 in
Screw Machining ± 0.005 in
Steel Rule Die Cutting ± 0.015 in
Injection Moulding ± 0.1 mm (0.0039 in)
Metal Casting ± 0.005 in
Laser Powder-Bed Fusion ± 0.1 mm (0.0039 in)
Surface Finish 125 RA

Table 5. Standard Tolerances for Mass Manufacturing (Ye, 2024). RA is average roughness in microinches.
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Figure 8. Examples of complex shapes from the Thang3D Dataset.
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