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ABSTRACT

State-of-the-art (SOTA) approaches for 3D content generation are predominantly
built upon a sequential framework: first generating geometric shapes, followed
by texture estimation that leverages geometric cues. Consequently, these methods
typically incur computational costs on the order of minutes when generating both
geometry and texture, and often suffer from significant shape-texture misalign-
ment—a limitation attributed to the sequential decoupling of these two stages. To
mitigate these limitations, recent works have aimed to jointly model geometry and
texture within a unified framework, which in turn enhances shape-texture consis-
tency. Nevertheless, these joint approaches still face challenges in precise texture
modeling, largely due to the loss of fine-grained texture details during latent fea-
ture learning. To address this remaining challenge, in this work, we propose a
novel joint architecture that not only preserves the advantage of unifying geom-
etry and texture modeling but also retains and effectively captures fine-grained
texture details by integrating image diffusion features into the latent feature learn-
ing process. We further recognize that modeling such fine-grained texture fea-
tures presents notable challenges, which arise from the inherent complexity of
mapping 2D visual details onto 3D surfaces. To alleviate this challenge, we in-
troduce a diffusion-based module that enhances cross-modal alignment between
3D structures and 2D image inputs, thereby enabling the direct learning of rich,
fine-grained texture features from 2D image conditions. Extensive empirical eval-
uations demonstrate that our approach results in a 3D content generation algorithm
that outperforms existing SOTA approaches, delivering substantial improvements
in texture modeling quality.

1 INTRODUCTION

Image-to-3D generation has emerged as a pivotal subfield within the broader domain of 3D AI-
Generated Content (AIGC), whose core task is centered on synthesizing high-fidelity 3D assets from
a single 2D image of an arbitrary object. Recent years have witnessed remarkable advancements in
large-scale 3D generative models, driving significant progress in synthetic 3D content creation. A
dominant paradigm among these approaches employs a sequential framework Zhang et al. (2024b);
Li et al. (2025b); Zhang et al. (2023); Li et al. (2025a): first, geometric structures are generated via
a diffusion model operating over a compact latent space, with the latent representation encoded by a
pretrained variational autoencoder (VAE); second, texture details are synthesized using a multiview
image generation model, which leverages geometric cues from the precomputed shape. However,
this sequential design inherently introduces substantial inefficiencies: (1) the sequential generation
of shape and texture occurs across two distinct, computationally expensive modules; (2) reliance
on large-scale multiview diffusion models often results in generation times on the order of minutes
per 3D object. A second critical limitation is the inherent misalignment between geometry and
texture: since shape and texture are modeled separately without explicit cross-modal constraints,
the synthesized texture frequently fails to map accurately to the underlying geometry, degrading the
overall fidelity of the generated 3D asset.

Beyond the sequential paradigms outlined above, a parallel line of research has investigated models
that jointly generate 3D geometry and corresponding texture Tang et al. (2024); Xiang et al. (2025).
A subset of these approaches leverages large-scale transformer architectures to directly learn 3D
Gaussian Splatting (3DGS) Tang et al. (2024) in an end-to-end manner; however, the resulting ge-
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Figure 1: Texture-focused comparison between SOTA image-to-image(I2I) editing model and
image-to-3d(I3D) model. Specifically, I2I editing models demonstrate superior performance in pre-
serving strict visual coherence with the conditional input images, whereas I3D models struggle to
achieve this level of coherence.

ometries tend to be excessively smooth and lacking fine-grained structural details, while the accom-
panying textures often suffer from noticeable blurriness. Recent advances Xiang et al. (2025) have
shifted toward leveraging sparse 3D structures for compact 3D object representation. These meth-
ods typically employ 3D binary occupancy masks to delineate the valid spatial regions of the target
object, thereby significantly reducing computational and memory overhead relative to dense 3D rep-
resentations. Nevertheless, two critical bottlenecks persist: First, the DINOv2 features adopted in
such approaches are typically designed for coarse-grained semantic representation, rendering them
incapable of capturing fine-grained texture details—an essential requirement for preserving input
image fidelity in 3D generation. Second, sparse 3D structures and 2D images are inherently mis-
aligned in both their representation modalities and dimensionalities. The naive application of at-
tention mechanisms—whose primary function is to measure feature similarity within homogeneous
modalities (e.g., 2D-to-2D, 3D-to-3D)—fails to establish meaningful correlations between hetero-
geneous 2D and 3D data. This undermines the model’s capacity to faithfully preserve fine-grained
visual details from input 2D image conditions. Such structural and dimensional mismatch poses an
insurmountable barrier to effective cross-modal feature alignment, ultimately limiting the transfer
of high-fidelity visual information to the generated 3D asset. As illustrated in fig. 1, state-of-the-
art 2D image-to-image editing models Batifol et al. (2025); Wang et al. (2025) excel at maintaining
strict visual coherence with the conditional input image: they faithfully preserve both low-level fine-
grained textural details and high-level semantic consistency. In contrast, existing joint 3D generation
methods Xiang et al. (2025) struggle to retain this level of consistency, frequently producing textures
that are blurry or devoid of input-specific fine details. This discrepancy underscores a critical gap in
visual detail preservation between mature 2D conditional modeling paradigms and emerging joint
3D generation frameworks.

In this work, we propose Diff2to3 to address the aforementioned challenges in joint image-to-3D
generation. For 3D asset representation, we adopt 3D Gaussian Splatting (3DGS) Kerbl et al.
(2023)—a representation that provides two key advantages: high-fidelity appearance preservation
and efficient volumetric rendering. Our approach builds upon the joint framework proposed in Xi-
ang et al. (2025) and introduces targeted architectural and algorithmic enhancements to both the
3D latent reconstruction and 3D content generation pipelines. In the latent learning stage, we mod-
ify the input feature composition of the original VAE architecture. Specifically, we leverage rich,
prelearned visual features from SOTA pretrained large-scale image diffusion models Labs (2024).
These models are trained on large-scale natural image datasets, enabling them to encode a com-
prehensive understanding of both low-level reconstructive cues and high-level semantic relation-
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ships. In contrast to prior works that utilize DINOv2 features Oquab et al. (2023)—which priori-
tize high-level scene semantics and are less optimized for capturing fine-grained details. Our use
of image diffusion features alleviates the inherent information loss during latent encoding, which
ensures the learned latent representation retains the fine-grained texture details and subtle geomet-
ric hints necessary for maintaining cross-modal consistency between the input 2D image and the
generated 3D asset. In the generation phase, we observe that fine-grained textural features from
image diffusion model—characterized by subtle chromatic variations, intricate surface patterns, and
microscale details—remain notoriously challenging to model, especially under the constraints of
an efficient sparse-structured latent space. Empirical observations indicate that research explicitly
focused on modeling such fine-grained features in this constrained setting remains relatively lim-
ited; furthermore, the naive adoption of diffusion architectures optimized for coarse-grained texture
modeling fails to capture these fine-grained characteristics with adequate efficiency. To address this
critical gap, we draw inspiration from SOTA 2D diffusion paradigms Labs (2024) and introduce
two novel components specifically designed for the sparse 3D structural scenario: (1) the Sparse-
structure Multi-modal Diffusion Transformer (SMDiT), a diffusion-based transformer architecture
that jointly models the probability distributions of sparse voxel-based latents and conditional 2D im-
age tokens. This design enables cross-modal interaction and knowledge transfer, thereby facilitating
the propagation of fine-grained visual cues from 2D inputs to 3D representations; (2) Modal-Aware
Rotary Position Embedding (MARoPE), which explicitly encodes the intrinsic spatial relationships
between 3D voxel coordinates (defined in world space) and 2D image pixels (localized in the input
image plane). By quantifying these geometric correspondences, MARoPE enables implicit align-
ment between local 3D regions and their corresponding visual details in the 2D input, thus enhanc-
ing the fidelity of texture transfer. Through the integration of these proposed enhancements, our
model achieves more efficient learning and faithful preservation of fine-grained textural features,
thereby addressing the limitations of prior approaches in capturing high-resolution visual details
within sparse 3D latent spaces.

The key contributions of our work are summarized as follows:

• We leverage prelearned visual features from large-scale image diffusion models to construct
input 3D feature volumes for the VAE, enabling the learning of a more expressive latent
space that captures both low-level reconstructive cues and high-level semantics. This leads
to improved reconstruction accuracy relative to prior approaches.

• We propose the Sparse-structure Multi-modal Diffusion Transformer (SMDiT)—a novel
architecture specifically designed for modeling sparse-structured 3D latent spaces—and
Modal-Aware Rotary Position Embedding (MARoPE), which collectively enhance cross-
modal alignment between 3D structures and 2D image conditions.

• Extensive quantitative and qualitative experiments on standard image-to-3D benchmarks
show that our efficient joint approach generates 3D assets with high-fidelity, image-
consistent textures, outperforming SOTA methods across key evaluation metrics.

2 PRELIMINARIES

Sparse Voxel-based Representation. Introduced by Xiang et al. (2025), the sparse voxel-based
representation constitutes a unified 3D latent framework that encodes 3D objects by distributing
latent features across a sparsely populated voxel grid. This design avoids redundant storage of
non-informative (i.e., empty or irrelevant) voxels, thereby striking a balance between computa-
tional efficiency and representational fidelity. Formally, a 3D asset is represented as a set of tuples
{(zi, pi)}Li=1, where pi ∈ {0, ..., N − 1} denotes the positional index of an active (i.e., non-empty)
voxel within a cubic grid of resolution N , and zi ∈ RC is a local latent vector associated with pi.
Given that the number of active voxels is substantially smaller than the total grid size (L ≪ N3), this
framework enables efficient high-resolution modeling while preserving the precise spatial locality of
both geometric structure and appearance attributes. Furthermore, it supports flexible decoding into
diverse 3D representations (e.g., 3D Gaussian Splatting, NeRF, or mesh) via task-specific decoder
heads, enhancing its adaptability across downstream applications.

The generation of such sparse voxel-based representations typically adheres to a two-stage pipeline.
In the first stage, a Diffusion Transformer (DiT) Peebles & Xie (2023) is trained to generate the
coordinates of the feature grid {pi}Li=1 from a noise distribution, effectively modeling the spatial
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Figure 2: The overall framework of Diff2to3 is visually illustrated as follows: During the representa-
tion learning stage, FLUX features of multi-view images are extracted to construct sparse-structured
latent representations, which serve to support 3D latent reconstruction. In the generation stage, these
learned latent representations are generated via the SMDiT module under the condition of a given
conditional image. The learning process is further enhanced using the same sparse voxel-based tech-
nique proposed in Xiang et al. (2025); for simplicity, this technique is omitted from the figure.

arrangement of active voxels. In the second stage, an additional DiT—conditioned on the precom-
puted coordinates {pi}Li=1 is employed to generate the corresponding latent features {zi}Li=1, which
encode geometric and textural information.

3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) Kerbl et al. (2023) constitutes a real-time
radiance field representation that models 3D scenes or objects via a collection of discrete 3D Gaus-
sian primitives, where each primitive functions as a compact unit for encoding local geometric
structure and appearance attributes. Formally, each 3D Gaussian is defined by a parameter set
Θ = {x, s,q, α, c}, where x ∈ R3 denotes the center coordinate, anchoring its spatial position;
s ∈ R3 is a scaling vector that adjusts the primitive’s dimensions along orthogonal axes; and q ∈ R4

represents a rotation quaternion, enabling orientation adjustments to fit complex surface geometries.
For photorealistic rendering, each Gaussian further includes an opacity value α ∈ R and color infor-
mation c ∈ Rd - typically represented via spherical harmonics to model view-dependent effects such
as specularity or shading variations. The 3DGS rendering pipeline operates by first projecting each
3D Gaussian onto the 2D image plane, yielding a perspective-aligned 2D Gaussian. Subsequently,
front-to-back per-pixel alpha compositing is applied to blend the color and opacity of overlapping
Gaussians, producing the final pixel values. This approach circumvents the time-consuming ray
marching inherent to NeRF-based methods and the topological constraints of mesh representations,
thereby enabling real-time photorealistic rendering— a key advantage for interactive applications
and high-fidelity visualization tasks.

3 METHOD

In this section, we detail the architectural design of the Diff2To3 framework, which is tailored to
generate 3DGS representations of objects conditioned on a single input image. As illustrated in
fig. 2, the framework consists of two core stages: representation learning and 3DGS generation.
In section 3.1, we first analyze the latent encoding scheme proposed in prior work, identify its inher-
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ent limitations, and then present our revised input volume construction strategy—this modification
enables the learning of a more efficient and expressive latent space, specifically optimized for de-
tailed 3DGS representation. Next, in section 3.2, we elaborate on the proposed flow-based model
architecture, alongside a novel position embedding design tailored explicitly to the sparse-structured
latent space; this embedding design facilitates effective modeling of cross-modal dependencies be-
tween 2D image cues and 3D structural features. Finally, in section 3.3, we introduce the training
objectives adopted to optimize the framework.

3.1 2TO3 VARIATIONAL AUTOENCODER

Our 2to3-VAE is constructed based on the VAE architecture proposed in Xiang et al. (2025), with
targeted modifications motivated by a key observation: the granularity of input features directly in-
fluences the quality and expressiveness of the latent representations learned by the VAE. In Xiang
et al. (2025), each 3D asset is first voxelized into a feature volume; the feature of each active voxel
is derived by aggregating DINOv2 features Oquab et al. (2023) extracted from densely rendered
multi-view images of the asset. While DINOv2 performs well in general-purpose representation
learning, its design prioritizes high-level semantic abstraction—often at the cost of pixel-level ap-
pearance details that are critical for achieving faithful image-to-3D alignment. This misalignment
with the core requirement of the image-to-3D task (preserving fine-grained visual consistency) con-
stitutes a major limitation. A second critical limitation of the original encoding scheme stems from
its aggressive dimensionality compression: DINOv2’s 1024-dimensional features are compressed
into 8-dimensional latents, resulting in a compression ratio of 128:1. This extreme downsampling
induces significant loss of fine-grained information, further impairing the model’s ability to preserve
texture details and compromising the fidelity of 3D outputs.

To address these limitations, we revise the input feature pipeline of 2to3-VAE by utilizing FLUX
features Labs (2024) as the input to the encoder. Unlike DINOv2, FLUX is explicitly optimized
to preserve low-level visual details and reconstructive cues—properties that are well-aligned with
the requirement of the image-to-3D task for precise 2D-to-3D visual consistency. FLUX has al-
ready demonstrated superior performance in high-fidelity image reconstruction tasks, making it
well-suited for extension to 3D generation scenarios where retaining textural nuances is critical.
These features inherently encode precise visual details (e.g., color gradients, surface patterns) that
bridge 2D input images and 3D textures, thereby enhancing cross-modal alignment. Furthermore,
FLUX features exhibit a more favorable dimensionality profile: they are compact yet information-
dense 16-dimensional vectors. When compressed to the target 8-dimensional latents, this dimen-
sionality reduction (16→8) results in a modest compression ratio of 2:1—far lower than DINOv2’s
128:1. This reduced compression ratio minimizes information loss, enabling the retention of fine-
grained textural details in the latent space. By leveraging FLUX’s reconstructive focus and efficient
dimensionality, we align the input feature pipeline of 2to3-VAE more effectively with the demands
of image-to-3D generation, laying a robust foundation for high-fidelity 3DGS outputs.

3.2 SPARSE-STRUCTURE MULTI-MODAL DIFFUSION TRANSFORMER

Network Architecture. Our SMDiT network design is motivated by the following observation: 2D
and 3D features belong to distinct modalities; simply adopting the attention mechanism Xiang et al.
(2025) is insufficient to capture the correspondences between these two modalities, thereby failing
to generate detailed 3D objects that align well with input images. These two modalities therefore
necessitate a pre-alignment module to ensure they can be well aligned in the latent space while re-
taining their unique characteristics. Inspired by image diffusion models Labs (2024), our network
is built from a combination of double-stream and single-stream blocks, as illustrated in fig. 3. The
double-stream blocks first process noisy sparse voxel tokens and conditioned image tokens sepa-
rately using modality-specific weights, thus preserving the unique characteristics of each input type.
After modality-specific processing, joint attention is then applied to the concatenated token sequence
to initiate cross-modal interaction. To further enhance the exchange of mutual information between
the 2D and 3D modalities, the concatenated tokens are treated as a unified sequence and fed into
subsequent single-stream blocks—blocks that are equivalent to standard transformer blocks. To im-
prove training efficiency, we patchify both the noisy sparse voxel latents as well as the condition
image features. To improve training efficiency, we patchify both the noisy sparse voxel latents and
the conditioned image features. The former is achieved by employing downsampling blocks with
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Figure 3: An illustration of our proposed Sparse-structured Multi-modal DiT (SMDiT) network
architecture and Modal-Aware RoPE (MARoPE) strategy. SMDiT employs a transformer architec-
ture comprising both double-stream and single-stream blocks. It incorporates the characteristics of
the sparse-structured latent space and facilitates interactions between 3D and 2D modalities. (Note
that green blocks contain learnable parameters, whereas orange blocks do not.) For the MARoPE
strategy, 2D images are mapped onto a virtual plane outside the latent volume, while raw 3D voxel
coordinates within the volume are retained.

sparse convolutions to group active voxels within a 23 local region, while the latter is implemented
by adopting the same 22 patch partitioning as in the DiT design Esser et al. (2024), which aligns
with standard image feature processing pipelines.

Modal-Aware Rotary Position Embedding. Previous works Su et al. (2024); Wu et al. (2025) have
highlighted the importance of positional embeddings, as they help the model distinguish between
modalities and learn spatial correspondences. However, we notice that current positional encoding
strategies for cross-modal tasks are mostly designed for text-image or image-image pairs Wu et al.
(2025); Batifol et al. (2025); Tan et al. (2024), and they fail to adequately address the unique chal-
lenges in image-to-3D for linking 2D image patches to 3D volumetric regions. A few works Feng
et al. (2025) propose 3D-aware RoPE to explicitly encode 2D-3D correspondences, but it relies on
accurate camera parameters to build a canonical coordinate map and provide this correspondence.
This assumption is impractical for general-purpose 3D generation, where users rarely provide cali-
brated camera parameters, leading to geometric misalignment and degraded performance.

To address these limitations, we propose Modal-Aware Rotary Position Embedding (MARoPE), a
novel positional encoding scheme that enables implicit cross-modal correspondence learning with-
out relying on explicit geometric alignment. As shown in fig. 3, MARoPE explicitly distinguishes
2D and 3D modalities by mapping 2D image patch indices (i, j) to a “virtual plane” at 3D coordi-
nate (i, j, zmax + 1) (outside the 3D volume’s bounds) while retaining raw 3D voxel coordinates
(x, y, z) for the volume. This design conceptualizes the conditioned image as being attached along
the third dimension of the latent volume. By embedding 2D and 3D tokens in a shared 3D space but
with 2D tokens isolated on a virtual plane, MARoPE allows the diffusion model to learn implicit
correspondences between 2D image patches and 3D volumetric regions. This ultimately enhances
visual consistency without enforcing explicit geometric alignment.

3.3 TRAINING DETAILS

VAE Training. Our 2to3-VAE is trained in an end-to-end manner. At each step, we randomly
choose one reference view, then minimize the perceptual L1 reconstruction loss between the render-
ing result of the VAE’s decoded output and that of the ground-truth from the same viewing angle.
Following Xiang et al. (2025), we also impose geometry regularizations for volume and opacity
of the Gaussians, and KL constraints to push the latent space towards standard normal. The full
training objective can be written as:

Ltotal = Lrecon + Lvol + Lα + LKL (1)
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Method SSIM↑ PSNR↑ LPIPS↓
GaussianAnything 0.9475 26.73 0.06397

TRELLIS 0.9712 30.14 0.02901
Ours 0.9773 31.86 0.02633

Table 1: Quantitative evaluation of 3D reconstruction with other latent representations in terms of
appearance fidelity on Toys4k. Bold denotes the best results.

Diffusion Training. Our SMDiT model is trained with a flow-matching pipeline Lipman et al.
(2022), a continuous normalizing flow framework that formulates generation as a progressive trans-
formation of noise toward the target distribution. Specifically, it uses a linear interpolation forward
process zt = (1 − t)z0 + tϵ, t ∼ U(0, 1), ϵ ∼ N (0, I) to derive noisy inputs zt. Then, we param-
eterize the SMDiT model as vθ to predict the velocity field ut of the noisy input zt with respect to
the straight-line trajectory, using a conditional flow matching (CFM) objective:

LCFM(θ) = ∥vt(z; θ)− ut(z|ϵ)∥22
= ∥vt((1− t)z0 + tϵ; θ)− (ϵ− z0)∥22

(2)

4 EXPERIMENTS

In this section, we first present the implementation details, comparative baselines, and evaluation
protocols. We then conduct two sets of experiments to evaluate the quantitative and qualitative
performance of our method and other baseline methods across both reconstruction and generation
tasks.

4.1 EXPERIMENT SETTINGS

Datasets. Following Xiang et al. (2025), we remove assets with low-quality textures and manually
curate approximately 360K 3D assets from the 3D-FUTURE Fu et al. (2021), ABO Collins et al.
(2022), HSSD Khanna et al. (2024), and Objaverse (XL) Deitke et al. (2023) datasets for model
training. For quantitative and qualitative evaluation, we randomly sample 1,000 assets from the
Toys4k dataset Stojanov et al. (2021).

Implementation Details. For reconstruction experiments, we render 150 images per asset; for
diffusion-based generation experiments, we render 24 images per asset. These images are rendered
with a set of different field-of-views (FoVs) and at a resolution of 512 × 512. During training, we
adopt the AdamW optimizer Loshchilov & Hutter (2017) with a learning rate of 1 × 10−4. During
inference, we set the number of sampling steps to 50 to ensure fair comparison across all methods.
All experiments are conducted on 8 NVIDIA A100 GPUs.

4.2 RECONSTRUCTION EXPERIMENTS

We first evaluate the appearance reconstruction fidelity of our 2to3-VAE, whose performance estab-
lishes the upper bound for the generation quality of the framework. Following Xiang et al. (2025),
we report the SSIM, PSNR, and LPIPS metrics by comparing the rendered reconstruction results
with the ground truth. We primarily compare our method against two baselines: TRELLIS Xiang
et al. (2025) and GaussianAnything Lan et al. (2024). The former serves as the example of sparse
structure 3D generation without 2D diffusion features, while the latter is an interactive latent space
with a point cloud structure that is also trained on large-scale data. The commonly used vecset la-
tent representation is employed for geometry reconstruction rather than texture modeling, and thus
is not the focus of this work. As shown in table 1, our method outperforms all baselines across all
evaluated metrics. This result validates the effectiveness of incorporating 2D diffusion features in
constructing 3D feature volumes.
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Method CLIP↑ FDincep↓ KDincep(%)↓ FDdinov2↓ KDdinov2(%)↓ # Param.
Shap-E 86.32 133.96 8.23 792.43 147.72 300 M
LGM 87.23 65.89 1.33 662.91 75.49 415 M

InstantMesh 89.95 45.38 2.54 392.15 24.48 866 M
GaussianAnything 85.09 65.31 8.07 702.03 71.72 586 M

3DTopia-XL 86.10 64.39 1.16 619.11 64.28 909 M
TRELLIS 98.02 24.57 0.0421 146.14 8.74 770 M

Ours 98.45 19.78 0.0394 122.90 3.78 821 M

Table 2: Quantitative evaluation of image-conditioned 3D generation on Toys4k dataset in terms
of appearance fidelity of 2D renderings. Bold and underline respectively denote the best and the
second-best results.

Figure 4: Visual comparisons with 3DGS-based generation method. GA is short for GaussianAny-
thing. Please zoom in for clearer visualization.

4.3 GENERATION EXPERIMENTS

For generation quality, we conduct quantitative comparisons with SoTA 3D generation methods,
including Shap-E Jun & Nichol (2023), LGM Tang et al. (2024), InstantMesh Xu et al. (2024a),
GaussianAnything Lan et al. (2024), 3DTopia-XL Chen et al. (2025b), and TRELLIS Xiang et al.
(2025)—all under the single-image input condition. Given our focus on appearance fidelity, we
evaluate the visual consistency between 2D renderings of the generated 3D assets and the image
prompts. To ensure the robustness of our evaluation, we employ a suite of metrics: Fréchet Dis-
tance (FD) and Kernel Distance (KD), each paired with distinct feature extractors, as well as the
CLIP Score. As shown in table 2, our method outperforms previous approaches across all evaluated
metrics.

We further present qualitative comparisons with 3DGS-based generation methods in fig. 4. As
observed in the figure, LGM and GaussianAnything exhibit significant distortions in both shape
and appearance, particularly when viewed from novel perspectives. TRELLIS, on the other hand,
suffers from color misalignment and inconsistent textural details relative to the input image prompts.
In contrast, our framework consistently produces results that best preserve the input’s geometric
structure, color accuracy, and textural details—such as the arrangement of sofa cushions, the surface
features of coins, the stripe patterns on drums, and the branding on batteries—thereby demonstrating
superior visual fidelity across all tested objects.
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Summary Configurations CLIP↑ FDincep↓ KDincep(%)↓ FDdinov2↓ KDdinov2(%)↓2to3-VAE SMDiT MARoPE

Exp 1 ✗ ✗ ✗ 98.02 24.57 0.0421 146.14 8.74
Exp 2 ✓ ✗ ✗ 96.96 30.24 0.0523 210.50 5.58
Exp 3 ✓ ✓ ✗ 97.11 28.74 0.0496 159.34 4.11
Exp 4 ✓ ✓ ✓ 98.45 19.78 0.0394 122.90 3.78

Table 3: Ablation studies of image-conditioned 3D generation on different design components. Bold
denotes the best results.

4.4 ABLATION STUDIES

In this section, we perform a series of ablation studies to systematically investigate the efficacy of the
SMDiT architecture and MARoPE design. The experimental configurations are detailed in table 3.
Specifically, Exp. 1 serves as our baseline, comprising (1) a DINOv2-based 3D VAE, (2) the DiT
architecture, and (3) absolute position embeddings. We incrementally incorporate our proposed
designs in subsequent experiments to validate their individual and combined effectiveness.

Our empirical findings yield two key insights: (1) Comparing Exp. 1 with Exp. 2, we observe
that while 2to3-VAE demonstrates superior reconstruction performance (see table 1), the DiT ar-
chitecture and absolute position embeddings adopted from Xiang et al. (2025) fail to capture such
fine-grained texture features—underscoring the necessity of a synergistic design for diffusion archi-
tectures. (2) Our proposed SMDiT and MARoPE each contribute to performance improvements:
SMDiT mitigates challenges associated with feature alignment, while MARoPE further boosts per-
formance. Exp. 4, which integrates all the aforementioned proposed components, thereby achieves
SOTA results on the evaluated benchmarks by leveraging the combined strengths of these compo-
nents.

5 CONCLUSION

In this paper, we demonstrate that leveraging 2D diffusion-based representations substantially en-
hances the reconstruction performance of 3D Variational Autoencoders (VAEs). However, we also
identify a critical challenge: such fine-grained texture features pose significant challenges to stan-
dard DiTs, thereby limiting their ability to capture high-fidelity texture details in 3D generation
tasks. We further show that our proposed SMDiT and MARoPE architectures effectively mitigate
this limitation. Specifically, these components consistently boost the model’s capacity to learn and
model detailed texture features, which in turn translates to improved overall 3D generation perfor-
mance. In particular, our framework achieves markedly superior texture quality for 3D assets with
sharp structural details and intricate texture patterns—an area where previous DiT architectures of-
ten suffer from notable limitations.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used, were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We have also provided a full description of
Diff2to3 framwork, to assist others in reproducing our experiments. Additionally, all datasets used
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in the paper, including ABO, HSSD, 3D-FUTURE, Objaver-XL, Toys4k, are publicly available, en-
suring consistent and reproducible evaluation results. We believe these measures will enable other
researchers to reproduce our work and further advance the field.
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A RELATED WORKS

3D Generation from 2D Guidance. The breakthrough of high-fidelity 2D generative models (e.g.,
Stable Diffusion Rombach et al. (2022)) has catalyzed extensive research on leveraging their pre-
learned priors to facilitate 3D generative tasks. A core insight of these methods is to distill the rich
geometric layout and photorealistic appearance knowledge encoded in 2D diffusion models—trained
on massive natural image datasets—into structured 3D representations. DreamFusion Poole et al.
(2022) pioneered this direction by introducing Score-Distillation-Sampling (SDS), a key technique
that aligns the rendering of a 3D representation (e.g., Neural Radiance Field, NeRF) with the score
distribution of a 2D diffusion model, effectively transferring 2D visual priors to 3D space.

Subsequent works have extended the SDS-based pipeline to specialize in image-to-3D generation.
Make-it-3D Tang et al. (2023) enhances semantic alignment by first using a Vision-Language Model
(VLM) to generate detailed captions for the input reference image, then optimizing a NeRF via a
combination of SDS loss (for visual fidelity) and CLIP loss (for semantic consistency with both
image and caption). Zero-1-to-3 Liu et al. (2023b) and CAT3D Gao et al. (2024) further refine
this paradigm by prioritizing novel view synthesis: they first learn to predict consistent multi-view
images from the input single view using 2D diffusion priors, then use these synthesized views to
guide the optimization of 3D assets (e.g., NeRF or 3D Gaussian Splatting). One-2-3-45 Liu et al.
(2023a) improves upon view consistency and reconstruction efficiency by incorporating geometric
constraints (e.g., depth hints) during the multi-view synthesis stage.

Despite these advancements, 2D-guided approaches remain inherently constrained relative to na-
tive 3D models. First, the SDS-based optimization process is computationally prohibitive, often
requiring hours of iterative refinement to converge to a coherent 3D asset—far from the real-time or
near-real-time demands of practical applications. Second, multi-view image generation introduces
intrinsic consistency artifacts: 2D diffusion models lack explicit 3D geometric awareness, leading
to conflicting visual cues across synthesized views (e.g., mismatched object contours or inconsistent
surface textures), which propagate to the final 3D asset and degrade its fidelity.

Deterministic 3D Reconstruction Models. A parallel line of research focuses on native 3D models
designed specifically for image-to-3D tasks, with one prominent branch being large-scale determin-
istic reconstruction models. These methods aim to reconstruct 3D assets in an end-to-end feed-
forward manner, eliminating the need for lengthy iterative optimization. LRM Hong et al. (2023)
laid the foundation for this direction by proposing the first transformer-based pipeline tailored for
3D reconstruction: it encodes input 2D images into image tokens, translates these tokens into im-
plicit 3D triplane features via a cross-modal transformer, and finally decodes the triplanes into a
NeRF representation. This design unleashes the scalability of large-scale datasets and model param-
eters, enabling robust single-view to 3D translation. Extending beyond single-view inputs, many
successors have integrated multi-view image cues and adopted more expressive 3D output represen-
tations (e.g., 3D Gaussian Splatting, 3DGS). GeoLRM Zhang et al. (2024a) introduces a 3D-aware
transformer architecture equipped with deformable cross-view attention, which directly aggregates
features from multiple input views onto 3D spatial points, enhancing geometric accuracy. GRM Xu
et al. (2024b) builds a sparse-view reconstructor that estimates 3D scenes using pixel-aligned Gaus-
sians, leveraging explicit 2D-3D correspondence to preserve fine-grained details. LGM Tang et al.
(2024) employs an asymmetric UNet to predict initial 3D Gaussians from multi-view inputs and
iteratively fuses them into a coherent 3D asset, balancing efficiency and fidelity. However, the
image-to-3D task is fundamentally ill-posed: a single 2D image inherently lacks complete depth
and viewpoint information, leading to ambiguous 3D interpretations. Deterministic reconstruction
models are inherently unable to model this uncertainty—they map each input image to a single fixed
3D output, rather than a distribution of plausible assets. This limitation often results in unsatisfac-
tory predictions, such as blurry textures, distorted geometry for novel views, or inconsistent details
in occluded/unseen regions of the scene, particularly when the input image contains sparse visual
cues.

Stochastic 3D Generation Models. To address the ambiguity and uncertainty inherent in image-to-
3D translation, another branch of native 3D models adopts a stochastic generation paradigm based
on latent diffusion models (LDMs). These methods model the distribution of plausible 3D assets
conditioned on the input image, enabling the synthesis of realistic, diverse, and view-consistent 3D
content by leveraging learned data distributions.
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Figure 5: Additional qualitative results

Stochastic 3D generation models are typically categorized by their choice of latent 3D representa-
tion, with two dominant families: vecset-based and voxel-based. Vecset-based methods encode 3D
shapes using sets of latent vectors (implicit representations) that can be decoded into neural signed
distance functions (SDFs) or occupancy fields. 3DShape2VecSet Zhang et al. (2023) pioneered this
representation, demonstrating its ability to capture complex 3D shape variations. Building on this
foundation, CLAY Zhang et al. (2024b), TripoSG Li et al. (2025b), and CraftsMan Li et al. (2025a)
introduce refinements such as hierarchical vecset encoding and diffusion-based refinement, enabling
the generation of highly accurate and detailed 3D shapes.

On the other hand, voxel-based methods leverage explicit spatial structures in the latent space, with
recent advances focusing on sparse 3D structures to balance expressiveness and efficiency. For ex-
ample, XCube Ren et al. (2024) and TRELLIS Xiang et al. (2025) embed sparse voxel grids into
the latent diffusion framework. This design facilitates efficient feature aggregation within local 3D
neighborhoods, reducing computational overhead compared to dense voxel representations while re-
taining geometric awareness. Subsequent studies like Sparc3D Li et al. (2025c), Ultra3D Chen et al.
(2025a) demonstrate the effectiveness of this representation at modeling fine-grained 3D geometry.
Despite these strengths, existing sparse voxel-based models often struggle to preserve fine-grained
textural details from the input image, due to challenges in aligning sparse 3D latent features with
dense 2D image pixels—a gap that motivates further research.

B ADDITIONAL QUALITATIVE RESULTS

C LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
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the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

15


	Introduction
	Preliminaries
	Method
	2to3 Variational AutoEncoder
	Sparse-structure Multi-modal Diffusion Transformer
	Training Details

	Experiments
	Experiment Settings
	Reconstruction Experiments
	Generation Experiments
	Ablation Studies

	Conclusion
	Related Works
	Additional Qualitative Results
	LLM Usage

